Novel Hypertrophic Cardiomyopathy Diagnosis Index Using Deep Features and Local Directional Pattern Techniques

Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most com...

Full description

Saved in:
Bibliographic Details
Published inJournal of Imaging Vol. 8; no. 4; p. 102
Main Authors Gudigar, Anjan, Raghavendra, U., Samanth, Jyothi, Dharmik, Chinmay, Gangavarapu, Mokshagna Rohit, Nayak, Krishnananda, Ciaccio, Edward J., Tan, Ru-San, Molinari, Filippo, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.04.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2)  in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.
AbstractList Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2)  in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100·log10(SigFea/2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t -test, and the most significant feature ( SigFea ) was identified. An integrated index derived from the simulation was defined as 100 · l o g 10 ( S i g F e a / 2 )   in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset.
Author Chinmay Dharmik
U. Rajendra Acharya
Edward J. Ciaccio
U. Raghavendra
Mokshagna Rohit Gangavarapu
Filippo Molinari
Ru-San Tan
Jyothi Samanth
Krishnananda Nayak
Anjan Gudigar
AuthorAffiliation 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; anjan.gudigar@manipal.edu (A.G.); chinmaydharmik@gmail.com (C.D.); rohit4gm@gmail.com (M.R.G.)
3 Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; edwardciaccio@gmail.com
6 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; filippo.molinari@polito.it
5 Duke-NUS Medical School, Singapore 169857, Singapore
10 Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 599494, Singapore
4 Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore; tanrsnhc@gmail.com
7 School of Engineering, Ngee Ann Polytechnic, Clementi, Singapore 599489, Singapore; aru@np.edu.sg
8 Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
2 Department of C
AuthorAffiliation_xml – name: 2 Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India; samanth.jyothi@manipal.edu (J.S.); krishnananda.n@manipal.edu (K.N.)
– name: 9 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 8608555, Japan
– name: 4 Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore; tanrsnhc@gmail.com
– name: 5 Duke-NUS Medical School, Singapore 169857, Singapore
– name: 1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; anjan.gudigar@manipal.edu (A.G.); chinmaydharmik@gmail.com (C.D.); rohit4gm@gmail.com (M.R.G.)
– name: 10 Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 599494, Singapore
– name: 3 Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; edwardciaccio@gmail.com
– name: 8 Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
– name: 7 School of Engineering, Ngee Ann Polytechnic, Clementi, Singapore 599489, Singapore; aru@np.edu.sg
– name: 6 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; filippo.molinari@polito.it
Author_xml – sequence: 1
  givenname: Anjan
  surname: Gudigar
  fullname: Gudigar, Anjan
– sequence: 2
  givenname: U.
  orcidid: 0000-0002-1124-089X
  surname: Raghavendra
  fullname: Raghavendra, U.
– sequence: 3
  givenname: Jyothi
  orcidid: 0000-0002-7744-2857
  surname: Samanth
  fullname: Samanth, Jyothi
– sequence: 4
  givenname: Chinmay
  orcidid: 0000-0003-2630-4654
  surname: Dharmik
  fullname: Dharmik, Chinmay
– sequence: 5
  givenname: Mokshagna Rohit
  surname: Gangavarapu
  fullname: Gangavarapu, Mokshagna Rohit
– sequence: 6
  givenname: Krishnananda
  surname: Nayak
  fullname: Nayak, Krishnananda
– sequence: 7
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
– sequence: 8
  givenname: Ru-San
  surname: Tan
  fullname: Tan, Ru-San
– sequence: 9
  givenname: Filippo
  orcidid: 0000-0003-1150-2244
  surname: Molinari
  fullname: Molinari, Filippo
– sequence: 10
  givenname: U. Rajendra
  orcidid: 0000-0003-2689-8552
  surname: Acharya
  fullname: Acharya, U. Rajendra
BackLink https://cir.nii.ac.jp/crid/1871428067810679168$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35448229$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1vEzEQXaEiWkrP3JAlOHAJ9dfu2hekKqU0UgQcgsTN8nonG0cbe7G9Ffn3eJsWtZE4eDwav_fmy6-LE-cdFMVbgj8xJvHl1u50Z10nMMcE0xfFGWWEzThjv06e-KfFRYxbjDGRNB_5qjhlJeeCUnlWuG_-Dnp0ux8gpOCHjTVorkNr_W7vB502e3Rtded8tBEtXAt_0M-Yc6JrgAHdgE5jgIi0a9HSG91ndACTrHfZ_6FTguDQCszG2d8jxDfFy7XuI1w83OfF6ubLan47W37_uphfLWemFDTNmrISpDFCkgpLaDihVVnytmo0B0lJ2-CGsVpQYUoNBFgFrWGt5I0odYs5Oy8WB9nW660aQh5U2CuvrboP-NApHZI1PShDqMQ11qKiwNekkqYVwoDJipWu-aT1-aA1jM0uR8GloPtnos9fnN2ozt8piRmumcgCHx8Egp9mkNTORgN9rx34MarcG6cid1Nm6Psj6NaPIY_yHkVlTbmsM-rd04r-lfK41QwoDwATfIwB1srYpKel5AJtrwhW0wdSRx8o8y6PeI_S_2d8ODCctTnJZImoSe4HV7Ug2eQVCvYXWE3Vew
CitedBy_id crossref_primary_10_1038_s41598_022_21380_4
crossref_primary_10_1016_j_eswa_2023_121545
crossref_primary_10_1016_j_imavis_2025_105427
crossref_primary_10_3390_ijms25031546
crossref_primary_10_3390_informatics9020034
crossref_primary_10_34921_amj_2023_2_025
Cites_doi 10.1109/TKDE.2009.191
10.1002/ima.22646
10.1142/S0219519409003188
10.1016/j.cmpb.2018.01.011
10.1109/CVPR.2016.90
10.1016/j.inffus.2015.12.007
10.1111/j.1440-1681.2006.04340.x
10.1007/s00521-017-2839-5
10.1007/s12652-020-02310-6
10.1109/CTIT.2018.8649511
10.1109/ICPR.2010.373
10.1016/j.compbiomed.2021.104388
10.1016/S1672-0229(08)60011-X
10.1016/j.compbiomed.2017.09.017
10.1007/978-1-4615-5689-3
10.1016/j.compbiomed.2016.04.009
10.1073/pnas.2006764117
10.1093/eurheartj/ehu284
10.1016/j.knosys.2015.03.015
10.1016/j.asoc.2016.02.049
10.1007/s00521-021-06044-0
10.1109/TMI.2016.2535302
10.1016/j.ejmp.2019.05.004
10.1017/CBO9780511801389
10.1530/ERP-15-0007
10.1007/s11886-020-01348-4
10.1016/j.amjcard.2017.08.048
10.1016/j.bspc.2020.102254
10.1016/j.compbiomed.2016.10.022
10.1016/j.future.2018.05.001
10.3390/e17085218
10.1109/RBME.2014.2319854
10.1016/0893-6080(90)90049-Q
10.1161/CIRCULATIONAHA.107.181423
10.1080/17686733.2016.1176734
10.1007/s42979-020-0114-9
10.1016/j.cmpb.2020.105584
10.1016/S0140-6736(99)06187-5
10.1016/j.ins.2018.01.051
10.1109/TASSP.1981.1163711
10.1109/ACCESS.2020.3042594
10.1093/eurheartj/ehv497
10.1016/j.eswa.2013.04.003
10.1007/s00138-019-01029-5
10.1016/j.patrec.2019.03.027
10.1016/j.future.2017.08.039
10.1155/2020/8909458
10.1161/CIRCULATIONAHA.118.034338
10.1016/j.ultras.2017.02.003
10.21037/atm-20-4891
10.1016/j.bspc.2017.09.030
10.1016/j.ijcha.2020.100503
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID RYH
AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/jimaging8040102
DatabaseName CiNii Complete
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_c129070a862e4f169cd88cecedc6a744
PMC9030738
35448229
10_3390_jimaging8040102
Genre Journal Article
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
RYH
AAYXX
CITATION
NPM
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c582t-b5681bc891609eb4126554d6ba4e921db0b337828c5ae1e36edc3d94b85ad043
IEDL.DBID BENPR
ISSN 2313-433X
IngestDate Wed Aug 27 01:02:20 EDT 2025
Thu Aug 21 18:27:04 EDT 2025
Thu Jul 10 17:47:09 EDT 2025
Fri Jul 25 03:35:27 EDT 2025
Wed Feb 19 02:25:12 EST 2025
Tue Jul 01 04:20:00 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Thu Jun 26 22:55:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep features
hypertrophic cardiomyopathy
integrated index
ResNet-50
computer-aided diagnosis tool
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-b5681bc891609eb4126554d6ba4e921db0b337828c5ae1e36edc3d94b85ad043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1124-089x
0000-0003-2689-8552
0000-0003-1150-2244
0000-0003-2630-4654
0000-0002-7744-2857
0000-0002-1124-089X
OpenAccessLink https://www.proquest.com/docview/2652972497?pq-origsite=%requestingapplication%
PMID 35448229
PQID 2652972497
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_c129070a862e4f169cd88cecedc6a744
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9030738
proquest_miscellaneous_2654287825
proquest_journals_2652972497
pubmed_primary_35448229
crossref_citationtrail_10_3390_jimaging8040102
crossref_primary_10_3390_jimaging8040102
nii_cinii_1871428067810679168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220406
PublicationDateYYYYMMDD 2022-04-06
PublicationDate_xml – month: 4
  year: 2022
  text: 20220406
  day: 6
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of Imaging
PublicationTitleAlternate J Imaging
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tsoutsman (ref_1) 2006; 33
Tan (ref_26) 2018; 87
Acharya (ref_54) 2016; 31
Fujita (ref_53) 2016; 43
Aslam (ref_43) 2013; 40
Specht (ref_45) 1990; 3
ref_61
Hinton (ref_66) 2008; 9
Raghavendra (ref_63) 2021; 32
ref_68
ref_67
Sudarshan (ref_13) 2014; 8
ref_65
ref_20
Theckedath (ref_35) 2020; 1
Acharya (ref_52) 2016; 79
ref_62
Raghavendra (ref_57) 2017; 77
ref_29
Altaf (ref_36) 2021; 33
ref_28
Chougrad (ref_34) 2018; 157
Pantazis (ref_9) 2015; 2
Han (ref_37) 2020; 196
Gudigar (ref_17) 2019; 125
Keys (ref_30) 1981; 29
Balaji (ref_19) 2016; 19
Acharya (ref_32) 2018; 100
Raghavendra (ref_55) 2016; 13
Shetty (ref_11) 2014; 8
Marian (ref_2) 2000; 355
Yu (ref_22) 2021; 9
Tajbakhsh (ref_40) 2016; 35
Acharya (ref_25) 2018; 79
ref_31
Krizhevsky (ref_60) 2012; 60
Acharya (ref_50) 2015; 83
Elliott (ref_7) 2014; 35
Acharya (ref_59) 2016; 73
Tucholski (ref_4) 2020; 117
ref_38
Elliott (ref_3) 2015; 37
Raghavendra (ref_15) 2017; 28
Gudigar (ref_18) 2020; 8
Raghavendra (ref_24) 2018; 441
Sharma (ref_56) 2015; 17
Jahmunah (ref_12) 2019; 62
Antunes (ref_10) 2020; 27
Pan (ref_27) 2010; 22
ref_47
ref_46
Hong (ref_39) 2019; 30
ref_44
Rowin (ref_5) 2017; 120
ref_41
Ghista (ref_51) 2009; 9
Zhang (ref_21) 2018; 138
Raghavendra (ref_16) 2018; 40
ref_49
Jichi (ref_8) 2013; 35
Kusunose (ref_14) 2020; 22
ref_48
Sharma (ref_23) 2020; 64
Pham (ref_58) 2020; 12
Vafaeezadeh (ref_64) 2021; 133
Zhou (ref_42) 2007; 5
Maron (ref_6) 2007; 115
Chu (ref_33) 2020; 2020
References_xml – volume: 22
  start-page: 1345
  year: 2010
  ident: ref_27
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 35
  start-page: 2010
  year: 2013
  ident: ref_8
  article-title: A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD)
  publication-title: Eur. Heart J.
– volume: 32
  start-page: 501
  year: 2021
  ident: ref_63
  article-title: Feature-versus deep learning-based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22646
– volume: 9
  start-page: 643
  year: 2009
  ident: ref_51
  article-title: Nondimensional physiological indices for medical assessment
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519409003188
– ident: ref_49
– volume: 157
  start-page: 19
  year: 2018
  ident: ref_34
  article-title: Deep Convolutional Neural Networks for breast cancer screening
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.011
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– volume: 19
  start-page: 1871
  year: 2016
  ident: ref_19
  article-title: Detection and diagnosis of dilated cardiomyopathy and hypertrophic cardiomyopathy using image processing techniques
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_65
– ident: ref_61
– volume: 31
  start-page: 43
  year: 2016
  ident: ref_54
  article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.12.007
– volume: 33
  start-page: 139
  year: 2006
  ident: ref_1
  article-title: Genes, Calcium and Modifying Factors in Hypertrophic CardiomyopathY
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/j.1440-1681.2006.04340.x
– volume: 28
  start-page: 2869
  year: 2017
  ident: ref_15
  article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2839-5
– volume: 12
  start-page: 2121
  year: 2020
  ident: ref_58
  article-title: Development of breast papillary index for differentiation of benign and malignant lesions using ultrasound images
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02310-6
– ident: ref_20
  doi: 10.1109/CTIT.2018.8649511
– ident: ref_28
  doi: 10.1109/ICPR.2010.373
– volume: 133
  start-page: 104388
  year: 2021
  ident: ref_64
  article-title: A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104388
– volume: 5
  start-page: 242
  year: 2007
  ident: ref_42
  article-title: A Modified T-test Feature Selection Method and Its Application on the HapMap Genotype Data
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/S1672-0229(08)60011-X
– volume: 100
  start-page: 270
  year: 2018
  ident: ref_32
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– ident: ref_68
  doi: 10.1007/978-1-4615-5689-3
– ident: ref_31
– volume: 73
  start-page: 131
  year: 2016
  ident: ref_59
  article-title: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.04.009
– volume: 117
  start-page: 24691
  year: 2020
  ident: ref_4
  article-title: Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2006764117
– volume: 35
  start-page: 2733
  year: 2014
  ident: ref_7
  article-title: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehu284
– volume: 83
  start-page: 149
  year: 2015
  ident: ref_50
  article-title: An integrated index for detection of Sudden Cardiac Death using Discrete Wavelet Transform and nonlinear features
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.03.015
– volume: 43
  start-page: 510
  year: 2016
  ident: ref_53
  article-title: Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.049
– volume: 33
  start-page: 14037
  year: 2021
  ident: ref_36
  article-title: A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from X-rays
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06044-0
– volume: 35
  start-page: 1299
  year: 2016
  ident: ref_40
  article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: ref_41
– volume: 62
  start-page: 95
  year: 2019
  ident: ref_12
  article-title: Computer-aided diagnosis of congestive heart failure using ECG signals—A review
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2019.05.004
– ident: ref_62
– ident: ref_38
– ident: ref_48
  doi: 10.1017/CBO9780511801389
– volume: 2
  start-page: R45
  year: 2015
  ident: ref_9
  article-title: Diagnosis and management of hypertrophic cardiomyopathy
  publication-title: Echo Res. Pract.
  doi: 10.1530/ERP-15-0007
– volume: 22
  start-page: 89
  year: 2020
  ident: ref_14
  article-title: Radiomics in Echocardiography: Deep Learning and Echocardiographic Analysis
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-020-01348-4
– volume: 120
  start-page: 2256
  year: 2017
  ident: ref_5
  article-title: Interaction of Adverse Disease Related Pathways in Hypertrophic Cardiomyopathy
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2017.08.048
– volume: 60
  start-page: 84
  year: 2012
  ident: ref_60
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: NIPS
– volume: 64
  start-page: 102254
  year: 2020
  ident: ref_23
  article-title: Deep learning to diagnose Peripapillary Atrophy in retinal images along with statistical features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102254
– volume: 79
  start-page: 250
  year: 2016
  ident: ref_52
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.022
– volume: 87
  start-page: 127
  year: 2018
  ident: ref_26
  article-title: Age-related Macular Degeneration detection using deep convolutional neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.001
– volume: 17
  start-page: 5218
  year: 2015
  ident: ref_56
  article-title: An Integrated Index for the Identification of Focal Electroencephalogram Signals Using Discrete Wavelet Transform and Entropy Measures
  publication-title: Entropy
  doi: 10.3390/e17085218
– volume: 8
  start-page: 86
  year: 2014
  ident: ref_13
  article-title: Automated Identification of Infarcted Myocardium Tissue Characterization Using Ultrasound Images: A Review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2014.2319854
– volume: 3
  start-page: 109
  year: 1990
  ident: ref_45
  article-title: Probabilistic neural networks
  publication-title: Neural. Netw.
  doi: 10.1016/0893-6080(90)90049-Q
– ident: ref_47
– volume: 115
  start-page: 1643
  year: 2007
  ident: ref_6
  article-title: Recommendations and Considerations Related to Preparticipation Screening for Cardiovascular Abnormalities in Competitive Athletes: 2007 Update
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.181423
– volume: 13
  start-page: 195
  year: 2016
  ident: ref_55
  article-title: An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms
  publication-title: Quant. Infrared Thermogr. J.
  doi: 10.1080/17686733.2016.1176734
– volume: 1
  start-page: 79
  year: 2020
  ident: ref_35
  article-title: Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-0114-9
– volume: 196
  start-page: 105584
  year: 2020
  ident: ref_37
  article-title: Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105584
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_66
  article-title: Visualizing Data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_67
– volume: 8
  start-page: MC05
  year: 2014
  ident: ref_11
  article-title: Evaluation of Subtle Left Ventricular Systolic Abnormalities in Adult Patients with Hypertrophic Cardiomyopathy
  publication-title: J. Clin. Diagn. Res.
– ident: ref_44
– volume: 355
  start-page: 58
  year: 2000
  ident: ref_2
  article-title: Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)06187-5
– volume: 441
  start-page: 41
  year: 2018
  ident: ref_24
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.051
– volume: 29
  start-page: 1153
  year: 1981
  ident: ref_30
  article-title: Cubic convolution interpolation for digital image processing
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1981.1163711
– volume: 8
  start-page: 229043
  year: 2020
  ident: ref_18
  article-title: Local Preserving Class Separation Framework to Identify Gestational Diabetes Mellitus Mother Using Ultrasound Fetal Cardiac Image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3042594
– ident: ref_46
– volume: 37
  start-page: 164
  year: 2015
  ident: ref_3
  article-title: European Cardiomyopathy Pilot Registry: EURObservational Research Programme of the European Society of Cardiology
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehv497
– volume: 40
  start-page: 5402
  year: 2013
  ident: ref_43
  article-title: Feature generation using genetic programming with comparative partner selection for diabetes classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.04.003
– volume: 30
  start-page: 1123
  year: 2019
  ident: ref_39
  article-title: Detecting cerebral microbleeds with transfer learning
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-019-01029-5
– volume: 125
  start-page: 35
  year: 2019
  ident: ref_17
  article-title: Global weighted LBP based entropy features for the assessment of pulmonary hypertension
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.03.027
– volume: 79
  start-page: 952
  year: 2018
  ident: ref_25
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.039
– volume: 2020
  start-page: 8909458
  year: 2020
  ident: ref_33
  article-title: Automatic Image Captioning Based on ResNet50 and LSTM with Soft Attention
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2020/8909458
– volume: 138
  start-page: 1623
  year: 2018
  ident: ref_21
  article-title: Fully automated echocardiogram interpretation in clinical practice:feasibility and diagnostic accuracy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 77
  start-page: 110
  year: 2017
  ident: ref_57
  article-title: Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.02.003
– volume: 9
  start-page: 108
  year: 2021
  ident: ref_22
  article-title: Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-4891
– volume: 40
  start-page: 324
  year: 2018
  ident: ref_16
  article-title: Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.09.030
– volume: 27
  start-page: 100503
  year: 2020
  ident: ref_10
  article-title: Hypertrophic cardiomyopathy
  publication-title: IJC Heart Vasc.
  doi: 10.1016/j.ijcha.2020.100503
SSID ssj0001920199
Score 2.227399
Snippet Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102
SubjectTerms Accuracy
Automation
Cardiomyopathy
Cardiovascular disease
Classification
Computer applications to medicine. Medical informatics
computer-aided diagnosis tool
computer-aided diagnosis tool; deep features; hypertrophic cardiomyopathy; integrated index; ResNet-50
deep features
Diabetes
Diagnosis
Electrocardiography
Electronic computers. Computer science
Heart
Human error
Hypertension
hypertrophic cardiomyopathy
Image acquisition
Image classification
integrated index
Medical imaging
Neural networks
Photography
Principal components analysis
QA75.5-76.95
R858-859.7
ResNet-50
ResNet-50; computer-aided diagnosis tool; deep features; hypertrophic cardiomyopathy; integrated index
Support vector machines
Systemic diseases
TR1-1050
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBNokStx4BKa2I5jH6Gl2lZQcVik3iLbcdRUbbLaB1L_PTNOdrVbgbj0kBxiR_Jj7Pk-Z_INwMesKTNfO5taE5pU4j6ZatUUKRfKemmCyDj9jfzjQk1-yfPL4nIr1RfFhA3ywMPAHXk6KCkzi8g7yCZXxtda--BD7ZUtZVQCRZ-3RaauB9yClxm0fATy-qPr9jam_dFotfl4iLJ2Q1GtH51L17Z_A5r34yW3HNDpM3g6Ikf2ZWjxc3gUuhfwZEtP8CV0F_3vcMMmyC3ny3k_u2o9O44Bp7d3PeUevmMnQ2hdu2BnpJPIYsgAOwlhxggNrpB9M9vV7Dv5ODZuiITW2c-oxNmx6Vr1dfEKpqffpseTdEyokPpC82XqSG3MeY2QMDPByZwrRBO1clYGw_PaZU4IhAzaFzbkQSjssqiNdLqwdSbFa9jr-i68BWa1LLjF1VxahcXBCgr4K7xuLELC4BL4vB7eyo9i45Tz4qZC0kHzUd2bjwQ-bV6YDTob_676leZrU40EsuMDNJtqNJvqf2aTwAHONraN7jmyRkmfmEtNino4PDqB_bUdVOOqXlQ4XNyUSFjLBA43xbge6SOL7UK_inWIhSLxTuDNYDablooCyTDnJoFyx6B2urJb0rVXUfPbxM1Yv3uIvr-Hx5x-4qD4I7UPe8v5KhwgtFq6D3EV_QFdhyN4
  priority: 102
  providerName: Directory of Open Access Journals
Title Novel Hypertrophic Cardiomyopathy Diagnosis Index Using Deep Features and Local Directional Pattern Techniques
URI https://cir.nii.ac.jp/crid/1871428067810679168
https://www.ncbi.nlm.nih.gov/pubmed/35448229
https://www.proquest.com/docview/2652972497
https://www.proquest.com/docview/2654287825
https://pubmed.ncbi.nlm.nih.gov/PMC9030738
https://doaj.org/article/c129070a862e4f169cd88cecedc6a744
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZoe4EDYiddRkbiwCU08ZLYJ0SXYUAwqtAg9RY5jtMGtckwC1L_Pe95nGmnAi45xI7k7S3f88v3CHmb1Hliq9LERrs6FqAnY5XVMmY8M1ZoxxOGfyN_G2ejH-LLuTwPAbd5SKvsdaJX1FVnMUZ-yDLJdA5gIf8w_RVj1Si8XQ0lNLbIDqhgBeBr5-h0fPb9NsqiwcBpveL04YDvD3821778j4LTm4ZgSm-OPGs_GJm2af7mcN7Pm7xjiIZPyOPgQdKPqy1_Sh649hl5dIdX8Dlpx91vd0VHgDFni1k3vWwsPfaJp9c3HdYgvqEnqxS7Zk4_I18i9akD9MS5KUWvcAkonJq2ol_R1tGgGNFrp2eekbOlk579df6CTIank-NRHAorxFYqtohLZB0rrQLXMNGuFCksrhRVVhrhNEurMik5B9dBWWlc6ngGU-aVFqWSpkoEf0m22651rwk1SkhmQKpzk0GzMxwT_6RVtQHX0JURed8vb2ED6TjWvrgqAHzgfhT39iMi79YfTFd8G__ueoT7te6GRNn-RTe7KILcFRbjbHliALg5UaeZtpVS1lmYUWZyISJyALsNY8NnCuhR4FVzrpBZD5ZHRWS_PwdFkO55cXsWI_Jm3QxyiZctpnXd0vdBNAoAPCKvVsdmPVIuARQzpiOSbxyojalstrTNpef-1l4pq93_D2uPPGT4mwZmGGX7ZHsxW7oDcJ4W5YBsqeGnQZCTgQ9B_AHyNh3G
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBFowEEpfQxHES-4AQdFl26bbisEi9RY7jpUFtsuwDtD-K_8iMk2y7FXDrZQ9rJ3I845n57PE3AC-DSRqYIte-VnbiC7STvkwmsc-jRBuhbBRwuo18eJQMvorPx_HxFvzu7sJQWmVnE52hLmpDe-R7PIm5ShEspO-mP3yqGkWnq10JjUYtDuzqF0K2-dthD-X7ivP-x_H-wG-rCvgmlnzh50S5lRuJcVGgbC5CfHMsiiTXwioeFnmQRxH6TWlibUMbJbYwUaFELmNdBCLC116D6yKKFC0o2f90vqWj0Jsq1RAIYXuw9708c7WGJC6VsN256XyfKxGAHq0qy79Ft5eTNC94vf4duN2Gq-x9o193YctW9-DWBRLD-1Ad1T_tKRsgoJ0tZvX0pDRs32W5nq1qKni8Yr0mn6-csyGRMzKXp8B61k4ZhaBLhPxMVwUbkWNlrRUmiMC-OPrPio07qtn5AxhfxXw_hO2qruxjYFqKmGs0IalOsNnqiLIMYyMnGuNQm3vwppvezLQM51Ro4zRDpEPyyC7Jw4PX6wemDbnHv7t-IHmtuxErt_ujnn3L2kWeGdrUSwONKNGKSZgoU0hprMEvSnQqhAe7KG0cG_2GCFUFnWunkmj8cHqkBzudHmStKZln54rvwYt1MxoBOtnRla2Xrg9BX0T7Hjxq1GY90ihGBM658iDdUKiNT9lsqcoTRzSunAeQT_4_rOdwYzA-HGWj4dHBU7jJ6X4IpTYlO7C9mC3tLkZti_yZWysMsitem38A3ttWYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEdgQ2MBBIvoYnjJPYDQmxd1bJRVWhIe4scx2VBW1J6AfWn8e84J5dunYC3vfShdlrHx-fy2cffAXjtTWLPZKl2tbITV6CddGU0CV0eRNoIZQOP023kz6No8FV8Og1Pt-B3exeG0ipbm1gZ6qw0tEfe5VHIVYxgIe5OmrSIca__YfrDpQpSdNLaltOol8iRXf1C-DZ_P-yhrN9w3j88ORi4TYUB14SSL9yU6LdSIzFG8pRNhY__EoosSrWwivtZ6qVBgD5UmlBb3waRzUyQKZHKUGeeCPBnb8F2jKDI68D2_uFo_OVyg0ehb1WqphMKAuV1v-cXVeUhiYrjN_s4rSesCgagfyvy_G-x7vWUzSs-sH8f7jXBK_tYr7YHsGWLh3D3CqXhIyhG5U97zgYIb2eLWTk9yw07qHJeL1YllT9esV6d3ZfP2ZCoGlmVtcB61k4ZBaTLmZ0zXWTsmNwsa2wyAQY2rshAC3bSEs_OH8PJTcz4E-gUZWGfAtNShFyjQYl1hM1WB5RzGBo50RiV2tSBd-30JqbhO6eyG-cJ4h6SR3JNHg68XT8wrak-_t11n-S17kYc3dUX5exb0qh8YmiLL_Y0YkYrJn6kTCalsQbfKNKxEA7sobRxbPTpI3AVdModSyL1w-mRDuy26yBpDMs8uVQDB16tm9Ek0DmPLmy5rPoQEEbs78BOvWzWIw1CxOOcKwfijQW18SqbLUV-VtGOq8ofyGf_H9ZLuI16mRwPR0fP4Q6nyyKU5xTtQmcxW9o9DOEW6YtGWRgkN6yefwBmIFv1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Hypertrophic+Cardiomyopathy+Diagnosis+Index+Using+Deep+Features+and+Local+Directional+Pattern+Techniques&rft.jtitle=Journal+of+imaging&rft.au=Gudigar%2C+Anjan&rft.au=Raghavendra%2C+U&rft.au=Samanth%2C+Jyothi&rft.au=Dharmik%2C+Chinmay&rft.date=2022-04-06&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=8&rft.issue=4&rft.spage=102&rft_id=info:doi/10.3390%2Fjimaging8040102&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon