Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation

From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensiona...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 59; no. 3; pp. 667 - 672
Main Authors Helms, Gunther, Dathe, Henning, Dechent, Peter
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2008
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.21542

Cover

Abstract From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual‐angle measurements at 3T (nonselective 3D‐FLASH, 7° and 20° flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill‐conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. Magn Reson Med 59:667–672, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7° and 20° flip angle, TR=30ms, isotropic resolution of 0.95mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms.
From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms.
From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual‐angle measurements at 3T (nonselective 3D‐FLASH, 7° and 20° flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill‐conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. Magn Reson Med 59:667–672, 2008. © 2008 Wiley‐Liss, Inc.
From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20DG. Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7DG and 20DG flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms.
From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20°. Three‐dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual‐angle measurements at 3T (nonselective 3D‐FLASH, 7° and 20° flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T 1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill‐conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T 1 histograms. Magn Reson Med 59:667–672, 2008. © 2008 Wiley‐Liss, Inc.
From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms.From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms.
Author Helms, Gunther
Dathe, Henning
Dechent, Peter
Author_xml – sequence: 1
  givenname: Gunther
  surname: Helms
  fullname: Helms, Gunther
  email: ghelms@gwdg.de
  organization: MR Forschung in der Neurologie und Psychiatrie, Universitätsmedizin, Göttingen, Germany
– sequence: 2
  givenname: Henning
  surname: Dathe
  fullname: Dathe, Henning
  organization: AG Biomechanik, Abteilung Kieferorthopädie, Universitätsmedizin, Göttingen, Germany
– sequence: 3
  givenname: Peter
  surname: Dechent
  fullname: Dechent, Peter
  organization: MR Forschung in der Neurologie und Psychiatrie, Universitätsmedizin, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18306368$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P3DAQxa0KVBbaQ79A5VOlHgKOHcf2ESH-qbtULFQ9jmzvpLjNJsFOCnz7hixQqVLbkzWe35t5o7dLtpq2QULe5Ww_Z4wfrON6n-ey4K_ILJecZ1yaYovMmCpYJnJT7JDdlL4zxoxRxWuyk2vBSlHqGbm8HGzTh9724SfSk_nh1RldLM-p7am4pkMKzTdqaRzbbWNrarsutvdhPdW0rWh_g_Q4NqmneDtMv2_IdmXrhG-f3j3y5eT4-ugsm38-PT86nGdeasGz3CqjtZGWM8uNY9Kh4NLrSjDHCl-h8ehG61hpb0SZr3LF8oppp4TEVSHEHrGbuekOu8FBF0db8QFaG6BrY29riJjQRn8D9QAJYaTq4CeTCRgqgb6w4AwqKDTXYJh1IFAba1zpHNfjjg-bHePVtwOmHtYheaxr22A7JFBMSKNL_l-QMy1LxdUIvn8CB7fG1Yvr50RG4OMG8LFNKWL1G2HwmDaMacOU9sge_MH6Kcm26aMN9b8Ud6HGh7-PhsVy8azINoqQerx_Udj4A0ollISvF6ew_FQWsuRXcCF-Ab0_yeI
CitedBy_id crossref_primary_10_3389_fnins_2022_874023
crossref_primary_10_1002_mrm_30143
crossref_primary_10_1016_j_neuroimage_2017_11_066
crossref_primary_10_7554_eLife_78756
crossref_primary_10_1088_0967_3334_36_9_1901
crossref_primary_10_1016_j_neuroimage_2022_119249
crossref_primary_10_1016_j_neurobiolaging_2025_03_003
crossref_primary_10_1016_j_neuroimage_2011_01_052
crossref_primary_10_1111_jsr_13698
crossref_primary_10_1002_mrm_29151
crossref_primary_10_1016_j_neuroimage_2022_119529
crossref_primary_10_1002_mrm_29394
crossref_primary_10_1002_gamm_202470014
crossref_primary_10_1016_j_neuroimage_2021_118559
crossref_primary_10_1002_hbm_23929
crossref_primary_10_1111_jmp_12227
crossref_primary_10_1016_j_jneumeth_2013_02_011
crossref_primary_10_1097_WCO_0000000000000222
crossref_primary_10_1016_j_neuroimage_2015_06_033
crossref_primary_10_1016_j_media_2021_102149
crossref_primary_10_1093_cercor_bhy256
crossref_primary_10_1016_j_neuroimage_2022_119751
crossref_primary_10_3174_ajnr_A2865
crossref_primary_10_1002_mrm_30134
crossref_primary_10_1002_mrm_26395
crossref_primary_10_1016_j_neuroimage_2016_01_062
crossref_primary_10_1002_mrm_28333
crossref_primary_10_1016_j_neuroimage_2014_12_030
crossref_primary_10_1002_mrm_28178
crossref_primary_10_1002_mrm_30018
crossref_primary_10_1016_j_neuroimage_2009_03_053
crossref_primary_10_1016_j_neuroimage_2017_02_008
crossref_primary_10_1016_j_nicl_2022_103228
crossref_primary_10_1016_j_neuroimage_2013_07_065
crossref_primary_10_1002_mrm_29383
crossref_primary_10_1002_mrm_27525
crossref_primary_10_1038_s41598_018_36793_3
crossref_primary_10_1038_srep43316
crossref_primary_10_1038_s42254_021_00326_1
crossref_primary_10_1016_j_neuroimage_2020_117613
crossref_primary_10_1016_j_neuroimage_2021_117910
crossref_primary_10_1016_j_neuroimage_2020_117211
crossref_primary_10_1016_j_jneumeth_2023_109950
crossref_primary_10_1016_j_neurobiolaging_2020_01_006
crossref_primary_10_1162_imag_a_00017
crossref_primary_10_1002_hbm_24965
crossref_primary_10_1002_mrm_23206
crossref_primary_10_1016_j_neuroimage_2020_117172
crossref_primary_10_1002_hbm_26420
crossref_primary_10_1002_mrm_29292
crossref_primary_10_1523_JNEUROSCI_1712_12_2012
crossref_primary_10_1002_mrm_29059
crossref_primary_10_1002_mrm_28486
crossref_primary_10_1038_s41598_024_63483_0
crossref_primary_10_1002_mrm_30448
crossref_primary_10_1111_jon_12377
crossref_primary_10_1109_TMI_2021_3088258
crossref_primary_10_1523_JNEUROSCI_3617_15_2016
crossref_primary_10_1016_j_mri_2013_08_001
crossref_primary_10_1002_mrm_29216
crossref_primary_10_1038_s41398_022_02091_w
crossref_primary_10_1093_cercor_bhs213
crossref_primary_10_1002_jmri_29156
crossref_primary_10_1002_mrm_25135
crossref_primary_10_1002_mrm_22421
crossref_primary_10_1016_j_neuroimage_2017_12_087
crossref_primary_10_1162_imag_a_00225
crossref_primary_10_3389_fnins_2017_00106
crossref_primary_10_1002_mrm_21732
crossref_primary_10_1016_j_neuroimage_2010_10_023
crossref_primary_10_1007_s00330_023_10351_6
crossref_primary_10_1016_j_neurobiolaging_2014_02_008
crossref_primary_10_1523_JNEUROSCI_1278_12_2012
crossref_primary_10_1016_j_mri_2017_01_014
crossref_primary_10_1016_j_neuroimage_2013_06_005
crossref_primary_10_3389_fnins_2014_00278
crossref_primary_10_1002_mrm_28077
crossref_primary_10_1002_mrm_29683
crossref_primary_10_1126_science_abq4515
crossref_primary_10_13104_imri_2018_22_4_218
crossref_primary_10_1016_j_neuroimage_2013_05_043
crossref_primary_10_1016_j_bpsc_2019_07_008
crossref_primary_10_1016_j_neuroimage_2021_117735
crossref_primary_10_1016_j_nicl_2023_103432
crossref_primary_10_1212_NXI_0000000000200299
crossref_primary_10_1002_mrm_22379
crossref_primary_10_1002_mrm_26058
crossref_primary_10_1002_mrm_27421
crossref_primary_10_1002_jmri_24373
crossref_primary_10_1016_j_neurobiolaging_2021_02_002
crossref_primary_10_1002_hbm_23137
crossref_primary_10_1016_j_neuroimage_2022_119092
crossref_primary_10_1016_j_neuroimage_2019_01_029
crossref_primary_10_3389_fnhum_2022_852737
crossref_primary_10_1002_mrm_21969
crossref_primary_10_1016_j_neuroimage_2012_08_058
crossref_primary_10_1002_hbm_25870
crossref_primary_10_1016_j_mri_2020_07_002
crossref_primary_10_1016_j_mri_2017_10_006
crossref_primary_10_1016_j_neuroimage_2018_11_023
crossref_primary_10_1093_brain_awp271
crossref_primary_10_1016_j_nicl_2019_102058
crossref_primary_10_1088_0031_9155_55_15_003
crossref_primary_10_1259_bjr_20190952
crossref_primary_10_3389_fnins_2015_00097
crossref_primary_10_1016_j_neuroimage_2014_09_044
crossref_primary_10_1016_j_neuroimage_2017_07_042
crossref_primary_10_1016_j_neuroimage_2017_10_060
crossref_primary_10_1523_JNEUROSCI_0390_20_2021
crossref_primary_10_1016_j_neuroimage_2017_12_060
crossref_primary_10_1002_hbm_24938
crossref_primary_10_1002_mrm_29632
crossref_primary_10_1093_braincomms_fcac088
crossref_primary_10_1002_mrm_22607
crossref_primary_10_1002_mrm_22849
crossref_primary_10_1093_braincomms_fcab036
crossref_primary_10_1371_journal_pone_0169265
crossref_primary_10_1002_mrm_30050
crossref_primary_10_1088_2057_1976_acc318
crossref_primary_10_1002_hbm_24011
crossref_primary_10_1093_cercor_bhw393
crossref_primary_10_1016_j_mri_2018_08_021
crossref_primary_10_1523_JNEUROSCI_1436_17_2017
crossref_primary_10_1371_journal_pone_0032379
crossref_primary_10_1016_j_neuroimage_2023_120046
crossref_primary_10_1002_mrm_30453
crossref_primary_10_1088_0031_8949_87_03_035005
crossref_primary_10_1002_mrm_27442
crossref_primary_10_1002_hbm_24490
crossref_primary_10_1002_mrm_28899
crossref_primary_10_1002_mrm_22394
crossref_primary_10_1016_j_nic_2024_03_003
crossref_primary_10_7554_eLife_80919
crossref_primary_10_1002_hbm_24522
crossref_primary_10_1002_mrm_29907
crossref_primary_10_1016_j_neuroimage_2023_119860
crossref_primary_10_1002_jmri_23774
crossref_primary_10_2463_mrms_mp_2023_0095
crossref_primary_10_1016_j_neuroimage_2018_01_036
crossref_primary_10_1016_j_neuroimage_2014_07_015
crossref_primary_10_1038_s41598_024_80274_9
crossref_primary_10_1002_nbm_3022
crossref_primary_10_1002_jmri_21756
crossref_primary_10_1007_s00401_019_01985_2
crossref_primary_10_1002_mrm_28206
crossref_primary_10_1073_pnas_1705643114
crossref_primary_10_3389_fnins_2021_706473
crossref_primary_10_1002_mrm_26306
crossref_primary_10_1002_mrm_29934
crossref_primary_10_1002_mrm_25210
crossref_primary_10_1002_mrm_28720
crossref_primary_10_1002_jmri_21629
crossref_primary_10_1002_hbm_25767
crossref_primary_10_1002_hbm_24710
crossref_primary_10_1002_mrm_21776
crossref_primary_10_1109_ACCESS_2022_3189992
crossref_primary_10_1002_hbm_25122
crossref_primary_10_1016_j_mri_2019_01_015
crossref_primary_10_1002_jmri_26998
crossref_primary_10_3389_fnins_2019_01066
crossref_primary_10_1007_s00586_013_2798_1
crossref_primary_10_1111_ene_16297
crossref_primary_10_1002_mrm_22294
crossref_primary_10_1038_s41598_021_88840_1
crossref_primary_10_1038_s41598_019_47277_3
crossref_primary_10_1016_j_nicl_2022_103177
crossref_primary_10_1002_nbm_3658
crossref_primary_10_1002_mrm_29764
crossref_primary_10_3389_fneur_2019_01333
crossref_primary_10_1038_s41597_022_01571_4
crossref_primary_10_1002_hbm_23858
crossref_primary_10_1016_j_media_2023_103058
crossref_primary_10_1016_j_neuroimage_2015_10_006
Cites_doi 10.1002/0470869526.ch5
10.1002/mrm.10090
10.1002/mrm.1910050502
10.1002/mrm.1910370107
10.1016/S0730-725X(99)00092-2
10.1002/mrm.20314
10.1063/1.1719961
10.1002/mrm.1910400412
10.1002/mrm.10407
10.1016/0022-2364(86)90433-6
10.1002/jmri.20356
10.1002/mrm.20217
10.1097/00004728-198603000-00046
10.1002/mrm.21177
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
(c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: (c) 2008 Wiley-Liss, Inc.
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Medical Radiation Physics, Lund
Medicinsk strålningsfysik, Lund
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Medicinsk strålningsfysik, Lund
– name: Medical Radiation Physics, Lund
– name: Lund University
– name: Faculty of Science
– name: Lunds universitet
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1002/mrm.21542
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Engineering Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 672
ExternalDocumentID oai_portal_research_lu_se_publications_0e73ec4a_b9e7_4828_90ab_3e89a9b6bb28
18306368
10_1002_mrm_21542
MRM21542
ark_67375_WNG_RK64562S_N
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Volkswagen Foundation of the federal state of Lower Saxony
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c5832-1a798895a20a29b05be325c8f30b04cfe9ceb194ef8c9361d1701f08b735ed433
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Tue Sep 09 23:04:09 EDT 2025
Fri Sep 05 08:29:21 EDT 2025
Thu Sep 04 19:38:27 EDT 2025
Wed Feb 19 01:51:33 EST 2025
Tue Jul 01 01:20:39 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Wed Jan 22 16:45:24 EST 2025
Tue Sep 09 05:32:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5832-1a798895a20a29b05be325c8f30b04cfe9ceb194ef8c9361d1701f08b735ed433
Notes ark:/67375/WNG-RK64562S-N
Volkswagen Foundation of the federal state of Lower Saxony
istex:B3108687B7381D75F50290C24D200656229A408F
ArticleID:MRM21542
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/54910
PMID 18306368
PQID 20856727
PQPubID 23462
PageCount 6
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_0e73ec4a_b9e7_4828_90ab_3e89a9b6bb28
proquest_miscellaneous_70359862
proquest_miscellaneous_20856727
pubmed_primary_18306368
crossref_primary_10_1002_mrm_21542
crossref_citationtrail_10_1002_mrm_21542
wiley_primary_10_1002_mrm_21542_MRM21542
istex_primary_ark_67375_WNG_RK64562S_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2008
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: March 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Wang H, Riederer S, Lee S. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1986; 5: 399-416.
Frahm J, Haase A, Matthaei D. Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 1986; 10: 363-368.
Lu H, Nagae-Poetscher LM, Xavier G, Lin D, Zijl PCMv. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22.
Ernst RR, Anderson WA. Application of Fourier transform to magnetic resonance spectroscopy. Rev Sci Instrum 1966; 37: 93-98.
Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K-D. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 1986; 67: 258-266.
Whittall K, MacKay A, Graeb D, Nugent R, Li D, Paty D. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43.
Finsterbusch J, Frahm J. Half-Fourier single-shot STEAM MRI. Magn Reson Med 2002; 47: 611-615.
Deoni SCL, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005; 53: 237-241.
Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P. Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 2007; 57: 568-576.
Venkatesan R, Lin W, Haacke EM. Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn Reson Med 1998; 40: 592-602.
Wang D, Heberlein K, LaConte S, Hu X. Inherent insensitivity to RF inhomogeneity in FLASH imaging. Magn Reson Med 2004; 52: 927-931.
Deoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526.
Imran J, Langevin F, Saint-Jalmes H. Two-point method for T1 estimation with optimized gradient-echo acquisition. Magn Reson Imaging 1999; 19: 1347-1256.
2002; 47
2004; 52
1966; 37
1999; 19
1986; 10
1986; 67
1997; 37
1986; 5
2005; 53
2007
2003; 49
2006
2003
1998; 40
2007; 57
2005; 22
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_21_2
e_1_2_7_20_2
Magn Reson Med. 2010 Apr;63(4):1136
References_xml – reference: Imran J, Langevin F, Saint-Jalmes H. Two-point method for T1 estimation with optimized gradient-echo acquisition. Magn Reson Imaging 1999; 19: 1347-1256.
– reference: Finsterbusch J, Frahm J. Half-Fourier single-shot STEAM MRI. Magn Reson Med 2002; 47: 611-615.
– reference: Lu H, Nagae-Poetscher LM, Xavier G, Lin D, Zijl PCMv. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22.
– reference: Venkatesan R, Lin W, Haacke EM. Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn Reson Med 1998; 40: 592-602.
– reference: Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K-D. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 1986; 67: 258-266.
– reference: Deoni SCL, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005; 53: 237-241.
– reference: Deoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526.
– reference: Ernst RR, Anderson WA. Application of Fourier transform to magnetic resonance spectroscopy. Rev Sci Instrum 1966; 37: 93-98.
– reference: Wang D, Heberlein K, LaConte S, Hu X. Inherent insensitivity to RF inhomogeneity in FLASH imaging. Magn Reson Med 2004; 52: 927-931.
– reference: Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P. Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 2007; 57: 568-576.
– reference: Wang H, Riederer S, Lee S. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1986; 5: 399-416.
– reference: Whittall K, MacKay A, Graeb D, Nugent R, Li D, Paty D. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43.
– reference: Frahm J, Haase A, Matthaei D. Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 1986; 10: 363-368.
– volume: 47
  start-page: 611
  year: 2002
  end-page: 615
  article-title: Half‐Fourier single‐shot STEAM MRI
  publication-title: Magn Reson Med
– start-page: 923
  year: 2006
– start-page: 1597
  year: 2006
– volume: 5
  start-page: 399
  year: 1986
  end-page: 416
  article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles
  publication-title: Magn Reson Med
– volume: 40
  start-page: 592
  year: 1998
  end-page: 602
  article-title: Accurate determination of spin‐density and T1 in the presence of RF‐field inhomogeneities and flip‐angle miscalibration
  publication-title: Magn Reson Med
– volume: 22
  start-page: 13
  year: 2005
  end-page: 22
  article-title: Routine clinical brain MRI sequences for use at 3.0 Tesla
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
– start-page: 1242
  year: 2006
– start-page: 2643
  year: 2006
– volume: 49
  start-page: 515
  year: 2003
  end-page: 526
  article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state
  publication-title: Magn Reson Med
– volume: 52
  start-page: 927
  year: 2004
  end-page: 931
  article-title: Inherent insensitivity to RF inhomogeneity in FLASH imaging
  publication-title: Magn Reson Med
– start-page: 2058
  year: 2007
– volume: 37
  start-page: 34
  year: 1997
  end-page: 43
  article-title: In vivo measurement of T2 distributions and water contents in normal human brain
  publication-title: Magn Reson Med
– volume: 57
  start-page: 568
  year: 2007
  end-page: 576
  article-title: Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast‐enhanced abdominal MRI
  publication-title: Magn Reson Med
– volume: 10
  start-page: 363
  year: 1986
  end-page: 368
  article-title: Rapid three‐dimensional MR imaging using the FLASH technique
  publication-title: J Comput Assist Tomogr
– start-page: 1657
  year: 2007
– start-page: 111
  year: 2003
  end-page: 142
– volume: 19
  start-page: 1347
  year: 1999
  end-page: 1256
  article-title: Two‐point method for T1 estimation with optimized gradient‐echo acquisition
  publication-title: Magn Reson Imaging
– volume: 67
  start-page: 258
  year: 1986
  end-page: 266
  article-title: FLASH imaging: rapid NMR imaging using low flip angle pulses
  publication-title: J Magn Reson
– volume: 37
  start-page: 93
  year: 1966
  end-page: 98
  article-title: Application of Fourier transform to magnetic resonance spectroscopy
  publication-title: Rev Sci Instrum
– ident: e_1_2_7_9_2
  doi: 10.1002/0470869526.ch5
– ident: e_1_2_7_10_2
– ident: e_1_2_7_16_2
  doi: 10.1002/mrm.10090
– ident: e_1_2_7_19_2
– ident: e_1_2_7_8_2
  doi: 10.1002/mrm.1910050502
– ident: e_1_2_7_13_2
  doi: 10.1002/mrm.1910370107
– ident: e_1_2_7_3_2
  doi: 10.1016/S0730-725X(99)00092-2
– ident: e_1_2_7_5_2
  doi: 10.1002/mrm.20314
– ident: e_1_2_7_11_2
  doi: 10.1063/1.1719961
– ident: e_1_2_7_18_2
– ident: e_1_2_7_20_2
  doi: 10.1002/mrm.1910400412
– ident: e_1_2_7_4_2
  doi: 10.1002/mrm.10407
– ident: e_1_2_7_6_2
– ident: e_1_2_7_2_2
  doi: 10.1016/0022-2364(86)90433-6
– ident: e_1_2_7_12_2
  doi: 10.1002/jmri.20356
– ident: e_1_2_7_17_2
– ident: e_1_2_7_21_2
  doi: 10.1002/mrm.20217
– ident: e_1_2_7_14_2
  doi: 10.1097/00004728-198603000-00046
– ident: e_1_2_7_15_2
– ident: e_1_2_7_7_2
  doi: 10.1002/mrm.21177
– reference: - Magn Reson Med. 2010 Apr;63(4):1136
SSID ssj0009974
Score 2.3457289
Snippet From the half‐angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be...
From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 667
SubjectTerms Adult
Algorithms
Brain Mapping - methods
Engineering and Technology
Ernst equation
Female
human brain
Humans
Imaging, Three-Dimensional
Least-Squares Analysis
Magnetic Resonance Imaging - methods
Male
Medical Engineering
Medical Imaging
Medicinsk bildvetenskap
Medicinteknik
quantification
T1-relaxation
Teknik
Title Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation
URI https://api.istex.fr/ark:/67375/WNG-RK64562S-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21542
https://www.ncbi.nlm.nih.gov/pubmed/18306368
https://www.proquest.com/docview/20856727
https://www.proquest.com/docview/70359862
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Za9wwEIBFSGnpS4_02p6ilJIXb2RLsiT6FNpst8cuZJPQEApCkuW2JPGm3jWE_vrqsL1NSaD0zeCxLUuj0Yw0-gTAK2WJUYbTpHTed0I0E4nggiWE0cwFXKlBKtA-p_n4gHw8pIdr4E23FybyIfoJN98zgr32HVzpxdYKGnpanw7deEW8_U1x7rn572YrdJQQkcDMiLczgnRUIZRt9U9eGIuu-Wo9v8zR7CmiFx3YMAKNboOvXdlj4snxsFnqofn1F9bxP3_uDrjVeqZwO6rSXbBmqw1wY9KuvW-A6yFZ1Czugd3dRlVhc5ozlXD0eXtvDCezD1AtId6HPpP-G1SwbqcZYcCWn_-IeyThvITO54Q7tfNLof0ZSeP3wcFoZ__tOGmPZkgMdTYgSZXnnAmqMqQyoRHVFmfU8BIjjYgprTBuEBDEltwInKeFx76XiGuGqS0Ixg_AejWv7CMAC22EThXStBBEuHajVAmeG1rYsuQZHoDNrpGkabnl_viMExmJy5l0lSVDZQ3Ay170LMI6LhN6HVq6l1D1sc9uY1R-mb6Xs0-5Dwr35HQAXnSqIF2f8wspqrLzZiH9uaZ-BftqCRbIiLn72MOoQ6vycBek4ZwPwFFUqv6OB33HmEu2oKfv8qSRCyvP_pjBlcgybA1RUgvLJHERsxRIaYktF0roXOvMvXwzaNfVtSAns0m4ePzvok_AzZgt4zPwnoL1Zd3YZ84lW-rnoe_9BosCML8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9swFIBFadnlZZfult0qxhh9capYki3BXsrWLF3jQNOUlcIQkiy3o23SOTGU_frpYjvraGHszeBjW5aOjs6Rjj4B8F4aoqVmNCqs9x0RlfKIM55GJKWxDbh6GklP-xwlg0Py9YgerYCPzV6YwIdoJ9xcz_D22nVwNyG9taSGXpQXXTtgEWuA14h1NFzo9Xm8hEdxHhjMKXGWhpOGK4TirfbRa6PRmqvYq5tczZYjet2F9WNQ_yH43pQ-pJ6cdauF6upff4Ed__f3HoEHtXMKt4M2PQYrZroO7mb18vs6uOPzRfX8Cdjfr-TU70-z1hL2h9sHA5iNd6FcQDyBLpn-BEpY1jON0JPLr36EbZJwVkDrdsKd0rqm0PwMsPGn4LC_M_k0iOrTGSJNrRmIetKhzjiVMZIxV4gqg2OqWYGRQkQXhms7DnBiCqY5Tnq5I78XiKkUU5MTjJ-B1elsal4AmCvNVU8iRXNOuG04SiVniaa5KQoW4w7YbFpJ6Bpd7k7QOBcBuhwLW1nCV1YHvGtFLwOv4yahD76pWwlZnrkEt5SKb6MvYryXuLjwQIw6YKPRBWG7nVtLkVMzq-bCHW3qFrFvl0g9HDGxH3selGhZHmbjNJywDjgOWtXecazvEHaJmvV0Ks4rMTfi8o9JXIFMio0mUihuUkFs0Cw4kkpgw7jkKlEqti_f9Op1ey2IbJz5i5f_LroB7g0m2VAMd0d7r8D9kDzjEvJeg9VFWZk31kNbqLe-I_4GhIM03g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIetaRMTL1zGrdxmIYT2ks6N7SQWTxOsdGytWLeJCSEd2Y4DaFtb0kaa-OvxJUkZ2iTEW6Wetql9fPw79vFnhF5Lw7TUGY8Kq74jplIRiUykEUt5bBOunibS0z5HyeCEfTzlpyvobXMWJvAh2gU3NzJ8vHYDfJYX20to6EV50bXzFbPxd40lVkk4RTResqOECAjmlLlAI1iDFSLxdvvRK5PRmmvXy-uUZosRvapg_RTUv4u-Ng8fKk_OutVCdfWvv7iO__nv7qE7tTTFO8GX7qMVM9lA68N6830D3fLVonr-AB0eVnLiT6fZWIn7BztHAzwc72G5wPQYu1L6b1jisl5nxJ5bfvkjHJLE0wJb0Yl3SytMsfkZUOMP0Ul_9_jdIKrvZog0t0Eg6kkHOhNcxkTGQhGuDI25zgpKFGG6MELbWUAwU2Ra0KSXO-57QTKVUm5yRukjtDqZTswThHOlhepJongumLD9xrkUWaJ5booii2kHbTWdBLoGl7v7M84hIJdjsI0FvrE66FVrOgu0juuM3viebi1keebK21IOn0cfYLyfuKzwCEYdtNm4AthB53ZS5MRMqzm4i03dFvbNFqlHIyb2xx4HH1o-T2azNJpkHfQlOFX7jiN9h6QLatLTdzivYG5g9scSLhCTUqOZBCVMCsymzCCIVEBNJqRQiVKx_fIt7103twIMx0P_4um_m26i9U_v-3CwN9p_hm6HyhlXjfccrS7Kyryw8myhXvph-Bu-hjON
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+FLASH+MRI+at+3T+using+a+rational+approximation+of+the+Ernst+equation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Helms%2C+Gunther&rft.au=Dathe%2C+Henning&rft.au=Dechent%2C+Peter&rft.date=2008-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=59&rft.issue=3&rft.spage=667&rft.epage=672&rft_id=info:doi/10.1002%2Fmrm.21542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_21542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon