Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation
From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensiona...
Saved in:
Published in | Magnetic resonance in medicine Vol. 59; no. 3; pp. 667 - 672 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.21542 |
Cover
Abstract | From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual‐angle measurements at 3T (nonselective 3D‐FLASH, 7° and 20° flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill‐conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. Magn Reson Med 59:667–672, 2008. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7° and 20° flip angle, TR=30ms, isotropic resolution of 0.95mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual‐angle measurements at 3T (nonselective 3D‐FLASH, 7° and 20° flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill‐conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. Magn Reson Med 59:667–672, 2008. © 2008 Wiley‐Liss, Inc. From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20DG. Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7DG and 20DG flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual‐angle measurements at 3T (nonselective 3D‐FLASH, 7° and 20° flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T 1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill‐conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T 1 histograms. Magn Reson Med 59:667–672, 2008. © 2008 Wiley‐Liss, Inc. From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms.From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. |
Author | Helms, Gunther Dathe, Henning Dechent, Peter |
Author_xml | – sequence: 1 givenname: Gunther surname: Helms fullname: Helms, Gunther email: ghelms@gwdg.de organization: MR Forschung in der Neurologie und Psychiatrie, Universitätsmedizin, Göttingen, Germany – sequence: 2 givenname: Henning surname: Dathe fullname: Dathe, Henning organization: AG Biomechanik, Abteilung Kieferorthopädie, Universitätsmedizin, Göttingen, Germany – sequence: 3 givenname: Peter surname: Dechent fullname: Dechent, Peter organization: MR Forschung in der Neurologie und Psychiatrie, Universitätsmedizin, Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18306368$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9P3DAQxa0KVBbaQ79A5VOlHgKOHcf2ESH-qbtULFQ9jmzvpLjNJsFOCnz7hixQqVLbkzWe35t5o7dLtpq2QULe5Ww_Z4wfrON6n-ey4K_ILJecZ1yaYovMmCpYJnJT7JDdlL4zxoxRxWuyk2vBSlHqGbm8HGzTh9724SfSk_nh1RldLM-p7am4pkMKzTdqaRzbbWNrarsutvdhPdW0rWh_g_Q4NqmneDtMv2_IdmXrhG-f3j3y5eT4-ugsm38-PT86nGdeasGz3CqjtZGWM8uNY9Kh4NLrSjDHCl-h8ehG61hpb0SZr3LF8oppp4TEVSHEHrGbuekOu8FBF0db8QFaG6BrY29riJjQRn8D9QAJYaTq4CeTCRgqgb6w4AwqKDTXYJh1IFAba1zpHNfjjg-bHePVtwOmHtYheaxr22A7JFBMSKNL_l-QMy1LxdUIvn8CB7fG1Yvr50RG4OMG8LFNKWL1G2HwmDaMacOU9sge_MH6Kcm26aMN9b8Ud6HGh7-PhsVy8azINoqQerx_Udj4A0ollISvF6ew_FQWsuRXcCF-Ab0_yeI |
CitedBy_id | crossref_primary_10_3389_fnins_2022_874023 crossref_primary_10_1002_mrm_30143 crossref_primary_10_1016_j_neuroimage_2017_11_066 crossref_primary_10_7554_eLife_78756 crossref_primary_10_1088_0967_3334_36_9_1901 crossref_primary_10_1016_j_neuroimage_2022_119249 crossref_primary_10_1016_j_neurobiolaging_2025_03_003 crossref_primary_10_1016_j_neuroimage_2011_01_052 crossref_primary_10_1111_jsr_13698 crossref_primary_10_1002_mrm_29151 crossref_primary_10_1016_j_neuroimage_2022_119529 crossref_primary_10_1002_mrm_29394 crossref_primary_10_1002_gamm_202470014 crossref_primary_10_1016_j_neuroimage_2021_118559 crossref_primary_10_1002_hbm_23929 crossref_primary_10_1111_jmp_12227 crossref_primary_10_1016_j_jneumeth_2013_02_011 crossref_primary_10_1097_WCO_0000000000000222 crossref_primary_10_1016_j_neuroimage_2015_06_033 crossref_primary_10_1016_j_media_2021_102149 crossref_primary_10_1093_cercor_bhy256 crossref_primary_10_1016_j_neuroimage_2022_119751 crossref_primary_10_3174_ajnr_A2865 crossref_primary_10_1002_mrm_30134 crossref_primary_10_1002_mrm_26395 crossref_primary_10_1016_j_neuroimage_2016_01_062 crossref_primary_10_1002_mrm_28333 crossref_primary_10_1016_j_neuroimage_2014_12_030 crossref_primary_10_1002_mrm_28178 crossref_primary_10_1002_mrm_30018 crossref_primary_10_1016_j_neuroimage_2009_03_053 crossref_primary_10_1016_j_neuroimage_2017_02_008 crossref_primary_10_1016_j_nicl_2022_103228 crossref_primary_10_1016_j_neuroimage_2013_07_065 crossref_primary_10_1002_mrm_29383 crossref_primary_10_1002_mrm_27525 crossref_primary_10_1038_s41598_018_36793_3 crossref_primary_10_1038_srep43316 crossref_primary_10_1038_s42254_021_00326_1 crossref_primary_10_1016_j_neuroimage_2020_117613 crossref_primary_10_1016_j_neuroimage_2021_117910 crossref_primary_10_1016_j_neuroimage_2020_117211 crossref_primary_10_1016_j_jneumeth_2023_109950 crossref_primary_10_1016_j_neurobiolaging_2020_01_006 crossref_primary_10_1162_imag_a_00017 crossref_primary_10_1002_hbm_24965 crossref_primary_10_1002_mrm_23206 crossref_primary_10_1016_j_neuroimage_2020_117172 crossref_primary_10_1002_hbm_26420 crossref_primary_10_1002_mrm_29292 crossref_primary_10_1523_JNEUROSCI_1712_12_2012 crossref_primary_10_1002_mrm_29059 crossref_primary_10_1002_mrm_28486 crossref_primary_10_1038_s41598_024_63483_0 crossref_primary_10_1002_mrm_30448 crossref_primary_10_1111_jon_12377 crossref_primary_10_1109_TMI_2021_3088258 crossref_primary_10_1523_JNEUROSCI_3617_15_2016 crossref_primary_10_1016_j_mri_2013_08_001 crossref_primary_10_1002_mrm_29216 crossref_primary_10_1038_s41398_022_02091_w crossref_primary_10_1093_cercor_bhs213 crossref_primary_10_1002_jmri_29156 crossref_primary_10_1002_mrm_25135 crossref_primary_10_1002_mrm_22421 crossref_primary_10_1016_j_neuroimage_2017_12_087 crossref_primary_10_1162_imag_a_00225 crossref_primary_10_3389_fnins_2017_00106 crossref_primary_10_1002_mrm_21732 crossref_primary_10_1016_j_neuroimage_2010_10_023 crossref_primary_10_1007_s00330_023_10351_6 crossref_primary_10_1016_j_neurobiolaging_2014_02_008 crossref_primary_10_1523_JNEUROSCI_1278_12_2012 crossref_primary_10_1016_j_mri_2017_01_014 crossref_primary_10_1016_j_neuroimage_2013_06_005 crossref_primary_10_3389_fnins_2014_00278 crossref_primary_10_1002_mrm_28077 crossref_primary_10_1002_mrm_29683 crossref_primary_10_1126_science_abq4515 crossref_primary_10_13104_imri_2018_22_4_218 crossref_primary_10_1016_j_neuroimage_2013_05_043 crossref_primary_10_1016_j_bpsc_2019_07_008 crossref_primary_10_1016_j_neuroimage_2021_117735 crossref_primary_10_1016_j_nicl_2023_103432 crossref_primary_10_1212_NXI_0000000000200299 crossref_primary_10_1002_mrm_22379 crossref_primary_10_1002_mrm_26058 crossref_primary_10_1002_mrm_27421 crossref_primary_10_1002_jmri_24373 crossref_primary_10_1016_j_neurobiolaging_2021_02_002 crossref_primary_10_1002_hbm_23137 crossref_primary_10_1016_j_neuroimage_2022_119092 crossref_primary_10_1016_j_neuroimage_2019_01_029 crossref_primary_10_3389_fnhum_2022_852737 crossref_primary_10_1002_mrm_21969 crossref_primary_10_1016_j_neuroimage_2012_08_058 crossref_primary_10_1002_hbm_25870 crossref_primary_10_1016_j_mri_2020_07_002 crossref_primary_10_1016_j_mri_2017_10_006 crossref_primary_10_1016_j_neuroimage_2018_11_023 crossref_primary_10_1093_brain_awp271 crossref_primary_10_1016_j_nicl_2019_102058 crossref_primary_10_1088_0031_9155_55_15_003 crossref_primary_10_1259_bjr_20190952 crossref_primary_10_3389_fnins_2015_00097 crossref_primary_10_1016_j_neuroimage_2014_09_044 crossref_primary_10_1016_j_neuroimage_2017_07_042 crossref_primary_10_1016_j_neuroimage_2017_10_060 crossref_primary_10_1523_JNEUROSCI_0390_20_2021 crossref_primary_10_1016_j_neuroimage_2017_12_060 crossref_primary_10_1002_hbm_24938 crossref_primary_10_1002_mrm_29632 crossref_primary_10_1093_braincomms_fcac088 crossref_primary_10_1002_mrm_22607 crossref_primary_10_1002_mrm_22849 crossref_primary_10_1093_braincomms_fcab036 crossref_primary_10_1371_journal_pone_0169265 crossref_primary_10_1002_mrm_30050 crossref_primary_10_1088_2057_1976_acc318 crossref_primary_10_1002_hbm_24011 crossref_primary_10_1093_cercor_bhw393 crossref_primary_10_1016_j_mri_2018_08_021 crossref_primary_10_1523_JNEUROSCI_1436_17_2017 crossref_primary_10_1371_journal_pone_0032379 crossref_primary_10_1016_j_neuroimage_2023_120046 crossref_primary_10_1002_mrm_30453 crossref_primary_10_1088_0031_8949_87_03_035005 crossref_primary_10_1002_mrm_27442 crossref_primary_10_1002_hbm_24490 crossref_primary_10_1002_mrm_28899 crossref_primary_10_1002_mrm_22394 crossref_primary_10_1016_j_nic_2024_03_003 crossref_primary_10_7554_eLife_80919 crossref_primary_10_1002_hbm_24522 crossref_primary_10_1002_mrm_29907 crossref_primary_10_1016_j_neuroimage_2023_119860 crossref_primary_10_1002_jmri_23774 crossref_primary_10_2463_mrms_mp_2023_0095 crossref_primary_10_1016_j_neuroimage_2018_01_036 crossref_primary_10_1016_j_neuroimage_2014_07_015 crossref_primary_10_1038_s41598_024_80274_9 crossref_primary_10_1002_nbm_3022 crossref_primary_10_1002_jmri_21756 crossref_primary_10_1007_s00401_019_01985_2 crossref_primary_10_1002_mrm_28206 crossref_primary_10_1073_pnas_1705643114 crossref_primary_10_3389_fnins_2021_706473 crossref_primary_10_1002_mrm_26306 crossref_primary_10_1002_mrm_29934 crossref_primary_10_1002_mrm_25210 crossref_primary_10_1002_mrm_28720 crossref_primary_10_1002_jmri_21629 crossref_primary_10_1002_hbm_25767 crossref_primary_10_1002_hbm_24710 crossref_primary_10_1002_mrm_21776 crossref_primary_10_1109_ACCESS_2022_3189992 crossref_primary_10_1002_hbm_25122 crossref_primary_10_1016_j_mri_2019_01_015 crossref_primary_10_1002_jmri_26998 crossref_primary_10_3389_fnins_2019_01066 crossref_primary_10_1007_s00586_013_2798_1 crossref_primary_10_1111_ene_16297 crossref_primary_10_1002_mrm_22294 crossref_primary_10_1038_s41598_021_88840_1 crossref_primary_10_1038_s41598_019_47277_3 crossref_primary_10_1016_j_nicl_2022_103177 crossref_primary_10_1002_nbm_3658 crossref_primary_10_1002_mrm_29764 crossref_primary_10_3389_fneur_2019_01333 crossref_primary_10_1038_s41597_022_01571_4 crossref_primary_10_1002_hbm_23858 crossref_primary_10_1016_j_media_2023_103058 crossref_primary_10_1016_j_neuroimage_2015_10_006 |
Cites_doi | 10.1002/0470869526.ch5 10.1002/mrm.10090 10.1002/mrm.1910050502 10.1002/mrm.1910370107 10.1016/S0730-725X(99)00092-2 10.1002/mrm.20314 10.1063/1.1719961 10.1002/mrm.1910400412 10.1002/mrm.10407 10.1016/0022-2364(86)90433-6 10.1002/jmri.20356 10.1002/mrm.20217 10.1097/00004728-198603000-00046 10.1002/mrm.21177 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. (c) 2008 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: (c) 2008 Wiley-Liss, Inc. |
CorporateAuthor | Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Medical Radiation Physics, Lund Medicinsk strålningsfysik, Lund |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Medicinsk strålningsfysik, Lund – name: Medical Radiation Physics, Lund – name: Lund University – name: Faculty of Science – name: Lunds universitet |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 ADTPV AGCHP AOWAS D8T D95 ZZAVC |
DOI | 10.1002/mrm.21542 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 672 |
ExternalDocumentID | oai_portal_research_lu_se_publications_0e73ec4a_b9e7_4828_90ab_3e89a9b6bb28 18306368 10_1002_mrm_21542 MRM21542 ark_67375_WNG_RK64562S_N |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Volkswagen Foundation of the federal state of Lower Saxony |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 ADTPV AGCHP AOWAS D8T D95 ZZAVC |
ID | FETCH-LOGICAL-c5832-1a798895a20a29b05be325c8f30b04cfe9ceb194ef8c9361d1701f08b735ed433 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Tue Sep 09 23:04:09 EDT 2025 Fri Sep 05 08:29:21 EDT 2025 Thu Sep 04 19:38:27 EDT 2025 Wed Feb 19 01:51:33 EST 2025 Tue Jul 01 01:20:39 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Wed Jan 22 16:45:24 EST 2025 Tue Sep 09 05:32:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | (c) 2008 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5832-1a798895a20a29b05be325c8f30b04cfe9ceb194ef8c9361d1701f08b735ed433 |
Notes | ark:/67375/WNG-RK64562S-N Volkswagen Foundation of the federal state of Lower Saxony istex:B3108687B7381D75F50290C24D200656229A408F ArticleID:MRM21542 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/54910 |
PMID | 18306368 |
PQID | 20856727 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_0e73ec4a_b9e7_4828_90ab_3e89a9b6bb28 proquest_miscellaneous_70359862 proquest_miscellaneous_20856727 pubmed_primary_18306368 crossref_primary_10_1002_mrm_21542 crossref_citationtrail_10_1002_mrm_21542 wiley_primary_10_1002_mrm_21542_MRM21542 istex_primary_ark_67375_WNG_RK64562S_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2008 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: March 2008 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Wang H, Riederer S, Lee S. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1986; 5: 399-416. Frahm J, Haase A, Matthaei D. Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 1986; 10: 363-368. Lu H, Nagae-Poetscher LM, Xavier G, Lin D, Zijl PCMv. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22. Ernst RR, Anderson WA. Application of Fourier transform to magnetic resonance spectroscopy. Rev Sci Instrum 1966; 37: 93-98. Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K-D. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 1986; 67: 258-266. Whittall K, MacKay A, Graeb D, Nugent R, Li D, Paty D. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43. Finsterbusch J, Frahm J. Half-Fourier single-shot STEAM MRI. Magn Reson Med 2002; 47: 611-615. Deoni SCL, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005; 53: 237-241. Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P. Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 2007; 57: 568-576. Venkatesan R, Lin W, Haacke EM. Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn Reson Med 1998; 40: 592-602. Wang D, Heberlein K, LaConte S, Hu X. Inherent insensitivity to RF inhomogeneity in FLASH imaging. Magn Reson Med 2004; 52: 927-931. Deoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526. Imran J, Langevin F, Saint-Jalmes H. Two-point method for T1 estimation with optimized gradient-echo acquisition. Magn Reson Imaging 1999; 19: 1347-1256. 2002; 47 2004; 52 1966; 37 1999; 19 1986; 10 1986; 67 1997; 37 1986; 5 2005; 53 2007 2003; 49 2006 2003 1998; 40 2007; 57 2005; 22 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_21_2 e_1_2_7_20_2 Magn Reson Med. 2010 Apr;63(4):1136 |
References_xml | – reference: Imran J, Langevin F, Saint-Jalmes H. Two-point method for T1 estimation with optimized gradient-echo acquisition. Magn Reson Imaging 1999; 19: 1347-1256. – reference: Finsterbusch J, Frahm J. Half-Fourier single-shot STEAM MRI. Magn Reson Med 2002; 47: 611-615. – reference: Lu H, Nagae-Poetscher LM, Xavier G, Lin D, Zijl PCMv. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22. – reference: Venkatesan R, Lin W, Haacke EM. Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn Reson Med 1998; 40: 592-602. – reference: Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K-D. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 1986; 67: 258-266. – reference: Deoni SCL, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005; 53: 237-241. – reference: Deoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526. – reference: Ernst RR, Anderson WA. Application of Fourier transform to magnetic resonance spectroscopy. Rev Sci Instrum 1966; 37: 93-98. – reference: Wang D, Heberlein K, LaConte S, Hu X. Inherent insensitivity to RF inhomogeneity in FLASH imaging. Magn Reson Med 2004; 52: 927-931. – reference: Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P. Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 2007; 57: 568-576. – reference: Wang H, Riederer S, Lee S. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1986; 5: 399-416. – reference: Whittall K, MacKay A, Graeb D, Nugent R, Li D, Paty D. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43. – reference: Frahm J, Haase A, Matthaei D. Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 1986; 10: 363-368. – volume: 47 start-page: 611 year: 2002 end-page: 615 article-title: Half‐Fourier single‐shot STEAM MRI publication-title: Magn Reson Med – start-page: 923 year: 2006 – start-page: 1597 year: 2006 – volume: 5 start-page: 399 year: 1986 end-page: 416 article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles publication-title: Magn Reson Med – volume: 40 start-page: 592 year: 1998 end-page: 602 article-title: Accurate determination of spin‐density and T1 in the presence of RF‐field inhomogeneities and flip‐angle miscalibration publication-title: Magn Reson Med – volume: 22 start-page: 13 year: 2005 end-page: 22 article-title: Routine clinical brain MRI sequences for use at 3.0 Tesla publication-title: J Magn Reson Imaging – volume: 53 start-page: 237 year: 2005 end-page: 241 article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med – start-page: 1242 year: 2006 – start-page: 2643 year: 2006 – volume: 49 start-page: 515 year: 2003 end-page: 526 article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state publication-title: Magn Reson Med – volume: 52 start-page: 927 year: 2004 end-page: 931 article-title: Inherent insensitivity to RF inhomogeneity in FLASH imaging publication-title: Magn Reson Med – start-page: 2058 year: 2007 – volume: 37 start-page: 34 year: 1997 end-page: 43 article-title: In vivo measurement of T2 distributions and water contents in normal human brain publication-title: Magn Reson Med – volume: 57 start-page: 568 year: 2007 end-page: 576 article-title: Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast‐enhanced abdominal MRI publication-title: Magn Reson Med – volume: 10 start-page: 363 year: 1986 end-page: 368 article-title: Rapid three‐dimensional MR imaging using the FLASH technique publication-title: J Comput Assist Tomogr – start-page: 1657 year: 2007 – start-page: 111 year: 2003 end-page: 142 – volume: 19 start-page: 1347 year: 1999 end-page: 1256 article-title: Two‐point method for T1 estimation with optimized gradient‐echo acquisition publication-title: Magn Reson Imaging – volume: 67 start-page: 258 year: 1986 end-page: 266 article-title: FLASH imaging: rapid NMR imaging using low flip angle pulses publication-title: J Magn Reson – volume: 37 start-page: 93 year: 1966 end-page: 98 article-title: Application of Fourier transform to magnetic resonance spectroscopy publication-title: Rev Sci Instrum – ident: e_1_2_7_9_2 doi: 10.1002/0470869526.ch5 – ident: e_1_2_7_10_2 – ident: e_1_2_7_16_2 doi: 10.1002/mrm.10090 – ident: e_1_2_7_19_2 – ident: e_1_2_7_8_2 doi: 10.1002/mrm.1910050502 – ident: e_1_2_7_13_2 doi: 10.1002/mrm.1910370107 – ident: e_1_2_7_3_2 doi: 10.1016/S0730-725X(99)00092-2 – ident: e_1_2_7_5_2 doi: 10.1002/mrm.20314 – ident: e_1_2_7_11_2 doi: 10.1063/1.1719961 – ident: e_1_2_7_18_2 – ident: e_1_2_7_20_2 doi: 10.1002/mrm.1910400412 – ident: e_1_2_7_4_2 doi: 10.1002/mrm.10407 – ident: e_1_2_7_6_2 – ident: e_1_2_7_2_2 doi: 10.1016/0022-2364(86)90433-6 – ident: e_1_2_7_12_2 doi: 10.1002/jmri.20356 – ident: e_1_2_7_17_2 – ident: e_1_2_7_21_2 doi: 10.1002/mrm.20217 – ident: e_1_2_7_14_2 doi: 10.1097/00004728-198603000-00046 – ident: e_1_2_7_15_2 – ident: e_1_2_7_7_2 doi: 10.1002/mrm.21177 – reference: - Magn Reson Med. 2010 Apr;63(4):1136 |
SSID | ssj0009974 |
Score | 2.3457289 |
Snippet | From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be... From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be... |
SourceID | swepub proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 667 |
SubjectTerms | Adult Algorithms Brain Mapping - methods Engineering and Technology Ernst equation Female human brain Humans Imaging, Three-Dimensional Least-Squares Analysis Magnetic Resonance Imaging - methods Male Medical Engineering Medical Imaging Medicinsk bildvetenskap Medicinteknik quantification T1-relaxation Teknik |
Title | Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation |
URI | https://api.istex.fr/ark:/67375/WNG-RK64562S-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21542 https://www.ncbi.nlm.nih.gov/pubmed/18306368 https://www.proquest.com/docview/20856727 https://www.proquest.com/docview/70359862 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Za9wwEIBFSGnpS4_02p6ilJIXb2RLsiT6FNpst8cuZJPQEApCkuW2JPGm3jWE_vrqsL1NSaD0zeCxLUuj0Yw0-gTAK2WJUYbTpHTed0I0E4nggiWE0cwFXKlBKtA-p_n4gHw8pIdr4E23FybyIfoJN98zgr32HVzpxdYKGnpanw7deEW8_U1x7rn572YrdJQQkcDMiLczgnRUIZRt9U9eGIuu-Wo9v8zR7CmiFx3YMAKNboOvXdlj4snxsFnqofn1F9bxP3_uDrjVeqZwO6rSXbBmqw1wY9KuvW-A6yFZ1Czugd3dRlVhc5ozlXD0eXtvDCezD1AtId6HPpP-G1SwbqcZYcCWn_-IeyThvITO54Q7tfNLof0ZSeP3wcFoZ__tOGmPZkgMdTYgSZXnnAmqMqQyoRHVFmfU8BIjjYgprTBuEBDEltwInKeFx76XiGuGqS0Ixg_AejWv7CMAC22EThXStBBEuHajVAmeG1rYsuQZHoDNrpGkabnl_viMExmJy5l0lSVDZQ3Ay170LMI6LhN6HVq6l1D1sc9uY1R-mb6Xs0-5Dwr35HQAXnSqIF2f8wspqrLzZiH9uaZ-BftqCRbIiLn72MOoQ6vycBek4ZwPwFFUqv6OB33HmEu2oKfv8qSRCyvP_pjBlcgybA1RUgvLJHERsxRIaYktF0roXOvMvXwzaNfVtSAns0m4ePzvok_AzZgt4zPwnoL1Zd3YZ84lW-rnoe_9BosCML8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9swFIBFadnlZZfult0qxhh9capYki3BXsrWLF3jQNOUlcIQkiy3o23SOTGU_frpYjvraGHszeBjW5aOjs6Rjj4B8F4aoqVmNCqs9x0RlfKIM55GJKWxDbh6GklP-xwlg0Py9YgerYCPzV6YwIdoJ9xcz_D22nVwNyG9taSGXpQXXTtgEWuA14h1NFzo9Xm8hEdxHhjMKXGWhpOGK4TirfbRa6PRmqvYq5tczZYjet2F9WNQ_yH43pQ-pJ6cdauF6upff4Ed__f3HoEHtXMKt4M2PQYrZroO7mb18vs6uOPzRfX8Cdjfr-TU70-z1hL2h9sHA5iNd6FcQDyBLpn-BEpY1jON0JPLr36EbZJwVkDrdsKd0rqm0PwMsPGn4LC_M_k0iOrTGSJNrRmIetKhzjiVMZIxV4gqg2OqWYGRQkQXhms7DnBiCqY5Tnq5I78XiKkUU5MTjJ-B1elsal4AmCvNVU8iRXNOuG04SiVniaa5KQoW4w7YbFpJ6Bpd7k7QOBcBuhwLW1nCV1YHvGtFLwOv4yahD76pWwlZnrkEt5SKb6MvYryXuLjwQIw6YKPRBWG7nVtLkVMzq-bCHW3qFrFvl0g9HDGxH3selGhZHmbjNJywDjgOWtXecazvEHaJmvV0Ks4rMTfi8o9JXIFMio0mUihuUkFs0Cw4kkpgw7jkKlEqti_f9Op1ey2IbJz5i5f_LroB7g0m2VAMd0d7r8D9kDzjEvJeg9VFWZk31kNbqLe-I_4GhIM03g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIetaRMTL1zGrdxmIYT2ks6N7SQWTxOsdGytWLeJCSEd2Y4DaFtb0kaa-OvxJUkZ2iTEW6Wetql9fPw79vFnhF5Lw7TUGY8Kq74jplIRiUykEUt5bBOunibS0z5HyeCEfTzlpyvobXMWJvAh2gU3NzJ8vHYDfJYX20to6EV50bXzFbPxd40lVkk4RTResqOECAjmlLlAI1iDFSLxdvvRK5PRmmvXy-uUZosRvapg_RTUv4u-Ng8fKk_OutVCdfWvv7iO__nv7qE7tTTFO8GX7qMVM9lA68N6830D3fLVonr-AB0eVnLiT6fZWIn7BztHAzwc72G5wPQYu1L6b1jisl5nxJ5bfvkjHJLE0wJb0Yl3SytMsfkZUOMP0Ul_9_jdIKrvZog0t0Eg6kkHOhNcxkTGQhGuDI25zgpKFGG6MELbWUAwU2Ra0KSXO-57QTKVUm5yRukjtDqZTswThHOlhepJongumLD9xrkUWaJ5booii2kHbTWdBLoGl7v7M84hIJdjsI0FvrE66FVrOgu0juuM3viebi1keebK21IOn0cfYLyfuKzwCEYdtNm4AthB53ZS5MRMqzm4i03dFvbNFqlHIyb2xx4HH1o-T2azNJpkHfQlOFX7jiN9h6QLatLTdzivYG5g9scSLhCTUqOZBCVMCsymzCCIVEBNJqRQiVKx_fIt7103twIMx0P_4um_m26i9U_v-3CwN9p_hm6HyhlXjfccrS7Kyryw8myhXvph-Bu-hjON |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+FLASH+MRI+at+3T+using+a+rational+approximation+of+the+Ernst+equation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Helms%2C+Gunther&rft.au=Dathe%2C+Henning&rft.au=Dechent%2C+Peter&rft.date=2008-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=59&rft.issue=3&rft.spage=667&rft.epage=672&rft_id=info:doi/10.1002%2Fmrm.21542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_21542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |