Aryl Hydrocarbon Receptor Signaling Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Mice

The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects li...

Full description

Saved in:
Bibliographic Details
Published inGastroenterology (New York, N.Y. 1943) Vol. 157; no. 3; pp. 793 - 806.e14
Main Authors Yan, Jiong, Tung, Hung-Chun, Li, Sihan, Niu, Yongdong, Garbacz, Wojciech G., Lu, Peipei, Bi, Yuhan, Li, Yanping, He, Jinhan, Xu, Meishu, Ren, Songrong, Monga, Satdarshan P., Schwabe, Robert F., Yang, Da, Xie, Wen
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice. We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting. AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β–induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β–induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis. In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis. [Display omitted]
AbstractList The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice. We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting. AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β–induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β–induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis. In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis. [Display omitted]
The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice. We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl ); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting. AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl or bile duct ligation. C57BL/6J mice given ITE did not develop CCl -induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl -induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β-induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis. In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.
Activation of hepatic stellate cells (HSCs) is key to liver fibrosis formation. This study showed that drug activation of the aryl hydrocarbon receptor can prevent HSC activation and liver fibrosis.
The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice.BACKGROUND & AIMSThe role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice.We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting.METHODSWe studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting.AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β-induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis.RESULTSAhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor β-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor β-induced fibrogenesis by disrupting the interaction of Smad3 with β-catenin, which prevents the expression of genes that mediate fibrogenesis.In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.CONCLUSIONSIn studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.
Author Tung, Hung-Chun
Schwabe, Robert F.
Yan, Jiong
Niu, Yongdong
Xu, Meishu
Li, Yanping
Yang, Da
Garbacz, Wojciech G.
Lu, Peipei
Ren, Songrong
Li, Sihan
He, Jinhan
Xie, Wen
Bi, Yuhan
Monga, Satdarshan P.
AuthorAffiliation 4 Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
1 Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
5 Department of Medicine, Columbia University, New York, NY, USA
2 Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
3 Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
AuthorAffiliation_xml – name: 1 Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
– name: 5 Department of Medicine, Columbia University, New York, NY, USA
– name: 3 Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– name: 4 Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
– name: 2 Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
Author_xml – sequence: 1
  givenname: Jiong
  surname: Yan
  fullname: Yan, Jiong
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 2
  givenname: Hung-Chun
  surname: Tung
  fullname: Tung, Hung-Chun
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 3
  givenname: Sihan
  surname: Li
  fullname: Li, Sihan
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 4
  givenname: Yongdong
  orcidid: 0000-0002-5392-3736
  surname: Niu
  fullname: Niu, Yongdong
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 5
  givenname: Wojciech G.
  surname: Garbacz
  fullname: Garbacz, Wojciech G.
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 6
  givenname: Peipei
  surname: Lu
  fullname: Lu, Peipei
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 7
  givenname: Yuhan
  surname: Bi
  fullname: Bi, Yuhan
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 8
  givenname: Yanping
  surname: Li
  fullname: Li, Yanping
  organization: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 9
  givenname: Jinhan
  surname: He
  fullname: He, Jinhan
  organization: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 10
  givenname: Meishu
  surname: Xu
  fullname: Xu, Meishu
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 11
  givenname: Songrong
  surname: Ren
  fullname: Ren, Songrong
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 12
  givenname: Satdarshan P.
  surname: Monga
  fullname: Monga, Satdarshan P.
  organization: Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
– sequence: 13
  givenname: Robert F.
  surname: Schwabe
  fullname: Schwabe, Robert F.
  organization: Department of Medicine, Columbia University, New York, New York
– sequence: 14
  givenname: Da
  orcidid: 0000-0002-8336-9457
  surname: Yang
  fullname: Yang, Da
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
– sequence: 15
  givenname: Wen
  orcidid: 0000-0003-3967-155X
  surname: Xie
  fullname: Xie, Wen
  email: wex6@pitt.edu
  organization: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31170413$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFuEzEUtFARTQt_gJCPXLLY63jXixBSFNEGKQhE4Wx5374NDhs7tZ1I-XucJkXQS05jyTPznmd8RS6cd0jIa84KzqR4tyqWJqbgi5LxpmCyYFX1jIy4LNWYMV5ekFGGaiyZkpfkKsYVY6wRir8gl4Lzmk24GJHNNOwHOt93wYMJrXf0OwJukg_0zi6dGaxb0m8Bd-hSpFNIdmeSzTTf0zlu8hnoXcJhMAnpLGOkxnV0YXcY6I1tg1-iw2gjtY5-sYAvyfPeDBFfnfCa_Lz59GM2Hy--3n6eTRdjkKpM414qqZSqTIUcBGurRvXQN6riXWlU2woQbdnKHrhC0YCSRnZlV_cNTDigUuKafDz6brbtGjvI-wcz6E2waxP22hur_79x9pde-p2ualYrUWeDtyeD4O-3GJNe2wiHlzr026jLspK1lI0Umfrm31l_hzzGnAnvjwQIPsaAvQabHnLMo-2gOdOHTvVKHzvVh041kzp3msWTJ-JH_zOyUwCYU95ZDDqCRQfY2YCQdOftOYMPTwwg_wYLZviN-_PyP1HK1L0
CitedBy_id crossref_primary_10_1016_j_phrs_2020_105180
crossref_primary_10_1089_ars_2021_0080
crossref_primary_10_1186_s12951_022_01636_x
crossref_primary_10_1038_s41467_023_41998_w
crossref_primary_10_3390_biom12091244
crossref_primary_10_1016_j_lfs_2024_122443
crossref_primary_10_1155_2021_6635080
crossref_primary_10_11569_wcjd_v32_i3_192
crossref_primary_10_1016_j_envpol_2021_117080
crossref_primary_10_3390_ijms24065550
crossref_primary_10_3390_receptors2010001
crossref_primary_10_1016_j_ijbiomac_2024_136843
crossref_primary_10_3390_nu14163253
crossref_primary_10_1016_j_jphs_2020_07_014
crossref_primary_10_1016_j_apsb_2021_10_014
crossref_primary_10_1038_s41467_022_29098_7
crossref_primary_10_1016_j_envres_2020_110679
crossref_primary_10_1016_j_pharmr_2025_100045
crossref_primary_10_1053_j_gastro_2021_03_048
crossref_primary_10_1038_s41401_022_00926_2
crossref_primary_10_1089_ars_2021_0076
crossref_primary_10_1186_s40168_023_01656_1
crossref_primary_10_1080_17474124_2021_1949288
crossref_primary_10_1016_j_jnutbio_2022_109041
crossref_primary_10_1016_j_phrs_2020_105316
crossref_primary_10_1080_10717544_2021_1976310
crossref_primary_10_3390_cells10071622
crossref_primary_10_1002_mnfr_202400227
crossref_primary_10_1053_j_gastro_2021_12_260
crossref_primary_10_1002_hep_31999
crossref_primary_10_14336_AD_2021_1105
crossref_primary_10_3390_ijms23010288
crossref_primary_10_1016_j_omtn_2019_10_025
crossref_primary_10_1111_bcpt_13372
crossref_primary_10_3390_nu13093148
crossref_primary_10_1016_j_phymed_2022_154587
crossref_primary_10_1016_j_apsb_2023_12_006
crossref_primary_10_1007_s11357_020_00279_w
crossref_primary_10_1126_scitranslmed_adk8446
crossref_primary_10_1155_2019_5236149
crossref_primary_10_1016_j_molmet_2023_101717
crossref_primary_10_1111_jcmm_70278
crossref_primary_10_1016_j_ecoenv_2021_112804
crossref_primary_10_1124_dmd_122_000857
crossref_primary_10_1016_j_arr_2022_101662
crossref_primary_10_1007_s00281_021_00867_8
crossref_primary_10_1021_acs_jafc_4c00976
crossref_primary_10_1016_j_ecoenv_2022_114199
crossref_primary_10_3390_diagnostics11081501
crossref_primary_10_1016_j_fct_2021_112588
crossref_primary_10_1126_sciadv_abg9241
crossref_primary_10_1016_j_intimp_2024_112938
crossref_primary_10_1016_j_jcmgh_2021_05_013
crossref_primary_10_1016_j_heliyon_2024_e37265
crossref_primary_10_1016_j_eng_2020_12_013
crossref_primary_10_1093_jleuko_qiae018
crossref_primary_10_1016_j_mtadv_2023_100417
crossref_primary_10_1186_s41232_023_00315_0
crossref_primary_10_1016_j_bbrc_2023_10_030
crossref_primary_10_1016_j_chom_2024_07_020
crossref_primary_10_1038_s41598_020_71795_0
crossref_primary_10_1002_hep4_1967
crossref_primary_10_1016_j_cbi_2020_109115
crossref_primary_10_1016_j_cotox_2023_100441
crossref_primary_10_3390_ijms21186654
crossref_primary_10_1002_jcla_24084
crossref_primary_10_1016_j_bcp_2024_116711
crossref_primary_10_1016_j_molmet_2024_101963
crossref_primary_10_3389_fphar_2020_00548
crossref_primary_10_1002_hep_31418
crossref_primary_10_1136_gutjnl_2020_321565
crossref_primary_10_3389_fcimb_2022_1015386
crossref_primary_10_1186_s13578_023_01046_y
crossref_primary_10_3389_fendo_2023_1226808
crossref_primary_10_1016_j_fct_2023_113785
crossref_primary_10_1016_j_jcmgh_2020_09_002
crossref_primary_10_1007_s00044_022_02962_3
Cites_doi 10.1126/science.7732381
10.1038/nprot.2015.017
10.1186/1471-2164-12-365
10.1006/bbrc.2001.6110
10.1016/j.cell.2013.03.028
10.1016/j.ccell.2018.03.006
10.1073/pnas.0902132106
10.1016/j.molcel.2010.10.029
10.1039/C4TX00236A
10.1038/ncomms3823
10.1210/me.2015-1145
10.1016/j.ccell.2016.09.004
10.1002/stem.1371
10.1172/JCI24282
10.1038/nature05683
10.1128/MCB.01658-12
10.1016/j.cmet.2014.11.002
10.1016/j.cmet.2012.10.006
10.1002/hep.20004
10.1073/pnas.0504757102
10.1016/j.cell.2011.08.050
10.1074/jbc.M109.093526
10.1038/s41467-018-05495-9
10.1016/j.molcel.2009.09.043
10.1111/j.0959-9673.2004.00397.x
10.1016/j.tox.2010.11.003
10.1289/EHP316
10.1053/j.gastro.2007.02.033
10.1136/gutjnl-2011-301146
10.1615/CritRevEukarGeneExpr.v18.i3.20
10.1080/15287398909531288
10.1093/toxsci/kft236
10.1073/pnas.0506580102
10.1021/tx100328r
10.1038/nprot.2007.135
10.1016/j.taap.2016.09.025
10.1038/nprot.2006.27
10.1038/ncomms1734
10.1016/j.tiv.2014.11.011
10.1073/pnas.1118467109
10.1073/pnas.232562899
10.1038/nrgastro.2017.38
10.1073/pnas.93.13.6731
10.1016/j.taap.2004.01.014
10.1111/j.1582-4934.2008.00569.x
10.1093/toxsci/kfs253
10.1101/gad.1388806
10.1016/j.plipres.2017.06.001
ContentType Journal Article
Copyright 2019 AGA Institute
Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 AGA Institute
– notice: Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1053/j.gastro.2019.05.066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-0012
EndPage 806.e14
ExternalDocumentID PMC6707837
31170413
10_1053_j_gastro_2019_05_066
S0016508519409840
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: DK083952; ES023438; ES030429
  funderid: https://doi.org/10.13039/100000002
– fundername: NIDDK NIH HHS
  grantid: R01 DK083952
– fundername: NIEHS NIH HHS
  grantid: R35 ES030429
– fundername: NIDDK NIH HHS
  grantid: R01 DK062277
– fundername: NIEHS NIH HHS
  grantid: R01 ES023438
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1CY
1P~
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAXUO
ABCQX
ABDPE
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEVXI
AFFNX
AFHKK
AFJKZ
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AI.
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FD8
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
NQ-
O9-
OC.
OHT
ON0
P2P
PC.
QTD
R2-
ROL
RPZ
SEL
SES
SJN
SSZ
UDS
UGJ
UV1
VH1
WH7
X7M
XH2
Y6R
YQJ
Z5R
ZGI
ZXP
AAIAV
AAYOK
ADPAM
AFCTW
AGZHU
AHPSJ
ALXNB
G8K
RIG
TWZ
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
5PM
ID FETCH-LOGICAL-c582t-f5858886a6e1c30b698fcf9861d2a8bb3c3b2b5fc18e39c85a5d2d7f9c41ce883
ISSN 0016-5085
1528-0012
IngestDate Thu Aug 21 18:25:55 EDT 2025
Thu Jul 10 23:05:41 EDT 2025
Wed Feb 19 02:18:46 EST 2025
Tue Jul 01 00:59:08 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Fri Feb 23 02:47:41 EST 2024
Tue Aug 26 16:40:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords AST
Signal Transduction
Xenobiotic Receptor
KO
Cell Type-Specific Effect
TCDD
ALT
ARNT
AhR
mRNA
XRE
ChIP
ECM
Gene Regulation
α-SMA
TGF
RNA-seq
DRE
HSC
FICZ
ITE
Lrat
PCR
CUL4B
Language English
License Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582t-f5858886a6e1c30b698fcf9861d2a8bb3c3b2b5fc18e39c85a5d2d7f9c41ce883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: W.X. conceived and mentored this study. J.Y., and H.T. designed and performed experiments, acquired and analyzed data, and wrote the draft of the manuscript. H.T., S.L., Y.N., P.L., Y.B., and M.X. performed experiments. Y.N., W.G.G., P.L., J.H., M.X., S.R., S.P.M., R.F.S., and D.Y. gave technical support and conceptual advice. W.X., J.Y., and H.T. wrote the manuscript.
These authors contributed equally to this work
ORCID 0000-0002-5392-3736
0000-0002-8336-9457
0000-0003-3967-155X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6707837
PMID 31170413
PQID 2265755953
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6707837
proquest_miscellaneous_2265755953
pubmed_primary_31170413
crossref_citationtrail_10_1053_j_gastro_2019_05_066
crossref_primary_10_1053_j_gastro_2019_05_066
elsevier_sciencedirect_doi_10_1053_j_gastro_2019_05_066
elsevier_clinicalkey_doi_10_1053_j_gastro_2019_05_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastroenterology (New York, N.Y. 1943)
PublicationTitleAlternate Gastroenterology
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Nebert (bib10) 2017; 67
Fernandez-Salguero, Pineau, Hilbert (bib8) 1995; 268
Ohtake, Baba, Takada (bib11) 2007; 446
Dere, Lo, Celius (bib23) 2011; 12
Pirkle, Wolfe, Patterson (bib30) 1989; 27
Wincent, Bengtsson, Bardbori (bib31) 2012; 109
Jackson, Joshi, Elferink (bib6) 2015; 4
Beischlag, Morales, Hollingshead (bib5) 2008; 18
Song, Clagett-Dame, Peterson (bib19) 2002; 99
Andreola, Calvisi, Elizondo (bib35) 2004; 39
Gao, Alarcón, Sapkota (bib33) 2009; 36
He, Hu, Shi (bib13) 2013; 33
Dere, Forgacs, Zacharewski (bib22) 2011; 24
Jian, Shen, Liu (bib24) 2006; 20
Duval, Teixeira-Clerc, Leblanc (bib15) 2017; 125
Walisser, Glover, Pande (bib20) 2005; 102
Uno, Dalton, Sinclair (bib26) 2004; 196
Mederacke, Dapito, Affò (bib16) 2015; 10
Tsuchida, Friedman (bib3) 2017; 14
Azimifar, Nagaraj, Cox (bib21) 2014; 20
Zhang, Wang, Tan (bib32) 2010; 285
Matsubara, Tanaka, Krausz (bib27) 2012; 16
Lo, Matthews (bib7) 2012; 130
Lamb, Cholico, Pu (bib29) 2016; 311
Bataller, Brenner (bib1) 2005; 115
Mederacke, Hsu, Troeger (bib2) 2013; 4
Akhmetshina, Palumbo, Dees (bib4) 2012; 3
Gao, Yan, Xu (bib18) 2015; 29
Ozeki, Uno, Ogura (bib28) 2011; 280
Kawajiri, Kobayashi, Ohtake (bib12) 2009; 106
Schmidt, Su, Reddy (bib9) 1996; 93
Uno, Dalton, Shertzer (bib25) 2001; 289
Pierre, Chevallier, Teixeira-Clerc (bib14) 2014; 137
Corchero, Martin-Partido, Dallas (bib34) 2004; 85
Subramanian, Tamayo, Mootha (bib17) 2005; 102
Walisser (10.1053/j.gastro.2019.05.066_bib20) 2005; 102
Akhmetshina (10.1053/j.gastro.2019.05.066_bib4) 2012; 3
Subramanian (10.1053/j.gastro.2019.05.066_bib17) 2005; 102
Luo (10.1053/j.gastro.2019.05.066_bib41) 2007; 2
Pirkle (10.1053/j.gastro.2019.05.066_bib30) 1989; 27
Ziv-Gal (10.1053/j.gastro.2019.05.066_bib39) 2015; 29
Dere (10.1053/j.gastro.2019.05.066_bib23) 2011; 12
Azimifar (10.1053/j.gastro.2019.05.066_bib21) 2014; 20
Andreola (10.1053/j.gastro.2019.05.066_bib35) 2004; 39
Zhang (10.1053/j.gastro.2019.05.066_bib50) 2013; 31
Mederacke (10.1053/j.gastro.2019.05.066_bib16) 2015; 10
Lo (10.1053/j.gastro.2019.05.066_bib7) 2012; 130
Nelson (10.1053/j.gastro.2019.05.066_bib42) 2006; 1
Wang (10.1053/j.gastro.2019.05.066_bib46) 2018; 9
Gao (10.1053/j.gastro.2019.05.066_bib18) 2015; 29
Fernandez-Salguero (10.1053/j.gastro.2019.05.066_bib8) 1995; 268
Gao (10.1053/j.gastro.2019.05.066_bib37) 2015; 29
Beischlag (10.1053/j.gastro.2019.05.066_bib5) 2008; 18
Wincent (10.1053/j.gastro.2019.05.066_bib31) 2012; 109
Bataller (10.1053/j.gastro.2019.05.066_bib1) 2005; 115
Duval (10.1053/j.gastro.2019.05.066_bib15) 2017; 125
Lönn (10.1053/j.gastro.2019.05.066_bib43) 2010; 40
Uno (10.1053/j.gastro.2019.05.066_bib25) 2001; 289
Schmidt (10.1053/j.gastro.2019.05.066_bib9) 1996; 93
Pierre (10.1053/j.gastro.2019.05.066_bib14) 2014; 137
Affo (10.1053/j.gastro.2019.05.066_bib51) 2013; 62
Mederacke (10.1053/j.gastro.2019.05.066_bib2) 2013; 4
Uno (10.1053/j.gastro.2019.05.066_bib26) 2004; 196
Nebert (10.1053/j.gastro.2019.05.066_bib10) 2017; 67
Corchero (10.1053/j.gastro.2019.05.066_bib34) 2004; 85
De Minicis (10.1053/j.gastro.2019.05.066_bib38) 2007; 132
Dere (10.1053/j.gastro.2019.05.066_bib22) 2011; 24
Tsuchida (10.1053/j.gastro.2019.05.066_bib3) 2017; 14
Dere (10.1053/j.gastro.2019.05.066_bib48) 2011; 24
Ohtake (10.1053/j.gastro.2019.05.066_bib11) 2007; 446
Song (10.1053/j.gastro.2019.05.066_bib19) 2002; 99
Tang (10.1053/j.gastro.2019.05.066_bib40) 2009; 13
Jian (10.1053/j.gastro.2019.05.066_bib24) 2006; 20
He (10.1053/j.gastro.2019.05.066_bib13) 2013; 33
Matsubara (10.1053/j.gastro.2019.05.066_bib27) 2012; 16
Kawajiri (10.1053/j.gastro.2019.05.066_bib12) 2009; 106
Jackson (10.1053/j.gastro.2019.05.066_bib6) 2015; 4
Zhang (10.1053/j.gastro.2019.05.066_bib32) 2010; 285
Gao (10.1053/j.gastro.2019.05.066_bib33) 2009; 36
Mullen (10.1053/j.gastro.2019.05.066_bib49) 2011; 147
Ozeki (10.1053/j.gastro.2019.05.066_bib28) 2011; 280
Wang (10.1053/j.gastro.2019.05.066_bib47) 2018; 33
Duran (10.1053/j.gastro.2019.05.066_bib45) 2016; 30
Lamb (10.1053/j.gastro.2019.05.066_bib29) 2016; 311
Ding (10.1053/j.gastro.2019.05.066_bib44) 2013; 153
Mederacke (10.1053/j.gastro.2019.05.066_bib36) 2015; 10
References_xml – volume: 16
  start-page: 634
  year: 2012
  end-page: 644
  ident: bib27
  article-title: Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis
  publication-title: Cell Metab
– volume: 268
  start-page: 722
  year: 1995
  end-page: 726
  ident: bib8
  article-title: Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor
  publication-title: Science
– volume: 93
  start-page: 6731
  year: 1996
  end-page: 6736
  ident: bib9
  article-title: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 1558
  year: 2015
  end-page: 1570
  ident: bib18
  article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α
  publication-title: Mol Endocrinol
– volume: 67
  start-page: 38
  year: 2017
  end-page: 57
  ident: bib10
  article-title: Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix
  publication-title: Prog Lipid Res
– volume: 285
  start-page: 8703
  year: 2010
  end-page: 8710
  ident: bib32
  article-title: Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes
  publication-title: J Biol Chem
– volume: 3
  start-page: 735
  year: 2012
  ident: bib4
  article-title: Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis
  publication-title: Nat Commun
– volume: 33
  start-page: 2047
  year: 2013
  end-page: 2055
  ident: bib13
  article-title: Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3
  publication-title: Mol Cell Biol
– volume: 10
  start-page: 305
  year: 2015
  end-page: 315
  ident: bib16
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat Protoc
– volume: 27
  start-page: 165
  year: 1989
  end-page: 171
  ident: bib30
  article-title: Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-
  publication-title: J Toxicol Environ Health A
– volume: 14
  start-page: 397
  year: 2017
  end-page: 411
  ident: bib3
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: bib17
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 1076
  year: 2014
  end-page: 1087
  ident: bib21
  article-title: Cell-type-resolved quantitative proteomics of murine liver
  publication-title: Cell Metab
– volume: 289
  start-page: 1049
  year: 2001
  end-page: 1056
  ident: bib25
  article-title: Benzo[
  publication-title: Biochem Biophys Res Commun
– volume: 36
  start-page: 457
  year: 2009
  end-page: 468
  ident: bib33
  article-title: Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling
  publication-title: Mol Cell
– volume: 18
  start-page: 207
  year: 2008
  end-page: 250
  ident: bib5
  article-title: The aryl hydrocarbon receptor complex and the control of gene expression
  publication-title: Crit Rev Eukaryot Gene Expr
– volume: 280
  start-page: 10
  year: 2011
  end-page: 17
  ident: bib28
  article-title: Aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances liver damage in bile duct-ligated mice
  publication-title: Toxicology
– volume: 196
  start-page: 410
  year: 2004
  end-page: 421
  ident: bib26
  article-title: male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria
  publication-title: Toxicol Appl Pharmacol
– volume: 125
  start-page: 428
  year: 2017
  end-page: 436
  ident: bib15
  article-title: Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model
  publication-title: Environ Health Perspect
– volume: 115
  start-page: 209
  year: 2005
  end-page: 218
  ident: bib1
  article-title: Liver fibrosis
  publication-title: J Clin Invest
– volume: 12
  start-page: 365
  year: 2011
  ident: bib23
  article-title: Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver
  publication-title: BMC Genomics
– volume: 109
  start-page: 4479
  year: 2012
  end-page: 4484
  ident: bib31
  article-title: Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 1143
  year: 2015
  end-page: 1158
  ident: bib6
  article-title: Ah receptor pathway intricacies; signaling through diverse protein partners and DNA-motifs
  publication-title: Toxicol Res
– volume: 85
  start-page: 295
  year: 2004
  end-page: 302
  ident: bib34
  article-title: Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-β-binding protein-1
  publication-title: Int J Exp Pathol
– volume: 311
  start-page: 42
  year: 2016
  end-page: 51
  ident: bib29
  article-title: 2,3,7,8-Tetrachlorodibenzo-
  publication-title: Toxicol Appl Pharmacol
– volume: 106
  start-page: 13481
  year: 2009
  end-page: 13486
  ident: bib12
  article-title: Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in
  publication-title: Proc Natl Acad Sci U S A
– volume: 39
  start-page: 157
  year: 2004
  end-page: 166
  ident: bib35
  article-title: Reversal of liver fibrosis in aryl hydrocarbon receptor null mice by dietary vitamin A depletion
  publication-title: Hepatology
– volume: 130
  start-page: 349
  year: 2012
  end-page: 361
  ident: bib7
  article-title: High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq
  publication-title: Toxicol Sci
– volume: 24
  start-page: 494
  year: 2011
  end-page: 504
  ident: bib22
  article-title: Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes
  publication-title: Chem Res Toxicol
– volume: 4
  start-page: 2823
  year: 2013
  ident: bib2
  article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology
  publication-title: Nat Commun
– volume: 137
  start-page: 114
  year: 2014
  end-page: 124
  ident: bib14
  article-title: Aryl hydrocarbon receptor–dependent induction of liver fibrosis by dioxin
  publication-title: Toxicol Sci
– volume: 446
  start-page: 562
  year: 2007
  end-page: 566
  ident: bib11
  article-title: Dioxin receptor is a ligand-dependent E3 ubiquitin ligase
  publication-title: Nature
– volume: 102
  start-page: 17858
  year: 2005
  end-page: 17863
  ident: bib20
  article-title: Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 666
  year: 2006
  end-page: 674
  ident: bib24
  article-title: Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells
  publication-title: Genes Dev
– volume: 99
  start-page: 14694
  year: 2002
  end-page: 14699
  ident: bib19
  article-title: A ligand for the aryl hydrocarbon receptor isolated from lung
  publication-title: Proc Natl Acad Sci U S A
– volume: 268
  start-page: 722
  issue: 5211
  year: 1995
  ident: 10.1053/j.gastro.2019.05.066_bib8
  article-title: Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor
  publication-title: Science
  doi: 10.1126/science.7732381
– volume: 10
  start-page: 305
  year: 2015
  ident: 10.1053/j.gastro.2019.05.066_bib36
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.017
– volume: 12
  start-page: 365
  year: 2011
  ident: 10.1053/j.gastro.2019.05.066_bib23
  article-title: Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-365
– volume: 289
  start-page: 1049
  year: 2001
  ident: 10.1053/j.gastro.2019.05.066_bib25
  article-title: Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(-/-) knockout mice having increased hepatic BaP-DNA adduct levels
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2001.6110
– volume: 153
  start-page: 601
  year: 2013
  ident: 10.1053/j.gastro.2019.05.066_bib44
  article-title: A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.028
– volume: 33
  start-page: 706
  year: 2018
  ident: 10.1053/j.gastro.2019.05.066_bib47
  article-title: lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.006
– volume: 106
  start-page: 13481
  year: 2009
  ident: 10.1053/j.gastro.2019.05.066_bib12
  article-title: Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0902132106
– volume: 40
  start-page: 521
  year: 2010
  ident: 10.1053/j.gastro.2019.05.066_bib43
  article-title: PARP-1 attenuates Smad-mediated transcription
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.10.029
– volume: 4
  start-page: 1143
  year: 2015
  ident: 10.1053/j.gastro.2019.05.066_bib6
  article-title: Ah receptor pathway intricacies; signaling through diverse protein partners and DNA-motifs
  publication-title: Toxicol Res
  doi: 10.1039/C4TX00236A
– volume: 4
  start-page: 2823
  year: 2013
  ident: 10.1053/j.gastro.2019.05.066_bib2
  article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology
  publication-title: Nat Commun
  doi: 10.1038/ncomms3823
– volume: 29
  start-page: 1558
  year: 2015
  ident: 10.1053/j.gastro.2019.05.066_bib37
  article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2015-1145
– volume: 29
  start-page: 1558
  year: 2015
  ident: 10.1053/j.gastro.2019.05.066_bib18
  article-title: CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1α
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2015-1145
– volume: 30
  start-page: 595
  year: 2016
  ident: 10.1053/j.gastro.2019.05.066_bib45
  article-title: p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.09.004
– volume: 31
  start-page: 2667
  year: 2013
  ident: 10.1053/j.gastro.2019.05.066_bib50
  article-title: Gene regulatory networks mediating canonical Wnt signal-directed control of pluripotency and differentiation in embryo stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1371
– volume: 115
  start-page: 209
  year: 2005
  ident: 10.1053/j.gastro.2019.05.066_bib1
  article-title: Liver fibrosis
  publication-title: J Clin Invest
  doi: 10.1172/JCI24282
– volume: 446
  start-page: 562
  issue: 7135
  year: 2007
  ident: 10.1053/j.gastro.2019.05.066_bib11
  article-title: Dioxin receptor is a ligand-dependent E3 ubiquitin ligase
  publication-title: Nature
  doi: 10.1038/nature05683
– volume: 33
  start-page: 2047
  year: 2013
  ident: 10.1053/j.gastro.2019.05.066_bib13
  article-title: Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01658-12
– volume: 20
  start-page: 1076
  year: 2014
  ident: 10.1053/j.gastro.2019.05.066_bib21
  article-title: Cell-type-resolved quantitative proteomics of murine liver
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.11.002
– volume: 16
  start-page: 634
  year: 2012
  ident: 10.1053/j.gastro.2019.05.066_bib27
  article-title: Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.10.006
– volume: 39
  start-page: 157
  year: 2004
  ident: 10.1053/j.gastro.2019.05.066_bib35
  article-title: Reversal of liver fibrosis in aryl hydrocarbon receptor null mice by dietary vitamin A depletion
  publication-title: Hepatology
  doi: 10.1002/hep.20004
– volume: 102
  start-page: 17858
  year: 2005
  ident: 10.1053/j.gastro.2019.05.066_bib20
  article-title: Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504757102
– volume: 147
  start-page: 565
  year: 2011
  ident: 10.1053/j.gastro.2019.05.066_bib49
  article-title: Master transcription factors determine cell- type-specific responses to TGF-β signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.050
– volume: 285
  start-page: 8703
  year: 2010
  ident: 10.1053/j.gastro.2019.05.066_bib32
  article-title: Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.093526
– volume: 9
  start-page: 3192
  year: 2018
  ident: 10.1053/j.gastro.2019.05.066_bib46
  article-title: Systematic identification of non-coding pharmacogenomic landscape in cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05495-9
– volume: 36
  start-page: 457
  year: 2009
  ident: 10.1053/j.gastro.2019.05.066_bib33
  article-title: Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.09.043
– volume: 85
  start-page: 295
  year: 2004
  ident: 10.1053/j.gastro.2019.05.066_bib34
  article-title: Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-β-binding protein-1
  publication-title: Int J Exp Pathol
  doi: 10.1111/j.0959-9673.2004.00397.x
– volume: 280
  start-page: 10
  year: 2011
  ident: 10.1053/j.gastro.2019.05.066_bib28
  article-title: Aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances liver damage in bile duct-ligated mice
  publication-title: Toxicology
  doi: 10.1016/j.tox.2010.11.003
– volume: 125
  start-page: 428
  year: 2017
  ident: 10.1053/j.gastro.2019.05.066_bib15
  article-title: Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP316
– volume: 132
  start-page: 1937
  year: 2007
  ident: 10.1053/j.gastro.2019.05.066_bib38
  article-title: Gene expression profiles during hepatic stellate cell activation in culture and in vivo
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.02.033
– volume: 62
  start-page: 452
  year: 2013
  ident: 10.1053/j.gastro.2019.05.066_bib51
  article-title: Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-301146
– volume: 18
  start-page: 207
  year: 2008
  ident: 10.1053/j.gastro.2019.05.066_bib5
  article-title: The aryl hydrocarbon receptor complex and the control of gene expression
  publication-title: Crit Rev Eukaryot Gene Expr
  doi: 10.1615/CritRevEukarGeneExpr.v18.i3.20
– volume: 27
  start-page: 165
  year: 1989
  ident: 10.1053/j.gastro.2019.05.066_bib30
  article-title: Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam veterans of Operation Ranch Hand
  publication-title: J Toxicol Environ Health A
  doi: 10.1080/15287398909531288
– volume: 137
  start-page: 114
  year: 2014
  ident: 10.1053/j.gastro.2019.05.066_bib14
  article-title: Aryl hydrocarbon receptor–dependent induction of liver fibrosis by dioxin
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kft236
– volume: 102
  start-page: 15545
  year: 2005
  ident: 10.1053/j.gastro.2019.05.066_bib17
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
– volume: 24
  start-page: 494
  year: 2011
  ident: 10.1053/j.gastro.2019.05.066_bib22
  article-title: Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx100328r
– volume: 24
  start-page: 494
  year: 2011
  ident: 10.1053/j.gastro.2019.05.066_bib48
  article-title: Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx100328r
– volume: 2
  start-page: 1236
  year: 2007
  ident: 10.1053/j.gastro.2019.05.066_bib41
  article-title: A protocol for rapid generation of recombinant adenoviruses using the AdEasy system
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.135
– volume: 311
  start-page: 42
  year: 2016
  ident: 10.1053/j.gastro.2019.05.066_bib29
  article-title: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2016.09.025
– volume: 1
  start-page: 179
  year: 2006
  ident: 10.1053/j.gastro.2019.05.066_bib42
  article-title: Protocol for the fast chromatin immunoprecipitation (ChIP) method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.27
– volume: 3
  start-page: 735
  year: 2012
  ident: 10.1053/j.gastro.2019.05.066_bib4
  article-title: Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis
  publication-title: Nat Commun
  doi: 10.1038/ncomms1734
– volume: 29
  start-page: 329
  year: 2015
  ident: 10.1053/j.gastro.2019.05.066_bib39
  article-title: In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2014.11.011
– volume: 10
  start-page: 305
  year: 2015
  ident: 10.1053/j.gastro.2019.05.066_bib16
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.017
– volume: 109
  start-page: 4479
  year: 2012
  ident: 10.1053/j.gastro.2019.05.066_bib31
  article-title: Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1118467109
– volume: 99
  start-page: 14694
  year: 2002
  ident: 10.1053/j.gastro.2019.05.066_bib19
  article-title: A ligand for the aryl hydrocarbon receptor isolated from lung
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.232562899
– volume: 14
  start-page: 397
  year: 2017
  ident: 10.1053/j.gastro.2019.05.066_bib3
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2017.38
– volume: 93
  start-page: 6731
  year: 1996
  ident: 10.1053/j.gastro.2019.05.066_bib9
  article-title: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.13.6731
– volume: 196
  start-page: 410
  year: 2004
  ident: 10.1053/j.gastro.2019.05.066_bib26
  article-title: Cyp1a1(-/-) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2004.01.014
– volume: 13
  start-page: 2448
  year: 2009
  ident: 10.1053/j.gastro.2019.05.066_bib40
  article-title: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β-catenin signalling
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2008.00569.x
– volume: 130
  start-page: 349
  year: 2012
  ident: 10.1053/j.gastro.2019.05.066_bib7
  article-title: High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfs253
– volume: 20
  start-page: 666
  year: 2006
  ident: 10.1053/j.gastro.2019.05.066_bib24
  article-title: Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells
  publication-title: Genes Dev
  doi: 10.1101/gad.1388806
– volume: 67
  start-page: 38
  year: 2017
  ident: 10.1053/j.gastro.2019.05.066_bib10
  article-title: Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2017.06.001
SSID ssj0009381
Score 2.5614655
Snippet The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of...
Activation of hepatic stellate cells (HSCs) is key to liver fibrosis formation. This study showed that drug activation of the aryl hydrocarbon receptor can...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 793
SubjectTerms Animals
Basic Helix-Loop-Helix Transcription Factors - agonists
Basic Helix-Loop-Helix Transcription Factors - deficiency
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
beta Catenin - metabolism
Cell Proliferation
Cell Type-Specific Effect
Cells, Cultured
Cellular Senescence - drug effects
Chemical and Drug Induced Liver Injury - genetics
Chemical and Drug Induced Liver Injury - metabolism
Chemical and Drug Induced Liver Injury - pathology
Chemical and Drug Induced Liver Injury - prevention & control
Gene Expression Regulation
Gene Regulation
Hepatic Stellate Cells - drug effects
Hepatic Stellate Cells - metabolism
Hepatic Stellate Cells - pathology
Indoles - pharmacology
Liver - drug effects
Liver - metabolism
Liver - pathology
Liver Cirrhosis, Experimental - genetics
Liver Cirrhosis, Experimental - metabolism
Liver Cirrhosis, Experimental - pathology
Liver Cirrhosis, Experimental - prevention & control
Mice
Mice, Inbred C57BL
Mice, Knockout
Phenotype
Receptors, Aryl Hydrocarbon - agonists
Receptors, Aryl Hydrocarbon - deficiency
Receptors, Aryl Hydrocarbon - genetics
Receptors, Aryl Hydrocarbon - metabolism
Signal Transduction
Smad3 Protein - metabolism
Thiazoles - pharmacology
Xenobiotic Receptor
Title Aryl Hydrocarbon Receptor Signaling Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Mice
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016508519409840
https://dx.doi.org/10.1053/j.gastro.2019.05.066
https://www.ncbi.nlm.nih.gov/pubmed/31170413
https://www.proquest.com/docview/2265755953
https://pubmed.ncbi.nlm.nih.gov/PMC6707837
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9owELborlT1UvVd-pIr9RZlm8RxYh8pWhatWHoAKnqK8oRUqwQFOGwv_esdP_LYLtXSXhIUYidkvoxnzOdvEPrkkSRkaWKZsedw03U5MyOa-GaSMTtzuR8qxZurqTdeuJdLuuz1fnVYS_tddBb_PLiu5H-sCsfArmKV7D9YtukUDsBnsC9swcKwPcrGg-rm2hjfJDAIhVVUisl4wVIpK2OWr0SEXawMrdG0NQZxXclMTt6nG6nVOhOrSCDeNIawV3rNE0HVMEaQR5cr4QlzSZm90iS5OpK9CLe7qhSKnpWScTpQ1sewududyf2uZlsv4R5WLbFDeZsx7M3het9ShCTPYJavW_xO870cMqB5UnehZyzslpLVOFmhim1p-nR64FjtmZV2tYYg6fhZX5VVvOP_LVnE48fZSj4DwdzjUpjVOyC3Pf0ajBaTSTA_X84foFMH8gxwlKcXXybfBq1uM2FKclffXr36kpLPh67yt-jmbvbyJwm3E9XMn6DHOh3BA4Wtp6iXFs_QwytNuHiONgJiuAMxXEMMNxDDNcRwCzFcZlhDDNcQwxJiGCCGJcRwF2I4L7CA2Au0GJ3Ph2NTF-kwY8qcnZlBvskY80IvtWNiRR5nWZxx5tmJE7IoIjGJnIhmsc1SwmNGQ5o4iZ_x2LXjlDHyEp0UZZG-RpgzV1QYclIrCV0YhCPHI5D_-g50YRFO-4jUDzeItYK9KKRyHUgmBSWQySqTBMIkgUUDMEkfmU2rjVJwued8WtstqFcnw3gaAMTuaec37XT0qqLSI1p-rOERgHMX_9iFRVrutwHkRpBOUU5JH71ScGl-AxE1oyAEheveAlJzghCOv_1Nka-lgLwnJL6I_-aI675Fj9pX-B062VX79D2E4bvog35VfgOoHeAw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aryl+Hydrocarbon+Receptor+Signaling+Prevents+Activation+of+Hepatic+Stellate+Cells+and+Liver+Fibrogenesis+in+Mice&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Yan%2C+Jiong&rft.au=Tung%2C+Hung-Chun&rft.au=Li%2C+Sihan&rft.au=Niu%2C+Yongdong&rft.date=2019-09-01&rft.issn=1528-0012&rft.eissn=1528-0012&rft.volume=157&rft.issue=3&rft.spage=793&rft_id=info:doi/10.1053%2Fj.gastro.2019.05.066&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5085&client=summon