Self-supervised learning methods and applications in medical imaging analysis: a survey

The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representation...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 8; p. e1045
Main Authors Shurrab, Saeed, Duwairi, Rehab
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 19.07.2022
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field.
AbstractList The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field.
The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field.The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field.
ArticleNumber e1045
Audience Academic
Author Shurrab, Saeed
Duwairi, Rehab
Author_xml – sequence: 1
  givenname: Saeed
  surname: Shurrab
  fullname: Shurrab, Saeed
  organization: Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, Jordan
– sequence: 2
  givenname: Rehab
  surname: Duwairi
  fullname: Duwairi, Rehab
  organization: Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, Jordan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36091989$$D View this record in MEDLINE/PubMed
BookMark eNp1kttrFDEUxgep2Fr76KsM-KIPs-Y6SXwolOJloSBYxceQySTTLNlkTGYW-9-b3a21WzR5yO13vpxz-J5XRyEGU1UvIVgwBtm70Zi0anReQEDok-oEYdY2VAh09GB_XJ3lvAIAQArLEM-qY9wCAQUXJ9WPa-Ntk-fRpI3Lpq-9USm4MNRrM93EPtcq9LUaR--0mlwMuXahvPXl6Gu3VsOWVUH52-zy-1rVeU4bc_uiemqVz-bsbj2tvn_88O3yc3P15dPy8uKq0ZSjqdGmxbrTPRQQEquM6pGFmAsFWyWUJQRxxFrEAIeAcco51QaZFgmNOektwqfVcq_bR7WSYyoZpVsZlZO7i5gGqdLktDeSk45bLRiirSCUgI4ITTG3gnS4w1oUrfO91jh3pUJtwpSUPxA9fAnuRg5xI4schYQVgTd3Ain-nE2e5NplbbxXwcQ5S8QgxoARsM379SN0FedU2lgojgWgmAHxlxpUKcAFG8u_eisqL1jpCGZQkEIt_kGV2Zu108Ux1pX7g4C3BwGFmcyvaVBzznJ5_fWQffWwKffd-GOhAjR7QKeYczL2HoFAbl0qdy6VOsutSwuPH_HaTTtrlayd_0_Ub13Z6nQ
CitedBy_id crossref_primary_10_1007_s11042_024_20130_0
crossref_primary_10_1016_j_compbiomed_2025_109874
crossref_primary_10_1109_ACCESS_2024_3433559
crossref_primary_10_1016_j_oceaneng_2024_116796
crossref_primary_10_1038_s41598_024_53528_9
crossref_primary_10_1016_j_engappai_2023_105837
crossref_primary_10_1109_JSEN_2024_3443885
crossref_primary_10_1007_s10815_024_03080_2
crossref_primary_10_26599_BDMA_2024_9020090
crossref_primary_10_1016_j_patcog_2024_110856
crossref_primary_10_3390_s25020531
crossref_primary_10_1002_path_6373
crossref_primary_10_1016_j_jvcir_2023_103949
crossref_primary_10_1038_s41746_023_00811_0
crossref_primary_10_1186_s12911_024_02529_9
crossref_primary_10_1007_s11042_023_16908_3
crossref_primary_10_1007_s13748_024_00325_0
crossref_primary_10_1109_ACCESS_2023_3268704
crossref_primary_10_3389_fonc_2024_1419621
crossref_primary_10_3390_s23094221
crossref_primary_10_3390_rs14184523
crossref_primary_10_1016_j_compmedimag_2025_102517
crossref_primary_10_1109_ACCESS_2024_3381517
crossref_primary_10_1016_j_neuroimage_2023_120086
crossref_primary_10_1109_TMM_2024_3521807
crossref_primary_10_3390_diagnostics14060599
crossref_primary_10_3389_fimag_2024_1339770
crossref_primary_10_1109_ACCESS_2023_3344531
crossref_primary_10_1186_s12938_024_01299_9
crossref_primary_10_1016_j_bspc_2024_106387
crossref_primary_10_1186_s40708_024_00246_7
crossref_primary_10_29130_dubited_1201292
crossref_primary_10_1016_j_compbiomed_2025_109829
crossref_primary_10_1016_j_procs_2023_10_295
crossref_primary_10_1016_j_cag_2024_104086
crossref_primary_10_1109_JBHI_2022_3227517
crossref_primary_10_2196_46493
crossref_primary_10_1016_j_tcb_2022_11_011
crossref_primary_10_1007_s11042_023_16306_9
crossref_primary_10_1007_s10278_024_01032_x
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_17798_bitlisfen_1558069
crossref_primary_10_1007_s13755_023_00266_3
crossref_primary_10_1016_j_compbiomed_2024_108087
crossref_primary_10_1016_j_jag_2023_103624
crossref_primary_10_3390_cancers15143608
crossref_primary_10_1016_j_isci_2024_109766
crossref_primary_10_1016_j_media_2023_102879
crossref_primary_10_1007_s12530_024_09581_w
crossref_primary_10_1016_j_csl_2024_101622
crossref_primary_10_1016_j_engappai_2024_108489
crossref_primary_10_3390_math12050758
crossref_primary_10_1007_s11633_022_1406_4
crossref_primary_10_1016_j_aej_2025_01_130
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_3390_jimaging8120320
crossref_primary_10_3389_fphys_2022_994343
crossref_primary_10_1109_TETCI_2024_3400885
crossref_primary_10_7717_peerj_cs_1335
crossref_primary_10_3390_bdcc8090121
crossref_primary_10_3389_fmicb_2024_1255850
crossref_primary_10_1007_s12145_024_01402_7
crossref_primary_10_1038_s41568_024_00694_7
crossref_primary_10_1186_s12903_024_04235_4
crossref_primary_10_1016_j_inffus_2024_102741
crossref_primary_10_3390_ai5040111
crossref_primary_10_3390_diagnostics12071526
crossref_primary_10_1007_s10278_024_00975_5
crossref_primary_10_3390_e24040551
crossref_primary_10_1016_j_media_2024_103319
crossref_primary_10_1007_s12194_024_00874_y
crossref_primary_10_1016_j_joen_2023_11_002
crossref_primary_10_1038_s41571_025_00991_6
crossref_primary_10_1371_journal_pone_0314707
crossref_primary_10_1016_j_joen_2023_11_004
crossref_primary_10_1109_TPAMI_2025_3526802
crossref_primary_10_1038_s41598_024_74043_x
crossref_primary_10_1038_s44172_024_00246_9
crossref_primary_10_1177_00220345241255593
crossref_primary_10_3390_info15080491
crossref_primary_10_3390_ijerph191811597
Cites_doi 10.1109/TPAMI.2015.2496141
10.1109/CVPR.2010.5539957
10.1007/s13244-018-0639-9
10.1109/ACCESS.2020.3031549
10.1109/TPAMI.2012.120
10.1016/j.media.2020.101693
10.1117/12.2549627
10.1016/j.media.2020.101746
10.1109/ACCESS.2021.3084358
10.3233/FAIA200303
10.4018/978-1-60566-766-9.ch011
10.1016/0098-3004(84)90020-7
10.1109/TMI.2021.3056023
10.1007/s10916-017-0844-y
10.1016/C2018-0-02465-2
10.1016/j.neucom.2021.08.051
10.1016/j.asoc.2020.106210
10.1016/j.patcog.2021.107826
10.1016/j.eswa.2021.115598
10.1109/TPAMI.2020.2992393
10.1109/ACCESS.2019.2929365
10.1109/ICCV48922.2021.00346
10.1007/978-3-319-67558-9_34
10.1109/TKDE.2021.3090866
10.17632/rscbjbr9sj.3
10.1038/s42256-020-00247-1
10.1016/j.knosys.2021.107090
10.1109/ACCESS.2017.2788044
10.1109/TMI.2020.3008871
10.1109/TMI.2021.3075244
10.1016/j.media.2019.101539
10.3390/technologies9010002
10.1109/ACCESS.2020.3021469
10.1007/s11548-018-1772-0
10.1016/j.media.2021.102094
10.1109/TIP.2003.819861
10.1109/JBHI.2020.3012134
10.1109/JPROC.2021.3054390
ContentType Journal Article
Copyright 2022 Shurrab et al.
COPYRIGHT 2022 PeerJ. Ltd.
2022 Shurrab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Shurrab et al. 2022 Shurrab et al.
Copyright_xml – notice: 2022 Shurrab et al.
– notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Shurrab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Shurrab et al. 2022 Shurrab et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.1045
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic



PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_84b8fc9725694540b49c538f94b3b3c9
PMC9455147
A710737194
36091989
10_7717_peerj_cs_1045
Genre Journal Article
GrantInformation_xml – fundername: Jordan University of Science and Technology
  grantid: 20210418
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
ARCSS
NPM
PQGLB
PMFND
3V.
7XB
8AL
8FK
COVID
JQ2
M0N
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c582t-ce63cbcd19114faead2f1389a16a9af4428276270810785885ce2e629c384df23
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Wed Aug 27 01:26:55 EDT 2025
Thu Aug 21 13:48:42 EDT 2025
Fri Jul 11 08:41:08 EDT 2025
Mon Jul 14 07:47:39 EDT 2025
Tue Jun 17 21:38:58 EDT 2025
Tue Jun 10 20:46:05 EDT 2025
Fri Jun 27 05:02:50 EDT 2025
Mon Jul 21 06:00:48 EDT 2025
Tue Jul 01 02:28:53 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Contrastive Learning
Pretext Task
Imaging Modality
Self-Supervised Learning
Medical-Imaging
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Shurrab et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-ce63cbcd19114faead2f1389a16a9af4428276270810785885ce2e629c384df23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/84b8fc9725694540b49c538f94b3b3c9
PMID 36091989
PQID 2839053709
PQPubID 2045934
PageCount e1045
ParticipantIDs doaj_primary_oai_doaj_org_article_84b8fc9725694540b49c538f94b3b3c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9455147
proquest_miscellaneous_2713307402
proquest_journals_2839053709
gale_infotracmisc_A710737194
gale_infotracacademiconefile_A710737194
gale_incontextgauss_ISR_A710737194
pubmed_primary_36091989
crossref_primary_10_7717_peerj_cs_1045
crossref_citationtrail_10_7717_peerj_cs_1045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Holmberg (10.7717/peerj-cs.1045/ref-35) 2020; 2
Chen (10.7717/peerj-cs.1045/ref-15) 2021; 113
Taleb (10.7717/peerj-cs.1045/ref-93) 2021
Haghighi (10.7717/peerj-cs.1045/ref-27) 2020
Schmarje (10.7717/peerj-cs.1045/ref-83) 2021
Zhou (10.7717/peerj-cs.1045/ref-112) 2021
Prakash (10.7717/peerj-cs.1045/ref-77) 2020
Li (10.7717/peerj-cs.1045/ref-57) 2020
Torrey (10.7717/peerj-cs.1045/ref-96) 2010
Yamashita (10.7717/peerj-cs.1045/ref-105) 2018; 9
He (10.7717/peerj-cs.1045/ref-29) 2016
Raghu (10.7717/peerj-cs.1045/ref-79) 2019
Wang (10.7717/peerj-cs.1045/ref-102) 2017
Doersch (10.7717/peerj-cs.1045/ref-19) 2015
Huang (10.7717/peerj-cs.1045/ref-37) 2017
Jiao (10.7717/peerj-cs.1045/ref-43) 2020
Radford (10.7717/peerj-cs.1045/ref-78) 2016
Van den Oord (10.7717/peerj-cs.1045/ref-98) 2018
Mikolov (10.7717/peerj-cs.1045/ref-67) 2013
Zhang (10.7717/peerj-cs.1045/ref-109) 2021; 462
Tajbakhsh (10.7717/peerj-cs.1045/ref-91) 2019
Jamaludin (10.7717/peerj-cs.1045/ref-42) 2017
Wang (10.7717/peerj-cs.1045/ref-101) 2004; 13
Ioffe (10.7717/peerj-cs.1045/ref-39) 2015
He (10.7717/peerj-cs.1045/ref-30) 2016
Krizhevsky (10.7717/peerj-cs.1045/ref-50) 2012; 25
Anwar (10.7717/peerj-cs.1045/ref-3) 2018; 42
Deng (10.7717/peerj-cs.1045/ref-18) 2009
He (10.7717/peerj-cs.1045/ref-28) 2020
Zhang (10.7717/peerj-cs.1045/ref-110) 2017
Altaf (10.7717/peerj-cs.1045/ref-2) 2019; 7
Ker (10.7717/peerj-cs.1045/ref-46) 2017; 6
Setio (10.7717/peerj-cs.1045/ref-84) 2016
Zhang (10.7717/peerj-cs.1045/ref-108) 2017
Goodfellow (10.7717/peerj-cs.1045/ref-24) 2014; 27
Zhou (10.7717/peerj-cs.1045/ref-113) 2019
Jaiswal (10.7717/peerj-cs.1045/ref-41) 2021; 9
Le-Khac (10.7717/peerj-cs.1045/ref-53) 2020; 8
Chen (10.7717/peerj-cs.1045/ref-14) 2021
Snell (10.7717/peerj-cs.1045/ref-86) 2017
Zhu (10.7717/peerj-cs.1045/ref-115) 2020
Larsson (10.7717/peerj-cs.1045/ref-52) 2017
Chopra (10.7717/peerj-cs.1045/ref-16) 2005
Achanta (10.7717/peerj-cs.1045/ref-1) 2012; 34
Li (10.7717/peerj-cs.1045/ref-56) 2020
Hervella (10.7717/peerj-cs.1045/ref-32) 2020
Oord (10.7717/peerj-cs.1045/ref-75) 2016
Grill (10.7717/peerj-cs.1045/ref-25) 2020; vol. 33
Hervella (10.7717/peerj-cs.1045/ref-34) 2021; 185
Ilse (10.7717/peerj-cs.1045/ref-38) 2018
Morano (10.7717/peerj-cs.1045/ref-70) 2020
Sriram (10.7717/peerj-cs.1045/ref-89) 2021
Chen (10.7717/peerj-cs.1045/ref-13) 2020
Arjovsky (10.7717/peerj-cs.1045/ref-4) 2017
Tajbakhsh (10.7717/peerj-cs.1045/ref-92) 2020; 63
Nguyen (10.7717/peerj-cs.1045/ref-72) 2020; 8
Chaitanya (10.7717/peerj-cs.1045/ref-11) 2020; Vol. 33
Lu (10.7717/peerj-cs.1045/ref-60) 2021; 72
Zhu (10.7717/peerj-cs.1045/ref-114) 2020; 64
Zhu (10.7717/peerj-cs.1045/ref-116) 2017
Krull (10.7717/peerj-cs.1045/ref-51) 2019
Li (10.7717/peerj-cs.1045/ref-55) 2020; 39
Ohri (10.7717/peerj-cs.1045/ref-74) 2021; 224
Donahue (10.7717/peerj-cs.1045/ref-20) 2016
Maas (10.7717/peerj-cs.1045/ref-63) 2013
Mao (10.7717/peerj-cs.1045/ref-64) 2020
Bakas (10.7717/peerj-cs.1045/ref-7) 2018
Caron (10.7717/peerj-cs.1045/ref-10) 2020; Vol. 33
Mitchell (10.7717/peerj-cs.1045/ref-68) 2021
Jing (10.7717/peerj-cs.1045/ref-44) 2020; 43
Sarhan (10.7717/peerj-cs.1045/ref-82) 2020; 24
Sowrirajan (10.7717/peerj-cs.1045/ref-87) 2021
Vu (10.7717/peerj-cs.1045/ref-100) 2021
Chen (10.7717/peerj-cs.1045/ref-12) 2019; 58
Cuturi (10.7717/peerj-cs.1045/ref-17) 2013; 26
Zhang (10.7717/peerj-cs.1045/ref-107) 2016
Matzkin (10.7717/peerj-cs.1045/ref-65) 2020
Vincent (10.7717/peerj-cs.1045/ref-99) 2008
Bengio (10.7717/peerj-cs.1045/ref-8) 2007
Komodakis (10.7717/peerj-cs.1045/ref-48) 2018
Zhuang (10.7717/peerj-cs.1045/ref-117) 2019
Tschannen (10.7717/peerj-cs.1045/ref-97) 2018
Ross (10.7717/peerj-cs.1045/ref-81) 2018; 13
Bai (10.7717/peerj-cs.1045/ref-6) 2019
Dong (10.7717/peerj-cs.1045/ref-21) 2021
Xie (10.7717/peerj-cs.1045/ref-104) 2020
Karpathy (10.7717/peerj-cs.1045/ref-45) 2016
Hervella (10.7717/peerj-cs.1045/ref-33) 2020; 91
Simonyan (10.7717/peerj-cs.1045/ref-85) 2015
Azizi (10.7717/peerj-cs.1045/ref-5) 2021
Hu (10.7717/peerj-cs.1045/ref-36) 2020
Mena (10.7717/peerj-cs.1045/ref-66) 2018
Lučić (10.7717/peerj-cs.1045/ref-61) 2019
Pathak (10.7717/peerj-cs.1045/ref-76) 2016
Dosovitskiy (10.7717/peerj-cs.1045/ref-22) 2015; 38
Liu (10.7717/peerj-cs.1045/ref-58) 2021
Li (10.7717/peerj-cs.1045/ref-54) 2021; 40
Spitzer (10.7717/peerj-cs.1045/ref-88) 2018
Henaff (10.7717/peerj-cs.1045/ref-31) 2020
Noroozi (10.7717/peerj-cs.1045/ref-73) 2016
Ronneberger (10.7717/peerj-cs.1045/ref-80) 2015
Bezdek (10.7717/peerj-cs.1045/ref-9) 1984; 10
Miyato (10.7717/peerj-cs.1045/ref-69) 2018
Luo (10.7717/peerj-cs.1045/ref-62) 2020; 8
Tao (10.7717/peerj-cs.1045/ref-95) 2020
Nair (10.7717/peerj-cs.1045/ref-71) 2010
Goodfellow (10.7717/peerj-cs.1045/ref-23) 2016; vol. 1
Taleb (10.7717/peerj-cs.1045/ref-94) 2020; Vol. 33
Koohbanani (10.7717/peerj-cs.1045/ref-49) 2021; 40
Kermany (10.7717/peerj-cs.1045/ref-47) 2018
Irvin (10.7717/peerj-cs.1045/ref-40) 2019
Gutmann (10.7717/peerj-cs.1045/ref-26) 2010
Zhang (10.7717/peerj-cs.1045/ref-111) 2020
Szegedy (10.7717/peerj-cs.1045/ref-90) 2015
Wu (10.7717/peerj-cs.1045/ref-103) 2018
Zeiler (10.7717/peerj-cs.1045/ref-106) 2010
Lu (10.7717/peerj-cs.1045/ref-59) 2020
References_xml – volume: 38
  start-page: 1734
  issue: 9
  year: 2015
  ident: 10.7717/peerj-cs.1045/ref-22
  article-title: Discriminative unsupervised feature learning with exemplar convolutional neural networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2496141
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-66
  article-title: Learning latent permutations with Gumbel-Sinkhorn networks
– start-page: 2528
  year: 2010
  ident: 10.7717/peerj-cs.1045/ref-106
  article-title: Deconvolutional networks
  doi: 10.1109/CVPR.2010.5539957
– start-page: 297
  year: 2010
  ident: 10.7717/peerj-cs.1045/ref-26
  article-title: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models
– start-page: 69
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-73
  article-title: Unsupervised learning of visual representations by solving jigsaw puzzles
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 10.7717/peerj-cs.1045/ref-105
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Into Imaging
  doi: 10.1007/s13244-018-0639-9
– start-page: 137
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-27
  article-title: Learning semantics-enriched representation via self-discovery, self-classification, and self-restoration
– volume: 8
  start-page: 193907
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-53
  article-title: Contrastive representation learning: a framework and review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031549
– start-page: 590
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-40
  article-title: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison
– start-page: 539
  year: 2005
  ident: 10.7717/peerj-cs.1045/ref-16
  article-title: Learning a similarity metric discriminatively, with application to face verification
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.7717/peerj-cs.1045/ref-1
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.120
– volume: 63
  start-page: 101693
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-92
  article-title: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101693
– start-page: 2097
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-102
  article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– start-page: 649
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-107
  article-title: Colorful image colorization
– year: 2020
  ident: 10.7717/peerj-cs.1045/ref-59
  article-title: Semi-supervised breast cancer histology classification using deep multiple instance learning and contrast predictive coding (Conference Presentation)
  doi: 10.1117/12.2549627
– start-page: 2536
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-76
  article-title: Context encoders: feature learning by inpainting
– start-page: 4700
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-37
  article-title: Densely connected convolutional networks
– volume: 64
  start-page: 101746
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-114
  article-title: Rubiks cube+: a self-supervised feature learning framework for 3d medical image analysis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101746
– start-page: 448
  year: 2015
  ident: 10.7717/peerj-cs.1045/ref-39
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– start-page: 390
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-65
  article-title: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-83
  article-title: A survey on semi-, self-and unsupervised learning for image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084358
– start-page: 2223
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-116
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– start-page: 1058
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-108
  article-title: Split-brain autoencoders: unsupervised learning by cross-channel prediction
– start-page: 578
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-110
  article-title: Self supervised deep representation learning for fine-grained body part recognition
– start-page: 1866
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-70
  article-title: Multimodal transfer learning-based approaches for retinal vascular segmentation
  doi: 10.3233/FAIA200303
– start-page: 2129
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-51
  article-title: Noise2void-learning denoising from single noisy images
– volume: 26
  start-page: 2292
  year: 2013
  ident: 10.7717/peerj-cs.1045/ref-17
  article-title: Sinkhorn distances: lightspeed computation of optimal transport
  publication-title: Advances in Neural Information Processing Systems
– start-page: 9729
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-28
  article-title: Momentum contrast for unsupervised visual representation learning
– volume: vol. 33
  start-page: 21271
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-25
  article-title: Bootstrap your own latent—a new approach to self-supervised learning
– start-page: 961
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-32
  article-title: Multi-modal self-supervised pre-training for joint optic disc and cup segmentation in eye fundus images
– start-page: 770
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-29
  article-title: Deep residual learning for image recognition
– start-page: 663
  year: 2018
  ident: 10.7717/peerj-cs.1045/ref-88
  article-title: Improving cytoarchitectonic segmentation of human brain areas with self-supervised siamese networks
– start-page: 242
  volume-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques
  year: 2010
  ident: 10.7717/peerj-cs.1045/ref-96
  article-title: Transfer learning
  doi: 10.4018/978-1-60566-766-9.ch011
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.7717/peerj-cs.1045/ref-9
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 40
  start-page: 2845
  issue: 10
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-49
  article-title: Self-Path: self-supervision for classification of pathology images with limited annotations
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2021.3056023
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  ident: 10.7717/peerj-cs.1045/ref-3
  article-title: Medical image analysis using convolutional neural networks: a review
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-017-0844-y
– year: 2020
  ident: 10.7717/peerj-cs.1045/ref-111
  article-title: Universal model for 3D medical image analysis
– start-page: 541
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-6
  article-title: Self-supervised learning for cardiac mr image segmentation by anatomical position prediction
– start-page: 4183
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-61
  article-title: High-fidelity image generation with fewer labels
– volume: Vol. 33
  start-page: 12546
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-11
  article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations
– volume: 27
  year: 2014
  ident: 10.7717/peerj-cs.1045/ref-24
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– start-page: 630
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-30
  article-title: Identity mappings in deep residual networks
– start-page: 41
  volume-title: Artificial intelligence and deep learning in pathology
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-68
  article-title: Chapter 3 - overview of advanced neural network architectures
  doi: 10.1016/C2018-0-02465-2
– volume: 462
  start-page: 491
  issue: C
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-109
  article-title: Twin Self-supervision Based Semi-supervised Learning (TS-SSL): retinal anomaly classification in SD-OCT images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.051
– start-page: 428
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-77
  article-title: Leveraging self-supervised denoising for image segmentation
– volume-title: International conference on machine learning
  year: 2010
  ident: 10.7717/peerj-cs.1045/ref-71
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 91
  start-page: 106210
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-33
  article-title: Learning the retinal anatomy from scarce annotated data using self-supervised multimodal reconstruction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106210
– volume: 113
  start-page: 107826
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-15
  article-title: Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.107826
– start-page: 1
  year: 2015
  ident: 10.7717/peerj-cs.1045/ref-90
  article-title: Going deeper with convolutions
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-7
  article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
– volume: 185
  start-page: 115598
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-34
  article-title: Self-supervised multimodal reconstruction pre-training for retinal computer-aided diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115598
– volume: 43
  start-page: 4037
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-44
  article-title: Self-supervised visual feature learning with deep neural networks: a survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2992393
– start-page: 248
  year: 2009
  ident: 10.7717/peerj-cs.1045/ref-18
  article-title: Imagenet: a large-scale hierarchical image database
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-100
  article-title: MedAug: contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation
– start-page: 6874
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-52
  article-title: Colorization as a proxy task for visual understanding
– start-page: 614
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-56
  article-title: Self-loop uncertainty: a novel pseudo-label for semi-supervised medical image segmentation
– start-page: 47974805
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-75
  article-title: Conditional image generation with PixelCNN decoders
– volume: 7
  start-page: 99540
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-2
  article-title: Going deep in medical image analysis: concepts, methods, challenges, and future directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929365
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-5
  article-title: Big self-supervised models advance medical image classification
  doi: 10.1109/ICCV48922.2021.00346
– year: 2016
  ident: 10.7717/peerj-cs.1045/ref-45
  article-title: Convolutional neural networks for visual recognition. Online course
– year: 2016
  ident: 10.7717/peerj-cs.1045/ref-84
  article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. CoRR
– start-page: 294
  volume-title: Deep learning in medical image analysis and multimodal learning for clinical decision support
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-42
  article-title: Self-supervised learning for spinal MRIs
  doi: 10.1007/978-3-319-67558-9_34
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-58
  article-title: Self-supervised learning: generative or contrastive
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3090866
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-47
  article-title: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images. Mendeley Data, version 3
  doi: 10.17632/rscbjbr9sj.3
– year: 2020
  ident: 10.7717/peerj-cs.1045/ref-64
  article-title: A survey on self-supervised pre-training for sequential transfer learning in neural networks
– start-page: 779
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-21
  article-title: Self-supervised multi-task representation learning for sequential medical images
– volume: 2
  start-page: 719
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-35
  article-title: Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-020-00247-1
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-14
  article-title: Recent advances and clinical applications of deep learning in medical image analysis
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-69
  article-title: cGANs with projection discriminator
– volume: 224
  start-page: 107090
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-74
  article-title: Review on self-supervised image recognition using deep neural networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107090
– start-page: 238
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-95
  article-title: Revisiting Rubiks cube: self-supervised learning with volume-wise transformation for 3D medical image segmentation
– start-page: 1847
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-43
  article-title: Self-supervised representation learning for ultrasound video
– start-page: 661
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-93
  article-title: Multimodal self-supervised learning for medical image analysis
– year: 2020
  ident: 10.7717/peerj-cs.1045/ref-115
  article-title: Embedding task knowledge into 3D neural networks via self-supervised learning
– volume: 6
  start-page: 9375
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-46
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– start-page: 153
  year: 2007
  ident: 10.7717/peerj-cs.1045/ref-8
  article-title: Greedy layer-wise training of deep networks
– volume: vol. 1
  volume-title: Deep learning
  year: 2016
  ident: 10.7717/peerj-cs.1045/ref-23
– volume: Vol. 33
  start-page: 18158
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-94
  article-title: 3D self-supervised methods for medical imaging
– volume: 39
  start-page: 4023
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-55
  article-title: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.3008871
– year: 2016
  ident: 10.7717/peerj-cs.1045/ref-20
  article-title: Adversarial feature learning
– start-page: 1422
  year: 2015
  ident: 10.7717/peerj-cs.1045/ref-19
  article-title: Unsupervised visual representation learning by context prediction
– start-page: 732
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-36
  article-title: Self-supervised pretraining with DICOM metadata in ultrasound imaging
– year: 2020
  ident: 10.7717/peerj-cs.1045/ref-104
  article-title: Pgl: prior-guided local self-supervised learning for 3d medical image segmentation
– volume: 40
  start-page: 2284
  issue: 9
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-54
  article-title: Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2021.3075244
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.7717/peerj-cs.1045/ref-50
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2019
  ident: 10.7717/peerj-cs.1045/ref-79
  article-title: Transfusion: understanding transfer learning for medical imaging
– start-page: 3733
  year: 2018
  ident: 10.7717/peerj-cs.1045/ref-103
  article-title: Unsupervised feature learning via non-parametric instance discrimination
– year: 2016
  ident: 10.7717/peerj-cs.1045/ref-78
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-89
  article-title: COVID-19 prognosis via self-supervised representation learning and multi-image prediction
– volume: 58
  start-page: 101539
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-12
  article-title: Self-supervised learning for medical image analysis using image context restoration
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.101539
– start-page: 234
  year: 2015
  ident: 10.7717/peerj-cs.1045/ref-80
  article-title: U-net: convolutional networks for biomedical image segmentation
– start-page: 1096
  year: 2008
  ident: 10.7717/peerj-cs.1045/ref-99
  article-title: Extracting and composing robust features with denoising autoencoders
– start-page: 384
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-113
  article-title: Models genesis: generic autodidactic models for 3d medical image analysis
– volume: 9
  start-page: 2
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-41
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
  doi: 10.3390/technologies9010002
– start-page: 728
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-87
  article-title: MoCo pretraining improves representation and transferability of chest x-ray models
– start-page: 214
  year: 2017
  ident: 10.7717/peerj-cs.1045/ref-4
  article-title: Wasserstein generative adversarial networks
– year: 2017
  ident: 10.7717/peerj-cs.1045/ref-86
  article-title: Prototypical networks for few-shot learning
– start-page: 1251
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-91
  article-title: Surrogate supervision for medical image analysis: effective deep learning from limited quantities of labeled data
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-48
  article-title: Unsupervised representation learning by predicting image rotations
– volume: 8
  start-page: 162973
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-72
  article-title: Self-supervised learning based on spatial awareness for medical image analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021469
– volume: 13
  start-page: 925
  issue: 6
  year: 2018
  ident: 10.7717/peerj-cs.1045/ref-81
  article-title: Exploiting the potential of unlabeled endoscopic video data with self-supervised learning
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-018-1772-0
– volume: 72
  start-page: 102094
  year: 2021
  ident: 10.7717/peerj-cs.1045/ref-60
  article-title: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2021.102094
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.7717/peerj-cs.1045/ref-101
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– start-page: 420
  year: 2019
  ident: 10.7717/peerj-cs.1045/ref-117
  article-title: Self-supervised feature learning for 3d medical images by playing a rubiks cube
– volume: 8
  start-page: 92352
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-62
  article-title: Retinal image classification by self-supervised fuzzy clustering network
  publication-title: IEEE Access
– year: 2015
  ident: 10.7717/peerj-cs.1045/ref-85
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 2127
  year: 2018
  ident: 10.7717/peerj-cs.1045/ref-38
  article-title: Attention-based deep multiple instance learning
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-97
  article-title: Recent advances in autoencoder-based representation learning
– start-page: 4182
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-31
  article-title: Data-efficient image recognition with contrastive predictive coding
– start-page: 2005
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-57
  article-title: A multi-task self-supervised learning framework for scopy images
– start-page: 3
  year: 2013
  ident: 10.7717/peerj-cs.1045/ref-63
  article-title: Rectifier nonlinearities improve neural network acoustic models
– volume: 24
  start-page: 3338
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-82
  article-title: Machine learning techniques for ophthalmic data processing: a review
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.3012134
– year: 2021
  ident: 10.7717/peerj-cs.1045/ref-112
  article-title: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2021.3054390
– year: 2018
  ident: 10.7717/peerj-cs.1045/ref-98
  article-title: Representation learning with contrastive predictive coding. CoRR
– start-page: 3111
  volume-title: Advances in neural information processing systems
  year: 2013
  ident: 10.7717/peerj-cs.1045/ref-67
  article-title: Distributed representations of words and phrases and their compositionality
– start-page: 1597
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-13
  article-title: A simple framework for contrastive learning of visual representations
– volume: Vol. 33
  start-page: 9912
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: 10.7717/peerj-cs.1045/ref-10
  article-title: Unsupervised learning of visual features by contrasting cluster assignments
SSID ssj0001511119
Score 2.5465956
Snippet The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1045
SubjectTerms Annotations
Artificial Intelligence
Bioinformatics
Computer Vision
Contrastive Learning
Data Mining and Machine Learning
Data Science
Datasets
Deep learning
Human performance
Imaging Modality
Localization
Machine learning
Machine vision
Medical advice systems
Medical imaging
Medical imaging equipment
Pretext Task
Self-Supervised Learning
State-of-the-art reviews
Surveys
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge-GF37DAQAYheCFaa8exzQva0KaBxIQ2JvZm2Y5dira0NA0S_z13ids1QvAanyXnfD7f-ezvI-SV5FZoXYm8sNHmWFnKnY7jvCwjd8yPyhDxvfPnk_L4vPh0IS7SgVuTrlWufGLnqKuZxzPyPdgGNWKPjPT7-c8cWaOwupooNG6SbXDBCpKv7YPDky-n16csAl2C7sE1JaQue_MQFj9y32BxUww2ow6z_2_PvLE1Da9NbuxDR3fJ7RRA0v1-xu-RG6G-T-6syBloWqsPyLezcBnzpp2jM2hCRRM_xIT2pNENtXVFN-vXdFrTq75uQ6dXHXsRyPSYJe-opU27-BV-PyTnR4dfPxzniUUh90KxZe5Dyb3zFSRm4yJasBwWsTppx6XVNhaQfzDwiBJiAwgXhFLCBxZKpj1XRRUZf0S26lkddghlIyl5VMhx5YqIdDW8clxUQYsglFMZebtSp_EJYhyZLi4NpBqofdNp3_jGoPYz8notPu-xNf4leIBzsxZCSOzuw2wxMWmFGVU4Fb2WEMNphBV0hfbgzaMuHHfc64y8xJk1CHpR462aiW2bxnw8OzX7EGZJLse6yMibJBRnMHJv0yMF-H_EyRpI7g4kYVX6YfPKgEzyCo25tuGMvFg3Y0-86VaHWQsyeGoAcd2IZeRxb2_r_-YlRHdaQW85sMSBYoYt9fR7hxkOKoHQWD75_7CeklsMn3cgcKjeJVvLRRueQdC1dM_TyvoDdFMuyw
  priority: 102
  providerName: ProQuest
Title Self-supervised learning methods and applications in medical imaging analysis: a survey
URI https://www.ncbi.nlm.nih.gov/pubmed/36091989
https://www.proquest.com/docview/2839053709
https://www.proquest.com/docview/2713307402
https://pubmed.ncbi.nlm.nih.gov/PMC9455147
https://doaj.org/article/84b8fc9725694540b49c538f94b3b3c9
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgvPDCNywwKoMQvBCt9Uds87ahlYHEhDYm9mbZjj2KtrRqGiT-e-6StGqEEC-81hfJuZzvo-f7_Qh5pbiTxpQyFy65HDtLuTdpkhdF4p6FcRETzjt_PimOz8WnC3mxRfWFd8I6eOBOcftaeJ2CURCaDaLFeWECHNJkhOeeh3Z0D2LeVjHVzQejKzAdqKaCkmV_EePyRx5qbGrKQRBqsfr_9MhbIWl4XXIr_kzvkTt94kgPug3fJzdi9YDcXZMy0P6MPiTfzuJVyutmgU6gjiXteSEuaUcWXVNXlXS7b01nFb3u-jV0dt2yFoFMh1XyjjpaN8uf8dcjcj49-vr-OO_ZE_IgNVvlIRY8-FBCQTYRyYHFsIRdSTcpnHFJQN3BwBMqyAkgTZBayxBZLJgJXIsyMf6Y7FTzKu4SysZK8aSR28qLhDQ1vPRcltHIKLXXGXm7VqcNPbQ4MlxcWSgxUPu21b4NtUXtZ-T1RnzRYWr8TfAQv81GCKGw2x_AQGxvIPZfBpKRl_hlLYJdVHib5tI1dW0_np3aA0ivFFcTIzLyphdKc9h5cP1wArw_4mMNJPcGknAaw3B5bUC29wa1hRTOIG7OGDbzYrOMT-INtyrOG5DBfwsgnxuzjDzp7G3z3rwACzcanlYDSxwoZrhSzb63WOGgEkiJ1dP_ocln5DbD4Q-EFTV7ZGe1bOJzSMlWfkRu6umHEbl1eHTy5XTUnsXfTRI3jA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqcoAL-xIoYBDLhagzXpIYCaGyDDN0OdBW7c04jj0MajPDZALqn-I38l6W6UQIbr3GL1Ly_Db72d9HyLOYG6lUJkNhvAmxsxSmyvfDKPI8ZbYXOY_3nXf3ouGh-Hwsj9fI7_YuDB6rbGNiFaizqcU98k1IgwqxR3rq7exHiKxR2F1tKTRqs9h2Z79gyVa8GX2A-X3O2ODjwfth2LAKhFYmbBFaF3Gb2gwWKn3hDWiSeezWmX5klPEC6nEGESKGXAnpUyaJtI65iCnLE5F5BDqAkH9JcK7Qo5LBp_M9HYkBSNVQnjEslDZnzs2_h7bAVqrspL6KIeDvPLCSCLuHNFey3uA6udqUq3Srtq8bZM3lN8m1lgqCNpHhFjnadyc-LMoZhp7CZbRhoxjTmqK6oCbP6Gq3nE5yelp3iejktOJKApkaIeU1NbQo5z_d2W1yeCHavUPW82nu7hHKenHMfYKMWqnwSI7Ds5TLzCnpZJImAXnVqlPbBtAceTVONCxsUPu60r62hUbtB-TFUnxWI3n8S_Adzs1SCAG4qwfT-Vg3_qwTkSbeqhgqRoUghqlQFnKHVyLlKbcqIE9xZjVCbOR4hmdsyqLQo_0veguKupjHfSUC8rIR8lP4cmuaKxHw_4jK1ZHc6EhCDLDd4daAdBODCn3uMQF5shzGN_FcXe6mJcjgHgVUkT0WkLu1vS3_m0dQS6oE3o47lthRTHckn3yrEMpBJVCIx_f__1mPyeXhwe6O3hntbT8gVxheLEHIUrVB1hfz0j2Ecm-RPqp8jJKvF-3UfwCkBWlp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTUK8cL8EBhjE5YWobRzHMRJCG1u1MqimjYm9GduxS9GWlqYF7a_x6zgnl64Rgre9xidScnxu9rG_j5DngmkuZcbDWHsdYmcpNNL3wiTxzES2mziP950_DZO94_jDCT9ZI7-buzB4rLKJiWWgziYW98g7kAYlYo90ZcfXxyIOdvrvpj9CZJDCTmtDp1GZyL47_wXLt-LtYAfm-kUU9Xc_v98La4aB0PI0mofWJcwam8GipRd7DVqNPHbudC_RUvsYavMIooWAvAmplKcpty5ySSQtS-PMI-gBhP8NAaui7jrZ2N4dHhxe7PBwDEeyAvYUsGzqTJ2bfQ9tgY1V3kqEJV_A31lhJS22j2yu5MD-DXKtLl7pVmVtN8may2-R6w0xBK3jxG3y5cid-rBYTDEQFS6jNTfFiFaE1QXVeUZXe-d0nNOzqmdEx2clcxLIVHgpb6imxWL2053fIceXot-7ZD2f5O4-oVFXCOZT5NcysUeqHJYZxjMnueOpSQPyulGnsjW8ObJsnCpY5qD2Val9ZQuF2g_Iy6X4tML1-JfgNs7NUgjhuMsHk9lI1d6t0tik3koB9aNESEMTSwuZxMvYMMOsDMgznFmFgBs5mu5IL4pCDY4O1RaUeIKJnowD8qoW8hP4cqvrCxLw_4jR1ZLcbElCRLDt4caAVB2RCnXhPwF5uhzGN_GUXe4mC5DBHQuoKbtRQO5V9rb8b5ZAZSlTeFu0LLGlmPZIPv5W4pWDSqAsFw_-_1lPyBVwaPVxMNx_SK5GeMsE8UvlJlmfzxbuEdR-c_O4djJKvl62X_8BbiZu-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+learning+methods+and+applications+in+medical+imaging+analysis%3A+a+survey&rft.jtitle=PeerJ.+Computer+science&rft.au=Saeed+Shurrab&rft.au=Rehab+Duwairi&rft.date=2022-07-19&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=8&rft.spage=e1045&rft_id=info:doi/10.7717%2Fpeerj-cs.1045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_84b8fc9725694540b49c538f94b3b3c9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon