Novel Hypertrophic Cardiomyopathy Diagnosis Index Using Deep Features and Local Directional Pattern Techniques
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most com...
Saved in:
Published in | Journal of Imaging Vol. 8; no. 4; p. 102 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
06.04.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset. |
---|---|
AbstractList | Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset. Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset. Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset. Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t -test, and the most significant feature ( SigFea ) was identified. An integrated index derived from the simulation was defined as 100 · l o g 10 ( S i g F e a / 2 ) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset. |
Author | Chinmay Dharmik U. Rajendra Acharya Edward J. Ciaccio U. Raghavendra Mokshagna Rohit Gangavarapu Filippo Molinari Ru-San Tan Jyothi Samanth Krishnananda Nayak Anjan Gudigar |
AuthorAffiliation | 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; anjan.gudigar@manipal.edu (A.G.); chinmaydharmik@gmail.com (C.D.); rohit4gm@gmail.com (M.R.G.) 3 Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; edwardciaccio@gmail.com 6 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; filippo.molinari@polito.it 5 Duke-NUS Medical School, Singapore 169857, Singapore 10 Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 599494, Singapore 4 Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore; tanrsnhc@gmail.com 7 School of Engineering, Ngee Ann Polytechnic, Clementi, Singapore 599489, Singapore; aru@np.edu.sg 8 Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan 2 Department of C |
AuthorAffiliation_xml | – name: 2 Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India; samanth.jyothi@manipal.edu (J.S.); krishnananda.n@manipal.edu (K.N.) – name: 9 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 8608555, Japan – name: 4 Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore; tanrsnhc@gmail.com – name: 5 Duke-NUS Medical School, Singapore 169857, Singapore – name: 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; anjan.gudigar@manipal.edu (A.G.); chinmaydharmik@gmail.com (C.D.); rohit4gm@gmail.com (M.R.G.) – name: 10 Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 599494, Singapore – name: 3 Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; edwardciaccio@gmail.com – name: 8 Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan – name: 7 School of Engineering, Ngee Ann Polytechnic, Clementi, Singapore 599489, Singapore; aru@np.edu.sg – name: 6 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; filippo.molinari@polito.it |
Author_xml | – sequence: 1 givenname: Anjan surname: Gudigar fullname: Gudigar, Anjan – sequence: 2 givenname: U. orcidid: 0000-0002-1124-089X surname: Raghavendra fullname: Raghavendra, U. – sequence: 3 givenname: Jyothi orcidid: 0000-0002-7744-2857 surname: Samanth fullname: Samanth, Jyothi – sequence: 4 givenname: Chinmay orcidid: 0000-0003-2630-4654 surname: Dharmik fullname: Dharmik, Chinmay – sequence: 5 givenname: Mokshagna Rohit surname: Gangavarapu fullname: Gangavarapu, Mokshagna Rohit – sequence: 6 givenname: Krishnananda surname: Nayak fullname: Nayak, Krishnananda – sequence: 7 givenname: Edward J. surname: Ciaccio fullname: Ciaccio, Edward J. – sequence: 8 givenname: Ru-San surname: Tan fullname: Tan, Ru-San – sequence: 9 givenname: Filippo orcidid: 0000-0003-1150-2244 surname: Molinari fullname: Molinari, Filippo – sequence: 10 givenname: U. Rajendra orcidid: 0000-0003-2689-8552 surname: Acharya fullname: Acharya, U. Rajendra |
BackLink | https://cir.nii.ac.jp/crid/1871428067810679168$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/35448229$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1vEzEQXaEiWkrP3JAlOHAJ9dfu2hekKqU0UgQcgsTN8nonG0cbe7G9Ffn3eJsWtZE4eDwav_fmy6-LE-cdFMVbgj8xJvHl1u50Z10nMMcE0xfFGWWEzThjv06e-KfFRYxbjDGRNB_5qjhlJeeCUnlWuG_-Dnp0ux8gpOCHjTVorkNr_W7vB502e3Rtded8tBEtXAt_0M-Yc6JrgAHdgE5jgIi0a9HSG91ndACTrHfZ_6FTguDQCszG2d8jxDfFy7XuI1w83OfF6ubLan47W37_uphfLWemFDTNmrISpDFCkgpLaDihVVnytmo0B0lJ2-CGsVpQYUoNBFgFrWGt5I0odYs5Oy8WB9nW660aQh5U2CuvrboP-NApHZI1PShDqMQ11qKiwNekkqYVwoDJipWu-aT1-aA1jM0uR8GloPtnos9fnN2ozt8piRmumcgCHx8Egp9mkNTORgN9rx34MarcG6cid1Nm6Psj6NaPIY_yHkVlTbmsM-rd04r-lfK41QwoDwATfIwB1srYpKel5AJtrwhW0wdSRx8o8y6PeI_S_2d8ODCctTnJZImoSe4HV7Ug2eQVCvYXWE3Vew |
CitedBy_id | crossref_primary_10_1038_s41598_022_21380_4 crossref_primary_10_1016_j_eswa_2023_121545 crossref_primary_10_1016_j_imavis_2025_105427 crossref_primary_10_3390_ijms25031546 crossref_primary_10_3390_informatics9020034 crossref_primary_10_34921_amj_2023_2_025 |
Cites_doi | 10.1109/TKDE.2009.191 10.1002/ima.22646 10.1142/S0219519409003188 10.1016/j.cmpb.2018.01.011 10.1109/CVPR.2016.90 10.1016/j.inffus.2015.12.007 10.1111/j.1440-1681.2006.04340.x 10.1007/s00521-017-2839-5 10.1007/s12652-020-02310-6 10.1109/CTIT.2018.8649511 10.1109/ICPR.2010.373 10.1016/j.compbiomed.2021.104388 10.1016/S1672-0229(08)60011-X 10.1016/j.compbiomed.2017.09.017 10.1007/978-1-4615-5689-3 10.1016/j.compbiomed.2016.04.009 10.1073/pnas.2006764117 10.1093/eurheartj/ehu284 10.1016/j.knosys.2015.03.015 10.1016/j.asoc.2016.02.049 10.1007/s00521-021-06044-0 10.1109/TMI.2016.2535302 10.1016/j.ejmp.2019.05.004 10.1017/CBO9780511801389 10.1530/ERP-15-0007 10.1007/s11886-020-01348-4 10.1016/j.amjcard.2017.08.048 10.1016/j.bspc.2020.102254 10.1016/j.compbiomed.2016.10.022 10.1016/j.future.2018.05.001 10.3390/e17085218 10.1109/RBME.2014.2319854 10.1016/0893-6080(90)90049-Q 10.1161/CIRCULATIONAHA.107.181423 10.1080/17686733.2016.1176734 10.1007/s42979-020-0114-9 10.1016/j.cmpb.2020.105584 10.1016/S0140-6736(99)06187-5 10.1016/j.ins.2018.01.051 10.1109/TASSP.1981.1163711 10.1109/ACCESS.2020.3042594 10.1093/eurheartj/ehv497 10.1016/j.eswa.2013.04.003 10.1007/s00138-019-01029-5 10.1016/j.patrec.2019.03.027 10.1016/j.future.2017.08.039 10.1155/2020/8909458 10.1161/CIRCULATIONAHA.118.034338 10.1016/j.ultras.2017.02.003 10.21037/atm-20-4891 10.1016/j.bspc.2017.09.030 10.1016/j.ijcha.2020.100503 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | RYH AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/jimaging8040102 |
DatabaseName | CiNii Complete CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_c129070a862e4f169cd88cecedc6a744 PMC9030738 35448229 10_3390_jimaging8040102 |
Genre | Journal Article |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ IAO IHR ITC KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PROAC RPM RYH AAYXX CITATION NPM ABUWG AZQEC COVID DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c582t-b5681bc891609eb4126554d6ba4e921db0b337828c5ae1e36edc3d94b85ad043 |
IEDL.DBID | BENPR |
ISSN | 2313-433X |
IngestDate | Wed Aug 27 01:02:20 EDT 2025 Thu Aug 21 18:27:04 EDT 2025 Thu Jul 10 17:47:09 EDT 2025 Fri Jul 25 03:35:27 EDT 2025 Wed Feb 19 02:25:12 EST 2025 Tue Jul 01 04:20:00 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Thu Jun 26 22:55:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep features hypertrophic cardiomyopathy integrated index ResNet-50 computer-aided diagnosis tool |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c582t-b5681bc891609eb4126554d6ba4e921db0b337828c5ae1e36edc3d94b85ad043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1124-089x 0000-0003-2689-8552 0000-0003-1150-2244 0000-0003-2630-4654 0000-0002-7744-2857 0000-0002-1124-089X |
OpenAccessLink | https://www.proquest.com/docview/2652972497?pq-origsite=%requestingapplication% |
PMID | 35448229 |
PQID | 2652972497 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c129070a862e4f169cd88cecedc6a744 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9030738 proquest_miscellaneous_2654287825 proquest_journals_2652972497 pubmed_primary_35448229 crossref_citationtrail_10_3390_jimaging8040102 crossref_primary_10_3390_jimaging8040102 nii_cinii_1871428067810679168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220406 |
PublicationDateYYYYMMDD | 2022-04-06 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220406 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of Imaging |
PublicationTitleAlternate | J Imaging |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tsoutsman (ref_1) 2006; 33 Tan (ref_26) 2018; 87 Acharya (ref_54) 2016; 31 Fujita (ref_53) 2016; 43 Aslam (ref_43) 2013; 40 Specht (ref_45) 1990; 3 ref_61 Hinton (ref_66) 2008; 9 Raghavendra (ref_63) 2021; 32 ref_68 ref_67 Sudarshan (ref_13) 2014; 8 ref_65 ref_20 Theckedath (ref_35) 2020; 1 Acharya (ref_52) 2016; 79 ref_62 Raghavendra (ref_57) 2017; 77 ref_29 Altaf (ref_36) 2021; 33 ref_28 Chougrad (ref_34) 2018; 157 Pantazis (ref_9) 2015; 2 Han (ref_37) 2020; 196 Gudigar (ref_17) 2019; 125 Keys (ref_30) 1981; 29 Balaji (ref_19) 2016; 19 Acharya (ref_32) 2018; 100 Raghavendra (ref_55) 2016; 13 Shetty (ref_11) 2014; 8 Marian (ref_2) 2000; 355 Yu (ref_22) 2021; 9 Tajbakhsh (ref_40) 2016; 35 Acharya (ref_25) 2018; 79 ref_31 Krizhevsky (ref_60) 2012; 60 Acharya (ref_50) 2015; 83 Elliott (ref_7) 2014; 35 Acharya (ref_59) 2016; 73 Tucholski (ref_4) 2020; 117 ref_38 Elliott (ref_3) 2015; 37 Raghavendra (ref_15) 2017; 28 Gudigar (ref_18) 2020; 8 Raghavendra (ref_24) 2018; 441 Sharma (ref_56) 2015; 17 Jahmunah (ref_12) 2019; 62 Antunes (ref_10) 2020; 27 Pan (ref_27) 2010; 22 ref_47 ref_46 Hong (ref_39) 2019; 30 ref_44 Rowin (ref_5) 2017; 120 ref_41 Ghista (ref_51) 2009; 9 Zhang (ref_21) 2018; 138 Raghavendra (ref_16) 2018; 40 ref_49 Jichi (ref_8) 2013; 35 Kusunose (ref_14) 2020; 22 ref_48 Sharma (ref_23) 2020; 64 Pham (ref_58) 2020; 12 Vafaeezadeh (ref_64) 2021; 133 Zhou (ref_42) 2007; 5 Maron (ref_6) 2007; 115 Chu (ref_33) 2020; 2020 |
References_xml | – volume: 22 start-page: 1345 year: 2010 ident: ref_27 article-title: A Survey on Transfer Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 35 start-page: 2010 year: 2013 ident: ref_8 article-title: A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD) publication-title: Eur. Heart J. – volume: 32 start-page: 501 year: 2021 ident: ref_63 article-title: Feature-versus deep learning-based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22646 – volume: 9 start-page: 643 year: 2009 ident: ref_51 article-title: Nondimensional physiological indices for medical assessment publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519409003188 – ident: ref_49 – volume: 157 start-page: 19 year: 2018 ident: ref_34 article-title: Deep Convolutional Neural Networks for breast cancer screening publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.011 – ident: ref_29 doi: 10.1109/CVPR.2016.90 – volume: 19 start-page: 1871 year: 2016 ident: ref_19 article-title: Detection and diagnosis of dilated cardiomyopathy and hypertrophic cardiomyopathy using image processing techniques publication-title: Eng. Sci. Technol. Int. J. – ident: ref_65 – ident: ref_61 – volume: 31 start-page: 43 year: 2016 ident: ref_54 article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.12.007 – volume: 33 start-page: 139 year: 2006 ident: ref_1 article-title: Genes, Calcium and Modifying Factors in Hypertrophic CardiomyopathY publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2006.04340.x – volume: 28 start-page: 2869 year: 2017 ident: ref_15 article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2839-5 – volume: 12 start-page: 2121 year: 2020 ident: ref_58 article-title: Development of breast papillary index for differentiation of benign and malignant lesions using ultrasound images publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02310-6 – ident: ref_20 doi: 10.1109/CTIT.2018.8649511 – ident: ref_28 doi: 10.1109/ICPR.2010.373 – volume: 133 start-page: 104388 year: 2021 ident: ref_64 article-title: A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104388 – volume: 5 start-page: 242 year: 2007 ident: ref_42 article-title: A Modified T-test Feature Selection Method and Its Application on the HapMap Genotype Data publication-title: Genom. Proteom. Bioinform. doi: 10.1016/S1672-0229(08)60011-X – volume: 100 start-page: 270 year: 2018 ident: ref_32 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – ident: ref_68 doi: 10.1007/978-1-4615-5689-3 – ident: ref_31 – volume: 73 start-page: 131 year: 2016 ident: ref_59 article-title: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.04.009 – volume: 117 start-page: 24691 year: 2020 ident: ref_4 article-title: Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2006764117 – volume: 35 start-page: 2733 year: 2014 ident: ref_7 article-title: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC) publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu284 – volume: 83 start-page: 149 year: 2015 ident: ref_50 article-title: An integrated index for detection of Sudden Cardiac Death using Discrete Wavelet Transform and nonlinear features publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.03.015 – volume: 43 start-page: 510 year: 2016 ident: ref_53 article-title: Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.049 – volume: 33 start-page: 14037 year: 2021 ident: ref_36 article-title: A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from X-rays publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06044-0 – volume: 35 start-page: 1299 year: 2016 ident: ref_40 article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – ident: ref_41 – volume: 62 start-page: 95 year: 2019 ident: ref_12 article-title: Computer-aided diagnosis of congestive heart failure using ECG signals—A review publication-title: Phys. Medica doi: 10.1016/j.ejmp.2019.05.004 – ident: ref_62 – ident: ref_38 – ident: ref_48 doi: 10.1017/CBO9780511801389 – volume: 2 start-page: R45 year: 2015 ident: ref_9 article-title: Diagnosis and management of hypertrophic cardiomyopathy publication-title: Echo Res. Pract. doi: 10.1530/ERP-15-0007 – volume: 22 start-page: 89 year: 2020 ident: ref_14 article-title: Radiomics in Echocardiography: Deep Learning and Echocardiographic Analysis publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-020-01348-4 – volume: 120 start-page: 2256 year: 2017 ident: ref_5 article-title: Interaction of Adverse Disease Related Pathways in Hypertrophic Cardiomyopathy publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2017.08.048 – volume: 60 start-page: 84 year: 2012 ident: ref_60 article-title: Imagenet classification with deep convolutional neural networks publication-title: NIPS – volume: 64 start-page: 102254 year: 2020 ident: ref_23 article-title: Deep learning to diagnose Peripapillary Atrophy in retinal images along with statistical features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102254 – volume: 79 start-page: 250 year: 2016 ident: ref_52 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.022 – volume: 87 start-page: 127 year: 2018 ident: ref_26 article-title: Age-related Macular Degeneration detection using deep convolutional neural network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.05.001 – volume: 17 start-page: 5218 year: 2015 ident: ref_56 article-title: An Integrated Index for the Identification of Focal Electroencephalogram Signals Using Discrete Wavelet Transform and Entropy Measures publication-title: Entropy doi: 10.3390/e17085218 – volume: 8 start-page: 86 year: 2014 ident: ref_13 article-title: Automated Identification of Infarcted Myocardium Tissue Characterization Using Ultrasound Images: A Review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2014.2319854 – volume: 3 start-page: 109 year: 1990 ident: ref_45 article-title: Probabilistic neural networks publication-title: Neural. Netw. doi: 10.1016/0893-6080(90)90049-Q – ident: ref_47 – volume: 115 start-page: 1643 year: 2007 ident: ref_6 article-title: Recommendations and Considerations Related to Preparticipation Screening for Cardiovascular Abnormalities in Competitive Athletes: 2007 Update publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.181423 – volume: 13 start-page: 195 year: 2016 ident: ref_55 article-title: An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms publication-title: Quant. Infrared Thermogr. J. doi: 10.1080/17686733.2016.1176734 – volume: 1 start-page: 79 year: 2020 ident: ref_35 article-title: Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-0114-9 – volume: 196 start-page: 105584 year: 2020 ident: ref_37 article-title: Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105584 – volume: 9 start-page: 2579 year: 2008 ident: ref_66 article-title: Visualizing Data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_67 – volume: 8 start-page: MC05 year: 2014 ident: ref_11 article-title: Evaluation of Subtle Left Ventricular Systolic Abnormalities in Adult Patients with Hypertrophic Cardiomyopathy publication-title: J. Clin. Diagn. Res. – ident: ref_44 – volume: 355 start-page: 58 year: 2000 ident: ref_2 article-title: Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy publication-title: Lancet doi: 10.1016/S0140-6736(99)06187-5 – volume: 441 start-page: 41 year: 2018 ident: ref_24 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.051 – volume: 29 start-page: 1153 year: 1981 ident: ref_30 article-title: Cubic convolution interpolation for digital image processing publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1981.1163711 – volume: 8 start-page: 229043 year: 2020 ident: ref_18 article-title: Local Preserving Class Separation Framework to Identify Gestational Diabetes Mellitus Mother Using Ultrasound Fetal Cardiac Image publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3042594 – ident: ref_46 – volume: 37 start-page: 164 year: 2015 ident: ref_3 article-title: European Cardiomyopathy Pilot Registry: EURObservational Research Programme of the European Society of Cardiology publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv497 – volume: 40 start-page: 5402 year: 2013 ident: ref_43 article-title: Feature generation using genetic programming with comparative partner selection for diabetes classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.04.003 – volume: 30 start-page: 1123 year: 2019 ident: ref_39 article-title: Detecting cerebral microbleeds with transfer learning publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-019-01029-5 – volume: 125 start-page: 35 year: 2019 ident: ref_17 article-title: Global weighted LBP based entropy features for the assessment of pulmonary hypertension publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.03.027 – volume: 79 start-page: 952 year: 2018 ident: ref_25 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.08.039 – volume: 2020 start-page: 8909458 year: 2020 ident: ref_33 article-title: Automatic Image Captioning Based on ResNet50 and LSTM with Soft Attention publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2020/8909458 – volume: 138 start-page: 1623 year: 2018 ident: ref_21 article-title: Fully automated echocardiogram interpretation in clinical practice:feasibility and diagnostic accuracy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 – volume: 77 start-page: 110 year: 2017 ident: ref_57 article-title: Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.02.003 – volume: 9 start-page: 108 year: 2021 ident: ref_22 article-title: Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-4891 – volume: 40 start-page: 324 year: 2018 ident: ref_16 article-title: Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.09.030 – volume: 27 start-page: 100503 year: 2020 ident: ref_10 article-title: Hypertrophic cardiomyopathy publication-title: IJC Heart Vasc. doi: 10.1016/j.ijcha.2020.100503 |
SSID | ssj0001920199 |
Score | 2.227399 |
Snippet | Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and... |
SourceID | doaj pubmedcentral proquest pubmed crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102 |
SubjectTerms | Accuracy Automation Cardiomyopathy Cardiovascular disease Classification Computer applications to medicine. Medical informatics computer-aided diagnosis tool computer-aided diagnosis tool; deep features; hypertrophic cardiomyopathy; integrated index; ResNet-50 deep features Diabetes Diagnosis Electrocardiography Electronic computers. Computer science Heart Human error Hypertension hypertrophic cardiomyopathy Image acquisition Image classification integrated index Medical imaging Neural networks Photography Principal components analysis QA75.5-76.95 R858-859.7 ResNet-50 ResNet-50; computer-aided diagnosis tool; deep features; hypertrophic cardiomyopathy; integrated index Support vector machines Systemic diseases TR1-1050 Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBNokStx4BKa2I5jH6Gl2lZQcVik3iLbcdRUbbLaB1L_PTNOdrVbgbj0kBxiR_Jj7Pk-Z_INwMesKTNfO5taE5pU4j6ZatUUKRfKemmCyDj9jfzjQk1-yfPL4nIr1RfFhA3ywMPAHXk6KCkzi8g7yCZXxtda--BD7ZUtZVQCRZ-3RaauB9yClxm0fATy-qPr9jam_dFotfl4iLJ2Q1GtH51L17Z_A5r34yW3HNDpM3g6Ikf2ZWjxc3gUuhfwZEtP8CV0F_3vcMMmyC3ny3k_u2o9O44Bp7d3PeUevmMnQ2hdu2BnpJPIYsgAOwlhxggNrpB9M9vV7Dv5ODZuiITW2c-oxNmx6Vr1dfEKpqffpseTdEyokPpC82XqSG3MeY2QMDPByZwrRBO1clYGw_PaZU4IhAzaFzbkQSjssqiNdLqwdSbFa9jr-i68BWa1LLjF1VxahcXBCgr4K7xuLELC4BL4vB7eyo9i45Tz4qZC0kHzUd2bjwQ-bV6YDTob_676leZrU40EsuMDNJtqNJvqf2aTwAHONraN7jmyRkmfmEtNino4PDqB_bUdVOOqXlQ4XNyUSFjLBA43xbge6SOL7UK_inWIhSLxTuDNYDablooCyTDnJoFyx6B2urJb0rVXUfPbxM1Yv3uIvr-Hx5x-4qD4I7UPe8v5KhwgtFq6D3EV_QFdhyN4 priority: 102 providerName: Directory of Open Access Journals |
Title | Novel Hypertrophic Cardiomyopathy Diagnosis Index Using Deep Features and Local Directional Pattern Techniques |
URI | https://cir.nii.ac.jp/crid/1871428067810679168 https://www.ncbi.nlm.nih.gov/pubmed/35448229 https://www.proquest.com/docview/2652972497 https://www.proquest.com/docview/2654287825 https://pubmed.ncbi.nlm.nih.gov/PMC9030738 https://doaj.org/article/c129070a862e4f169cd88cecedc6a744 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZoe4EDYiddRkbiwCU08ZLYJ0SXYUAwqtAg9RY5jtMGtckwC1L_Pe95nGmnAi45xI7k7S3f88v3CHmb1Hliq9LERrs6FqAnY5XVMmY8M1ZoxxOGfyN_G2ejH-LLuTwPAbd5SKvsdaJX1FVnMUZ-yDLJdA5gIf8w_RVj1Si8XQ0lNLbIDqhgBeBr5-h0fPb9NsqiwcBpveL04YDvD3821778j4LTm4ZgSm-OPGs_GJm2af7mcN7Pm7xjiIZPyOPgQdKPqy1_Sh649hl5dIdX8Dlpx91vd0VHgDFni1k3vWwsPfaJp9c3HdYgvqEnqxS7Zk4_I18i9akD9MS5KUWvcAkonJq2ol_R1tGgGNFrp2eekbOlk579df6CTIank-NRHAorxFYqtohLZB0rrQLXMNGuFCksrhRVVhrhNEurMik5B9dBWWlc6ngGU-aVFqWSpkoEf0m22651rwk1SkhmQKpzk0GzMxwT_6RVtQHX0JURed8vb2ED6TjWvrgqAHzgfhT39iMi79YfTFd8G__ueoT7te6GRNn-RTe7KILcFRbjbHliALg5UaeZtpVS1lmYUWZyISJyALsNY8NnCuhR4FVzrpBZD5ZHRWS_PwdFkO55cXsWI_Jm3QxyiZctpnXd0vdBNAoAPCKvVsdmPVIuARQzpiOSbxyojalstrTNpef-1l4pq93_D2uPPGT4mwZmGGX7ZHsxW7oDcJ4W5YBsqeGnQZCTgQ9B_AHyNh3G |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBFowEEpfQxHES-4AQdFl26bbisEi9RY7jpUFtsuwDtD-K_8iMk2y7FXDrZQ9rJ3I845n57PE3AC-DSRqYIte-VnbiC7STvkwmsc-jRBuhbBRwuo18eJQMvorPx_HxFvzu7sJQWmVnE52hLmpDe-R7PIm5ShEspO-mP3yqGkWnq10JjUYtDuzqF0K2-dthD-X7ivP-x_H-wG-rCvgmlnzh50S5lRuJcVGgbC5CfHMsiiTXwioeFnmQRxH6TWlibUMbJbYwUaFELmNdBCLC116D6yKKFC0o2f90vqWj0Jsq1RAIYXuw9708c7WGJC6VsN256XyfKxGAHq0qy79Ft5eTNC94vf4duN2Gq-x9o193YctW9-DWBRLD-1Ad1T_tKRsgoJ0tZvX0pDRs32W5nq1qKni8Yr0mn6-csyGRMzKXp8B61k4ZhaBLhPxMVwUbkWNlrRUmiMC-OPrPio07qtn5AxhfxXw_hO2qruxjYFqKmGs0IalOsNnqiLIMYyMnGuNQm3vwppvezLQM51Ro4zRDpEPyyC7Jw4PX6wemDbnHv7t-IHmtuxErt_ujnn3L2kWeGdrUSwONKNGKSZgoU0hprMEvSnQqhAe7KG0cG_2GCFUFnWunkmj8cHqkBzudHmStKZln54rvwYt1MxoBOtnRla2Xrg9BX0T7Hjxq1GY90ihGBM658iDdUKiNT9lsqcoTRzSunAeQT_4_rOdwYzA-HGWj4dHBU7jJ6X4IpTYlO7C9mC3tLkZti_yZWysMsitem38A3ttWYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEdgQ2MBBIvoYnjJPYDQmxd1bJRVWhIe4scx2VBW1J6AfWn8e84J5dunYC3vfShdlrHx-fy2cffAXjtTWLPZKl2tbITV6CddGU0CV0eRNoIZQOP023kz6No8FV8Og1Pt-B3exeG0ipbm1gZ6qw0tEfe5VHIVYxgIe5OmrSIca__YfrDpQpSdNLaltOol8iRXf1C-DZ_P-yhrN9w3j88ORi4TYUB14SSL9yU6LdSIzFG8pRNhY__EoosSrWwivtZ6qVBgD5UmlBb3waRzUyQKZHKUGeeCPBnb8F2jKDI68D2_uFo_OVyg0ehb1WqphMKAuV1v-cXVeUhiYrjN_s4rSesCgagfyvy_G-x7vWUzSs-sH8f7jXBK_tYr7YHsGWLh3D3CqXhIyhG5U97zgYIb2eLWTk9yw07qHJeL1YllT9esV6d3ZfP2ZCoGlmVtcB61k4ZBaTLmZ0zXWTsmNwsa2wyAQY2rshAC3bSEs_OH8PJTcz4E-gUZWGfAtNShFyjQYl1hM1WB5RzGBo50RiV2tSBd-30JqbhO6eyG-cJ4h6SR3JNHg68XT8wrak-_t11n-S17kYc3dUX5exb0qh8YmiLL_Y0YkYrJn6kTCalsQbfKNKxEA7sobRxbPTpI3AVdModSyL1w-mRDuy26yBpDMs8uVQDB16tm9Ek0DmPLmy5rPoQEEbs78BOvWzWIw1CxOOcKwfijQW18SqbLUV-VtGOq8ofyGf_H9ZLuI16mRwPR0fP4Q6nyyKU5xTtQmcxW9o9DOEW6YtGWRgkN6yefwBmIFv1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Hypertrophic+Cardiomyopathy+Diagnosis+Index+Using+Deep+Features+and+Local+Directional+Pattern+Techniques&rft.jtitle=Journal+of+imaging&rft.au=Gudigar%2C+Anjan&rft.au=Raghavendra%2C+U&rft.au=Samanth%2C+Jyothi&rft.au=Dharmik%2C+Chinmay&rft.date=2022-04-06&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=8&rft.issue=4&rft.spage=102&rft_id=info:doi/10.3390%2Fjimaging8040102&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |