Self-supervised learning methods and applications in medical imaging analysis: a survey
The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representation...
Saved in:
Published in | PeerJ. Computer science Vol. 8; p. e1045 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
19.07.2022
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field. |
---|---|
AbstractList | The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field. The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field.The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field. |
ArticleNumber | e1045 |
Audience | Academic |
Author | Shurrab, Saeed Duwairi, Rehab |
Author_xml | – sequence: 1 givenname: Saeed surname: Shurrab fullname: Shurrab, Saeed organization: Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, Jordan – sequence: 2 givenname: Rehab surname: Duwairi fullname: Duwairi, Rehab organization: Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, Jordan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36091989$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kttrFDEUxgep2Fr76KsM-KIPs-Y6SXwolOJloSBYxceQySTTLNlkTGYW-9-b3a21WzR5yO13vpxz-J5XRyEGU1UvIVgwBtm70Zi0anReQEDok-oEYdY2VAh09GB_XJ3lvAIAQArLEM-qY9wCAQUXJ9WPa-Ntk-fRpI3Lpq-9USm4MNRrM93EPtcq9LUaR--0mlwMuXahvPXl6Gu3VsOWVUH52-zy-1rVeU4bc_uiemqVz-bsbj2tvn_88O3yc3P15dPy8uKq0ZSjqdGmxbrTPRQQEquM6pGFmAsFWyWUJQRxxFrEAIeAcco51QaZFgmNOektwqfVcq_bR7WSYyoZpVsZlZO7i5gGqdLktDeSk45bLRiirSCUgI4ITTG3gnS4w1oUrfO91jh3pUJtwpSUPxA9fAnuRg5xI4schYQVgTd3Ain-nE2e5NplbbxXwcQ5S8QgxoARsM379SN0FedU2lgojgWgmAHxlxpUKcAFG8u_eisqL1jpCGZQkEIt_kGV2Zu108Ux1pX7g4C3BwGFmcyvaVBzznJ5_fWQffWwKffd-GOhAjR7QKeYczL2HoFAbl0qdy6VOsutSwuPH_HaTTtrlayd_0_Ub13Z6nQ |
CitedBy_id | crossref_primary_10_1007_s11042_024_20130_0 crossref_primary_10_1016_j_compbiomed_2025_109874 crossref_primary_10_1109_ACCESS_2024_3433559 crossref_primary_10_1016_j_oceaneng_2024_116796 crossref_primary_10_1038_s41598_024_53528_9 crossref_primary_10_1016_j_engappai_2023_105837 crossref_primary_10_1109_JSEN_2024_3443885 crossref_primary_10_1007_s10815_024_03080_2 crossref_primary_10_26599_BDMA_2024_9020090 crossref_primary_10_1016_j_patcog_2024_110856 crossref_primary_10_3390_s25020531 crossref_primary_10_1002_path_6373 crossref_primary_10_1016_j_jvcir_2023_103949 crossref_primary_10_1038_s41746_023_00811_0 crossref_primary_10_1186_s12911_024_02529_9 crossref_primary_10_1007_s11042_023_16908_3 crossref_primary_10_1007_s13748_024_00325_0 crossref_primary_10_1109_ACCESS_2023_3268704 crossref_primary_10_3389_fonc_2024_1419621 crossref_primary_10_3390_s23094221 crossref_primary_10_3390_rs14184523 crossref_primary_10_1016_j_compmedimag_2025_102517 crossref_primary_10_1109_ACCESS_2024_3381517 crossref_primary_10_1016_j_neuroimage_2023_120086 crossref_primary_10_1109_TMM_2024_3521807 crossref_primary_10_3390_diagnostics14060599 crossref_primary_10_3389_fimag_2024_1339770 crossref_primary_10_1109_ACCESS_2023_3344531 crossref_primary_10_1186_s12938_024_01299_9 crossref_primary_10_1016_j_bspc_2024_106387 crossref_primary_10_1186_s40708_024_00246_7 crossref_primary_10_29130_dubited_1201292 crossref_primary_10_1016_j_compbiomed_2025_109829 crossref_primary_10_1016_j_procs_2023_10_295 crossref_primary_10_1016_j_cag_2024_104086 crossref_primary_10_1109_JBHI_2022_3227517 crossref_primary_10_2196_46493 crossref_primary_10_1016_j_tcb_2022_11_011 crossref_primary_10_1007_s11042_023_16306_9 crossref_primary_10_1007_s10278_024_01032_x crossref_primary_10_1007_s11633_022_1382_8 crossref_primary_10_17798_bitlisfen_1558069 crossref_primary_10_1007_s13755_023_00266_3 crossref_primary_10_1016_j_compbiomed_2024_108087 crossref_primary_10_1016_j_jag_2023_103624 crossref_primary_10_3390_cancers15143608 crossref_primary_10_1016_j_isci_2024_109766 crossref_primary_10_1016_j_media_2023_102879 crossref_primary_10_1007_s12530_024_09581_w crossref_primary_10_1016_j_csl_2024_101622 crossref_primary_10_1016_j_engappai_2024_108489 crossref_primary_10_3390_math12050758 crossref_primary_10_1007_s11633_022_1406_4 crossref_primary_10_1016_j_aej_2025_01_130 crossref_primary_10_1186_s12880_024_01253_0 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_3390_jimaging8120320 crossref_primary_10_3389_fphys_2022_994343 crossref_primary_10_1109_TETCI_2024_3400885 crossref_primary_10_7717_peerj_cs_1335 crossref_primary_10_3390_bdcc8090121 crossref_primary_10_3389_fmicb_2024_1255850 crossref_primary_10_1007_s12145_024_01402_7 crossref_primary_10_1038_s41568_024_00694_7 crossref_primary_10_1186_s12903_024_04235_4 crossref_primary_10_1016_j_inffus_2024_102741 crossref_primary_10_3390_ai5040111 crossref_primary_10_3390_diagnostics12071526 crossref_primary_10_1007_s10278_024_00975_5 crossref_primary_10_3390_e24040551 crossref_primary_10_1016_j_media_2024_103319 crossref_primary_10_1007_s12194_024_00874_y crossref_primary_10_1016_j_joen_2023_11_002 crossref_primary_10_1038_s41571_025_00991_6 crossref_primary_10_1371_journal_pone_0314707 crossref_primary_10_1016_j_joen_2023_11_004 crossref_primary_10_1109_TPAMI_2025_3526802 crossref_primary_10_1038_s41598_024_74043_x crossref_primary_10_1038_s44172_024_00246_9 crossref_primary_10_1177_00220345241255593 crossref_primary_10_3390_info15080491 crossref_primary_10_3390_ijerph191811597 |
Cites_doi | 10.1109/TPAMI.2015.2496141 10.1109/CVPR.2010.5539957 10.1007/s13244-018-0639-9 10.1109/ACCESS.2020.3031549 10.1109/TPAMI.2012.120 10.1016/j.media.2020.101693 10.1117/12.2549627 10.1016/j.media.2020.101746 10.1109/ACCESS.2021.3084358 10.3233/FAIA200303 10.4018/978-1-60566-766-9.ch011 10.1016/0098-3004(84)90020-7 10.1109/TMI.2021.3056023 10.1007/s10916-017-0844-y 10.1016/C2018-0-02465-2 10.1016/j.neucom.2021.08.051 10.1016/j.asoc.2020.106210 10.1016/j.patcog.2021.107826 10.1016/j.eswa.2021.115598 10.1109/TPAMI.2020.2992393 10.1109/ACCESS.2019.2929365 10.1109/ICCV48922.2021.00346 10.1007/978-3-319-67558-9_34 10.1109/TKDE.2021.3090866 10.17632/rscbjbr9sj.3 10.1038/s42256-020-00247-1 10.1016/j.knosys.2021.107090 10.1109/ACCESS.2017.2788044 10.1109/TMI.2020.3008871 10.1109/TMI.2021.3075244 10.1016/j.media.2019.101539 10.3390/technologies9010002 10.1109/ACCESS.2020.3021469 10.1007/s11548-018-1772-0 10.1016/j.media.2021.102094 10.1109/TIP.2003.819861 10.1109/JBHI.2020.3012134 10.1109/JPROC.2021.3054390 |
ContentType | Journal Article |
Copyright | 2022 Shurrab et al. COPYRIGHT 2022 PeerJ. Ltd. 2022 Shurrab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Shurrab et al. 2022 Shurrab et al. |
Copyright_xml | – notice: 2022 Shurrab et al. – notice: COPYRIGHT 2022 PeerJ. Ltd. – notice: 2022 Shurrab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Shurrab et al. 2022 Shurrab et al. |
DBID | AAYXX CITATION NPM ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.1045 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_84b8fc9725694540b49c538f94b3b3c9 PMC9455147 A710737194 36091989 10_7717_peerj_cs_1045 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Jordan University of Science and Technology grantid: 20210418 |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM ARCSS NPM PQGLB PMFND 3V. 7XB 8AL 8FK COVID JQ2 M0N PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c582t-ce63cbcd19114faead2f1389a16a9af4428276270810785885ce2e629c384df23 |
IEDL.DBID | DOA |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:26:55 EDT 2025 Thu Aug 21 13:48:42 EDT 2025 Fri Jul 11 08:41:08 EDT 2025 Mon Jul 14 07:47:39 EDT 2025 Tue Jun 17 21:38:58 EDT 2025 Tue Jun 10 20:46:05 EDT 2025 Fri Jun 27 05:02:50 EDT 2025 Mon Jul 21 06:00:48 EDT 2025 Tue Jul 01 02:28:53 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Contrastive Learning Pretext Task Imaging Modality Self-Supervised Learning Medical-Imaging |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2022 Shurrab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c582t-ce63cbcd19114faead2f1389a16a9af4428276270810785885ce2e629c384df23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/84b8fc9725694540b49c538f94b3b3c9 |
PMID | 36091989 |
PQID | 2839053709 |
PQPubID | 2045934 |
PageCount | e1045 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84b8fc9725694540b49c538f94b3b3c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9455147 proquest_miscellaneous_2713307402 proquest_journals_2839053709 gale_infotracmisc_A710737194 gale_infotracacademiconefile_A710737194 gale_incontextgauss_ISR_A710737194 pubmed_primary_36091989 crossref_primary_10_7717_peerj_cs_1045 crossref_citationtrail_10_7717_peerj_cs_1045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-19 |
PublicationDateYYYYMMDD | 2022-07-19 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2022 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Holmberg (10.7717/peerj-cs.1045/ref-35) 2020; 2 Chen (10.7717/peerj-cs.1045/ref-15) 2021; 113 Taleb (10.7717/peerj-cs.1045/ref-93) 2021 Haghighi (10.7717/peerj-cs.1045/ref-27) 2020 Schmarje (10.7717/peerj-cs.1045/ref-83) 2021 Zhou (10.7717/peerj-cs.1045/ref-112) 2021 Prakash (10.7717/peerj-cs.1045/ref-77) 2020 Li (10.7717/peerj-cs.1045/ref-57) 2020 Torrey (10.7717/peerj-cs.1045/ref-96) 2010 Yamashita (10.7717/peerj-cs.1045/ref-105) 2018; 9 He (10.7717/peerj-cs.1045/ref-29) 2016 Raghu (10.7717/peerj-cs.1045/ref-79) 2019 Wang (10.7717/peerj-cs.1045/ref-102) 2017 Doersch (10.7717/peerj-cs.1045/ref-19) 2015 Huang (10.7717/peerj-cs.1045/ref-37) 2017 Jiao (10.7717/peerj-cs.1045/ref-43) 2020 Radford (10.7717/peerj-cs.1045/ref-78) 2016 Van den Oord (10.7717/peerj-cs.1045/ref-98) 2018 Mikolov (10.7717/peerj-cs.1045/ref-67) 2013 Zhang (10.7717/peerj-cs.1045/ref-109) 2021; 462 Tajbakhsh (10.7717/peerj-cs.1045/ref-91) 2019 Jamaludin (10.7717/peerj-cs.1045/ref-42) 2017 Wang (10.7717/peerj-cs.1045/ref-101) 2004; 13 Ioffe (10.7717/peerj-cs.1045/ref-39) 2015 He (10.7717/peerj-cs.1045/ref-30) 2016 Krizhevsky (10.7717/peerj-cs.1045/ref-50) 2012; 25 Anwar (10.7717/peerj-cs.1045/ref-3) 2018; 42 Deng (10.7717/peerj-cs.1045/ref-18) 2009 He (10.7717/peerj-cs.1045/ref-28) 2020 Zhang (10.7717/peerj-cs.1045/ref-110) 2017 Altaf (10.7717/peerj-cs.1045/ref-2) 2019; 7 Ker (10.7717/peerj-cs.1045/ref-46) 2017; 6 Setio (10.7717/peerj-cs.1045/ref-84) 2016 Zhang (10.7717/peerj-cs.1045/ref-108) 2017 Goodfellow (10.7717/peerj-cs.1045/ref-24) 2014; 27 Zhou (10.7717/peerj-cs.1045/ref-113) 2019 Jaiswal (10.7717/peerj-cs.1045/ref-41) 2021; 9 Le-Khac (10.7717/peerj-cs.1045/ref-53) 2020; 8 Chen (10.7717/peerj-cs.1045/ref-14) 2021 Snell (10.7717/peerj-cs.1045/ref-86) 2017 Zhu (10.7717/peerj-cs.1045/ref-115) 2020 Larsson (10.7717/peerj-cs.1045/ref-52) 2017 Chopra (10.7717/peerj-cs.1045/ref-16) 2005 Achanta (10.7717/peerj-cs.1045/ref-1) 2012; 34 Li (10.7717/peerj-cs.1045/ref-56) 2020 Hervella (10.7717/peerj-cs.1045/ref-32) 2020 Oord (10.7717/peerj-cs.1045/ref-75) 2016 Grill (10.7717/peerj-cs.1045/ref-25) 2020; vol. 33 Hervella (10.7717/peerj-cs.1045/ref-34) 2021; 185 Ilse (10.7717/peerj-cs.1045/ref-38) 2018 Morano (10.7717/peerj-cs.1045/ref-70) 2020 Sriram (10.7717/peerj-cs.1045/ref-89) 2021 Chen (10.7717/peerj-cs.1045/ref-13) 2020 Arjovsky (10.7717/peerj-cs.1045/ref-4) 2017 Tajbakhsh (10.7717/peerj-cs.1045/ref-92) 2020; 63 Nguyen (10.7717/peerj-cs.1045/ref-72) 2020; 8 Chaitanya (10.7717/peerj-cs.1045/ref-11) 2020; Vol. 33 Lu (10.7717/peerj-cs.1045/ref-60) 2021; 72 Zhu (10.7717/peerj-cs.1045/ref-114) 2020; 64 Zhu (10.7717/peerj-cs.1045/ref-116) 2017 Krull (10.7717/peerj-cs.1045/ref-51) 2019 Li (10.7717/peerj-cs.1045/ref-55) 2020; 39 Ohri (10.7717/peerj-cs.1045/ref-74) 2021; 224 Donahue (10.7717/peerj-cs.1045/ref-20) 2016 Maas (10.7717/peerj-cs.1045/ref-63) 2013 Mao (10.7717/peerj-cs.1045/ref-64) 2020 Bakas (10.7717/peerj-cs.1045/ref-7) 2018 Caron (10.7717/peerj-cs.1045/ref-10) 2020; Vol. 33 Mitchell (10.7717/peerj-cs.1045/ref-68) 2021 Jing (10.7717/peerj-cs.1045/ref-44) 2020; 43 Sarhan (10.7717/peerj-cs.1045/ref-82) 2020; 24 Sowrirajan (10.7717/peerj-cs.1045/ref-87) 2021 Vu (10.7717/peerj-cs.1045/ref-100) 2021 Chen (10.7717/peerj-cs.1045/ref-12) 2019; 58 Cuturi (10.7717/peerj-cs.1045/ref-17) 2013; 26 Zhang (10.7717/peerj-cs.1045/ref-107) 2016 Matzkin (10.7717/peerj-cs.1045/ref-65) 2020 Vincent (10.7717/peerj-cs.1045/ref-99) 2008 Bengio (10.7717/peerj-cs.1045/ref-8) 2007 Komodakis (10.7717/peerj-cs.1045/ref-48) 2018 Zhuang (10.7717/peerj-cs.1045/ref-117) 2019 Tschannen (10.7717/peerj-cs.1045/ref-97) 2018 Ross (10.7717/peerj-cs.1045/ref-81) 2018; 13 Bai (10.7717/peerj-cs.1045/ref-6) 2019 Dong (10.7717/peerj-cs.1045/ref-21) 2021 Xie (10.7717/peerj-cs.1045/ref-104) 2020 Karpathy (10.7717/peerj-cs.1045/ref-45) 2016 Hervella (10.7717/peerj-cs.1045/ref-33) 2020; 91 Simonyan (10.7717/peerj-cs.1045/ref-85) 2015 Azizi (10.7717/peerj-cs.1045/ref-5) 2021 Hu (10.7717/peerj-cs.1045/ref-36) 2020 Mena (10.7717/peerj-cs.1045/ref-66) 2018 Lučić (10.7717/peerj-cs.1045/ref-61) 2019 Pathak (10.7717/peerj-cs.1045/ref-76) 2016 Dosovitskiy (10.7717/peerj-cs.1045/ref-22) 2015; 38 Liu (10.7717/peerj-cs.1045/ref-58) 2021 Li (10.7717/peerj-cs.1045/ref-54) 2021; 40 Spitzer (10.7717/peerj-cs.1045/ref-88) 2018 Henaff (10.7717/peerj-cs.1045/ref-31) 2020 Noroozi (10.7717/peerj-cs.1045/ref-73) 2016 Ronneberger (10.7717/peerj-cs.1045/ref-80) 2015 Bezdek (10.7717/peerj-cs.1045/ref-9) 1984; 10 Miyato (10.7717/peerj-cs.1045/ref-69) 2018 Luo (10.7717/peerj-cs.1045/ref-62) 2020; 8 Tao (10.7717/peerj-cs.1045/ref-95) 2020 Nair (10.7717/peerj-cs.1045/ref-71) 2010 Goodfellow (10.7717/peerj-cs.1045/ref-23) 2016; vol. 1 Taleb (10.7717/peerj-cs.1045/ref-94) 2020; Vol. 33 Koohbanani (10.7717/peerj-cs.1045/ref-49) 2021; 40 Kermany (10.7717/peerj-cs.1045/ref-47) 2018 Irvin (10.7717/peerj-cs.1045/ref-40) 2019 Gutmann (10.7717/peerj-cs.1045/ref-26) 2010 Zhang (10.7717/peerj-cs.1045/ref-111) 2020 Szegedy (10.7717/peerj-cs.1045/ref-90) 2015 Wu (10.7717/peerj-cs.1045/ref-103) 2018 Zeiler (10.7717/peerj-cs.1045/ref-106) 2010 Lu (10.7717/peerj-cs.1045/ref-59) 2020 |
References_xml | – volume: 38 start-page: 1734 issue: 9 year: 2015 ident: 10.7717/peerj-cs.1045/ref-22 article-title: Discriminative unsupervised feature learning with exemplar convolutional neural networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2496141 – year: 2018 ident: 10.7717/peerj-cs.1045/ref-66 article-title: Learning latent permutations with Gumbel-Sinkhorn networks – start-page: 2528 year: 2010 ident: 10.7717/peerj-cs.1045/ref-106 article-title: Deconvolutional networks doi: 10.1109/CVPR.2010.5539957 – start-page: 297 year: 2010 ident: 10.7717/peerj-cs.1045/ref-26 article-title: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models – start-page: 69 year: 2016 ident: 10.7717/peerj-cs.1045/ref-73 article-title: Unsupervised learning of visual representations by solving jigsaw puzzles – volume: 9 start-page: 611 issue: 4 year: 2018 ident: 10.7717/peerj-cs.1045/ref-105 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Into Imaging doi: 10.1007/s13244-018-0639-9 – start-page: 137 year: 2020 ident: 10.7717/peerj-cs.1045/ref-27 article-title: Learning semantics-enriched representation via self-discovery, self-classification, and self-restoration – volume: 8 start-page: 193907 year: 2020 ident: 10.7717/peerj-cs.1045/ref-53 article-title: Contrastive representation learning: a framework and review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031549 – start-page: 590 year: 2019 ident: 10.7717/peerj-cs.1045/ref-40 article-title: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison – start-page: 539 year: 2005 ident: 10.7717/peerj-cs.1045/ref-16 article-title: Learning a similarity metric discriminatively, with application to face verification – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10.7717/peerj-cs.1045/ref-1 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.120 – volume: 63 start-page: 101693 year: 2020 ident: 10.7717/peerj-cs.1045/ref-92 article-title: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101693 – start-page: 2097 year: 2017 ident: 10.7717/peerj-cs.1045/ref-102 article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – start-page: 649 year: 2016 ident: 10.7717/peerj-cs.1045/ref-107 article-title: Colorful image colorization – year: 2020 ident: 10.7717/peerj-cs.1045/ref-59 article-title: Semi-supervised breast cancer histology classification using deep multiple instance learning and contrast predictive coding (Conference Presentation) doi: 10.1117/12.2549627 – start-page: 2536 year: 2016 ident: 10.7717/peerj-cs.1045/ref-76 article-title: Context encoders: feature learning by inpainting – start-page: 4700 year: 2017 ident: 10.7717/peerj-cs.1045/ref-37 article-title: Densely connected convolutional networks – volume: 64 start-page: 101746 year: 2020 ident: 10.7717/peerj-cs.1045/ref-114 article-title: Rubiks cube+: a self-supervised feature learning framework for 3d medical image analysis publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101746 – start-page: 448 year: 2015 ident: 10.7717/peerj-cs.1045/ref-39 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – start-page: 390 year: 2020 ident: 10.7717/peerj-cs.1045/ref-65 article-title: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy – year: 2021 ident: 10.7717/peerj-cs.1045/ref-83 article-title: A survey on semi-, self-and unsupervised learning for image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084358 – start-page: 2223 year: 2017 ident: 10.7717/peerj-cs.1045/ref-116 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – start-page: 1058 year: 2017 ident: 10.7717/peerj-cs.1045/ref-108 article-title: Split-brain autoencoders: unsupervised learning by cross-channel prediction – start-page: 578 year: 2017 ident: 10.7717/peerj-cs.1045/ref-110 article-title: Self supervised deep representation learning for fine-grained body part recognition – start-page: 1866 year: 2020 ident: 10.7717/peerj-cs.1045/ref-70 article-title: Multimodal transfer learning-based approaches for retinal vascular segmentation doi: 10.3233/FAIA200303 – start-page: 2129 year: 2019 ident: 10.7717/peerj-cs.1045/ref-51 article-title: Noise2void-learning denoising from single noisy images – volume: 26 start-page: 2292 year: 2013 ident: 10.7717/peerj-cs.1045/ref-17 article-title: Sinkhorn distances: lightspeed computation of optimal transport publication-title: Advances in Neural Information Processing Systems – start-page: 9729 year: 2020 ident: 10.7717/peerj-cs.1045/ref-28 article-title: Momentum contrast for unsupervised visual representation learning – volume: vol. 33 start-page: 21271 volume-title: Advances in neural information processing systems year: 2020 ident: 10.7717/peerj-cs.1045/ref-25 article-title: Bootstrap your own latent—a new approach to self-supervised learning – start-page: 961 year: 2020 ident: 10.7717/peerj-cs.1045/ref-32 article-title: Multi-modal self-supervised pre-training for joint optic disc and cup segmentation in eye fundus images – start-page: 770 year: 2016 ident: 10.7717/peerj-cs.1045/ref-29 article-title: Deep residual learning for image recognition – start-page: 663 year: 2018 ident: 10.7717/peerj-cs.1045/ref-88 article-title: Improving cytoarchitectonic segmentation of human brain areas with self-supervised siamese networks – start-page: 242 volume-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques year: 2010 ident: 10.7717/peerj-cs.1045/ref-96 article-title: Transfer learning doi: 10.4018/978-1-60566-766-9.ch011 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.7717/peerj-cs.1045/ref-9 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Computers & Geosciences doi: 10.1016/0098-3004(84)90020-7 – volume: 40 start-page: 2845 issue: 10 year: 2021 ident: 10.7717/peerj-cs.1045/ref-49 article-title: Self-Path: self-supervision for classification of pathology images with limited annotations publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2021.3056023 – volume: 42 start-page: 1 issue: 11 year: 2018 ident: 10.7717/peerj-cs.1045/ref-3 article-title: Medical image analysis using convolutional neural networks: a review publication-title: Journal of Medical Systems doi: 10.1007/s10916-017-0844-y – year: 2020 ident: 10.7717/peerj-cs.1045/ref-111 article-title: Universal model for 3D medical image analysis – start-page: 541 year: 2019 ident: 10.7717/peerj-cs.1045/ref-6 article-title: Self-supervised learning for cardiac mr image segmentation by anatomical position prediction – start-page: 4183 year: 2019 ident: 10.7717/peerj-cs.1045/ref-61 article-title: High-fidelity image generation with fewer labels – volume: Vol. 33 start-page: 12546 volume-title: Advances in neural information processing systems year: 2020 ident: 10.7717/peerj-cs.1045/ref-11 article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations – volume: 27 year: 2014 ident: 10.7717/peerj-cs.1045/ref-24 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – start-page: 630 year: 2016 ident: 10.7717/peerj-cs.1045/ref-30 article-title: Identity mappings in deep residual networks – start-page: 41 volume-title: Artificial intelligence and deep learning in pathology year: 2021 ident: 10.7717/peerj-cs.1045/ref-68 article-title: Chapter 3 - overview of advanced neural network architectures doi: 10.1016/C2018-0-02465-2 – volume: 462 start-page: 491 issue: C year: 2021 ident: 10.7717/peerj-cs.1045/ref-109 article-title: Twin Self-supervision Based Semi-supervised Learning (TS-SSL): retinal anomaly classification in SD-OCT images publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.051 – start-page: 428 year: 2020 ident: 10.7717/peerj-cs.1045/ref-77 article-title: Leveraging self-supervised denoising for image segmentation – volume-title: International conference on machine learning year: 2010 ident: 10.7717/peerj-cs.1045/ref-71 article-title: Rectified linear units improve restricted boltzmann machines – volume: 91 start-page: 106210 year: 2020 ident: 10.7717/peerj-cs.1045/ref-33 article-title: Learning the retinal anatomy from scarce annotated data using self-supervised multimodal reconstruction publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106210 – volume: 113 start-page: 107826 year: 2021 ident: 10.7717/peerj-cs.1045/ref-15 article-title: Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.107826 – start-page: 1 year: 2015 ident: 10.7717/peerj-cs.1045/ref-90 article-title: Going deeper with convolutions – year: 2018 ident: 10.7717/peerj-cs.1045/ref-7 article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge – volume: 185 start-page: 115598 year: 2021 ident: 10.7717/peerj-cs.1045/ref-34 article-title: Self-supervised multimodal reconstruction pre-training for retinal computer-aided diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115598 – volume: 43 start-page: 4037 issue: 11 year: 2020 ident: 10.7717/peerj-cs.1045/ref-44 article-title: Self-supervised visual feature learning with deep neural networks: a survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.2992393 – start-page: 248 year: 2009 ident: 10.7717/peerj-cs.1045/ref-18 article-title: Imagenet: a large-scale hierarchical image database – year: 2021 ident: 10.7717/peerj-cs.1045/ref-100 article-title: MedAug: contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation – start-page: 6874 year: 2017 ident: 10.7717/peerj-cs.1045/ref-52 article-title: Colorization as a proxy task for visual understanding – start-page: 614 year: 2020 ident: 10.7717/peerj-cs.1045/ref-56 article-title: Self-loop uncertainty: a novel pseudo-label for semi-supervised medical image segmentation – start-page: 47974805 year: 2016 ident: 10.7717/peerj-cs.1045/ref-75 article-title: Conditional image generation with PixelCNN decoders – volume: 7 start-page: 99540 year: 2019 ident: 10.7717/peerj-cs.1045/ref-2 article-title: Going deep in medical image analysis: concepts, methods, challenges, and future directions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929365 – year: 2021 ident: 10.7717/peerj-cs.1045/ref-5 article-title: Big self-supervised models advance medical image classification doi: 10.1109/ICCV48922.2021.00346 – year: 2016 ident: 10.7717/peerj-cs.1045/ref-45 article-title: Convolutional neural networks for visual recognition. Online course – year: 2016 ident: 10.7717/peerj-cs.1045/ref-84 article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. CoRR – start-page: 294 volume-title: Deep learning in medical image analysis and multimodal learning for clinical decision support year: 2017 ident: 10.7717/peerj-cs.1045/ref-42 article-title: Self-supervised learning for spinal MRIs doi: 10.1007/978-3-319-67558-9_34 – year: 2021 ident: 10.7717/peerj-cs.1045/ref-58 article-title: Self-supervised learning: generative or contrastive publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2021.3090866 – year: 2018 ident: 10.7717/peerj-cs.1045/ref-47 article-title: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images. Mendeley Data, version 3 doi: 10.17632/rscbjbr9sj.3 – year: 2020 ident: 10.7717/peerj-cs.1045/ref-64 article-title: A survey on self-supervised pre-training for sequential transfer learning in neural networks – start-page: 779 year: 2021 ident: 10.7717/peerj-cs.1045/ref-21 article-title: Self-supervised multi-task representation learning for sequential medical images – volume: 2 start-page: 719 issue: 11 year: 2020 ident: 10.7717/peerj-cs.1045/ref-35 article-title: Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-00247-1 – year: 2021 ident: 10.7717/peerj-cs.1045/ref-14 article-title: Recent advances and clinical applications of deep learning in medical image analysis – year: 2018 ident: 10.7717/peerj-cs.1045/ref-69 article-title: cGANs with projection discriminator – volume: 224 start-page: 107090 year: 2021 ident: 10.7717/peerj-cs.1045/ref-74 article-title: Review on self-supervised image recognition using deep neural networks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107090 – start-page: 238 year: 2020 ident: 10.7717/peerj-cs.1045/ref-95 article-title: Revisiting Rubiks cube: self-supervised learning with volume-wise transformation for 3D medical image segmentation – start-page: 1847 year: 2020 ident: 10.7717/peerj-cs.1045/ref-43 article-title: Self-supervised representation learning for ultrasound video – start-page: 661 year: 2021 ident: 10.7717/peerj-cs.1045/ref-93 article-title: Multimodal self-supervised learning for medical image analysis – year: 2020 ident: 10.7717/peerj-cs.1045/ref-115 article-title: Embedding task knowledge into 3D neural networks via self-supervised learning – volume: 6 start-page: 9375 year: 2017 ident: 10.7717/peerj-cs.1045/ref-46 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2788044 – start-page: 153 year: 2007 ident: 10.7717/peerj-cs.1045/ref-8 article-title: Greedy layer-wise training of deep networks – volume: vol. 1 volume-title: Deep learning year: 2016 ident: 10.7717/peerj-cs.1045/ref-23 – volume: Vol. 33 start-page: 18158 volume-title: Advances in neural information processing systems year: 2020 ident: 10.7717/peerj-cs.1045/ref-94 article-title: 3D self-supervised methods for medical imaging – volume: 39 start-page: 4023 issue: 12 year: 2020 ident: 10.7717/peerj-cs.1045/ref-55 article-title: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.3008871 – year: 2016 ident: 10.7717/peerj-cs.1045/ref-20 article-title: Adversarial feature learning – start-page: 1422 year: 2015 ident: 10.7717/peerj-cs.1045/ref-19 article-title: Unsupervised visual representation learning by context prediction – start-page: 732 year: 2020 ident: 10.7717/peerj-cs.1045/ref-36 article-title: Self-supervised pretraining with DICOM metadata in ultrasound imaging – year: 2020 ident: 10.7717/peerj-cs.1045/ref-104 article-title: Pgl: prior-guided local self-supervised learning for 3d medical image segmentation – volume: 40 start-page: 2284 issue: 9 year: 2021 ident: 10.7717/peerj-cs.1045/ref-54 article-title: Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2021.3075244 – volume: 25 start-page: 1097 year: 2012 ident: 10.7717/peerj-cs.1045/ref-50 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – year: 2019 ident: 10.7717/peerj-cs.1045/ref-79 article-title: Transfusion: understanding transfer learning for medical imaging – start-page: 3733 year: 2018 ident: 10.7717/peerj-cs.1045/ref-103 article-title: Unsupervised feature learning via non-parametric instance discrimination – year: 2016 ident: 10.7717/peerj-cs.1045/ref-78 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – year: 2021 ident: 10.7717/peerj-cs.1045/ref-89 article-title: COVID-19 prognosis via self-supervised representation learning and multi-image prediction – volume: 58 start-page: 101539 year: 2019 ident: 10.7717/peerj-cs.1045/ref-12 article-title: Self-supervised learning for medical image analysis using image context restoration publication-title: Medical Image Analysis doi: 10.1016/j.media.2019.101539 – start-page: 234 year: 2015 ident: 10.7717/peerj-cs.1045/ref-80 article-title: U-net: convolutional networks for biomedical image segmentation – start-page: 1096 year: 2008 ident: 10.7717/peerj-cs.1045/ref-99 article-title: Extracting and composing robust features with denoising autoencoders – start-page: 384 year: 2019 ident: 10.7717/peerj-cs.1045/ref-113 article-title: Models genesis: generic autodidactic models for 3d medical image analysis – volume: 9 start-page: 2 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1045/ref-41 article-title: A survey on contrastive self-supervised learning publication-title: Technologies doi: 10.3390/technologies9010002 – start-page: 728 year: 2021 ident: 10.7717/peerj-cs.1045/ref-87 article-title: MoCo pretraining improves representation and transferability of chest x-ray models – start-page: 214 year: 2017 ident: 10.7717/peerj-cs.1045/ref-4 article-title: Wasserstein generative adversarial networks – year: 2017 ident: 10.7717/peerj-cs.1045/ref-86 article-title: Prototypical networks for few-shot learning – start-page: 1251 year: 2019 ident: 10.7717/peerj-cs.1045/ref-91 article-title: Surrogate supervision for medical image analysis: effective deep learning from limited quantities of labeled data – year: 2018 ident: 10.7717/peerj-cs.1045/ref-48 article-title: Unsupervised representation learning by predicting image rotations – volume: 8 start-page: 162973 year: 2020 ident: 10.7717/peerj-cs.1045/ref-72 article-title: Self-supervised learning based on spatial awareness for medical image analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021469 – volume: 13 start-page: 925 issue: 6 year: 2018 ident: 10.7717/peerj-cs.1045/ref-81 article-title: Exploiting the potential of unlabeled endoscopic video data with self-supervised learning publication-title: International Journal of Computer Assisted Radiology and Surgery doi: 10.1007/s11548-018-1772-0 – volume: 72 start-page: 102094 year: 2021 ident: 10.7717/peerj-cs.1045/ref-60 article-title: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks publication-title: Medical Image Analysis doi: 10.1016/j.media.2021.102094 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.7717/peerj-cs.1045/ref-101 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – start-page: 420 year: 2019 ident: 10.7717/peerj-cs.1045/ref-117 article-title: Self-supervised feature learning for 3d medical images by playing a rubiks cube – volume: 8 start-page: 92352 year: 2020 ident: 10.7717/peerj-cs.1045/ref-62 article-title: Retinal image classification by self-supervised fuzzy clustering network publication-title: IEEE Access – year: 2015 ident: 10.7717/peerj-cs.1045/ref-85 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 2127 year: 2018 ident: 10.7717/peerj-cs.1045/ref-38 article-title: Attention-based deep multiple instance learning – year: 2018 ident: 10.7717/peerj-cs.1045/ref-97 article-title: Recent advances in autoencoder-based representation learning – start-page: 4182 year: 2020 ident: 10.7717/peerj-cs.1045/ref-31 article-title: Data-efficient image recognition with contrastive predictive coding – start-page: 2005 year: 2020 ident: 10.7717/peerj-cs.1045/ref-57 article-title: A multi-task self-supervised learning framework for scopy images – start-page: 3 year: 2013 ident: 10.7717/peerj-cs.1045/ref-63 article-title: Rectifier nonlinearities improve neural network acoustic models – volume: 24 start-page: 3338 issue: 12 year: 2020 ident: 10.7717/peerj-cs.1045/ref-82 article-title: Machine learning techniques for ophthalmic data processing: a review publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3012134 – year: 2021 ident: 10.7717/peerj-cs.1045/ref-112 article-title: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2021.3054390 – year: 2018 ident: 10.7717/peerj-cs.1045/ref-98 article-title: Representation learning with contrastive predictive coding. CoRR – start-page: 3111 volume-title: Advances in neural information processing systems year: 2013 ident: 10.7717/peerj-cs.1045/ref-67 article-title: Distributed representations of words and phrases and their compositionality – start-page: 1597 year: 2020 ident: 10.7717/peerj-cs.1045/ref-13 article-title: A simple framework for contrastive learning of visual representations – volume: Vol. 33 start-page: 9912 volume-title: Advances in neural information processing systems year: 2020 ident: 10.7717/peerj-cs.1045/ref-10 article-title: Unsupervised learning of visual features by contrasting cluster assignments |
SSID | ssj0001511119 |
Score | 2.5465956 |
Snippet | The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1045 |
SubjectTerms | Annotations Artificial Intelligence Bioinformatics Computer Vision Contrastive Learning Data Mining and Machine Learning Data Science Datasets Deep learning Human performance Imaging Modality Localization Machine learning Machine vision Medical advice systems Medical imaging Medical imaging equipment Pretext Task Self-Supervised Learning State-of-the-art reviews Surveys |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge-GF37DAQAYheCFaa8exzQva0KaBxIQ2JvZm2Y5dira0NA0S_z13ids1QvAanyXnfD7f-ezvI-SV5FZoXYm8sNHmWFnKnY7jvCwjd8yPyhDxvfPnk_L4vPh0IS7SgVuTrlWufGLnqKuZxzPyPdgGNWKPjPT7-c8cWaOwupooNG6SbXDBCpKv7YPDky-n16csAl2C7sE1JaQue_MQFj9y32BxUww2ow6z_2_PvLE1Da9NbuxDR3fJ7RRA0v1-xu-RG6G-T-6syBloWqsPyLezcBnzpp2jM2hCRRM_xIT2pNENtXVFN-vXdFrTq75uQ6dXHXsRyPSYJe-opU27-BV-PyTnR4dfPxzniUUh90KxZe5Dyb3zFSRm4yJasBwWsTppx6XVNhaQfzDwiBJiAwgXhFLCBxZKpj1XRRUZf0S26lkddghlIyl5VMhx5YqIdDW8clxUQYsglFMZebtSp_EJYhyZLi4NpBqofdNp3_jGoPYz8notPu-xNf4leIBzsxZCSOzuw2wxMWmFGVU4Fb2WEMNphBV0hfbgzaMuHHfc64y8xJk1CHpR462aiW2bxnw8OzX7EGZJLse6yMibJBRnMHJv0yMF-H_EyRpI7g4kYVX6YfPKgEzyCo25tuGMvFg3Y0-86VaHWQsyeGoAcd2IZeRxb2_r_-YlRHdaQW85sMSBYoYt9fR7hxkOKoHQWD75_7CeklsMn3cgcKjeJVvLRRueQdC1dM_TyvoDdFMuyw priority: 102 providerName: ProQuest |
Title | Self-supervised learning methods and applications in medical imaging analysis: a survey |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36091989 https://www.proquest.com/docview/2839053709 https://www.proquest.com/docview/2713307402 https://pubmed.ncbi.nlm.nih.gov/PMC9455147 https://doaj.org/article/84b8fc9725694540b49c538f94b3b3c9 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgvPDCNywwKoMQvBCt9Uds87ahlYHEhDYm9mbZjj2KtrRqGiT-e-6StGqEEC-81hfJuZzvo-f7_Qh5pbiTxpQyFy65HDtLuTdpkhdF4p6FcRETzjt_PimOz8WnC3mxRfWFd8I6eOBOcftaeJ2CURCaDaLFeWECHNJkhOeeh3Z0D2LeVjHVzQejKzAdqKaCkmV_EePyRx5qbGrKQRBqsfr_9MhbIWl4XXIr_kzvkTt94kgPug3fJzdi9YDcXZMy0P6MPiTfzuJVyutmgU6gjiXteSEuaUcWXVNXlXS7b01nFb3u-jV0dt2yFoFMh1XyjjpaN8uf8dcjcj49-vr-OO_ZE_IgNVvlIRY8-FBCQTYRyYHFsIRdSTcpnHFJQN3BwBMqyAkgTZBayxBZLJgJXIsyMf6Y7FTzKu4SysZK8aSR28qLhDQ1vPRcltHIKLXXGXm7VqcNPbQ4MlxcWSgxUPu21b4NtUXtZ-T1RnzRYWr8TfAQv81GCKGw2x_AQGxvIPZfBpKRl_hlLYJdVHib5tI1dW0_np3aA0ivFFcTIzLyphdKc9h5cP1wArw_4mMNJPcGknAaw3B5bUC29wa1hRTOIG7OGDbzYrOMT-INtyrOG5DBfwsgnxuzjDzp7G3z3rwACzcanlYDSxwoZrhSzb63WOGgEkiJ1dP_ocln5DbD4Q-EFTV7ZGe1bOJzSMlWfkRu6umHEbl1eHTy5XTUnsXfTRI3jA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqcoAL-xIoYBDLhagzXpIYCaGyDDN0OdBW7c04jj0MajPDZALqn-I38l6W6UQIbr3GL1Ly_Db72d9HyLOYG6lUJkNhvAmxsxSmyvfDKPI8ZbYXOY_3nXf3ouGh-Hwsj9fI7_YuDB6rbGNiFaizqcU98k1IgwqxR3rq7exHiKxR2F1tKTRqs9h2Z79gyVa8GX2A-X3O2ODjwfth2LAKhFYmbBFaF3Gb2gwWKn3hDWiSeezWmX5klPEC6nEGESKGXAnpUyaJtI65iCnLE5F5BDqAkH9JcK7Qo5LBp_M9HYkBSNVQnjEslDZnzs2_h7bAVqrspL6KIeDvPLCSCLuHNFey3uA6udqUq3Srtq8bZM3lN8m1lgqCNpHhFjnadyc-LMoZhp7CZbRhoxjTmqK6oCbP6Gq3nE5yelp3iejktOJKApkaIeU1NbQo5z_d2W1yeCHavUPW82nu7hHKenHMfYKMWqnwSI7Ds5TLzCnpZJImAXnVqlPbBtAceTVONCxsUPu60r62hUbtB-TFUnxWI3n8S_Adzs1SCAG4qwfT-Vg3_qwTkSbeqhgqRoUghqlQFnKHVyLlKbcqIE9xZjVCbOR4hmdsyqLQo_0veguKupjHfSUC8rIR8lP4cmuaKxHw_4jK1ZHc6EhCDLDd4daAdBODCn3uMQF5shzGN_FcXe6mJcjgHgVUkT0WkLu1vS3_m0dQS6oE3o47lthRTHckn3yrEMpBJVCIx_f__1mPyeXhwe6O3hntbT8gVxheLEHIUrVB1hfz0j2Ecm-RPqp8jJKvF-3UfwCkBWlp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTUK8cL8EBhjE5YWobRzHMRJCG1u1MqimjYm9GduxS9GWlqYF7a_x6zgnl64Rgre9xidScnxu9rG_j5DngmkuZcbDWHsdYmcpNNL3wiTxzES2mziP950_DZO94_jDCT9ZI7-buzB4rLKJiWWgziYW98g7kAYlYo90ZcfXxyIOdvrvpj9CZJDCTmtDp1GZyL47_wXLt-LtYAfm-kUU9Xc_v98La4aB0PI0mofWJcwam8GipRd7DVqNPHbudC_RUvsYavMIooWAvAmplKcpty5ySSQtS-PMI-gBhP8NAaui7jrZ2N4dHhxe7PBwDEeyAvYUsGzqTJ2bfQ9tgY1V3kqEJV_A31lhJS22j2yu5MD-DXKtLl7pVmVtN8may2-R6w0xBK3jxG3y5cid-rBYTDEQFS6jNTfFiFaE1QXVeUZXe-d0nNOzqmdEx2clcxLIVHgpb6imxWL2053fIceXot-7ZD2f5O4-oVFXCOZT5NcysUeqHJYZxjMnueOpSQPyulGnsjW8ObJsnCpY5qD2Val9ZQuF2g_Iy6X4tML1-JfgNs7NUgjhuMsHk9lI1d6t0tik3koB9aNESEMTSwuZxMvYMMOsDMgznFmFgBs5mu5IL4pCDY4O1RaUeIKJnowD8qoW8hP4cqvrCxLw_4jR1ZLcbElCRLDt4caAVB2RCnXhPwF5uhzGN_GUXe4mC5DBHQuoKbtRQO5V9rb8b5ZAZSlTeFu0LLGlmPZIPv5W4pWDSqAsFw_-_1lPyBVwaPVxMNx_SK5GeMsE8UvlJlmfzxbuEdR-c_O4djJKvl62X_8BbiZu-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+learning+methods+and+applications+in+medical+imaging+analysis%3A+a+survey&rft.jtitle=PeerJ.+Computer+science&rft.au=Saeed+Shurrab&rft.au=Rehab+Duwairi&rft.date=2022-07-19&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=8&rft.spage=e1045&rft_id=info:doi/10.7717%2Fpeerj-cs.1045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_84b8fc9725694540b49c538f94b3b3c9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |