Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts

Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYN...

Full description

Saved in:
Bibliographic Details
Published inGastroenterology (New York, N.Y. 1943) Vol. 161; no. 4; pp. 1179 - 1193
Main Authors Bortolomeazzi, Michele, Keddar, Mohamed Reda, Montorsi, Lucia, Acha-Sagredo, Amelia, Benedetti, Lorena, Temelkovski, Damjan, Choi, Subin, Petrov, Nedyalko, Todd, Katrina, Wai, Patty, Kohl, Johannes, Denner, Tamara, Nye, Emma, Goldstone, Robert, Ward, Sophia, Wilson, Gareth A., Al Bakir, Maise, Swanton, Charles, John, Susan, Miles, James, Larijani, Banafshe, Kunene, Victoria, Fontana, Elisa, Arkenau, Hendrik-Tobias, Parker, Peter J., Rodriguez-Justo, Manuel, Shiu, Kai-Keen, Spencer, Jo, Ciccarelli, Francesca D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2021
W.B. Saunders
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity. [Display omitted] Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.
AbstractList Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1 CD8 T cells interacting with PDL1 antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity.
Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy.BACKGROUND & AIMSColorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy.We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME.METHODSWe selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME.In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages.RESULTSIn hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages.Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity.CONCLUSIONSOur study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity.
Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity. [Display omitted] Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.
Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.
Author Wilson, Gareth A.
Kohl, Johannes
Rodriguez-Justo, Manuel
Spencer, Jo
Parker, Peter J.
Acha-Sagredo, Amelia
Arkenau, Hendrik-Tobias
Fontana, Elisa
Denner, Tamara
Miles, James
Petrov, Nedyalko
Shiu, Kai-Keen
Montorsi, Lucia
Temelkovski, Damjan
John, Susan
Bortolomeazzi, Michele
Swanton, Charles
Keddar, Mohamed Reda
Al Bakir, Maise
Goldstone, Robert
Benedetti, Lorena
Kunene, Victoria
Wai, Patty
Ward, Sophia
Todd, Katrina
Nye, Emma
Larijani, Banafshe
Choi, Subin
Ciccarelli, Francesca D.
Author_xml – sequence: 1
  givenname: Michele
  surname: Bortolomeazzi
  fullname: Bortolomeazzi, Michele
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 2
  givenname: Mohamed Reda
  surname: Keddar
  fullname: Keddar, Mohamed Reda
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 3
  givenname: Lucia
  surname: Montorsi
  fullname: Montorsi, Lucia
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 4
  givenname: Amelia
  surname: Acha-Sagredo
  fullname: Acha-Sagredo, Amelia
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 5
  givenname: Lorena
  surname: Benedetti
  fullname: Benedetti, Lorena
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 6
  givenname: Damjan
  surname: Temelkovski
  fullname: Temelkovski, Damjan
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 7
  givenname: Subin
  surname: Choi
  fullname: Choi, Subin
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 8
  givenname: Nedyalko
  surname: Petrov
  fullname: Petrov, Nedyalko
  organization: Biomedical Research Centre, Guy’s and St. Thomas’ National Health Service Trust, London, United Kingdom
– sequence: 9
  givenname: Katrina
  surname: Todd
  fullname: Todd, Katrina
  organization: Biomedical Research Centre, Guy’s and St. Thomas’ National Health Service Trust, London, United Kingdom
– sequence: 10
  givenname: Patty
  surname: Wai
  fullname: Wai, Patty
  organization: State-Dependent Neural Processing Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 11
  givenname: Johannes
  surname: Kohl
  fullname: Kohl, Johannes
  organization: State-Dependent Neural Processing Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 12
  givenname: Tamara
  surname: Denner
  fullname: Denner, Tamara
  organization: Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
– sequence: 13
  givenname: Emma
  surname: Nye
  fullname: Nye, Emma
  organization: Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
– sequence: 14
  givenname: Robert
  surname: Goldstone
  fullname: Goldstone, Robert
  organization: Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
– sequence: 15
  givenname: Sophia
  surname: Ward
  fullname: Ward, Sophia
  organization: Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
– sequence: 16
  givenname: Gareth A.
  surname: Wilson
  fullname: Wilson, Gareth A.
  organization: Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 17
  givenname: Maise
  surname: Al Bakir
  fullname: Al Bakir, Maise
  organization: Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 18
  givenname: Charles
  surname: Swanton
  fullname: Swanton, Charles
  organization: Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
– sequence: 19
  givenname: Susan
  surname: John
  fullname: John, Susan
  organization: School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
– sequence: 20
  givenname: James
  surname: Miles
  fullname: Miles, James
  organization: FASTBASE Solutions S.L, Derio, Spain
– sequence: 21
  givenname: Banafshe
  surname: Larijani
  fullname: Larijani, Banafshe
  organization: FASTBASE Solutions S.L, Derio, Spain
– sequence: 22
  givenname: Victoria
  surname: Kunene
  fullname: Kunene, Victoria
  organization: Medical Oncology, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
– sequence: 23
  givenname: Elisa
  surname: Fontana
  fullname: Fontana, Elisa
  organization: Drug Development Unit, Sarah Cannon Research Institute UK, London, United Kingdom
– sequence: 24
  givenname: Hendrik-Tobias
  surname: Arkenau
  fullname: Arkenau, Hendrik-Tobias
  organization: Drug Development Unit, Sarah Cannon Research Institute UK, London, United Kingdom
– sequence: 25
  givenname: Peter J.
  surname: Parker
  fullname: Parker, Peter J.
  organization: School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
– sequence: 26
  givenname: Manuel
  surname: Rodriguez-Justo
  fullname: Rodriguez-Justo, Manuel
  organization: Department of Histopathology, University College London Cancer Institute, London, United Kingdom
– sequence: 27
  givenname: Kai-Keen
  surname: Shiu
  fullname: Shiu, Kai-Keen
  organization: Department of Gastrointestinal Oncology, University College London Hospital National Health Service Foundation Trust, London, United Kingdom
– sequence: 28
  givenname: Jo
  surname: Spencer
  fullname: Spencer, Jo
  email: jo.spencer@kcl.ac.uk
  organization: School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
– sequence: 29
  givenname: Francesca D.
  orcidid: 0000-0002-9325-0900
  surname: Ciccarelli
  fullname: Ciccarelli, Francesca D.
  email: francesca.ciccarelli@crick.ac.uk
  organization: Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34197832$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCGyA0SzYJ_puJp0JIJQpQUVEJBSRWlsdzJ3HisVPbqZQVr9Jn6ZPhNKGCbipd6S58znetc07QkfMOEHpN8Ijgkr1bjuYqpuBHFFMywlUe_gwNSEnFEGNCj9Agr2pYYlEeo5MYlxjjmgnyAh0zTuqxYHSAfl_0_cb5OTjfGx0L3xUTb30AnZQtJsppCMV3iGvvIhTJF5MF6NXaG5fubj9ar1eqhbPi3Cm7jebenxZQfJ3--nY1mxZkPC5mwWSUcu3d7U9lTauS8S5fWfiQ4kv0vFM2wqvDPkU_Pk1nky_Dy6vPF5Pzy6EuBU1DTXjFAMpWsUowobqatFrzmjSgOgqs7XiJG8p1raqqaxouNKaiqRUhJVEcs1P0Yc9db5oeWg0uBWXlOpheha30ysj_X5xZyLm_kaKk45qyDHh7AAR_vYGYZG-iBmuVA7-JkpZccMLwmGTpm39vPRz5m3oW8L1ABx9jgO5BQrDclSuXcl-u3JUrcZWHZ9vZI5s26T7N_GNjnzIfAoCc8o2BIKM2kOttza5s2XrzFOD9I4C2xhmt7Aq2T9v_AGeS2pk
CitedBy_id crossref_primary_10_1016_j_medj_2024_05_002
crossref_primary_10_3390_ijms25136849
crossref_primary_10_3390_cancers14133170
crossref_primary_10_1007_s10120_024_01523_4
crossref_primary_10_3390_ijms23147839
crossref_primary_10_1016_j_tranon_2022_101375
crossref_primary_10_1200_JCO_21_02691
crossref_primary_10_1038_s41421_023_00605_4
crossref_primary_10_1158_1078_0432_CCR_23_1109
crossref_primary_10_3390_life12081137
crossref_primary_10_1136_jitc_2024_010094
crossref_primary_10_1080_1744666X_2024_2328746
crossref_primary_10_3390_cancers15174245
crossref_primary_10_1016_j_ccell_2024_12_008
crossref_primary_10_3389_fimmu_2022_1032314
crossref_primary_10_1093_oncolo_oyae152
crossref_primary_10_1016_j_phrs_2022_106633
crossref_primary_10_1186_s13045_024_01578_x
crossref_primary_10_1038_s41467_024_48267_4
crossref_primary_10_1016_j_hpr_2022_300632
crossref_primary_10_1016_j_pbiomolbio_2022_10_003
crossref_primary_10_1155_2022_9046507
crossref_primary_10_1007_s10565_024_09982_2
crossref_primary_10_1016_j_annonc_2023_05_010
crossref_primary_10_3389_fonc_2022_964219
crossref_primary_10_1158_2159_8290_CD_23_0857
crossref_primary_10_1016_j_cmet_2024_10_019
crossref_primary_10_1111_his_14713
crossref_primary_10_3389_fimmu_2022_873871
crossref_primary_10_1038_s41467_023_36560_7
crossref_primary_10_3389_fimmu_2023_1292861
crossref_primary_10_1016_j_ymthe_2022_09_019
crossref_primary_10_1038_s41598_025_93060_y
crossref_primary_10_1136_jitc_2024_009720
crossref_primary_10_3390_cancers14235883
crossref_primary_10_1016_j_cell_2023_11_006
crossref_primary_10_20517_2394_4722_2023_85
crossref_primary_10_1097_JS9_0000000000001901
crossref_primary_10_1016_j_xcrm_2023_101301
crossref_primary_10_1038_s41588_024_01777_9
crossref_primary_10_3389_fimmu_2022_1039631
crossref_primary_10_1038_s41588_023_01499_4
crossref_primary_10_1158_1078_0432_CCR_23_2213
crossref_primary_10_1136_jitc_2024_010826
crossref_primary_10_1136_jitc_2022_005036
crossref_primary_10_3389_fimmu_2023_1241208
crossref_primary_10_3389_fimmu_2022_961350
crossref_primary_10_1016_j_isci_2022_105919
crossref_primary_10_1136_jitc_2023_008026
crossref_primary_10_1177_17588359221138383
crossref_primary_10_1002_cam4_6602
crossref_primary_10_1146_annurev_cancerbio_061521_101910
crossref_primary_10_3390_cells12071049
crossref_primary_10_1136_jitc_2022_004703
crossref_primary_10_1038_s43018_023_00690_0
crossref_primary_10_1080_00365513_2023_2175330
crossref_primary_10_3389_fimmu_2022_955187
crossref_primary_10_1002_cam4_7097
crossref_primary_10_1097_MD_0000000000039798
crossref_primary_10_1038_s41698_024_00671_1
crossref_primary_10_3389_fimmu_2024_1462496
crossref_primary_10_1093_bioadv_vbad141
crossref_primary_10_1111_ans_18303
crossref_primary_10_3389_fimmu_2025_1512509
crossref_primary_10_1186_s40164_024_00588_2
crossref_primary_10_3390_cancers14235738
crossref_primary_10_1038_s41388_024_03255_2
crossref_primary_10_3389_fimmu_2024_1502257
crossref_primary_10_1016_j_canlet_2024_216858
crossref_primary_10_3390_biomedicines10020299
crossref_primary_10_3390_cancers14205158
crossref_primary_10_37349_edd_2025_100564
crossref_primary_10_1016_j_intimp_2024_111887
crossref_primary_10_1186_s12935_021_02321_z
crossref_primary_10_1007_s10238_024_01408_x
crossref_primary_10_1016_j_critrevonc_2024_104342
crossref_primary_10_1016_j_ctarc_2023_100746
crossref_primary_10_1126_sciadv_adl6464
crossref_primary_10_1038_s41467_022_28470_x
crossref_primary_10_1038_s41416_022_01913_4
crossref_primary_10_1016_j_ccell_2023_04_011
crossref_primary_10_1136_jitc_2024_010249
Cites_doi 10.1038/s41592-018-0051-x
10.1038/nbt.3344
10.1093/nar/gkq603
10.1158/1535-7163.MCT-17-0386
10.1038/ncomms3680
10.1038/s41575-019-0126-x
10.1038/nmeth.2883
10.1038/s41592-020-01013-2
10.1126/science.aar4060
10.1038/s41586-019-1836-5
10.1038/nbt.4096
10.1038/nature08460
10.1126/science.aan6733
10.1093/annonc/mdz134
10.1038/s41598-017-17204-5
10.1038/nature11252
10.1158/2159-8290.CD-20-0987
10.1038/s41588-018-0312-8
10.1056/NEJMoa2017699
10.1136/gutjnl-2019-318672
10.1016/j.cell.2017.10.001
10.1186/s12859-019-2876-4
10.1038/s41467-017-01062-w
10.1038/s41467-019-10898-3
10.1158/2159-8290.CD-17-1327
10.1093/jnci/djq310
10.1186/s13073-020-00729-2
10.1158/0008-5472.CAN-20-1117
10.1073/pnas.1009843107
10.1038/nbt.2696
10.1038/nature14404
10.1016/j.immuni.2018.12.021
10.1186/1471-2164-15-74
10.1038/nmeth.f.376
10.1056/NEJMoa1500596
10.1016/j.ccell.2018.11.003
10.1038/s41588-020-00752-4
10.1186/s13059-014-0550-8
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1053/j.gastro.2021.06.064
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-0012
EndPage 1193
ExternalDocumentID PMC8527923
34197832
10_1053_j_gastro_2021_06_064
S0016508521031784
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: FC001130
– fundername: Cancer Research UK
  grantid: 20466
– fundername: Cancer Research UK
  grantid: C7893/A26233
– fundername: Wellcome Trust
  grantid: FC001745
– fundername: Cancer Research UK
  grantid: 30025
– fundername: Cancer Research UK
  grantid: C43634/A25487
– fundername: Cancer Research UK
  grantid: C604/A25135
– fundername: Wellcome Trust
  grantid: FC001169
– fundername: Cancer Research UK
  grantid: 25253
– fundername: Cancer Research UK
  grantid: 17786
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1CY
1P~
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAXUO
ABCQX
ABDPE
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEVXI
AFFNX
AFHKK
AFJKZ
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AI.
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FD8
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
NQ-
O9-
OC.
OHT
ON0
P2P
PC.
QTD
R2-
ROL
RPZ
SEL
SES
SJN
SSZ
UDS
UGJ
UV1
VH1
WH7
X7M
XH2
Y6R
YQJ
Z5R
ZGI
ZXP
6I.
AAFTH
AAIAV
AAYOK
ADPAM
AFCTW
AGZHU
AHPSJ
ALXNB
G8K
RIG
TWZ
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c582t-c1463ee5da36838af91dcc491beaf2e3df450b24c9a66fbb48c028b9a1151a403
ISSN 0016-5085
1528-0012
IngestDate Thu Aug 21 18:29:10 EDT 2025
Fri Jul 11 01:25:36 EDT 2025
Mon Jul 21 06:00:24 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Tue Jul 01 02:44:17 EDT 2025
Fri Feb 23 02:42:07 EST 2024
Tue Aug 26 16:58:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Wnt Signaling
A-FRET
CD
DB-CRC
T-cell
WES
TMB
mIF
TME
GzB
TCGA
Anti-PD1 Immunotherapy
RNA-seq
CRC
SNV
Tumor Mutational Burden
PD1
PDL1
Interferon Gamma
B2M
nDB-CRC
IMC
CD8 T cells
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582t-c1463ee5da36838af91dcc491beaf2e3df450b24c9a66fbb48c028b9a1151a403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Authors share co-first authorship.
ORCID 0000-0002-9325-0900
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8527923
PMID 34197832
PQID 2548413071
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8527923
proquest_miscellaneous_2548413071
pubmed_primary_34197832
crossref_primary_10_1053_j_gastro_2021_06_064
crossref_citationtrail_10_1053_j_gastro_2021_06_064
elsevier_sciencedirect_doi_10_1053_j_gastro_2021_06_064
elsevier_clinicalkey_doi_10_1053_j_gastro_2021_06_064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastroenterology (New York, N.Y. 1943)
PublicationTitleAlternate Gastroenterology
PublicationYear 2021
Publisher Elsevier Inc
W.B. Saunders
Publisher_xml – name: Elsevier Inc
– name: W.B. Saunders
References de Vries, van Unen, Ijsselsteijn (bib33) 2020; 69
Jansen, Prokhnevska, Master (bib34) 2019; 576
Bortolomeazzi, Montorsi, Temelkovski (bib8) 2021; 2021
Valero, Lee, Hoen (bib28) 2021; 53
Kim, Scheffler, Halpern (bib12) 2018; 15
Ganesh, Stadler, Cercek (bib4) 2019; 16
Siddiqui, Schaeuble, Chennupati (bib35) 2019; 50
Wang, Li, Hakonarson (bib13) 2010; 38
Gurjao, Tsukrov, Imakaev (bib37) 2020; 2020
Wood, Weeder, David (bib38) 2020; 12
Frampton, Fichtenholtz, Otto (bib40) 2013; 31
Barbie, Tamayo, Boehm (bib42) 2009; 462
Cancer Genome Atlas (bib23) 2012; 487
Samstein, Lee, Shoushtari, Hellmann (bib26) 2019; 51
Hoos, Eggermont, Janetzki (bib6) 2010; 102
André, Shiu, Kim (bib5) 2020; 383
Bankhead, Loughrey, Fernandez (bib7) 2017; 7
Butler, Hoffman, Smibert (bib9) 2018; 36
Shukla, Rooney, Rajasagi (bib16) 2015; 33
Le, Uram, Wang (bib2) 2015; 372
Moll, Ante, Seitz (bib19) 2014; 11
Germano, Lu, Rospo (bib36) 2021; 11
Le, Durham, Smith (bib25) 2017; 357
Love, Huber, Anders (bib20) 2014; 15
Goodman, Kato, Bazhenova (bib24) 2017; 16
Schrock, Ouyang, Sandhu (bib27) 2019; 30
Grasso, Giannakis, Wells (bib29) 2018; 8
Sade-Feldman, Jiao, Chen (bib31) 2017; 8
Middha, Yaeger, Shia (bib32) 2019; 3
Van den Eynde, Mlecnik, Bindea (bib3) 2018; 34
Sánchez-Magraner, Miles, Baker (bib22) 2020; 80
Herbst, Jurinovic, Krebs (bib43) 2014; 15
Mourikis, Benedetti, Foxall (bib14) 2019; 10
Tarabichi, Salcedo, Deshwar (bib41) 2021; 18
Roth, Khattra, Yap (bib18) 2014; 11
Spranger, Bao, Gajewski (bib30) 2015; 523
Ester, Kriegel, Sander (bib10) 1996
McGranahan, Rosenthal, Hiley (bib39) 2017; 171
Carlson, Emerson, Sherwood (bib21) 2013; 4
Ribas, Wolchok (bib1) 2018; 359
Van Loo, Nordgard, Lingjaerde (bib15) 2010; 107
Li (bib11)
Schenck, Lakatos, Gatenbee (bib17) 2019; 20
Moll (10.1053/j.gastro.2021.06.064_bib19) 2014; 11
Bortolomeazzi (10.1053/j.gastro.2021.06.064_bib8) 2021; 2021
Shukla (10.1053/j.gastro.2021.06.064_bib16) 2015; 33
Cancer Genome Atlas (10.1053/j.gastro.2021.06.064_bib23) 2012; 487
Germano (10.1053/j.gastro.2021.06.064_bib36) 2021; 11
Kim (10.1053/j.gastro.2021.06.064_bib12) 2018; 15
de Vries (10.1053/j.gastro.2021.06.064_bib33) 2020; 69
Spranger (10.1053/j.gastro.2021.06.064_bib30) 2015; 523
Wood (10.1053/j.gastro.2021.06.064_bib38) 2020; 12
Roth (10.1053/j.gastro.2021.06.064_bib18) 2014; 11
Sánchez-Magraner (10.1053/j.gastro.2021.06.064_bib22) 2020; 80
Jansen (10.1053/j.gastro.2021.06.064_bib34) 2019; 576
Mourikis (10.1053/j.gastro.2021.06.064_bib14) 2019; 10
Samstein (10.1053/j.gastro.2021.06.064_bib26) 2019; 51
Sade-Feldman (10.1053/j.gastro.2021.06.064_bib31) 2017; 8
Hoos (10.1053/j.gastro.2021.06.064_bib6) 2010; 102
Carlson (10.1053/j.gastro.2021.06.064_bib21) 2013; 4
Siddiqui (10.1053/j.gastro.2021.06.064_bib35) 2019; 50
Li (10.1053/j.gastro.2021.06.064_bib11)
Tarabichi (10.1053/j.gastro.2021.06.064_bib41) 2021; 18
Butler (10.1053/j.gastro.2021.06.064_bib9) 2018; 36
Love (10.1053/j.gastro.2021.06.064_bib20) 2014; 15
Barbie (10.1053/j.gastro.2021.06.064_bib42) 2009; 462
André (10.1053/j.gastro.2021.06.064_bib5) 2020; 383
Schenck (10.1053/j.gastro.2021.06.064_bib17) 2019; 20
Frampton (10.1053/j.gastro.2021.06.064_bib40) 2013; 31
Le (10.1053/j.gastro.2021.06.064_bib2) 2015; 372
Wang (10.1053/j.gastro.2021.06.064_bib13) 2010; 38
Herbst (10.1053/j.gastro.2021.06.064_bib43) 2014; 15
Ganesh (10.1053/j.gastro.2021.06.064_bib4) 2019; 16
Middha (10.1053/j.gastro.2021.06.064_bib32) 2019; 3
Ester (10.1053/j.gastro.2021.06.064_bib10) 1996
Bankhead (10.1053/j.gastro.2021.06.064_bib7) 2017; 7
Van Loo (10.1053/j.gastro.2021.06.064_bib15) 2010; 107
Schrock (10.1053/j.gastro.2021.06.064_bib27) 2019; 30
Le (10.1053/j.gastro.2021.06.064_bib25) 2017; 357
Valero (10.1053/j.gastro.2021.06.064_bib28) 2021; 53
Van den Eynde (10.1053/j.gastro.2021.06.064_bib3) 2018; 34
Goodman (10.1053/j.gastro.2021.06.064_bib24) 2017; 16
Grasso (10.1053/j.gastro.2021.06.064_bib29) 2018; 8
McGranahan (10.1053/j.gastro.2021.06.064_bib39) 2017; 171
Ribas (10.1053/j.gastro.2021.06.064_bib1) 2018; 359
Gurjao (10.1053/j.gastro.2021.06.064_bib37) 2020; 2020
References_xml – volume: 8
  start-page: 1136
  year: 2017
  ident: bib31
  article-title: Resistance to checkpoint blockade therapy through inactivation of antigen presentation
  publication-title: Nat Commun
– volume: 576
  start-page: 465
  year: 2019
  end-page: 470
  ident: bib34
  article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells
  publication-title: Nature
– volume: 11
  start-page: 396
  year: 2014
  end-page: 398
  ident: bib18
  article-title: PyClone: statistical inference of clonal population structure in cancer
  publication-title: Nat Methods
– ident: bib11
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
– volume: 2020
  year: 2020
  ident: bib37
  article-title: Limited evidence of tumour mutational burden as a biomarker of response to immunotherapy
  publication-title: bioRxiv
– volume: 523
  start-page: 231
  year: 2015
  end-page: 235
  ident: bib30
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
– volume: 107
  start-page: 16910
  year: 2010
  end-page: 16915
  ident: bib15
  article-title: Allele-specific copy number analysis of tumors
  publication-title: Proc Natl Acad Sci U S A
– volume: 487
  start-page: 330
  year: 2012
  end-page: 337
  ident: bib23
  article-title: Comprehensive molecular characterization of human colon and rectal cancer
  publication-title: Nature
– volume: 2021
  year: 2021
  ident: bib8
  article-title: A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially resolved tissue phenotyping at single-cell resolution
  publication-title: bioRxiv
– volume: 357
  start-page: 409
  year: 2017
  end-page: 413
  ident: bib25
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade
  publication-title: Science
– volume: 359
  start-page: 1350
  year: 2018
  end-page: 1355
  ident: bib1
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
– volume: 51
  start-page: 202
  year: 2019
  end-page: 206
  ident: bib26
  article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types
  publication-title: Nat Genet
– volume: 10
  start-page: 3101
  year: 2019
  ident: bib14
  article-title: Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma
  publication-title: Nat Commun
– volume: 50
  start-page: 195
  year: 2019
  end-page: 211.e10
  ident: bib35
  article-title: Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy
  publication-title: Immunity
– volume: 20
  start-page: 264
  year: 2019
  ident: bib17
  article-title: NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
  publication-title: BMC Bioinform
– volume: 171
  start-page: 1259
  year: 2017
  end-page: 1271.e11
  ident: bib39
  article-title: Allele-specific HLA loss and immune escape in lung cancer evolution
  publication-title: Cell
– volume: 372
  start-page: 2509
  year: 2015
  end-page: 2520
  ident: bib2
  article-title: PD-1 blockade in tumors with mismatch-repair deficiency
  publication-title: N Engl J Med
– volume: 53
  start-page: 11
  year: 2021
  end-page: 15
  ident: bib28
  article-title: The association between tumor mutational burden and prognosis is dependent on treatment context
  publication-title: Nat Genet
– volume: 31
  start-page: 1023
  year: 2013
  end-page: 1031
  ident: bib40
  article-title: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing
  publication-title: Nat Biotechnol
– volume: 12
  start-page: 33
  year: 2020
  ident: bib38
  article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival
  publication-title: Genome Med
– volume: 383
  start-page: 2207
  year: 2020
  end-page: 2218
  ident: bib5
  article-title: Pembrolizumab in microsatellite-instability–high advanced colorectal cancer
  publication-title: N Engl J Med
– volume: 15
  start-page: 74
  year: 2014
  ident: bib43
  article-title: Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling
  publication-title: BMC Genomics
– volume: 11
  start-page: 1844
  year: 2021
  end-page: 1859
  ident: bib36
  article-title: CD4 T cell dependent rejection of beta 2 microglobulin null mismatch repair deficient tumors
  publication-title: Cancer Discov
– volume: 34
  start-page: 1012
  year: 2018
  end-page: 1026.e3
  ident: bib3
  article-title: The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients
  publication-title: Cancer Cell
– volume: 15
  start-page: 550
  year: 2014
  ident: bib20
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
– volume: 8
  start-page: 730
  year: 2018
  end-page: 749
  ident: bib29
  article-title: Genetic mechanisms of immune evasion in colorectal cancer
  publication-title: Cancer Discov
– volume: 18
  start-page: 144
  year: 2021
  end-page: 155
  ident: bib41
  article-title: A practical guide to cancer subclonal reconstruction from DNA sequencing
  publication-title: Nat Methods
– volume: 462
  start-page: 108
  year: 2009
  ident: bib42
  article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
  publication-title: Nature
– volume: 102
  start-page: 1388
  year: 2010
  end-page: 1397
  ident: bib6
  article-title: Improved endpoints for cancer immunotherapy trials
  publication-title: J Natl Cancer Inst
– volume: 16
  start-page: 361
  year: 2019
  end-page: 375
  ident: bib4
  article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 3
  year: 2019
  ident: bib32
  article-title: Majority of B2M-mutant and-deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high
  publication-title: JCO Precis Oncol
– volume: 7
  start-page: 16878
  year: 2017
  ident: bib7
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci Rep
– volume: 33
  start-page: 1152
  year: 2015
  end-page: 1158
  ident: bib16
  article-title: Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes
  publication-title: Nat Biotechnol
– volume: 38
  start-page: e164
  year: 2010
  ident: bib13
  article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
  publication-title: Nucleic Acids Res
– volume: 69
  start-page: 691
  year: 2020
  end-page: 703
  ident: bib33
  article-title: High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity
  publication-title: Gut
– volume: 15
  start-page: 591
  year: 2018
  end-page: 594
  ident: bib12
  article-title: Strelka2: fast and accurate calling of germline and somatic variants
  publication-title: Nat Methods
– volume: 80
  start-page: 4244
  year: 2020
  ident: bib22
  article-title: High PD-1/PD-L1 checkpoint interaction infers tumor selection and therapeutic sensitivity to anti-PD-1/PD-L1 treatment
  publication-title: Cancer Res
– volume: 30
  start-page: 1096
  year: 2019
  end-page: 1103
  ident: bib27
  article-title: Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer
  publication-title: Ann Oncol
– volume: 11
  year: 2014
  ident: bib19
  article-title: QuantSeq 3′ mRNA sequencing for RNA quantification
  publication-title: Nat Methods
– volume: 4
  start-page: 2680
  year: 2013
  ident: bib21
  article-title: Using synthetic templates to design an unbiased multiplex PCR assay
  publication-title: Nat Commun
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib10
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib9
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
– volume: 16
  start-page: 2598
  year: 2017
  ident: bib24
  article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers
  publication-title: Mol Cancer Ther
– volume: 15
  start-page: 591
  year: 2018
  ident: 10.1053/j.gastro.2021.06.064_bib12
  article-title: Strelka2: fast and accurate calling of germline and somatic variants
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0051-x
– volume: 33
  start-page: 1152
  year: 2015
  ident: 10.1053/j.gastro.2021.06.064_bib16
  article-title: Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3344
– volume: 38
  start-page: e164
  year: 2010
  ident: 10.1053/j.gastro.2021.06.064_bib13
  article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq603
– volume: 16
  start-page: 2598
  year: 2017
  ident: 10.1053/j.gastro.2021.06.064_bib24
  article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-17-0386
– volume: 4
  start-page: 2680
  year: 2013
  ident: 10.1053/j.gastro.2021.06.064_bib21
  article-title: Using synthetic templates to design an unbiased multiplex PCR assay
  publication-title: Nat Commun
  doi: 10.1038/ncomms3680
– volume: 16
  start-page: 361
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib4
  article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-019-0126-x
– volume: 11
  start-page: 396
  year: 2014
  ident: 10.1053/j.gastro.2021.06.064_bib18
  article-title: PyClone: statistical inference of clonal population structure in cancer
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2883
– volume: 18
  start-page: 144
  year: 2021
  ident: 10.1053/j.gastro.2021.06.064_bib41
  article-title: A practical guide to cancer subclonal reconstruction from DNA sequencing
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01013-2
– volume: 359
  start-page: 1350
  year: 2018
  ident: 10.1053/j.gastro.2021.06.064_bib1
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 576
  start-page: 465
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib34
  article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells
  publication-title: Nature
  doi: 10.1038/s41586-019-1836-5
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1053/j.gastro.2021.06.064_bib9
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 462
  start-page: 108
  year: 2009
  ident: 10.1053/j.gastro.2021.06.064_bib42
  article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
  publication-title: Nature
  doi: 10.1038/nature08460
– ident: 10.1053/j.gastro.2021.06.064_bib11
– volume: 357
  start-page: 409
  year: 2017
  ident: 10.1053/j.gastro.2021.06.064_bib25
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade
  publication-title: Science
  doi: 10.1126/science.aan6733
– volume: 30
  start-page: 1096
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib27
  article-title: Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdz134
– volume: 7
  start-page: 16878
  year: 2017
  ident: 10.1053/j.gastro.2021.06.064_bib7
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17204-5
– volume: 487
  start-page: 330
  year: 2012
  ident: 10.1053/j.gastro.2021.06.064_bib23
  article-title: Comprehensive molecular characterization of human colon and rectal cancer
  publication-title: Nature
  doi: 10.1038/nature11252
– volume: 11
  start-page: 1844
  year: 2021
  ident: 10.1053/j.gastro.2021.06.064_bib36
  article-title: CD4 T cell dependent rejection of beta 2 microglobulin null mismatch repair deficient tumors
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-20-0987
– volume: 2020
  year: 2020
  ident: 10.1053/j.gastro.2021.06.064_bib37
  article-title: Limited evidence of tumour mutational burden as a biomarker of response to immunotherapy
  publication-title: bioRxiv
– volume: 51
  start-page: 202
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib26
  article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0312-8
– volume: 383
  start-page: 2207
  year: 2020
  ident: 10.1053/j.gastro.2021.06.064_bib5
  article-title: Pembrolizumab in microsatellite-instability–high advanced colorectal cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2017699
– volume: 69
  start-page: 691
  year: 2020
  ident: 10.1053/j.gastro.2021.06.064_bib33
  article-title: High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-318672
– volume: 171
  start-page: 1259
  year: 2017
  ident: 10.1053/j.gastro.2021.06.064_bib39
  article-title: Allele-specific HLA loss and immune escape in lung cancer evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.001
– volume: 2021
  year: 2021
  ident: 10.1053/j.gastro.2021.06.064_bib8
  article-title: A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially resolved tissue phenotyping at single-cell resolution
  publication-title: bioRxiv
– volume: 3
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib32
  article-title: Majority of B2M-mutant and-deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high
  publication-title: JCO Precis Oncol
– volume: 20
  start-page: 264
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib17
  article-title: NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-2876-4
– volume: 8
  start-page: 1136
  year: 2017
  ident: 10.1053/j.gastro.2021.06.064_bib31
  article-title: Resistance to checkpoint blockade therapy through inactivation of antigen presentation
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01062-w
– volume: 10
  start-page: 3101
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib14
  article-title: Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10898-3
– volume: 8
  start-page: 730
  year: 2018
  ident: 10.1053/j.gastro.2021.06.064_bib29
  article-title: Genetic mechanisms of immune evasion in colorectal cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1327
– volume: 102
  start-page: 1388
  year: 2010
  ident: 10.1053/j.gastro.2021.06.064_bib6
  article-title: Improved endpoints for cancer immunotherapy trials
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djq310
– volume: 12
  start-page: 33
  year: 2020
  ident: 10.1053/j.gastro.2021.06.064_bib38
  article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival
  publication-title: Genome Med
  doi: 10.1186/s13073-020-00729-2
– start-page: 226
  year: 1996
  ident: 10.1053/j.gastro.2021.06.064_bib10
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 80
  start-page: 4244
  year: 2020
  ident: 10.1053/j.gastro.2021.06.064_bib22
  article-title: High PD-1/PD-L1 checkpoint interaction infers tumor selection and therapeutic sensitivity to anti-PD-1/PD-L1 treatment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-20-1117
– volume: 107
  start-page: 16910
  year: 2010
  ident: 10.1053/j.gastro.2021.06.064_bib15
  article-title: Allele-specific copy number analysis of tumors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1009843107
– volume: 31
  start-page: 1023
  year: 2013
  ident: 10.1053/j.gastro.2021.06.064_bib40
  article-title: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2696
– volume: 523
  start-page: 231
  year: 2015
  ident: 10.1053/j.gastro.2021.06.064_bib30
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature14404
– volume: 50
  start-page: 195
  year: 2019
  ident: 10.1053/j.gastro.2021.06.064_bib35
  article-title: Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.12.021
– volume: 15
  start-page: 74
  year: 2014
  ident: 10.1053/j.gastro.2021.06.064_bib43
  article-title: Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-74
– volume: 11
  year: 2014
  ident: 10.1053/j.gastro.2021.06.064_bib19
  article-title: QuantSeq 3′ mRNA sequencing for RNA quantification
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.376
– volume: 372
  start-page: 2509
  year: 2015
  ident: 10.1053/j.gastro.2021.06.064_bib2
  article-title: PD-1 blockade in tumors with mismatch-repair deficiency
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1500596
– volume: 34
  start-page: 1012
  year: 2018
  ident: 10.1053/j.gastro.2021.06.064_bib3
  article-title: The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.11.003
– volume: 53
  start-page: 11
  year: 2021
  ident: 10.1053/j.gastro.2021.06.064_bib28
  article-title: The association between tumor mutational burden and prognosis is dependent on treatment context
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-00752-4
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1053/j.gastro.2021.06.064_bib20
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
SSID ssj0009381
Score 2.6242304
Snippet Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We...
Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1179
SubjectTerms Anti-PD1 Immunotherapy
Antibodies, Monoclonal, Humanized - adverse effects
Antibodies, Monoclonal, Humanized - therapeutic use
Biomarkers, Tumor - genetics
CD8 T cells
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
Clinical Trials as Topic
Colorectal Neoplasms - drug therapy
Colorectal Neoplasms - genetics
Colorectal Neoplasms - immunology
Cytotoxicity, Immunologic - drug effects
Exome Sequencing
Gene Expression Profiling
Humans
Immune Checkpoint Inhibitors - adverse effects
Immune Checkpoint Inhibitors - therapeutic use
Immunogenetic Phenomena
Immunogenetics
Interferon Gamma
Lymphocytes, Tumor-Infiltrating - drug effects
Lymphocytes, Tumor-Infiltrating - immunology
Mutation
Nivolumab - adverse effects
Nivolumab - therapeutic use
Original Research
Predictive Value of Tests
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Reproducibility of Results
RNA-Seq
Time Factors
Transcriptome
Treatment Outcome
Tumor Microenvironment
Tumor Mutational Burden
Tumor-Associated Macrophages - drug effects
Tumor-Associated Macrophages - immunology
Wnt Signaling
Title Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016508521031784
https://dx.doi.org/10.1053/j.gastro.2021.06.064
https://www.ncbi.nlm.nih.gov/pubmed/34197832
https://www.proquest.com/docview/2548413071
https://pubmed.ncbi.nlm.nih.gov/PMC8527923
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSFUvVd_dvuRK5YRC87CTuLcFUehj6aELoqfIdhx2C2zQkr1w6V_ht_Az-ms6E-e1QAv0Eq2SOE4y386MJzPfEPJOGoEFlpHDpQwc5ivXUSrFAmaRhlzLUGqMdwy2w60d9nmP7y0s_O5kLc0KtapPr6wr-R-pwj6QK1bJ3kKyzUVhB_wG-cIWJAzbG8n4ExZ35EizeoRky5hZAboMdRiGBFCeU4zPYxJs2SFjfWT0wXE-nhTL6_5y310DS3aAxLtldLBlJ0Fn9MvGj-1vw40VL4pWhmVrD0yBLIftgu9uWzHBfCP85NB1cTflSTHNkepzavmdruj3s-IJ1g3xYlN3OPnIyNPTcZ3Nbw5Naw7S1GaCD_KRBAMOj9WGEgbIwTA9sXXeMz1uDvT1SDrf5T6SopZK8MgcVkerQIfvNSlzjfL2Qgf8ST6nvEOvg1LWUcXIddcx655nOzFeMhlu2ffj5-p--XZWceaS0dWSq88zdF-wnE0-Y_klnwewkrJXSfAqCWYMhuwOWfJhCeMvkqXNta-7_ZYSOohtP8fqserCTh68v-pu_uY4XV4YXczv7ThMwwfkfrXSoX0L24dkwUwekbuDKpfjMfk1j16aZ7RFL7XopTV6aZHTFr3nZzVyP9AatzgecEsr3FLALS1xSwG352ctZmmF2Sdk5-PGcH3LqdqBOJrHfuFoMOqBMTyVQRgHscyEl2rNhKeMzHwTpBnjrvKZFjIMM6VYrMF5VkLCoseTzA2eksVJPjHPCXW1iITGqu1MMUC8UEwJ5RqeRcKPM9EjQf2uE11x5WPLlsPkX5LuEacZdWy5Yq45n9diTOo6aLDcCSDzmnFRM67yk63_e4ORb2u0JGBG8NugnJh8dpL4nMXoz0Zejzyz6GmeASkfI7D8MO8crpoTkKJ-_shkPCqp6mNeEpS-uOWbeUnutRrgFVkspjPzGpz_Qr2p_kV_APx3CEA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunogenomics+of+Colorectal+Cancer+Response+to+Checkpoint%C2%A0Blockade%3A+Analysis+of+the+KEYNOTE+177+Trial+and%C2%A0Validation+Cohorts&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Bortolomeazzi%2C+Michele&rft.au=Keddar%2C+Mohamed+Reda&rft.au=Montorsi%2C+Lucia&rft.au=Acha-Sagredo%2C+Amelia&rft.date=2021-10-01&rft.issn=0016-5085&rft.volume=161&rft.issue=4&rft.spage=1179&rft.epage=1193&rft_id=info:doi/10.1053%2Fj.gastro.2021.06.064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1053_j_gastro_2021_06_064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5085&client=summon