实验小鼠运动参数的模板匹配及粒子滤波提取方法

实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 44; no. 1; pp. 25 - 34
Main Author 张继文;梁桐;张淑平
Format Journal Article
LanguageChinese
Published 清华大学精密超精密制造装备及控制北京市重点实验室 北京100084 2018
清华大学机械工程系 北京100084
清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2018.c160573

Cover

Abstract 实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据.
AbstractList 实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据.
实验小鼠是一种变形体对象,现有方法难以从连续视频图像中同时提取出运动轨迹和体态细节.本文采用模板匹配和粒子滤波的目标跟踪方法求解这一问题.提出了一种几何体部件模型,在引入小鼠移动速率的基础上给出了其运动状态方程,以二值化前景像素与几何部件模型间的差异度方程为观测模型,以状态方程及相互独立的多维随机变量为运动模型,从而建立起基本粒子滤波算法.与逐帧差分识别方法的对比实验研究表明,所提出的模型与实验小鼠形体相似,能够达到视频在线提取的计算效率.新方法在强噪声干扰条件下解决了运动轨迹和体态同时精确估计,并有效避免了首尾识别混淆及虚影干扰等困境,从而为后续生物学行为分析提供依据.
Abstract_FL Laboratory mouse is a kind of deformable object. Existing methods can hardly extract motion trajectories and posture details simultaneously from those continuous recorded videos. An object tracking method based on model matching and particle filtering is adopted to solve this problem. A geometry based part model and its motion state function involving moving velocity are proposed. A model-observation difference function is established as the observation model by comparing the foreground pixels in the binary image and the geometry part model. A basic particle filter is built with this observation function and the motion state function with multi-stochastic variables which follow an independent distribution. Comparison is made between the proposed method and the classical frame-differencing method,which proves that the novel part model is analogous with a physical mouse in shape and supports real-time extracting rate and high computing efficiency. The novel method is able to estimate precisely both motion trajectories and posture states, and avoid effectively the faults of head-tail confusion and reflection disturbance. Therefore the novel method provides a trust worthy means for later behavioral analysis for biologists.
Author 张继文;梁桐;张淑平
AuthorAffiliation 清华大学机械工程系,北京100084;清华大学精密超精密制造装备及控制北京市重点实验室,北京100084;清华大学摩擦学国家重点实验室,北京100084;清华大学生命科学学院,北京100084
AuthorAffiliation_xml – name: 清华大学机械工程系 北京100084;清华大学精密超精密制造装备及控制北京市重点实验室 北京100084;清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084
Author_FL LIANG Tong
ZHANG Ji-Wen
ZHANG Shu-Ping
Author_FL_xml – sequence: 1
  fullname: ZHANG Ji-Wen
– sequence: 2
  fullname: LIANG Tong
– sequence: 3
  fullname: ZHANG Shu-Ping
Author_xml – sequence: 1
  fullname: 张继文;梁桐;张淑平
BookMark eNotj01LAkEAhocwyMxf0K1Dt93mc2fmWNIXCF28y-zo-kGt5RJ9HCMvYqwEegiKig4SFJInKfDXzJj_ohU7vZeH93nfVZAKG2EZgHUEXeQRQbbqrlKRiyESrkYeZJwsgTQSnDoIYpkCaYgZdShi3grIRlHNh4hTLjGBabBjPp9m7x0zjGc_z7-TrmkPTHxje8Ppw60dvNjHiemMZ607E7enX_fmo2u_3-zo1cZdE_dtf2xHvTWwHKjjqJz9zwwo7O0WcgdO_mj_MLeddzQTxJkbNVaMKexDDoVAiBEtvEBo4UteEhhRrbQqQcJlIKnGlDOKeFklOyUlJAM2F7UXKgxUWCnWG-fNMBEWr0vVS39-HyII5-DGAtTVRlg5qyXoabN2oppXRY9TIpmX1P0BKotxJQ
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2018.c160573
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate An Extraction Algorithm for Motion Parameters of A Laboratory Mouse by Model Matching and Particle Filtering
DocumentTitle_FL An Extraction Algorithm for Motion Parameters of A Laboratory Mouse by Model Matching and Particle Filtering
EISSN 1874-1029
EndPage 34
ExternalDocumentID zdhxb201801003
674395694
GrantInformation_xml – fundername: 国家自然科学基金; 摩擦学国家重点实验室(SKLT09A03)资助Supported by National Natural Science Foundation of China; Project of State Key Laboratory of Tribology
  funderid: (61403225); (61403225); (SKLT09A03)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c583-7479c2a55a2b070881153c86f8c8b97d8214cacad0379f94c2475417ea2309433
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 09:55:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords posture
体态
粒子滤波
laboratory mouse
实验小鼠
particle filter
part model
目标跟踪
部件模型
Object tracking
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583-7479c2a55a2b070881153c86f8c8b97d8214cacad0379f94c2475417ea2309433
Notes Object tracking, particle filter, part model, laboratory mouse, posture
ZHANG Ji-Wen1, 2, 3, LIANG Tong4, ZHANG Shu-Ping4 (1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084 2. Beijing Key Laboratory of Precision Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084 3. The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 4. School of Life Sciences, Tsinghua University, Beijing 100084)
Laboratory mouse is a kind of deformable object. Existing methods can hardly extract motion trajectories and posture details simultaneously from those continuous recorded videos. An object tracking method based on model matching and particle filtering is adopted to solve this problem. A geometry based part model and its motion state function involving moving velocity are proposed. A model-observation difference function is established as the observation model by comparing the foreground pixels in the binary image and the geometry part model. A basi
PageCount 10
ParticipantIDs wanfang_journals_zdhxb201801003
chongqing_primary_674395694
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2018
Publisher 清华大学精密超精密制造装备及控制北京市重点实验室 北京100084
清华大学机械工程系 北京100084
清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084
Publisher_xml – name: 清华大学精密超精密制造装备及控制北京市重点实验室 北京100084
– name: 清华大学摩擦学国家重点实验室 北京100084%清华大学生命科学学院 北京100084
– name: 清华大学机械工程系 北京100084
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.2044983
Snippet ...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 25
SubjectTerms 目标跟踪;粒子滤波;部件模型;实验小鼠;体态
Title 实验小鼠运动参数的模板匹配及粒子滤波提取方法
URI http://lib.cqvip.com/qk/90250X/201801/674395694.html
https://d.wanfangdata.com.cn/periodical/zdhxb201801003
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMCrtBQ6Ipyjl0QM-oZQktmP76GyzVAg4FdTbKpvdbU9bHq2EekRwqYq2QmoPSCBAHCokUEVPFUj9AX4jKf0LZibpbqqtxOMSOWPPjD3jZGaceOw4NxKvnaJj7La433FFm_suzJumm0iVcA4GgXPcKHzvfjjzQNyZk3MjJ35W_lpaXmpOpSvH7iv5H60CDPSKu2T_QbN9ogCAMugXrqBhuP6VjlksmY2ZiVlsmLVM1xASeUzXERLVmPVYrFlUZ8bDKm2Z1VSoMx2wOGSG2seKGUAXCIEG1qeqaUTExjUWGSSooTx9iG4RKwqYCagb08QiZFHELNGJOLPEQve5QyEkyiERpDbF4ZeH_jH2Viscy5He1giRuFiigFXycLLQoIuxKuKvSiYDI0sDC8BtpoLPjHcMMvQH5OATBKTHqysi5esbZy811CiMmOShY-qaIL79PpJsoqIKpBWSHkLCGq4COlSLMvZKpVlesgDKWlWkHiLHgleJVUgIIIJFIJhiFmjSsEFcVJrCW5T6cVMGIFbcHCaEn2WKs_VKYwGBvovBeNWyCTH0BJdmSlYcnmIxeciUwouZky1NEkxr7-up1A8xfebAc-j_z7nSWnjWxDYQ3WPq3bFAKV-OOmO3o7sP7cA9B2_WVOyJNGAyKu5nKDE94uBe4Uf-yld5uOd8EO7i2QdhZTlD-hyCb1xOKDwxiZmpaI21lE2ZdQxHdmt4XJhdZWGxO_8YfEbawtftJN35irc5e8Y5XYaJk7Z45s86IysL55xTleSh550o-_ru4PNatt07-PH-1956trqV9Z7nG9v7b17kWx_yt3vZ2u7By1dZb3X_2-vsy3r-_VO-8zHvrWe9zXxzN9_ZuODM1uPZ2oxbnojiplJzF0J_kwaJlEnQBFOtNYRzPNVhR6e6aVRLB75IkzRpeVyZjhFpIJQUvmonAcc_iPlFZ7S72G1fciZFi7cScN1VU7aFL1raCwECxPH8QKX5uDPRF0bjUZH4poEblowMjRh3rpfiaZSvw6eNo3Pg8h9bTDgnsVwsZ15xRpeeLLevgoO_1LxWzpvfD9O6jw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%AE%9E%E9%AA%8C%E5%B0%8F%E9%BC%A0%E8%BF%90%E5%8A%A8%E5%8F%82%E6%95%B0%E7%9A%84%E6%A8%A1%E6%9D%BF%E5%8C%B9%E9%85%8D%E5%8F%8A%E7%B2%92%E5%AD%90%E6%BB%A4%E6%B3%A2%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E7%BB%A7%E6%96%87&rft.au=%E6%A2%81%E6%A1%90&rft.au=%E5%BC%A0%E6%B7%91%E5%B9%B3&rft.date=2018&rft.pub=%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6%E7%B2%BE%E5%AF%86%E8%B6%85%E7%B2%BE%E5%AF%86%E5%88%B6%E9%80%A0%E8%A3%85%E5%A4%87%E5%8F%8A%E6%8E%A7%E5%88%B6%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC100084&rft.issn=0254-4156&rft.volume=44&rft.issue=1&rft.spage=25&rft.epage=34&rft_id=info:doi/10.16383%2Fj.aas.2018.c160573&rft.externalDocID=zdhxb201801003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg