实验小鼠运动参数的模板匹配及粒子滤波提取方法
实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据....
Saved in:
Published in | 自动化学报 Vol. 44; no. 1; pp. 25 - 34 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
清华大学精密超精密制造装备及控制北京市重点实验室 北京100084
2018
清华大学机械工程系 北京100084 清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2018.c160573 |
Cover
Abstract | 实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据. |
---|---|
AbstractList | 实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据. 实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据. |
Abstract_FL | Laboratory mouse is a kind of deformable object. Existing methods can hardly extract motion trajectories and posture details simultaneously from those continuous recorded videos. An object tracking method based on model matching and particle filtering is adopted to solve this problem. A geometry based part model and its motion state function involving moving velocity are proposed. A model-observation difference function is established as the observation model by comparing the foreground pixels in the binary image and the geometry part model. A basic particle filter is built with this observation function and the motion state function with multi-stochastic variables which follow an independent distribution. Comparison is made between the proposed method and the classical frame-differencing method,which proves that the novel part model is analogous with a physical mouse in shape and supports real-time extracting rate and high computing efficiency. The novel method is able to estimate precisely both motion trajectories and posture states, and avoid effectively the faults of head-tail confusion and reflection disturbance. Therefore the novel method provides a trust worthy means for later behavioral analysis for biologists. |
Author | 张继文;梁桐;张淑平 |
AuthorAffiliation | 清华大学机械工程系,北京100084;清华大学精密超精密制造装备及控制北京市重点实验室,北京100084;清华大学摩擦学国家重点实验室,北京100084;清华大学生命科学学院,北京100084 |
AuthorAffiliation_xml | – name: 清华大学机械工程系 北京100084;清华大学精密超精密制造装备及控制北京市重点实验室 北京100084;清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084 |
Author_FL | LIANG Tong ZHANG Ji-Wen ZHANG Shu-Ping |
Author_FL_xml | – sequence: 1 fullname: ZHANG Ji-Wen – sequence: 2 fullname: LIANG Tong – sequence: 3 fullname: ZHANG Shu-Ping |
Author_xml | – sequence: 1 fullname: 张继文;梁桐;张淑平 |
BookMark | eNotj01LAkEAhocwyMxf0K1Dt93mc2fmWNIXCF28y-zo-kGt5RJ9HCMvYqwEegiKig4SFJInKfDXzJj_ohU7vZeH93nfVZAKG2EZgHUEXeQRQbbqrlKRiyESrkYeZJwsgTQSnDoIYpkCaYgZdShi3grIRlHNh4hTLjGBabBjPp9m7x0zjGc_z7-TrmkPTHxje8Ppw60dvNjHiemMZ607E7enX_fmo2u_3-zo1cZdE_dtf2xHvTWwHKjjqJz9zwwo7O0WcgdO_mj_MLeddzQTxJkbNVaMKexDDoVAiBEtvEBo4UteEhhRrbQqQcJlIKnGlDOKeFklOyUlJAM2F7UXKgxUWCnWG-fNMBEWr0vVS39-HyII5-DGAtTVRlg5qyXoabN2oppXRY9TIpmX1P0BKotxJQ |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2018.c160573 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | An Extraction Algorithm for Motion Parameters of A Laboratory Mouse by Model Matching and Particle Filtering |
DocumentTitle_FL | An Extraction Algorithm for Motion Parameters of A Laboratory Mouse by Model Matching and Particle Filtering |
EISSN | 1874-1029 |
EndPage | 34 |
ExternalDocumentID | zdhxb201801003 674395694 |
GrantInformation_xml | – fundername: 国家自然科学基金; 摩擦学国家重点实验室(SKLT09A03)资助Supported by National Natural Science Foundation of China; Project of State Key Laboratory of Tribology funderid: (61403225); (61403225); (SKLT09A03) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c583-7479c2a55a2b070881153c86f8c8b97d8214cacad0379f94c2475417ea2309433 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 09:55:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | posture 体态 粒子滤波 laboratory mouse 实验小鼠 particle filter part model 目标跟踪 部件模型 Object tracking |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583-7479c2a55a2b070881153c86f8c8b97d8214cacad0379f94c2475417ea2309433 |
Notes | Object tracking, particle filter, part model, laboratory mouse, posture ZHANG Ji-Wen1, 2, 3, LIANG Tong4, ZHANG Shu-Ping4 (1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084 2. Beijing Key Laboratory of Precision Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084 3. The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 4. School of Life Sciences, Tsinghua University, Beijing 100084) Laboratory mouse is a kind of deformable object. Existing methods can hardly extract motion trajectories and posture details simultaneously from those continuous recorded videos. An object tracking method based on model matching and particle filtering is adopted to solve this problem. A geometry based part model and its motion state function involving moving velocity are proposed. A model-observation difference function is established as the observation model by comparing the foreground pixels in the binary image and the geometry part model. A basi |
PageCount | 10 |
ParticipantIDs | wanfang_journals_zdhxb201801003 chongqing_primary_674395694 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2018 |
Publisher | 清华大学精密超精密制造装备及控制北京市重点实验室 北京100084 清华大学机械工程系 北京100084 清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084 |
Publisher_xml | – name: 清华大学精密超精密制造装备及控制北京市重点实验室 北京100084 – name: 清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084 – name: 清华大学机械工程系 北京100084 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.2044983 |
Snippet | ... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 25 |
SubjectTerms | 目标跟踪;粒子滤波;部件模型;实验小鼠;体态 |
Title | 实验小鼠运动参数的模板匹配及粒子滤波提取方法 |
URI | http://lib.cqvip.com/qk/90250X/201801/674395694.html https://d.wanfangdata.com.cn/periodical/zdhxb201801003 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMCrtBQ6Ipyjl0QM-oZQktmP76GyzVAg4FdTbKpvdbU9bHq2EekRwqYq2QmoPSCBAHCokUEVPFUj9AX4jKf0LZibpbqqtxOMSOWPPjD3jZGaceOw4NxKvnaJj7La433FFm_suzJumm0iVcA4GgXPcKHzvfjjzQNyZk3MjJ35W_lpaXmpOpSvH7iv5H60CDPSKu2T_QbN9ogCAMugXrqBhuP6VjlksmY2ZiVlsmLVM1xASeUzXERLVmPVYrFlUZ8bDKm2Z1VSoMx2wOGSG2seKGUAXCIEG1qeqaUTExjUWGSSooTx9iG4RKwqYCagb08QiZFHELNGJOLPEQve5QyEkyiERpDbF4ZeH_jH2Viscy5He1giRuFiigFXycLLQoIuxKuKvSiYDI0sDC8BtpoLPjHcMMvQH5OATBKTHqysi5esbZy811CiMmOShY-qaIL79PpJsoqIKpBWSHkLCGq4COlSLMvZKpVlesgDKWlWkHiLHgleJVUgIIIJFIJhiFmjSsEFcVJrCW5T6cVMGIFbcHCaEn2WKs_VKYwGBvovBeNWyCTH0BJdmSlYcnmIxeciUwouZky1NEkxr7-up1A8xfebAc-j_z7nSWnjWxDYQ3WPq3bFAKV-OOmO3o7sP7cA9B2_WVOyJNGAyKu5nKDE94uBe4Uf-yld5uOd8EO7i2QdhZTlD-hyCb1xOKDwxiZmpaI21lE2ZdQxHdmt4XJhdZWGxO_8YfEbawtftJN35irc5e8Y5XYaJk7Z45s86IysL55xTleSh550o-_ru4PNatt07-PH-1956trqV9Z7nG9v7b17kWx_yt3vZ2u7By1dZb3X_2-vsy3r-_VO-8zHvrWe9zXxzN9_ZuODM1uPZ2oxbnojiplJzF0J_kwaJlEnQBFOtNYRzPNVhR6e6aVRLB75IkzRpeVyZjhFpIJQUvmonAcc_iPlFZ7S72G1fciZFi7cScN1VU7aFL1raCwECxPH8QKX5uDPRF0bjUZH4poEblowMjRh3rpfiaZSvw6eNo3Pg8h9bTDgnsVwsZ15xRpeeLLevgoO_1LxWzpvfD9O6jw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%AE%9E%E9%AA%8C%E5%B0%8F%E9%BC%A0%E8%BF%90%E5%8A%A8%E5%8F%82%E6%95%B0%E7%9A%84%E6%A8%A1%E6%9D%BF%E5%8C%B9%E9%85%8D%E5%8F%8A%E7%B2%92%E5%AD%90%E6%BB%A4%E6%B3%A2%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E7%BB%A7%E6%96%87&rft.au=%E6%A2%81%E6%A1%90&rft.au=%E5%BC%A0%E6%B7%91%E5%B9%B3&rft.date=2018&rft.pub=%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6%E7%B2%BE%E5%AF%86%E8%B6%85%E7%B2%BE%E5%AF%86%E5%88%B6%E9%80%A0%E8%A3%85%E5%A4%87%E5%8F%8A%E6%8E%A7%E5%88%B6%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC100084&rft.issn=0254-4156&rft.volume=44&rft.issue=1&rft.spage=25&rft.epage=34&rft_id=info:doi/10.16383%2Fj.aas.2018.c160573&rft.externalDocID=zdhxb201801003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |