Aryl Hydrocarbon Receptor Signaling Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Mice
The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects li...
Saved in:
Published in | Gastroenterology (New York, N.Y. 1943) Vol. 157; no. 3; pp. 793 - 806.e14 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice.
We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting.
AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β–induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β–induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis.
In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.
[Display omitted] |
---|---|
AbstractList | The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice.
We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting.
AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β–induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β–induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis.
In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.
[Display omitted] The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice. We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl ); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting. AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl or bile duct ligation. C57BL/6J mice given ITE did not develop CCl -induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl -induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β-induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis. In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis. Activation of hepatic stellate cells (HSCs) is key to liver fibrosis formation. This study showed that drug activation of the aryl hydrocarbon receptor can prevent HSC activation and liver fibrosis. The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice.BACKGROUND & AIMSThe role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice.We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting.METHODSWe studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting.AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β-induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis.RESULTSAhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β-induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis.In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.CONCLUSIONSIn studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis. |
Author | Tung, Hung-Chun Schwabe, Robert F. Yan, Jiong Niu, Yongdong Xu, Meishu Li, Yanping Yang, Da Garbacz, Wojciech G. Lu, Peipei Ren, Songrong Li, Sihan He, Jinhan Xie, Wen Bi, Yuhan Monga, Satdarshan P. |
AuthorAffiliation | 4 Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 1 Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA 5 Department of Medicine, Columbia University, New York, NY, USA 2 Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA 3 Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China |
AuthorAffiliation_xml | – name: 1 Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA – name: 5 Department of Medicine, Columbia University, New York, NY, USA – name: 3 Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China – name: 4 Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA – name: 2 Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA |
Author_xml | – sequence: 1 givenname: Jiong surname: Yan fullname: Yan, Jiong organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 2 givenname: Hung-Chun surname: Tung fullname: Tung, Hung-Chun organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 3 givenname: Sihan surname: Li fullname: Li, Sihan organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 4 givenname: Yongdong orcidid: 0000-0002-5392-3736 surname: Niu fullname: Niu, Yongdong organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 5 givenname: Wojciech G. surname: Garbacz fullname: Garbacz, Wojciech G. organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 6 givenname: Peipei surname: Lu fullname: Lu, Peipei organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 7 givenname: Yuhan surname: Bi fullname: Bi, Yuhan organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 8 givenname: Yanping surname: Li fullname: Li, Yanping organization: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 9 givenname: Jinhan surname: He fullname: He, Jinhan organization: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 10 givenname: Meishu surname: Xu fullname: Xu, Meishu organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 11 givenname: Songrong surname: Ren fullname: Ren, Songrong organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 12 givenname: Satdarshan P. surname: Monga fullname: Monga, Satdarshan P. organization: Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania – sequence: 13 givenname: Robert F. surname: Schwabe fullname: Schwabe, Robert F. organization: Department of Medicine, Columbia University, New York, New York – sequence: 14 givenname: Da orcidid: 0000-0002-8336-9457 surname: Yang fullname: Yang, Da organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania – sequence: 15 givenname: Wen orcidid: 0000-0003-3967-155X surname: Xie fullname: Xie, Wen email: wex6@pitt.edu organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31170413$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUsFuEzEUtFARTQt_gJCPXLLY63jXixBSFNEGKQhE4Wx5374NDhs7tZ1I-XucJkXQS05jyTPznmd8RS6cd0jIa84KzqR4tyqWJqbgi5LxpmCyYFX1jIy4LNWYMV5ekFGGaiyZkpfkKsYVY6wRir8gl4Lzmk24GJHNNOwHOt93wYMJrXf0OwJukg_0zi6dGaxb0m8Bd-hSpFNIdmeSzTTf0zlu8hnoXcJhMAnpLGOkxnV0YXcY6I1tg1-iw2gjtY5-sYAvyfPeDBFfnfCa_Lz59GM2Hy--3n6eTRdjkKpM414qqZSqTIUcBGurRvXQN6riXWlU2woQbdnKHrhC0YCSRnZlV_cNTDigUuKafDz6brbtGjvI-wcz6E2waxP22hur_79x9pde-p2ualYrUWeDtyeD4O-3GJNe2wiHlzr026jLspK1lI0Umfrm31l_hzzGnAnvjwQIPsaAvQabHnLMo-2gOdOHTvVKHzvVh041kzp3msWTJ-JH_zOyUwCYU95ZDDqCRQfY2YCQdOftOYMPTwwg_wYLZviN-_PyP1HK1L0 |
CitedBy_id | crossref_primary_10_1016_j_phrs_2020_105180 crossref_primary_10_1089_ars_2021_0080 crossref_primary_10_1186_s12951_022_01636_x crossref_primary_10_1038_s41467_023_41998_w crossref_primary_10_3390_biom12091244 crossref_primary_10_1016_j_lfs_2024_122443 crossref_primary_10_1155_2021_6635080 crossref_primary_10_11569_wcjd_v32_i3_192 crossref_primary_10_1016_j_envpol_2021_117080 crossref_primary_10_3390_ijms24065550 crossref_primary_10_3390_receptors2010001 crossref_primary_10_1016_j_ijbiomac_2024_136843 crossref_primary_10_3390_nu14163253 crossref_primary_10_1016_j_jphs_2020_07_014 crossref_primary_10_1016_j_apsb_2021_10_014 crossref_primary_10_1038_s41467_022_29098_7 crossref_primary_10_1016_j_envres_2020_110679 crossref_primary_10_1016_j_pharmr_2025_100045 crossref_primary_10_1053_j_gastro_2021_03_048 crossref_primary_10_1038_s41401_022_00926_2 crossref_primary_10_1089_ars_2021_0076 crossref_primary_10_1186_s40168_023_01656_1 crossref_primary_10_1080_17474124_2021_1949288 crossref_primary_10_1016_j_jnutbio_2022_109041 crossref_primary_10_1016_j_phrs_2020_105316 crossref_primary_10_1080_10717544_2021_1976310 crossref_primary_10_3390_cells10071622 crossref_primary_10_1002_mnfr_202400227 crossref_primary_10_1053_j_gastro_2021_12_260 crossref_primary_10_1002_hep_31999 crossref_primary_10_14336_AD_2021_1105 crossref_primary_10_3390_ijms23010288 crossref_primary_10_1016_j_omtn_2019_10_025 crossref_primary_10_1111_bcpt_13372 crossref_primary_10_3390_nu13093148 crossref_primary_10_1016_j_phymed_2022_154587 crossref_primary_10_1016_j_apsb_2023_12_006 crossref_primary_10_1007_s11357_020_00279_w crossref_primary_10_1126_scitranslmed_adk8446 crossref_primary_10_1155_2019_5236149 crossref_primary_10_1016_j_molmet_2023_101717 crossref_primary_10_1111_jcmm_70278 crossref_primary_10_1016_j_ecoenv_2021_112804 crossref_primary_10_1124_dmd_122_000857 crossref_primary_10_1016_j_arr_2022_101662 crossref_primary_10_1007_s00281_021_00867_8 crossref_primary_10_1021_acs_jafc_4c00976 crossref_primary_10_1016_j_ecoenv_2022_114199 crossref_primary_10_3390_diagnostics11081501 crossref_primary_10_1016_j_fct_2021_112588 crossref_primary_10_1126_sciadv_abg9241 crossref_primary_10_1016_j_intimp_2024_112938 crossref_primary_10_1016_j_jcmgh_2021_05_013 crossref_primary_10_1016_j_heliyon_2024_e37265 crossref_primary_10_1016_j_eng_2020_12_013 crossref_primary_10_1093_jleuko_qiae018 crossref_primary_10_1016_j_mtadv_2023_100417 crossref_primary_10_1186_s41232_023_00315_0 crossref_primary_10_1016_j_bbrc_2023_10_030 crossref_primary_10_1016_j_chom_2024_07_020 crossref_primary_10_1038_s41598_020_71795_0 crossref_primary_10_1002_hep4_1967 crossref_primary_10_1016_j_cbi_2020_109115 crossref_primary_10_1016_j_cotox_2023_100441 crossref_primary_10_3390_ijms21186654 crossref_primary_10_1002_jcla_24084 crossref_primary_10_1016_j_bcp_2024_116711 crossref_primary_10_1016_j_molmet_2024_101963 crossref_primary_10_3389_fphar_2020_00548 crossref_primary_10_1002_hep_31418 crossref_primary_10_1136_gutjnl_2020_321565 crossref_primary_10_3389_fcimb_2022_1015386 crossref_primary_10_1186_s13578_023_01046_y crossref_primary_10_3389_fendo_2023_1226808 crossref_primary_10_1016_j_fct_2023_113785 crossref_primary_10_1016_j_jcmgh_2020_09_002 crossref_primary_10_1007_s00044_022_02962_3 |
Cites_doi | 10.1126/science.7732381 10.1038/nprot.2015.017 10.1186/1471-2164-12-365 10.1006/bbrc.2001.6110 10.1016/j.cell.2013.03.028 10.1016/j.ccell.2018.03.006 10.1073/pnas.0902132106 10.1016/j.molcel.2010.10.029 10.1039/C4TX00236A 10.1038/ncomms3823 10.1210/me.2015-1145 10.1016/j.ccell.2016.09.004 10.1002/stem.1371 10.1172/JCI24282 10.1038/nature05683 10.1128/MCB.01658-12 10.1016/j.cmet.2014.11.002 10.1016/j.cmet.2012.10.006 10.1002/hep.20004 10.1073/pnas.0504757102 10.1016/j.cell.2011.08.050 10.1074/jbc.M109.093526 10.1038/s41467-018-05495-9 10.1016/j.molcel.2009.09.043 10.1111/j.0959-9673.2004.00397.x 10.1016/j.tox.2010.11.003 10.1289/EHP316 10.1053/j.gastro.2007.02.033 10.1136/gutjnl-2011-301146 10.1615/CritRevEukarGeneExpr.v18.i3.20 10.1080/15287398909531288 10.1093/toxsci/kft236 10.1073/pnas.0506580102 10.1021/tx100328r 10.1038/nprot.2007.135 10.1016/j.taap.2016.09.025 10.1038/nprot.2006.27 10.1038/ncomms1734 10.1016/j.tiv.2014.11.011 10.1073/pnas.1118467109 10.1073/pnas.232562899 10.1038/nrgastro.2017.38 10.1073/pnas.93.13.6731 10.1016/j.taap.2004.01.014 10.1111/j.1582-4934.2008.00569.x 10.1093/toxsci/kfs253 10.1101/gad.1388806 10.1016/j.plipres.2017.06.001 |
ContentType | Journal Article |
Copyright | 2019 AGA Institute Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 AGA Institute – notice: Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1053/j.gastro.2019.05.066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1528-0012 |
EndPage | 806.e14 |
ExternalDocumentID | PMC6707837 31170413 10_1053_j_gastro_2019_05_066 S0016508519409840 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: DK083952; ES023438; ES030429 funderid: https://doi.org/10.13039/100000002 – fundername: NIDDK NIH HHS grantid: R01 DK083952 – fundername: NIEHS NIH HHS grantid: R35 ES030429 – fundername: NIDDK NIH HHS grantid: R01 DK062277 – fundername: NIEHS NIH HHS grantid: R01 ES023438 |
GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 1B1 1CY 1P~ 1~5 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 AAEDT AAEDW AAFWJ AAIKJ AALRI AAQFI AAQOH AAQQT AAQXK AAXUO ABCQX ABDPE ABJNI ABLJU ABMAC ABOCM ABWVN ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO AENEX AEVXI AFFNX AFHKK AFJKZ AFRHN AFTJW AGCQF AGHFR AGQPQ AI. AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BELOY BR6 C5W CAG COF CS3 DU5 EBS EFJIC EFKBS EJD F5P FD8 FDB FEDTE FGOYB GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A NQ- O9- OC. OHT ON0 P2P PC. QTD R2- ROL RPZ SEL SES SJN SSZ UDS UGJ UV1 VH1 WH7 X7M XH2 Y6R YQJ Z5R ZGI ZXP AAIAV AAYOK ADPAM AFCTW AGZHU AHPSJ ALXNB G8K RIG TWZ ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 5PM |
ID | FETCH-LOGICAL-c582t-f5858886a6e1c30b698fcf9861d2a8bb3c3b2b5fc18e39c85a5d2d7f9c41ce883 |
ISSN | 0016-5085 1528-0012 |
IngestDate | Thu Aug 21 18:25:55 EDT 2025 Thu Jul 10 23:05:41 EDT 2025 Wed Feb 19 02:18:46 EST 2025 Tue Jul 01 00:59:08 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Fri Feb 23 02:47:41 EST 2024 Tue Aug 26 16:40:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | AST Signal Transduction Xenobiotic Receptor KO Cell Type-Specific Effect TCDD ALT ARNT AhR mRNA XRE ChIP ECM Gene Regulation α-SMA TGF RNA-seq DRE HSC FICZ ITE Lrat PCR CUL4B |
Language | English |
License | Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c582t-f5858886a6e1c30b698fcf9861d2a8bb3c3b2b5fc18e39c85a5d2d7f9c41ce883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: W.X. conceived and mentored this study. J.Y., and H.T. designed and performed experiments, acquired and analyzed data, and wrote the draft of the manuscript. H.T., S.L., Y.N., P.L., Y.B., and M.X. performed experiments. Y.N., W.G.G., P.L., J.H., M.X., S.R., S.P.M., R.F.S., and D.Y. gave technical support and conceptual advice. W.X., J.Y., and H.T. wrote the manuscript. These authors contributed equally to this work |
ORCID | 0000-0002-5392-3736 0000-0002-8336-9457 0000-0003-3967-155X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6707837 |
PMID | 31170413 |
PQID | 2265755953 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6707837 proquest_miscellaneous_2265755953 pubmed_primary_31170413 crossref_citationtrail_10_1053_j_gastro_2019_05_066 crossref_primary_10_1053_j_gastro_2019_05_066 elsevier_sciencedirect_doi_10_1053_j_gastro_2019_05_066 elsevier_clinicalkey_doi_10_1053_j_gastro_2019_05_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Gastroenterology (New York, N.Y. 1943) |
PublicationTitleAlternate | Gastroenterology |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Nebert (bib10) 2017; 67 Fernandez-Salguero, Pineau, Hilbert (bib8) 1995; 268 Ohtake, Baba, Takada (bib11) 2007; 446 Dere, Lo, Celius (bib23) 2011; 12 Pirkle, Wolfe, Patterson (bib30) 1989; 27 Wincent, Bengtsson, Bardbori (bib31) 2012; 109 Jackson, Joshi, Elferink (bib6) 2015; 4 Beischlag, Morales, Hollingshead (bib5) 2008; 18 Song, Clagett-Dame, Peterson (bib19) 2002; 99 Andreola, Calvisi, Elizondo (bib35) 2004; 39 Gao, Alarcón, Sapkota (bib33) 2009; 36 He, Hu, Shi (bib13) 2013; 33 Dere, Forgacs, Zacharewski (bib22) 2011; 24 Jian, Shen, Liu (bib24) 2006; 20 Duval, Teixeira-Clerc, Leblanc (bib15) 2017; 125 Walisser, Glover, Pande (bib20) 2005; 102 Uno, Dalton, Sinclair (bib26) 2004; 196 Mederacke, Dapito, Affò (bib16) 2015; 10 Tsuchida, Friedman (bib3) 2017; 14 Azimifar, Nagaraj, Cox (bib21) 2014; 20 Zhang, Wang, Tan (bib32) 2010; 285 Matsubara, Tanaka, Krausz (bib27) 2012; 16 Lo, Matthews (bib7) 2012; 130 Lamb, Cholico, Pu (bib29) 2016; 311 Bataller, Brenner (bib1) 2005; 115 Mederacke, Hsu, Troeger (bib2) 2013; 4 Akhmetshina, Palumbo, Dees (bib4) 2012; 3 Gao, Yan, Xu (bib18) 2015; 29 Ozeki, Uno, Ogura (bib28) 2011; 280 Kawajiri, Kobayashi, Ohtake (bib12) 2009; 106 Schmidt, Su, Reddy (bib9) 1996; 93 Uno, Dalton, Shertzer (bib25) 2001; 289 Pierre, Chevallier, Teixeira-Clerc (bib14) 2014; 137 Corchero, Martin-Partido, Dallas (bib34) 2004; 85 Subramanian, Tamayo, Mootha (bib17) 2005; 102 Walisser (10.1053/j.gastro.2019.05.066_bib20) 2005; 102 Akhmetshina (10.1053/j.gastro.2019.05.066_bib4) 2012; 3 Subramanian (10.1053/j.gastro.2019.05.066_bib17) 2005; 102 Luo (10.1053/j.gastro.2019.05.066_bib41) 2007; 2 Pirkle (10.1053/j.gastro.2019.05.066_bib30) 1989; 27 Ziv-Gal (10.1053/j.gastro.2019.05.066_bib39) 2015; 29 Dere (10.1053/j.gastro.2019.05.066_bib23) 2011; 12 Azimifar (10.1053/j.gastro.2019.05.066_bib21) 2014; 20 Andreola (10.1053/j.gastro.2019.05.066_bib35) 2004; 39 Zhang (10.1053/j.gastro.2019.05.066_bib50) 2013; 31 Mederacke (10.1053/j.gastro.2019.05.066_bib16) 2015; 10 Lo (10.1053/j.gastro.2019.05.066_bib7) 2012; 130 Nelson (10.1053/j.gastro.2019.05.066_bib42) 2006; 1 Wang (10.1053/j.gastro.2019.05.066_bib46) 2018; 9 Gao (10.1053/j.gastro.2019.05.066_bib18) 2015; 29 Fernandez-Salguero (10.1053/j.gastro.2019.05.066_bib8) 1995; 268 Gao (10.1053/j.gastro.2019.05.066_bib37) 2015; 29 Beischlag (10.1053/j.gastro.2019.05.066_bib5) 2008; 18 Wincent (10.1053/j.gastro.2019.05.066_bib31) 2012; 109 Bataller (10.1053/j.gastro.2019.05.066_bib1) 2005; 115 Duval (10.1053/j.gastro.2019.05.066_bib15) 2017; 125 Lönn (10.1053/j.gastro.2019.05.066_bib43) 2010; 40 Uno (10.1053/j.gastro.2019.05.066_bib25) 2001; 289 Schmidt (10.1053/j.gastro.2019.05.066_bib9) 1996; 93 Pierre (10.1053/j.gastro.2019.05.066_bib14) 2014; 137 Affo (10.1053/j.gastro.2019.05.066_bib51) 2013; 62 Mederacke (10.1053/j.gastro.2019.05.066_bib2) 2013; 4 Uno (10.1053/j.gastro.2019.05.066_bib26) 2004; 196 Nebert (10.1053/j.gastro.2019.05.066_bib10) 2017; 67 Corchero (10.1053/j.gastro.2019.05.066_bib34) 2004; 85 De Minicis (10.1053/j.gastro.2019.05.066_bib38) 2007; 132 Dere (10.1053/j.gastro.2019.05.066_bib22) 2011; 24 Tsuchida (10.1053/j.gastro.2019.05.066_bib3) 2017; 14 Dere (10.1053/j.gastro.2019.05.066_bib48) 2011; 24 Ohtake (10.1053/j.gastro.2019.05.066_bib11) 2007; 446 Song (10.1053/j.gastro.2019.05.066_bib19) 2002; 99 Tang (10.1053/j.gastro.2019.05.066_bib40) 2009; 13 Jian (10.1053/j.gastro.2019.05.066_bib24) 2006; 20 He (10.1053/j.gastro.2019.05.066_bib13) 2013; 33 Matsubara (10.1053/j.gastro.2019.05.066_bib27) 2012; 16 Kawajiri (10.1053/j.gastro.2019.05.066_bib12) 2009; 106 Jackson (10.1053/j.gastro.2019.05.066_bib6) 2015; 4 Zhang (10.1053/j.gastro.2019.05.066_bib32) 2010; 285 Gao (10.1053/j.gastro.2019.05.066_bib33) 2009; 36 Mullen (10.1053/j.gastro.2019.05.066_bib49) 2011; 147 Ozeki (10.1053/j.gastro.2019.05.066_bib28) 2011; 280 Wang (10.1053/j.gastro.2019.05.066_bib47) 2018; 33 Duran (10.1053/j.gastro.2019.05.066_bib45) 2016; 30 Lamb (10.1053/j.gastro.2019.05.066_bib29) 2016; 311 Ding (10.1053/j.gastro.2019.05.066_bib44) 2013; 153 Mederacke (10.1053/j.gastro.2019.05.066_bib36) 2015; 10 |
References_xml | – volume: 16 start-page: 634 year: 2012 end-page: 644 ident: bib27 article-title: Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis publication-title: Cell Metab – volume: 268 start-page: 722 year: 1995 end-page: 726 ident: bib8 article-title: Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor publication-title: Science – volume: 93 start-page: 6731 year: 1996 end-page: 6736 ident: bib9 article-title: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 1558 year: 2015 end-page: 1570 ident: bib18 article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α publication-title: Mol Endocrinol – volume: 67 start-page: 38 year: 2017 end-page: 57 ident: bib10 article-title: Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix publication-title: Prog Lipid Res – volume: 285 start-page: 8703 year: 2010 end-page: 8710 ident: bib32 article-title: Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes publication-title: J Biol Chem – volume: 3 start-page: 735 year: 2012 ident: bib4 article-title: Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis publication-title: Nat Commun – volume: 33 start-page: 2047 year: 2013 end-page: 2055 ident: bib13 article-title: Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3 publication-title: Mol Cell Biol – volume: 10 start-page: 305 year: 2015 end-page: 315 ident: bib16 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat Protoc – volume: 27 start-page: 165 year: 1989 end-page: 171 ident: bib30 article-title: Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo- publication-title: J Toxicol Environ Health A – volume: 14 start-page: 397 year: 2017 end-page: 411 ident: bib3 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat Rev Gastroenterol Hepatol – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: bib17 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 1076 year: 2014 end-page: 1087 ident: bib21 article-title: Cell-type-resolved quantitative proteomics of murine liver publication-title: Cell Metab – volume: 289 start-page: 1049 year: 2001 end-page: 1056 ident: bib25 article-title: Benzo[ publication-title: Biochem Biophys Res Commun – volume: 36 start-page: 457 year: 2009 end-page: 468 ident: bib33 article-title: Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling publication-title: Mol Cell – volume: 18 start-page: 207 year: 2008 end-page: 250 ident: bib5 article-title: The aryl hydrocarbon receptor complex and the control of gene expression publication-title: Crit Rev Eukaryot Gene Expr – volume: 280 start-page: 10 year: 2011 end-page: 17 ident: bib28 article-title: Aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances liver damage in bile duct-ligated mice publication-title: Toxicology – volume: 196 start-page: 410 year: 2004 end-page: 421 ident: bib26 article-title: male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria publication-title: Toxicol Appl Pharmacol – volume: 125 start-page: 428 year: 2017 end-page: 436 ident: bib15 article-title: Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model publication-title: Environ Health Perspect – volume: 115 start-page: 209 year: 2005 end-page: 218 ident: bib1 article-title: Liver fibrosis publication-title: J Clin Invest – volume: 12 start-page: 365 year: 2011 ident: bib23 article-title: Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver publication-title: BMC Genomics – volume: 109 start-page: 4479 year: 2012 end-page: 4484 ident: bib31 article-title: Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: 1143 year: 2015 end-page: 1158 ident: bib6 article-title: Ah receptor pathway intricacies; signaling through diverse protein partners and DNA-motifs publication-title: Toxicol Res – volume: 85 start-page: 295 year: 2004 end-page: 302 ident: bib34 article-title: Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-β-binding protein-1 publication-title: Int J Exp Pathol – volume: 311 start-page: 42 year: 2016 end-page: 51 ident: bib29 article-title: 2,3,7,8-Tetrachlorodibenzo- publication-title: Toxicol Appl Pharmacol – volume: 106 start-page: 13481 year: 2009 end-page: 13486 ident: bib12 article-title: Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in publication-title: Proc Natl Acad Sci U S A – volume: 39 start-page: 157 year: 2004 end-page: 166 ident: bib35 article-title: Reversal of liver fibrosis in aryl hydrocarbon receptor null mice by dietary vitamin A depletion publication-title: Hepatology – volume: 130 start-page: 349 year: 2012 end-page: 361 ident: bib7 article-title: High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq publication-title: Toxicol Sci – volume: 24 start-page: 494 year: 2011 end-page: 504 ident: bib22 article-title: Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes publication-title: Chem Res Toxicol – volume: 4 start-page: 2823 year: 2013 ident: bib2 article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology publication-title: Nat Commun – volume: 137 start-page: 114 year: 2014 end-page: 124 ident: bib14 article-title: Aryl hydrocarbon receptor–dependent induction of liver fibrosis by dioxin publication-title: Toxicol Sci – volume: 446 start-page: 562 year: 2007 end-page: 566 ident: bib11 article-title: Dioxin receptor is a ligand-dependent E3 ubiquitin ligase publication-title: Nature – volume: 102 start-page: 17858 year: 2005 end-page: 17863 ident: bib20 article-title: Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 666 year: 2006 end-page: 674 ident: bib24 article-title: Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells publication-title: Genes Dev – volume: 99 start-page: 14694 year: 2002 end-page: 14699 ident: bib19 article-title: A ligand for the aryl hydrocarbon receptor isolated from lung publication-title: Proc Natl Acad Sci U S A – volume: 268 start-page: 722 issue: 5211 year: 1995 ident: 10.1053/j.gastro.2019.05.066_bib8 article-title: Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor publication-title: Science doi: 10.1126/science.7732381 – volume: 10 start-page: 305 year: 2015 ident: 10.1053/j.gastro.2019.05.066_bib36 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat Protoc doi: 10.1038/nprot.2015.017 – volume: 12 start-page: 365 year: 2011 ident: 10.1053/j.gastro.2019.05.066_bib23 article-title: Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver publication-title: BMC Genomics doi: 10.1186/1471-2164-12-365 – volume: 289 start-page: 1049 year: 2001 ident: 10.1053/j.gastro.2019.05.066_bib25 article-title: Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(-/-) knockout mice having increased hepatic BaP-DNA adduct levels publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2001.6110 – volume: 153 start-page: 601 year: 2013 ident: 10.1053/j.gastro.2019.05.066_bib44 article-title: A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response publication-title: Cell doi: 10.1016/j.cell.2013.03.028 – volume: 33 start-page: 706 year: 2018 ident: 10.1053/j.gastro.2019.05.066_bib47 article-title: lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.006 – volume: 106 start-page: 13481 year: 2009 ident: 10.1053/j.gastro.2019.05.066_bib12 article-title: Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0902132106 – volume: 40 start-page: 521 year: 2010 ident: 10.1053/j.gastro.2019.05.066_bib43 article-title: PARP-1 attenuates Smad-mediated transcription publication-title: Mol Cell doi: 10.1016/j.molcel.2010.10.029 – volume: 4 start-page: 1143 year: 2015 ident: 10.1053/j.gastro.2019.05.066_bib6 article-title: Ah receptor pathway intricacies; signaling through diverse protein partners and DNA-motifs publication-title: Toxicol Res doi: 10.1039/C4TX00236A – volume: 4 start-page: 2823 year: 2013 ident: 10.1053/j.gastro.2019.05.066_bib2 article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology publication-title: Nat Commun doi: 10.1038/ncomms3823 – volume: 29 start-page: 1558 year: 2015 ident: 10.1053/j.gastro.2019.05.066_bib37 article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α publication-title: Mol Endocrinol doi: 10.1210/me.2015-1145 – volume: 29 start-page: 1558 year: 2015 ident: 10.1053/j.gastro.2019.05.066_bib18 article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α publication-title: Mol Endocrinol doi: 10.1210/me.2015-1145 – volume: 30 start-page: 595 year: 2016 ident: 10.1053/j.gastro.2019.05.066_bib45 article-title: p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.09.004 – volume: 31 start-page: 2667 year: 2013 ident: 10.1053/j.gastro.2019.05.066_bib50 article-title: Gene regulatory networks mediating canonical Wnt signal-directed control of pluripotency and differentiation in embryo stem cells publication-title: Stem Cells doi: 10.1002/stem.1371 – volume: 115 start-page: 209 year: 2005 ident: 10.1053/j.gastro.2019.05.066_bib1 article-title: Liver fibrosis publication-title: J Clin Invest doi: 10.1172/JCI24282 – volume: 446 start-page: 562 issue: 7135 year: 2007 ident: 10.1053/j.gastro.2019.05.066_bib11 article-title: Dioxin receptor is a ligand-dependent E3 ubiquitin ligase publication-title: Nature doi: 10.1038/nature05683 – volume: 33 start-page: 2047 year: 2013 ident: 10.1053/j.gastro.2019.05.066_bib13 article-title: Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3 publication-title: Mol Cell Biol doi: 10.1128/MCB.01658-12 – volume: 20 start-page: 1076 year: 2014 ident: 10.1053/j.gastro.2019.05.066_bib21 article-title: Cell-type-resolved quantitative proteomics of murine liver publication-title: Cell Metab doi: 10.1016/j.cmet.2014.11.002 – volume: 16 start-page: 634 year: 2012 ident: 10.1053/j.gastro.2019.05.066_bib27 article-title: Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis publication-title: Cell Metab doi: 10.1016/j.cmet.2012.10.006 – volume: 39 start-page: 157 year: 2004 ident: 10.1053/j.gastro.2019.05.066_bib35 article-title: Reversal of liver fibrosis in aryl hydrocarbon receptor null mice by dietary vitamin A depletion publication-title: Hepatology doi: 10.1002/hep.20004 – volume: 102 start-page: 17858 year: 2005 ident: 10.1053/j.gastro.2019.05.066_bib20 article-title: Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0504757102 – volume: 147 start-page: 565 year: 2011 ident: 10.1053/j.gastro.2019.05.066_bib49 article-title: Master transcription factors determine cell- type-specific responses to TGF-β signaling publication-title: Cell doi: 10.1016/j.cell.2011.08.050 – volume: 285 start-page: 8703 year: 2010 ident: 10.1053/j.gastro.2019.05.066_bib32 article-title: Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes publication-title: J Biol Chem doi: 10.1074/jbc.M109.093526 – volume: 9 start-page: 3192 year: 2018 ident: 10.1053/j.gastro.2019.05.066_bib46 article-title: Systematic identification of non-coding pharmacogenomic landscape in cancer publication-title: Nat Commun doi: 10.1038/s41467-018-05495-9 – volume: 36 start-page: 457 year: 2009 ident: 10.1053/j.gastro.2019.05.066_bib33 article-title: Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2009.09.043 – volume: 85 start-page: 295 year: 2004 ident: 10.1053/j.gastro.2019.05.066_bib34 article-title: Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-β-binding protein-1 publication-title: Int J Exp Pathol doi: 10.1111/j.0959-9673.2004.00397.x – volume: 280 start-page: 10 year: 2011 ident: 10.1053/j.gastro.2019.05.066_bib28 article-title: Aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances liver damage in bile duct-ligated mice publication-title: Toxicology doi: 10.1016/j.tox.2010.11.003 – volume: 125 start-page: 428 year: 2017 ident: 10.1053/j.gastro.2019.05.066_bib15 article-title: Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model publication-title: Environ Health Perspect doi: 10.1289/EHP316 – volume: 132 start-page: 1937 year: 2007 ident: 10.1053/j.gastro.2019.05.066_bib38 article-title: Gene expression profiles during hepatic stellate cell activation in culture and in vivo publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.02.033 – volume: 62 start-page: 452 year: 2013 ident: 10.1053/j.gastro.2019.05.066_bib51 article-title: Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis publication-title: Gut doi: 10.1136/gutjnl-2011-301146 – volume: 18 start-page: 207 year: 2008 ident: 10.1053/j.gastro.2019.05.066_bib5 article-title: The aryl hydrocarbon receptor complex and the control of gene expression publication-title: Crit Rev Eukaryot Gene Expr doi: 10.1615/CritRevEukarGeneExpr.v18.i3.20 – volume: 27 start-page: 165 year: 1989 ident: 10.1053/j.gastro.2019.05.066_bib30 article-title: Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam veterans of Operation Ranch Hand publication-title: J Toxicol Environ Health A doi: 10.1080/15287398909531288 – volume: 137 start-page: 114 year: 2014 ident: 10.1053/j.gastro.2019.05.066_bib14 article-title: Aryl hydrocarbon receptor–dependent induction of liver fibrosis by dioxin publication-title: Toxicol Sci doi: 10.1093/toxsci/kft236 – volume: 102 start-page: 15545 year: 2005 ident: 10.1053/j.gastro.2019.05.066_bib17 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 24 start-page: 494 year: 2011 ident: 10.1053/j.gastro.2019.05.066_bib22 article-title: Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes publication-title: Chem Res Toxicol doi: 10.1021/tx100328r – volume: 24 start-page: 494 year: 2011 ident: 10.1053/j.gastro.2019.05.066_bib48 article-title: Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes publication-title: Chem Res Toxicol doi: 10.1021/tx100328r – volume: 2 start-page: 1236 year: 2007 ident: 10.1053/j.gastro.2019.05.066_bib41 article-title: A protocol for rapid generation of recombinant adenoviruses using the AdEasy system publication-title: Nat Protoc doi: 10.1038/nprot.2007.135 – volume: 311 start-page: 42 year: 2016 ident: 10.1053/j.gastro.2019.05.066_bib29 article-title: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2016.09.025 – volume: 1 start-page: 179 year: 2006 ident: 10.1053/j.gastro.2019.05.066_bib42 article-title: Protocol for the fast chromatin immunoprecipitation (ChIP) method publication-title: Nat Protoc doi: 10.1038/nprot.2006.27 – volume: 3 start-page: 735 year: 2012 ident: 10.1053/j.gastro.2019.05.066_bib4 article-title: Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis publication-title: Nat Commun doi: 10.1038/ncomms1734 – volume: 29 start-page: 329 year: 2015 ident: 10.1053/j.gastro.2019.05.066_bib39 article-title: In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2014.11.011 – volume: 10 start-page: 305 year: 2015 ident: 10.1053/j.gastro.2019.05.066_bib16 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat Protoc doi: 10.1038/nprot.2015.017 – volume: 109 start-page: 4479 year: 2012 ident: 10.1053/j.gastro.2019.05.066_bib31 article-title: Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1118467109 – volume: 99 start-page: 14694 year: 2002 ident: 10.1053/j.gastro.2019.05.066_bib19 article-title: A ligand for the aryl hydrocarbon receptor isolated from lung publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.232562899 – volume: 14 start-page: 397 year: 2017 ident: 10.1053/j.gastro.2019.05.066_bib3 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2017.38 – volume: 93 start-page: 6731 year: 1996 ident: 10.1053/j.gastro.2019.05.066_bib9 article-title: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.13.6731 – volume: 196 start-page: 410 year: 2004 ident: 10.1053/j.gastro.2019.05.066_bib26 article-title: Cyp1a1(-/-) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2004.01.014 – volume: 13 start-page: 2448 year: 2009 ident: 10.1053/j.gastro.2019.05.066_bib40 article-title: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β-catenin signalling publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2008.00569.x – volume: 130 start-page: 349 year: 2012 ident: 10.1053/j.gastro.2019.05.066_bib7 article-title: High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq publication-title: Toxicol Sci doi: 10.1093/toxsci/kfs253 – volume: 20 start-page: 666 year: 2006 ident: 10.1053/j.gastro.2019.05.066_bib24 article-title: Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells publication-title: Genes Dev doi: 10.1101/gad.1388806 – volume: 67 start-page: 38 year: 2017 ident: 10.1053/j.gastro.2019.05.066_bib10 article-title: Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2017.06.001 |
SSID | ssj0009381 |
Score | 2.5614655 |
Snippet | The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of... Activation of hepatic stellate cells (HSCs) is key to liver fibrosis formation. This study showed that drug activation of the aryl hydrocarbon receptor can... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 793 |
SubjectTerms | Animals Basic Helix-Loop-Helix Transcription Factors - agonists Basic Helix-Loop-Helix Transcription Factors - deficiency Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism beta Catenin - metabolism Cell Proliferation Cell Type-Specific Effect Cells, Cultured Cellular Senescence - drug effects Chemical and Drug Induced Liver Injury - genetics Chemical and Drug Induced Liver Injury - metabolism Chemical and Drug Induced Liver Injury - pathology Chemical and Drug Induced Liver Injury - prevention & control Gene Expression Regulation Gene Regulation Hepatic Stellate Cells - drug effects Hepatic Stellate Cells - metabolism Hepatic Stellate Cells - pathology Indoles - pharmacology Liver - drug effects Liver - metabolism Liver - pathology Liver Cirrhosis, Experimental - genetics Liver Cirrhosis, Experimental - metabolism Liver Cirrhosis, Experimental - pathology Liver Cirrhosis, Experimental - prevention & control Mice Mice, Inbred C57BL Mice, Knockout Phenotype Receptors, Aryl Hydrocarbon - agonists Receptors, Aryl Hydrocarbon - deficiency Receptors, Aryl Hydrocarbon - genetics Receptors, Aryl Hydrocarbon - metabolism Signal Transduction Smad3 Protein - metabolism Thiazoles - pharmacology Xenobiotic Receptor |
Title | Aryl Hydrocarbon Receptor Signaling Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Mice |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0016508519409840 https://dx.doi.org/10.1053/j.gastro.2019.05.066 https://www.ncbi.nlm.nih.gov/pubmed/31170413 https://www.proquest.com/docview/2265755953 https://pubmed.ncbi.nlm.nih.gov/PMC6707837 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9owELborlT1UvVd-pIr9RZlm8RxYh8pWhatWHoAKnqK8oRUqwQFOGwv_esdP_LYLtXSXhIUYidkvoxnzOdvEPrkkSRkaWKZsedw03U5MyOa-GaSMTtzuR8qxZurqTdeuJdLuuz1fnVYS_tddBb_PLiu5H-sCsfArmKV7D9YtukUDsBnsC9swcKwPcrGg-rm2hjfJDAIhVVUisl4wVIpK2OWr0SEXawMrdG0NQZxXclMTt6nG6nVOhOrSCDeNIawV3rNE0HVMEaQR5cr4QlzSZm90iS5OpK9CLe7qhSKnpWScTpQ1sewududyf2uZlsv4R5WLbFDeZsx7M3het9ShCTPYJavW_xO870cMqB5UnehZyzslpLVOFmhim1p-nR64FjtmZV2tYYg6fhZX5VVvOP_LVnE48fZSj4DwdzjUpjVOyC3Pf0ajBaTSTA_X84foFMH8gxwlKcXXybfBq1uM2FKclffXr36kpLPh67yt-jmbvbyJwm3E9XMn6DHOh3BA4Wtp6iXFs_QwytNuHiONgJiuAMxXEMMNxDDNcRwCzFcZlhDDNcQwxJiGCCGJcRwF2I4L7CA2Au0GJ3Ph2NTF-kwY8qcnZlBvskY80IvtWNiRR5nWZxx5tmJE7IoIjGJnIhmsc1SwmNGQ5o4iZ_x2LXjlDHyEp0UZZG-RpgzV1QYclIrCV0YhCPHI5D_-g50YRFO-4jUDzeItYK9KKRyHUgmBSWQySqTBMIkgUUDMEkfmU2rjVJwued8WtstqFcnw3gaAMTuaec37XT0qqLSI1p-rOERgHMX_9iFRVrutwHkRpBOUU5JH71ScGl-AxE1oyAEheveAlJzghCOv_1Nka-lgLwnJL6I_-aI675Fj9pX-B062VX79D2E4bvog35VfgOoHeAw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aryl+Hydrocarbon+Receptor+Signaling+Prevents+Activation+of+Hepatic+Stellate+Cells+and+Liver+Fibrogenesis+in+Mice&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Yan%2C+Jiong&rft.au=Tung%2C+Hung-Chun&rft.au=Li%2C+Sihan&rft.au=Niu%2C+Yongdong&rft.date=2019-09-01&rft.issn=1528-0012&rft.eissn=1528-0012&rft.volume=157&rft.issue=3&rft.spage=793&rft_id=info:doi/10.1053%2Fj.gastro.2019.05.066&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5085&client=summon |