Self-supervised learning methods and applications in medical imaging analysis: a survey
The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representation...
Saved in:
Published in | PeerJ. Computer science Vol. 8; p. e1045 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
19.07.2022
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representations without the need for human annotation which can be considered an effective solution for the scarcity of annotated medical data. This article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with a concentration on their applications in the field of medical imaging analysis. The article covers a set of the most recent self-supervised learning methods from the computer vision field as they are applicable to the medical imaging analysis and categorize them as predictive, generative, and contrastive approaches. Moreover, the article covers 40 of the most recent research papers in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field. Finally, the article concludes with possible future research directions in the field. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2376-5992 2376-5992 |
DOI: | 10.7717/peerj-cs.1045 |