Loss of Claudins 2 and 15 From Mice Causes Defects in Paracellular Na+ Flow and Nutrient Transport in Gut and Leads to Death from Malnutrition

The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na+, but the standard diet does not pro...

Full description

Saved in:
Bibliographic Details
Published inGastroenterology (New York, N.Y. 1943) Vol. 144; no. 2; pp. 369 - 380
Main Authors Wada, Masami, Tamura, Atsushi, Takahashi, Nobuyuki, Tsukita, Sachiko
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na+, but the standard diet does not provide sufficient levels of this ion to the intestinal lumen to support this system. Claudins form paracellular barriers between epithelial cells, and claudin-2 and -15 regulate paracellular ion flow in the intestine. We investigated how cell adherence, tight junction barriers, and claudins regulate the supply of Na+ to the intestinal lumen in mice. We created Cldn2−/−Cldn15−/− (double-knockout) mice and analyzed intestinal tissues by reverse-transcription polymerase chain reaction, immunoblot, immunofluorescence, electron microscopy, and H&E analyses. We also measured paracellular Na+ flow, luminal Na+ concentration, and absorption of glucose, amino acids, and fats, which were administered orally to the mice. Paracellular flow of Na+ from the intestinal submucosa to the lumen, and therefore the concentration of Na+ in the lumen, was greatly reduced in intestines of Cldn2−/−Cldn15−/− mice. Absorption of glucose, amino acids, and fats also decreased in the mice, which died by postnatal day 25 from malnutrition. The paracellular flow of Na+ from the intestinal submucosa is regulated by tight junctions that contain claudin-2 and -15. This system is required for the absorption of glucose, amino acids, and fats; disruption of this system in mice leads to infant death as a result of malabsorption.
AbstractList The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na(+), but the standard diet does not provide sufficient levels of this ion to the intestinal lumen to support this system. Claudins form paracellular barriers between epithelial cells, and claudin-2 and -15 regulate paracellular ion flow in the intestine. We investigated how cell adherence, tight junction barriers, and claudins regulate the supply of Na(+) to the intestinal lumen in mice. We created Cldn2(-/-)Cldn15(-/-) (double-knockout) mice and analyzed intestinal tissues by reverse-transcription polymerase chain reaction, immunoblot, immunofluorescence, electron microscopy, and H&E analyses. We also measured paracellular Na(+) flow, luminal Na(+) concentration, and absorption of glucose, amino acids, and fats, which were administered orally to the mice. Paracellular flow of Na(+) from the intestinal submucosa to the lumen, and therefore the concentration of Na(+) in the lumen, was greatly reduced in intestines of Cldn2(-/-)Cldn15(-/-) mice. Absorption of glucose, amino acids, and fats also decreased in the mice, which died by postnatal day 25 from malnutrition. The paracellular flow of Na(+) from the intestinal submucosa is regulated by tight junctions that contain claudin-2 and -15. This system is required for the absorption of glucose, amino acids, and fats; disruption of this system in mice leads to infant death as a result of malabsorption.
Background & Aims The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na+ , but the standard diet does not provide sufficient levels of this ion to the intestinal lumen to support this system. Claudins form paracellular barriers between epithelial cells, and claudin-2 and -15 regulate paracellular ion flow in the intestine. We investigated how cell adherence, tight junction barriers, and claudins regulate the supply of Na+ to the intestinal lumen in mice. Methods We created Cldn2−/− Cldn15−/− (double-knockout) mice and analyzed intestinal tissues by reverse-transcription polymerase chain reaction, immunoblot, immunofluorescence, electron microscopy, and H&E analyses. We also measured paracellular Na+ flow, luminal Na+ concentration, and absorption of glucose, amino acids, and fats, which were administered orally to the mice. Results Paracellular flow of Na+ from the intestinal submucosa to the lumen, and therefore the concentration of Na+ in the lumen, was greatly reduced in intestines of Cldn2−/− Cldn15−/− mice. Absorption of glucose, amino acids, and fats also decreased in the mice, which died by postnatal day 25 from malnutrition. Conclusions The paracellular flow of Na+ from the intestinal submucosa is regulated by tight junctions that contain claudin-2 and -15. This system is required for the absorption of glucose, amino acids, and fats; disruption of this system in mice leads to infant death as a result of malabsorption.
The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na+, but the standard diet does not provide sufficient levels of this ion to the intestinal lumen to support this system. Claudins form paracellular barriers between epithelial cells, and claudin-2 and -15 regulate paracellular ion flow in the intestine. We investigated how cell adherence, tight junction barriers, and claudins regulate the supply of Na+ to the intestinal lumen in mice. We created Cldn2−/−Cldn15−/− (double-knockout) mice and analyzed intestinal tissues by reverse-transcription polymerase chain reaction, immunoblot, immunofluorescence, electron microscopy, and H&E analyses. We also measured paracellular Na+ flow, luminal Na+ concentration, and absorption of glucose, amino acids, and fats, which were administered orally to the mice. Paracellular flow of Na+ from the intestinal submucosa to the lumen, and therefore the concentration of Na+ in the lumen, was greatly reduced in intestines of Cldn2−/−Cldn15−/− mice. Absorption of glucose, amino acids, and fats also decreased in the mice, which died by postnatal day 25 from malnutrition. The paracellular flow of Na+ from the intestinal submucosa is regulated by tight junctions that contain claudin-2 and -15. This system is required for the absorption of glucose, amino acids, and fats; disruption of this system in mice leads to infant death as a result of malabsorption.
The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na(+), but the standard diet does not provide sufficient levels of this ion to the intestinal lumen to support this system. Claudins form paracellular barriers between epithelial cells, and claudin-2 and -15 regulate paracellular ion flow in the intestine. We investigated how cell adherence, tight junction barriers, and claudins regulate the supply of Na(+) to the intestinal lumen in mice.BACKGROUND & AIMSThe intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino acids, and bile acids (which are required for fat absorption). Most of these transporters are regulated by Na(+), but the standard diet does not provide sufficient levels of this ion to the intestinal lumen to support this system. Claudins form paracellular barriers between epithelial cells, and claudin-2 and -15 regulate paracellular ion flow in the intestine. We investigated how cell adherence, tight junction barriers, and claudins regulate the supply of Na(+) to the intestinal lumen in mice.We created Cldn2(-/-)Cldn15(-/-) (double-knockout) mice and analyzed intestinal tissues by reverse-transcription polymerase chain reaction, immunoblot, immunofluorescence, electron microscopy, and H&E analyses. We also measured paracellular Na(+) flow, luminal Na(+) concentration, and absorption of glucose, amino acids, and fats, which were administered orally to the mice.METHODSWe created Cldn2(-/-)Cldn15(-/-) (double-knockout) mice and analyzed intestinal tissues by reverse-transcription polymerase chain reaction, immunoblot, immunofluorescence, electron microscopy, and H&E analyses. We also measured paracellular Na(+) flow, luminal Na(+) concentration, and absorption of glucose, amino acids, and fats, which were administered orally to the mice.Paracellular flow of Na(+) from the intestinal submucosa to the lumen, and therefore the concentration of Na(+) in the lumen, was greatly reduced in intestines of Cldn2(-/-)Cldn15(-/-) mice. Absorption of glucose, amino acids, and fats also decreased in the mice, which died by postnatal day 25 from malnutrition.RESULTSParacellular flow of Na(+) from the intestinal submucosa to the lumen, and therefore the concentration of Na(+) in the lumen, was greatly reduced in intestines of Cldn2(-/-)Cldn15(-/-) mice. Absorption of glucose, amino acids, and fats also decreased in the mice, which died by postnatal day 25 from malnutrition.The paracellular flow of Na(+) from the intestinal submucosa is regulated by tight junctions that contain claudin-2 and -15. This system is required for the absorption of glucose, amino acids, and fats; disruption of this system in mice leads to infant death as a result of malabsorption.CONCLUSIONSThe paracellular flow of Na(+) from the intestinal submucosa is regulated by tight junctions that contain claudin-2 and -15. This system is required for the absorption of glucose, amino acids, and fats; disruption of this system in mice leads to infant death as a result of malabsorption.
Author Wada, Masami
Tsukita, Sachiko
Tamura, Atsushi
Takahashi, Nobuyuki
Author_xml – sequence: 1
  givenname: Masami
  surname: Wada
  fullname: Wada, Masami
  organization: Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
– sequence: 2
  givenname: Atsushi
  surname: Tamura
  fullname: Tamura, Atsushi
  organization: Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
– sequence: 3
  givenname: Nobuyuki
  surname: Takahashi
  fullname: Takahashi, Nobuyuki
  organization: Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
– sequence: 4
  givenname: Sachiko
  surname: Tsukita
  fullname: Tsukita, Sachiko
  email: atsukita@biosci.med.osaka-u.ac.jp
  organization: Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23089202$$D View this record in MEDLINE/PubMed
BookMark eNqVUtFqFDEUDVKx2-ofiORRkFmTzGR2RqQgq1uFtQpW8C3cSe5o1tlkTTIt_Qm_2cxu9UGQ4tMNN-ecyz3nnpAj5x0S8pizOWeyfL6Zf4WYgp8LxkVuzVkp75EZl6IpWG4dkVkudSFZI4_JSYwbxlhbNvwBORYla1rBxIz8XPsYqe_pcoDRWBepoOAM5ZKugt_S91YjXcIYMdLX2KNOkVpHP0IAjcMwDhDoBTyjq8Ff74kXYwoWXaKXAVzc-ZAm_PmY9r9rBBNp8lkL0jfa70fA4CZSst49JPd7GCI-uq2n5PPqzeXybbH-cP5u-WpdaNmIVCAzIECLykAvq6as6pJVCyFlV9cCkJdygcZMT9GCKKu-Mn3Xou5EKzTveHlKnh50d8H_GDEmtbVxWggc-jEqXtYLyRa8bTL0yS107LZo1C7YLYQb9dvDDKgOAB2ylwH7PxDO1BSV2qhDVGqKaurmqDLtxV80bRNMJqQAdriLfHYgYzbpymJQUWfXNRobckbKePu_AnqwzmoYvuMNxo0fg8sBKK6iUEx9mk5puiSeRaTkX7LAy38L3D3_Fxlb2kg
CitedBy_id crossref_primary_10_1080_21688370_2017_1356901
crossref_primary_10_1080_21688370_2022_2077069
crossref_primary_10_1111_bjh_18813
crossref_primary_10_1073_pnas_2111247118
crossref_primary_10_1016_j_semcdb_2014_09_019
crossref_primary_10_1038_mi_2016_128
crossref_primary_10_3389_fimmu_2019_01441
crossref_primary_10_1007_s00424_016_1909_3
crossref_primary_10_1016_j_semcdb_2014_09_022
crossref_primary_10_1111_jpn_13087
crossref_primary_10_1016_j_fsi_2017_09_049
crossref_primary_10_1016_j_abb_2023_109846
crossref_primary_10_1016_j_vetimm_2021_110321
crossref_primary_10_3389_fmicb_2023_1123716
crossref_primary_10_1002_jpen_1435
crossref_primary_10_3390_ijms18010157
crossref_primary_10_1016_j_jcmgh_2020_10_005
crossref_primary_10_1016_j_gtc_2018_07_007
crossref_primary_10_1038_nrm_2016_80
crossref_primary_10_26442_00403660_2021_02_200614
crossref_primary_10_1111_nyas_14953
crossref_primary_10_1038_s42003_023_05116_2
crossref_primary_10_1248_bpb_b23_00927
crossref_primary_10_1016_j_cbpa_2016_11_009
crossref_primary_10_1016_j_yexcr_2017_03_036
crossref_primary_10_1016_j_bbamem_2020_183344
crossref_primary_10_1074_jbc_M116_762807
crossref_primary_10_1159_000353510
crossref_primary_10_3390_ijms21103550
crossref_primary_10_33667_2078_5631_2021_6_14_18
crossref_primary_10_1016_j_envpol_2019_02_082
crossref_primary_10_18632_oncotarget_21190
crossref_primary_10_3389_fmicb_2025_1515364
crossref_primary_10_3389_fgstr_2022_901404
crossref_primary_10_1038_s41467_022_32533_4
crossref_primary_10_1053_j_gastro_2014_09_018
crossref_primary_10_1128_MCB_00758_15
crossref_primary_10_1038_s41598_017_04989_8
crossref_primary_10_1590_1414_431x20209211
crossref_primary_10_4161_tisb_24978
crossref_primary_10_1053_j_gastro_2014_07_033
crossref_primary_10_1016_j_vetimm_2014_07_001
crossref_primary_10_1053_j_gastro_2020_06_008
crossref_primary_10_3390_biomedicines10020289
crossref_primary_10_1111_nyas_13374
crossref_primary_10_1111_nyas_15311
crossref_primary_10_3390_ijms21030993
crossref_primary_10_1111_nyas_14980
crossref_primary_10_3390_ijms20236012
crossref_primary_10_1016_j_chom_2017_05_009
crossref_primary_10_2745_dds_28_279
crossref_primary_10_1016_j_aninu_2015_08_014
crossref_primary_10_1097_MIB_0000000000000090
crossref_primary_10_1007_s00439_020_02168_w
crossref_primary_10_1038_labinvest_2016_118
crossref_primary_10_1016_j_jcmgh_2020_04_001
crossref_primary_10_1038_s41598_023_33431_5
crossref_primary_10_1007_s00424_017_2001_3
crossref_primary_10_3390_ijms21176402
crossref_primary_10_1039_C9FO01877H
crossref_primary_10_4103_1673_5374_264463
crossref_primary_10_1172_JCI170771
crossref_primary_10_1007_s00109_017_1557_x
crossref_primary_10_1016_j_ese_2024_100415
crossref_primary_10_7554_eLife_09906
crossref_primary_10_1007_s12011_017_1143_7
crossref_primary_10_1016_j_lfs_2024_122452
crossref_primary_10_1016_j_psj_2023_102804
crossref_primary_10_3390_ijms20215504
crossref_primary_10_1007_s00424_019_02294_z
crossref_primary_10_1186_s12877_020_1472_9
crossref_primary_10_1007_s00441_013_1734_3
crossref_primary_10_1248_yakushi_14_00006_5
crossref_primary_10_1111_nyas_13360
crossref_primary_10_22416_1382_4376_2020_30_5_42_48
crossref_primary_10_1016_j_tjnut_2024_02_001
crossref_primary_10_1111_1751_2980_12226
crossref_primary_10_1038_s41575_023_00766_3
crossref_primary_10_1242_jcs_261776
crossref_primary_10_12938_bmfh_2022_029
crossref_primary_10_1053_j_gastro_2016_07_008
crossref_primary_10_3390_ijms20225655
crossref_primary_10_1152_ajpgi_00281_2016
crossref_primary_10_1002_cpim_112
crossref_primary_10_1038_onc_2016_289
crossref_primary_10_1007_s40139_016_0106_6
crossref_primary_10_1111_nyas_13438
crossref_primary_10_1016_j_envpol_2023_123086
crossref_primary_10_1371_journal_ppat_1012689
crossref_primary_10_1126_science_1248571
crossref_primary_10_4236_ojvm_2021_116014
crossref_primary_10_1016_j_jhazmat_2025_137573
crossref_primary_10_1002_path_5884
crossref_primary_10_1016_j_semcdb_2015_04_003
crossref_primary_10_1016_j_fsi_2017_02_010
crossref_primary_10_1152_ajprenal_00204_2016
crossref_primary_10_1007_s10157_017_1497_3
crossref_primary_10_1038_s41374_019_0324_8
crossref_primary_10_1186_s12876_014_0189_7
crossref_primary_10_1016_j_jcmgh_2019_03_003
crossref_primary_10_3390_nu15061346
crossref_primary_10_3390_ijms21020376
crossref_primary_10_1371_journal_pone_0158772
crossref_primary_10_1097_MOG_0000000000000417
crossref_primary_10_1186_s12951_019_0499_6
crossref_primary_10_3390_ijms232214463
crossref_primary_10_3390_toxins8100270
crossref_primary_10_3892_ijmm_2018_3764
crossref_primary_10_1039_C9ME00177H
crossref_primary_10_1590_1414_431x20165340
crossref_primary_10_1093_ecco_jcc_jjab044
crossref_primary_10_1210_en_2014_1173
crossref_primary_10_1016_j_autrev_2015_01_009
crossref_primary_10_1016_j_bpg_2019_101636
crossref_primary_10_1126_science_abd2893
crossref_primary_10_3390_ijms25105566
crossref_primary_10_3390_ijms24054716
crossref_primary_10_1017_S0007114522001271
crossref_primary_10_1097_MPG_0000000000001629
crossref_primary_10_1007_s11906_024_01307_2
crossref_primary_10_1038_nrgastro_2016_169
crossref_primary_10_1007_s10620_020_06140_6
crossref_primary_10_1091_mbc_e12_09_0688
crossref_primary_10_1242_jcs_261468
crossref_primary_10_1126_science_aaa6124
crossref_primary_10_1590_1414_431x2024e13309
crossref_primary_10_1136_gutjnl_2018_316906
crossref_primary_10_1016_j_gene_2023_147541
crossref_primary_10_3389_fphar_2022_991597
crossref_primary_10_1016_j_coph_2014_07_017
crossref_primary_10_3389_fmed_2021_669913
crossref_primary_10_1172_JCI138697
crossref_primary_10_1016_j_csbj_2022_10_038
crossref_primary_10_1038_s41598_017_12494_1
crossref_primary_10_1080_21688370_2016_1214038
crossref_primary_10_1016_j_tibs_2018_09_008
crossref_primary_10_1101_cshperspect_a029314
crossref_primary_10_20538_1682_0363_2022_1_121_132
crossref_primary_10_3389_fmicb_2019_00318
crossref_primary_10_4093_dmj_2014_38_2_92
crossref_primary_10_1073_pnas_2217877121
crossref_primary_10_1139_bcb_2014_0061
crossref_primary_10_1093_jas_skz110
crossref_primary_10_1007_s10620_018_5420_x
crossref_primary_10_1152_ajpcell_00234_2017
crossref_primary_10_1080_21688370_2017_1361899
crossref_primary_10_1038_mi_2014_21
Cites_doi 10.1074/jbc.271.13.7738
10.1038/oby.2004.104
10.1074/jbc.270.45.27099
10.1007/s00439-001-0638-6
10.1038/onc.2008.344
10.1111/j.1432-1033.1983.tb07275.x
10.1038/35067088
10.1038/350354a0
10.1038/ng1405
10.1146/annurev.physiol.68.040104.131404
10.1038/nri2653
10.1074/jbc.M306370200
10.1017/S0007114510005660
10.1053/j.gastro.2007.11.040
10.1016/S0021-9258(18)41864-9
10.1074/jbc.M703330200
10.1139/o06-202
10.1177/002215540305101116
10.1242/jcs.00165
10.1128/jb.137.1.73-81.1979
10.1242/jcs.060665
10.1152/physrev.00018.2006
10.1136/gut.18.2.136
10.1073/pnas.0912901107
10.1007/s00795-004-0275-y
10.1016/j.febslet.2011.01.028
10.1096/fj.05-5676com
10.1152/ajpcell.00038.2002
10.1074/jbc.270.45.27228
10.1152/ajpgi.2000.278.4.G591
10.1053/j.gastro.2010.08.006
10.1152/ajpgi.1981.240.1.G1
10.1172/JCI105781
10.1016/S1095-6433(98)00018-X
10.1194/jlr.R900007-JLR200
10.2337/diabetes.54.10.3056
10.1016/S1521-6918(03)00107-0
10.1016/S1097-2765(00)80332-9
10.1083/jcb.5.1.41
10.1152/physrev.1970.50.4.637
10.1152/physrev.2000.80.4.1633
10.1038/ng1406
ContentType Journal Article
Copyright 2013 AGA Institute
AGA Institute
Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2013 AGA Institute
– notice: AGA Institute
– notice: Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1053/j.gastro.2012.10.035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-0012
EndPage 380
ExternalDocumentID 23089202
10_1053_j_gastro_2012_10_035
S001650851201551X
1_s2_0_S001650851201551X
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Ministry of Education, Science and Culture
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1CY
1P~
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAXUO
ABCQX
ABDPE
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEVXI
AFFNX
AFHKK
AFJKZ
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AI.
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FD8
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
NQ-
O9-
OC.
OHT
ON0
P2P
PC.
QTD
R2-
ROL
RPZ
SEL
SES
SJN
SSZ
UDS
UGJ
UV1
VH1
WH7
X7M
XH2
Y6R
YQJ
Z5R
ZGI
ZXP
AAYOK
ADPAM
AFCTW
PKN
RIG
AAIAV
AGZHU
AHPSJ
ALXNB
G8K
TWZ
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c582t-e0da2ac24daf5483463047255b662ae1357edd62ae29a234f4dfb9ecb292c1b13
ISSN 0016-5085
1528-0012
IngestDate Mon Jul 21 10:58:24 EDT 2025
Mon Jul 21 06:02:18 EDT 2025
Tue Jul 01 02:13:08 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Fri Feb 23 02:44:38 EST 2024
Sun Feb 23 10:18:43 EST 2025
Tue Aug 26 19:24:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FFA
Claudin-15
pnd
qRT-PCR
Nutrient Malabsorption
DKO
mRNA
Claudin-2
Na+-Dependent Transporter
pAb
DHet
TG
Isc
OGTT
WT
triglyceride
oral glucose tolerance test
double-heterogenous
short-circuit current
Na +-Dependent Transporter
messenger RNA
polyclonal antibody
postnatal day
double-knockout
quantitative real-time reverse-transcription polymerase chain reaction
free fatty acid
wild type
Language English
License Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582t-e0da2ac24daf5483463047255b662ae1357edd62ae29a234f4dfb9ecb292c1b13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.gastrojournal.org/article/S001650851201551X/pdf
PMID 23089202
PQID 1367507198
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1367507198
pubmed_primary_23089202
crossref_primary_10_1053_j_gastro_2012_10_035
crossref_citationtrail_10_1053_j_gastro_2012_10_035
elsevier_sciencedirect_doi_10_1053_j_gastro_2012_10_035
elsevier_clinicalkeyesjournals_1_s2_0_S001650851201551X
elsevier_clinicalkey_doi_10_1053_j_gastro_2012_10_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastroenterology (New York, N.Y. 1943)
PublicationTitleAlternate Gastroenterology
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tsukita, Furuse, Itoh (bib22) 2001; 2
Turner (bib28) 2009; 9
Schwenk, Hegazy, Lopez Del Pino (bib44) 1983; 131
Crane (bib36) 1965; 24
Santer, Groth, Kinner (bib13) 2002; 110
Dieter, Palmada, Rajamanickam (bib17) 2004; 12
Mineta, Yamamoto, Yamazaki (bib23) 2011; 585
Tamura, Hayashi, Imasato (bib31) 2011; 140
Halperin, Wolman, Greenberg (bib37) 1986; 9
Kellett, Brot-Laroche (bib6) 2005; 54
Hoshino, Kageyama (bib43) 1979; 137
Kleta, Romeo, Ristic (bib14) 2004; 36
Wright, Martín, Turk (bib5) 2003; 17
Marciani, Castagna, Bonasoro (bib42) 1998; 119
Wijtten, van der Meulen, Verstegen (bib4) 2011; 105
Baba, Yamami, Sakuma (bib3) 2005; 38
Rexhepaj, Grahammer, Völkl (bib18) 2006; 20
Clark (bib1) 1959; 5
Seow, Bröer, Bröer (bib15) 2004; 36
Colegio, Van Itallie, McCrea (bib25) 2002; 283
Kapus, Szaszi (bib21) 2006; 84
Tamura, Kitano, Hata (bib32) 2010; 134
Hylemon, Zhou, Pandak (bib34) 2009; 50
Pácha (bib2) 2000; 80
Tsukita, Yamazaki, Katsuno (bib27) 2008; 27
Van Itallie, Anderson (bib24) 2006; 68
Turner, Lencer, Carlson (bib41) 1996; 271
Stahl, Hirsch, Gimeno (bib10) 1999; 4
Nassir, Wilson, Han (bib11) 2007; 282
Wong, Oelkers, Dawson (bib9) 1995; 270
Corbett, Isaacs, Riley (bib39) 1977; 18
Turk, Zabel, Mundlos (bib12) 1991; 350
Panayotova-Heiermann, Loo, Wright (bib40) 1995; 270
Bröer (bib7) 2008; 88
Rosenthal, Milatz, Krug (bib30) 2010; 123
Shiau (bib8) 1981; 240
Martín, Wang, Solorzano-Vargas (bib16) 2000; 278
Amasheh, Meiri, Gitter (bib26) 2002; 115
Affleck, Helliwell, Kellett (bib19) 2003; 51
Schultz, Curran (bib20) 1970; 50
Muto, Hata, Taniguchi (bib29) 2010; 107
Fordtran, Rector, Carter (bib38) 1968; 47
Hylemon, Gurley, Stravitz (bib35) 1992; 267
Dawson, Haywood, Craddock (bib33) 2003; 278
Dieter (10.1053/j.gastro.2012.10.035_bib17) 2004; 12
Tsukita (10.1053/j.gastro.2012.10.035_bib27) 2008; 27
Stahl (10.1053/j.gastro.2012.10.035_bib10) 1999; 4
Schwenk (10.1053/j.gastro.2012.10.035_bib44) 1983; 131
Nassir (10.1053/j.gastro.2012.10.035_bib11) 2007; 282
Crane (10.1053/j.gastro.2012.10.035_bib36) 1965; 24
Kellett (10.1053/j.gastro.2012.10.035_bib6) 2005; 54
Bröer (10.1053/j.gastro.2012.10.035_bib7) 2008; 88
Wijtten (10.1053/j.gastro.2012.10.035_bib4) 2011; 105
Baba (10.1053/j.gastro.2012.10.035_bib3) 2005; 38
Mineta (10.1053/j.gastro.2012.10.035_bib23) 2011; 585
Affleck (10.1053/j.gastro.2012.10.035_bib19) 2003; 51
Schultz (10.1053/j.gastro.2012.10.035_bib20) 1970; 50
Turner (10.1053/j.gastro.2012.10.035_bib41) 1996; 271
Marciani (10.1053/j.gastro.2012.10.035_bib42) 1998; 119
Shiau (10.1053/j.gastro.2012.10.035_bib8) 1981; 240
Martín (10.1053/j.gastro.2012.10.035_bib16) 2000; 278
Rosenthal (10.1053/j.gastro.2012.10.035_bib30) 2010; 123
Wong (10.1053/j.gastro.2012.10.035_bib9) 1995; 270
Rexhepaj (10.1053/j.gastro.2012.10.035_bib18) 2006; 20
Tamura (10.1053/j.gastro.2012.10.035_bib31) 2011; 140
Seow (10.1053/j.gastro.2012.10.035_bib15) 2004; 36
Turner (10.1053/j.gastro.2012.10.035_bib28) 2009; 9
Amasheh (10.1053/j.gastro.2012.10.035_bib26) 2002; 115
Tamura (10.1053/j.gastro.2012.10.035_bib32) 2010; 134
Dawson (10.1053/j.gastro.2012.10.035_bib33) 2003; 278
Kleta (10.1053/j.gastro.2012.10.035_bib14) 2004; 36
Turk (10.1053/j.gastro.2012.10.035_bib12) 1991; 350
Kapus (10.1053/j.gastro.2012.10.035_bib21) 2006; 84
Panayotova-Heiermann (10.1053/j.gastro.2012.10.035_bib40) 1995; 270
Hoshino (10.1053/j.gastro.2012.10.035_bib43) 1979; 137
Hylemon (10.1053/j.gastro.2012.10.035_bib34) 2009; 50
Pácha (10.1053/j.gastro.2012.10.035_bib2) 2000; 80
Fordtran (10.1053/j.gastro.2012.10.035_bib38) 1968; 47
Colegio (10.1053/j.gastro.2012.10.035_bib25) 2002; 283
Clark (10.1053/j.gastro.2012.10.035_bib1) 1959; 5
Santer (10.1053/j.gastro.2012.10.035_bib13) 2002; 110
Van Itallie (10.1053/j.gastro.2012.10.035_bib24) 2006; 68
Halperin (10.1053/j.gastro.2012.10.035_bib37) 1986; 9
Corbett (10.1053/j.gastro.2012.10.035_bib39) 1977; 18
Hylemon (10.1053/j.gastro.2012.10.035_bib35) 1992; 267
Muto (10.1053/j.gastro.2012.10.035_bib29) 2010; 107
Wright (10.1053/j.gastro.2012.10.035_bib5) 2003; 17
Tsukita (10.1053/j.gastro.2012.10.035_bib22) 2001; 2
References_xml – volume: 283
  start-page: C142
  year: 2002
  end-page: C147
  ident: bib25
  article-title: Claudins create charge-selective channels in the paracellular pathway between epithelial cells
  publication-title: Am J Physiol Cell Physiol
– volume: 267
  start-page: 16866
  year: 1992
  end-page: 16871
  ident: bib35
  article-title: Hormonal regulation of cholesterol 7α-hydroxylase mRNA levels and transcriptional activity in primary rat hepatocyte cultures
  publication-title: J Biol Chem
– volume: 38
  start-page: 47
  year: 2005
  end-page: 53
  ident: bib3
  article-title: Relationship between glucose transporter and changes in the absorptive system in small intestinal absorptive cells during the weaning process
  publication-title: Med Mol Morphol
– volume: 585
  start-page: 606
  year: 2011
  end-page: 612
  ident: bib23
  article-title: Predicted expansion of the claudin multigene family
  publication-title: FEBS Lett
– volume: 18
  start-page: 136
  year: 1977
  end-page: 140
  ident: bib39
  article-title: Human intestinal ion transport
  publication-title: Gut
– volume: 350
  start-page: 354
  year: 1991
  end-page: 356
  ident: bib12
  article-title: Glucose/galactose malabsorption caused by a defect in the Na
  publication-title: Nature
– volume: 278
  start-page: G591
  year: 2000
  end-page: G603
  ident: bib16
  article-title: Regulation of the human Na
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 9
  start-page: 209
  year: 1986
  end-page: 211
  ident: bib37
  article-title: Paracellular recirculation of sodium is essential to support nutrient absorption in the gastrointestinal tract: an hypothesis
  publication-title: Clin Invest Med
– volume: 50
  start-page: 1509
  year: 2009
  end-page: 1520
  ident: bib34
  article-title: Bile acids as regulatory molecules
  publication-title: J Lipid Res
– volume: 131
  start-page: 387
  year: 1983
  end-page: 391
  ident: bib44
  article-title: Kinetics of taurocholate uptake by isolated ileal cells of guinea pig
  publication-title: Eur J Biochem
– volume: 282
  start-page: 19493
  year: 2007
  end-page: 19501
  ident: bib11
  article-title: CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine
  publication-title: J Biol Chem
– volume: 5
  start-page: 41
  year: 1959
  end-page: 50
  ident: bib1
  article-title: The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in sucking rats and mice
  publication-title: J Biophys Biochem Cytol
– volume: 2
  start-page: 286
  year: 2001
  end-page: 293
  ident: bib22
  article-title: Multifunctional strands in tight junctions
  publication-title: Nat Rev Mol Cell Biol
– volume: 270
  start-page: 27099
  year: 1995
  end-page: 27105
  ident: bib40
  article-title: Kinetics of steady-state currents and charge movements associated with the rat Na
  publication-title: J Biol Chem
– volume: 271
  start-page: 7738
  year: 1996
  end-page: 7744
  ident: bib41
  article-title: Carboxyl-terminal vesicular stomatitis virus G protein-tagged intestinal Na
  publication-title: J Biol Chem
– volume: 36
  start-page: 1003
  year: 2004
  end-page: 1007
  ident: bib15
  article-title: Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19
  publication-title: Nat Genet
– volume: 270
  start-page: 27228
  year: 1995
  end-page: 27234
  ident: bib9
  article-title: Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity
  publication-title: J Biol Chem
– volume: 68
  start-page: 403
  year: 2006
  end-page: 429
  ident: bib24
  article-title: Claudins and epithelial paracellular transport
  publication-title: Annu Rev Physiol
– volume: 51
  start-page: 1567
  year: 2003
  end-page: 1574
  ident: bib19
  article-title: Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane
  publication-title: J Histochem Cytochem
– volume: 88
  start-page: 249
  year: 2008
  end-page: 286
  ident: bib7
  article-title: Amino acid transport across mammalian intestinal and renal epithelia
  publication-title: Physiol Rev
– volume: 278
  start-page: 33920
  year: 2003
  end-page: 33927
  ident: bib33
  article-title: Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice
  publication-title: J Biol Chem
– volume: 47
  start-page: 884
  year: 1968
  end-page: 900
  ident: bib38
  article-title: The mechanisms of sodium absorption in the human small intestine
  publication-title: J Clin Invest
– volume: 137
  start-page: 73
  year: 1979
  end-page: 81
  ident: bib43
  article-title: Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa
  publication-title: J Bacteriol
– volume: 17
  start-page: 943
  year: 2003
  end-page: 956
  ident: bib5
  article-title: Intestinal absorption in health and disease-sugars
  publication-title: Best Pract Res Clin Gastroenterol
– volume: 84
  start-page: 870
  year: 2006
  end-page: 880
  ident: bib21
  article-title: Coupling between apical and paracellular transport processes
  publication-title: Biochem Cell Biol
– volume: 105
  start-page: 967
  year: 2011
  end-page: 981
  ident: bib4
  article-title: Intestinal barrier function and absorption in pigs after weaning: a review
  publication-title: Br J Nutr
– volume: 240
  start-page: G1
  year: 1981
  end-page: G9
  ident: bib8
  article-title: Mechanism of intestinal fat absorption
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 54
  start-page: 3056
  year: 2005
  end-page: 3062
  ident: bib6
  article-title: Apical GLUT2 a major pathway of intestinal sugar absorption
  publication-title: Diabetes
– volume: 80
  start-page: 1633
  year: 2000
  end-page: 1667
  ident: bib2
  article-title: Development of intestinal transport function in mammals
  publication-title: Physiol Rev
– volume: 9
  start-page: 799
  year: 2009
  end-page: 809
  ident: bib28
  article-title: Intestinal mucosal barrier function in health and disease
  publication-title: Nat Rev Immunol
– volume: 110
  start-page: 21
  year: 2002
  end-page: 29
  ident: bib13
  article-title: The mutation spectrum of the facilitative glucose transporter gene
  publication-title: Hum Genet
– volume: 27
  start-page: 6930
  year: 2008
  end-page: 6938
  ident: bib27
  article-title: Tight junction-based epithelial microenvironment and cell proliferation
  publication-title: Oncogene
– volume: 36
  start-page: 999
  year: 2004
  end-page: 1002
  ident: bib14
  article-title: Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder
  publication-title: Nat Genet
– volume: 119
  start-page: 1009
  year: 1998
  end-page: 1017
  ident: bib42
  article-title: Leucine transport in Xenopus laevis oocytes: functional and morphological analysis of different defolliculation procedures
  publication-title: Comp Biochem Physiol A Mol Integr Physiol
– volume: 107
  start-page: 8011
  year: 2010
  end-page: 8016
  ident: bib29
  article-title: Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 2214
  year: 2006
  end-page: 2222
  ident: bib18
  article-title: Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice
  publication-title: FASEB J
– volume: 134
  start-page: 523
  year: 2010
  end-page: 534
  ident: bib32
  article-title: Megaintestine in claudin-15-deficient mice
  publication-title: Gastroenterology
– volume: 4
  start-page: 299
  year: 1999
  end-page: 308
  ident: bib10
  article-title: Identification of the major intestinal fatty acid transport protein
  publication-title: Mol Cell
– volume: 123
  start-page: 1913
  year: 2010
  end-page: 1921
  ident: bib30
  article-title: Claudin-2, a component of the tight junction, forms a paracellular water channel
  publication-title: J Cell Sci
– volume: 115
  start-page: 4969
  year: 2002
  end-page: 4976
  ident: bib26
  article-title: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells
  publication-title: J Cell Sci
– volume: 140
  start-page: 913
  year: 2011
  end-page: 923
  ident: bib31
  article-title: Loss of claudin-15, but not claudin-2, causes Na
  publication-title: Gastroenterology
– volume: 12
  start-page: 862
  year: 2004
  end-page: 870
  ident: bib17
  article-title: Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB
  publication-title: Obes Res
– volume: 50
  start-page: 637
  year: 1970
  end-page: 718
  ident: bib20
  article-title: Coupled transport of sodium and organic solutes
  publication-title: Physiol Rev
– volume: 24
  start-page: 1000
  year: 1965
  end-page: 1006
  ident: bib36
  article-title: Na
  publication-title: Fed Proc
– volume: 271
  start-page: 7738
  year: 1996
  ident: 10.1053/j.gastro.2012.10.035_bib41
  article-title: Carboxyl-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.13.7738
– volume: 12
  start-page: 862
  year: 2004
  ident: 10.1053/j.gastro.2012.10.035_bib17
  article-title: Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB
  publication-title: Obes Res
  doi: 10.1038/oby.2004.104
– volume: 270
  start-page: 27099
  year: 1995
  ident: 10.1053/j.gastro.2012.10.035_bib40
  article-title: Kinetics of steady-state currents and charge movements associated with the rat Na+/Glucose cotransporter
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.45.27099
– volume: 110
  start-page: 21
  year: 2002
  ident: 10.1053/j.gastro.2012.10.035_bib13
  article-title: The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome
  publication-title: Hum Genet
  doi: 10.1007/s00439-001-0638-6
– volume: 27
  start-page: 6930
  year: 2008
  ident: 10.1053/j.gastro.2012.10.035_bib27
  article-title: Tight junction-based epithelial microenvironment and cell proliferation
  publication-title: Oncogene
  doi: 10.1038/onc.2008.344
– volume: 131
  start-page: 387
  year: 1983
  ident: 10.1053/j.gastro.2012.10.035_bib44
  article-title: Kinetics of taurocholate uptake by isolated ileal cells of guinea pig
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1983.tb07275.x
– volume: 2
  start-page: 286
  year: 2001
  ident: 10.1053/j.gastro.2012.10.035_bib22
  article-title: Multifunctional strands in tight junctions
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/35067088
– volume: 350
  start-page: 354
  year: 1991
  ident: 10.1053/j.gastro.2012.10.035_bib12
  article-title: Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter
  publication-title: Nature
  doi: 10.1038/350354a0
– volume: 36
  start-page: 999
  year: 2004
  ident: 10.1053/j.gastro.2012.10.035_bib14
  article-title: Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder
  publication-title: Nat Genet
  doi: 10.1038/ng1405
– volume: 68
  start-page: 403
  year: 2006
  ident: 10.1053/j.gastro.2012.10.035_bib24
  article-title: Claudins and epithelial paracellular transport
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.68.040104.131404
– volume: 9
  start-page: 799
  year: 2009
  ident: 10.1053/j.gastro.2012.10.035_bib28
  article-title: Intestinal mucosal barrier function in health and disease
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2653
– volume: 278
  start-page: 33920
  year: 2003
  ident: 10.1053/j.gastro.2012.10.035_bib33
  article-title: Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M306370200
– volume: 105
  start-page: 967
  year: 2011
  ident: 10.1053/j.gastro.2012.10.035_bib4
  article-title: Intestinal barrier function and absorption in pigs after weaning: a review
  publication-title: Br J Nutr
  doi: 10.1017/S0007114510005660
– volume: 134
  start-page: 523
  year: 2010
  ident: 10.1053/j.gastro.2012.10.035_bib32
  article-title: Megaintestine in claudin-15-deficient mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.11.040
– volume: 267
  start-page: 16866
  year: 1992
  ident: 10.1053/j.gastro.2012.10.035_bib35
  article-title: Hormonal regulation of cholesterol 7α-hydroxylase mRNA levels and transcriptional activity in primary rat hepatocyte cultures
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)41864-9
– volume: 282
  start-page: 19493
  year: 2007
  ident: 10.1053/j.gastro.2012.10.035_bib11
  article-title: CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M703330200
– volume: 84
  start-page: 870
  year: 2006
  ident: 10.1053/j.gastro.2012.10.035_bib21
  article-title: Coupling between apical and paracellular transport processes
  publication-title: Biochem Cell Biol
  doi: 10.1139/o06-202
– volume: 51
  start-page: 1567
  year: 2003
  ident: 10.1053/j.gastro.2012.10.035_bib19
  article-title: Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane
  publication-title: J Histochem Cytochem
  doi: 10.1177/002215540305101116
– volume: 115
  start-page: 4969
  year: 2002
  ident: 10.1053/j.gastro.2012.10.035_bib26
  article-title: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.00165
– volume: 137
  start-page: 73
  year: 1979
  ident: 10.1053/j.gastro.2012.10.035_bib43
  article-title: Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa
  publication-title: J Bacteriol
  doi: 10.1128/jb.137.1.73-81.1979
– volume: 123
  start-page: 1913
  year: 2010
  ident: 10.1053/j.gastro.2012.10.035_bib30
  article-title: Claudin-2, a component of the tight junction, forms a paracellular water channel
  publication-title: J Cell Sci
  doi: 10.1242/jcs.060665
– volume: 88
  start-page: 249
  year: 2008
  ident: 10.1053/j.gastro.2012.10.035_bib7
  article-title: Amino acid transport across mammalian intestinal and renal epithelia
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00018.2006
– volume: 18
  start-page: 136
  year: 1977
  ident: 10.1053/j.gastro.2012.10.035_bib39
  article-title: Human intestinal ion transport in vitro
  publication-title: Gut
  doi: 10.1136/gut.18.2.136
– volume: 107
  start-page: 8011
  year: 2010
  ident: 10.1053/j.gastro.2012.10.035_bib29
  article-title: Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0912901107
– volume: 38
  start-page: 47
  year: 2005
  ident: 10.1053/j.gastro.2012.10.035_bib3
  article-title: Relationship between glucose transporter and changes in the absorptive system in small intestinal absorptive cells during the weaning process
  publication-title: Med Mol Morphol
  doi: 10.1007/s00795-004-0275-y
– volume: 585
  start-page: 606
  year: 2011
  ident: 10.1053/j.gastro.2012.10.035_bib23
  article-title: Predicted expansion of the claudin multigene family
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2011.01.028
– volume: 20
  start-page: 2214
  year: 2006
  ident: 10.1053/j.gastro.2012.10.035_bib18
  article-title: Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice
  publication-title: FASEB J
  doi: 10.1096/fj.05-5676com
– volume: 283
  start-page: C142
  year: 2002
  ident: 10.1053/j.gastro.2012.10.035_bib25
  article-title: Claudins create charge-selective channels in the paracellular pathway between epithelial cells
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00038.2002
– volume: 270
  start-page: 27228
  year: 1995
  ident: 10.1053/j.gastro.2012.10.035_bib9
  article-title: Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.45.27228
– volume: 278
  start-page: G591
  year: 2000
  ident: 10.1053/j.gastro.2012.10.035_bib16
  article-title: Regulation of the human Na+-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.2000.278.4.G591
– volume: 140
  start-page: 913
  year: 2011
  ident: 10.1053/j.gastro.2012.10.035_bib31
  article-title: Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.08.006
– volume: 240
  start-page: G1
  year: 1981
  ident: 10.1053/j.gastro.2012.10.035_bib8
  article-title: Mechanism of intestinal fat absorption
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.1981.240.1.G1
– volume: 47
  start-page: 884
  year: 1968
  ident: 10.1053/j.gastro.2012.10.035_bib38
  article-title: The mechanisms of sodium absorption in the human small intestine
  publication-title: J Clin Invest
  doi: 10.1172/JCI105781
– volume: 119
  start-page: 1009
  year: 1998
  ident: 10.1053/j.gastro.2012.10.035_bib42
  article-title: Leucine transport in Xenopus laevis oocytes: functional and morphological analysis of different defolliculation procedures
  publication-title: Comp Biochem Physiol A Mol Integr Physiol
  doi: 10.1016/S1095-6433(98)00018-X
– volume: 50
  start-page: 1509
  year: 2009
  ident: 10.1053/j.gastro.2012.10.035_bib34
  article-title: Bile acids as regulatory molecules
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R900007-JLR200
– volume: 9
  start-page: 209
  year: 1986
  ident: 10.1053/j.gastro.2012.10.035_bib37
  article-title: Paracellular recirculation of sodium is essential to support nutrient absorption in the gastrointestinal tract: an hypothesis
  publication-title: Clin Invest Med
– volume: 54
  start-page: 3056
  year: 2005
  ident: 10.1053/j.gastro.2012.10.035_bib6
  article-title: Apical GLUT2 a major pathway of intestinal sugar absorption
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.10.3056
– volume: 17
  start-page: 943
  year: 2003
  ident: 10.1053/j.gastro.2012.10.035_bib5
  article-title: Intestinal absorption in health and disease-sugars
  publication-title: Best Pract Res Clin Gastroenterol
  doi: 10.1016/S1521-6918(03)00107-0
– volume: 4
  start-page: 299
  year: 1999
  ident: 10.1053/j.gastro.2012.10.035_bib10
  article-title: Identification of the major intestinal fatty acid transport protein
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80332-9
– volume: 5
  start-page: 41
  year: 1959
  ident: 10.1053/j.gastro.2012.10.035_bib1
  article-title: The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in sucking rats and mice
  publication-title: J Biophys Biochem Cytol
  doi: 10.1083/jcb.5.1.41
– volume: 24
  start-page: 1000
  year: 1965
  ident: 10.1053/j.gastro.2012.10.035_bib36
  article-title: Na+-dependent transport in the intestine and other animal tissues
  publication-title: Fed Proc
– volume: 50
  start-page: 637
  year: 1970
  ident: 10.1053/j.gastro.2012.10.035_bib20
  article-title: Coupled transport of sodium and organic solutes
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1970.50.4.637
– volume: 80
  start-page: 1633
  year: 2000
  ident: 10.1053/j.gastro.2012.10.035_bib2
  article-title: Development of intestinal transport function in mammals
  publication-title: Physiol Rev
  doi: 10.1152/physrev.2000.80.4.1633
– volume: 36
  start-page: 1003
  year: 2004
  ident: 10.1053/j.gastro.2012.10.035_bib15
  article-title: Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19
  publication-title: Nat Genet
  doi: 10.1038/ng1406
SSID ssj0009381
Score 2.466759
Snippet The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as glucose, amino...
Background & Aims The intestinal symport system moves nutrients across membranes via transporters, and is required for absorption of major nutrients such as...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 369
SubjectTerms Amino Acids - pharmacokinetics
Animals
Biological Transport
Cell Membrane - metabolism
Cell Membrane - ultrastructure
Cell Membrane Permeability
Claudin-15
Claudin-2
Claudin-2 - genetics
Claudin-2 - metabolism
Claudins - genetics
Claudins - metabolism
Disease Models, Animal
Epithelial Cells - metabolism
Epithelial Cells - ultrastructure
Fats - pharmacokinetics
Gastroenterology and Hepatology
Glucose - pharmacokinetics
Immunoblotting
Intestinal Absorption - physiology
Intestinal Mucosa - metabolism
Intestinal Mucosa - ultrastructure
Intestine, Small - metabolism
Intestine, Small - ultrastructure
Malnutrition - genetics
Malnutrition - metabolism
Malnutrition - mortality
Mice
Mice, Knockout
Microscopy, Electron
Microscopy, Fluorescence
Na+-Dependent Transporter
Nutrient Malabsorption
Phenotype
Real-Time Polymerase Chain Reaction
Sodium - metabolism
Tight Junctions - genetics
Tight Junctions - metabolism
Title Loss of Claudins 2 and 15 From Mice Causes Defects in Paracellular Na+ Flow and Nutrient Transport in Gut and Leads to Death from Malnutrition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001650851201551X
https://www.clinicalkey.es/playcontent/1-s2.0-S001650851201551X
https://dx.doi.org/10.1053/j.gastro.2012.10.035
https://www.ncbi.nlm.nih.gov/pubmed/23089202
https://www.proquest.com/docview/1367507198
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbptAEF65iVT1UvW_7p-2Um8WLuyyGI5J2jiqYl-StL6hBZbUtQ2VgUP7EH29vk5ndgFjxVHSXCwMjBeYz7MzyzczhHyIbD_1FROW5yeJ5QqurCgRjhX7QiaOZL6tcGlgMvVOLtwvMzHr9f52WEtVGQ3j3zvzSu6iVdgHesUs2f_QbPujsAO2Qb_wCRqGz1vp-BRmOM2nWMoqQa4L0-8CHAH-aL5CSrwaHMmqUAXYFcPbmIPNwxLNarnUBNQpOI-Hg-NlbpjBUyzOj_SAtug5Sowrw0PHfpy6IsQndBxNaspELrOmon_X0x3LolznWPFzbco87Wj7M3ACt7vS-00m0iQQFXI13ywqrKq1Wf4ti6r43jmwwIQ03ZZ4MM2j6le12Bws4Itxjc-QMLrIuwsc2GxiiyzSZt5sEUPRVbXAuTRvxFVtvLHatu1sW3dTXrKGMevYam56xNTTPjcNpa7MKLZuC_JjeKmfGnIB2RDpgFxsZtCW13iGl4VX5TDti87ukX0G8QsY4P3x4enXg009aO6bZo71bTRZnYJ_3DXWdV7TdVGR9o7OH5GHdVhDDwxGH5Oeyp6Q-5OauPGU_EGo0jylDVQpo4Ao6giKUKUIVWqgSmuo0nlGu1ClUzmgCFQt2ACVtkDF8wGo-qgGKi1zqoFKUz1EB6jPyMXx5_OjE6tuBWLFwmelpexEMhkzN5GpwPVvD18XQzgceR6TyuFipJIEN1kgGXdTN0mjQMURC1jsRA5_TvayPFMvCYUAJU2lEGIEsUQa-RH44NyNPalikBuxPuHNow7juk4-tmtZhpqvITjEy0ZBISoI94KC-sRqpX6aOjE3nC8aLYZNDjTM2iHA7ga50S45VdRmqQidsGChHV6BYley9q6N13yLMd83MAth8kG1y0zlFYzFvREGlIHfJy8M_tq7Z9z2A2azV3ce9zV5APKuXvAUb8heua7UWwgByuhd_Xf6B7uXBa8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+Claudins+2+and+15+From+Mice+Causes+Defects+in+Paracellular+Na%2B+Flow+and+Nutrient+Transport+in+Gut+and+Leads+to+Death+from+Malnutrition&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Wada%2C+Masami&rft.au=Tamura%2C+Atsushi&rft.au=Takahashi%2C+Nobuyuki&rft.au=Tsukita%2C+Sachiko&rft.date=2013-02-01&rft.pub=Elsevier+Inc&rft.issn=0016-5085&rft.eissn=1528-0012&rft.volume=144&rft.issue=2&rft.spage=369&rft.epage=380&rft_id=info:doi/10.1053%2Fj.gastro.2012.10.035&rft.externalDocID=S001650851201551X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00165085%2FS0016508512X00088%2Fcov150h.gif