A Monte Carlo appraisal of tree abundance and stand basal area estimation in forest inventories based on terrestrial laser scanning
Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simula...
Saved in:
Published in | Canadian journal of forest research Vol. 49; no. 1; pp. 41 - 52 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
2019
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 0045-5067 1208-6037 1208-6037 |
DOI | 10.1139/cjfr-2017-0462 |
Cover
Abstract | Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simulation study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection with the Horvitz–Thompson estimator based on conventional plot sampling, in which all the trees within plots are recorded. Results show that single-scan TLS provides more efficient estimators with respect to those provided by the conventional plot sampling in the case of low-density forests when no distance sampling correction is performed. In low-density forests, uncorrected estimators lead to a small bias (1%–6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius too much. The bias increases in forests with clustered spatial structures and in dense forests, where the bias levels (30%–50%) deteriorate the performance of uncorrected estimators. Even if the bias-corrected estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to outperform conventional plot sampling. Therefore, there is no convenience in using TLS-based estimation in high-density forests. |
---|---|
AbstractList | Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simulation study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection with the Horvitz-Thompson estimator based on conventional plot sampling, in which all the trees within plots are recorded. Results show that single-scan TLS provides more efficient estimators with respect to those provided by the conventional plot sampling in the case of low-density forests when no distance sampling correction is performed. In low-density forests, uncorrected estimators lead to a small bias (1%-6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius too much. The bias increases in forests with clustered spatial structures and in dense forests, where the bias levels (30%-50%) deteriorate the performance of uncorrected estimators. Even if the bias- corrected estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to outperform conventional plot sampling. Therefore, there is no convenience in using TLS-based estimation in high-density forests.Key words: plot sampling, TLS-based detection, distance sampling, hybrid inference, simulation study.La non-detection des arbres est un probleme important lors de l'utilisation d'un scanner laser terrestre (SLT) a balayage unique pour les inventaires forestiers. Une approche d'inference hybride est adoptee. En se fondant sur l'echantillonnage a distance, on peut deduire une fonction de detection permettant de determiner la probabilite d'inclusion de chaque arbre present dans chaque placette. Une etude par simulation est realisee pour comparer les estimateurs fondes sur le SLT qui ont ete corriges ou non pour la non-detection a l'aide de l'estimateur de Horvitz-Thompson, lequel est base sur un echantillonnage conventionnel de placettes dans lequel tous les arbres des placettes sont enregistres. Les resultats montrent que le SLT a balayage unique produit des estimateurs plus efficaces que ceux provenant d'un echantillonnage conventionnel de placettes dans le cas des forets a faible densite lorsqu'aucune correction d'echantillonnage a distance n'est effectuee. Dans les forets a faible densite, les estimateurs non corriges entrainent un leger biais (de 1 a 6 %), qui augmente avec la taille de la placette. Par consequent, il faut prendre garde de ne pas trop agrandir le rayon de la placette. Le biais augmente dans les forets ayant une structure spatiale regroupee et dans les forets denses, pour lesquelles la taille du biais (de 30 a 50 %) deteriore la performance des estimateurs non corriges. Meme si la correction du biais des estimateurs s'avere efficace pour reduire le biais (inferieur a 15 %), ces reductions ne sont pas suffisantes pour surpasser l'echantillonnage conventionnel de placettes. Par consequent, il n'y a pas d'avantage a utiliser une estimation fondee sur le SLT dans les forets a forte densite. [Traduit par la Redaction]Mots-cles : echantillonnage de placettes, detection par scanner laser terrestre (SLT), echantillonnage a distance, inference hybride, etude par simulation. Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simulation study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection with the Horvitz–Thompson estimator based on conventional plot sampling, in which all the trees within plots are recorded. Results show that single-scan TLS provides more efficient estimators with respect to those provided by the conventional plot sampling in the case of low-density forests when no distance sampling correction is performed. In low-density forests, uncorrected estimators lead to a small bias (1%–6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius too much. The bias increases in forests with clustered spatial structures and in dense forests, where the bias levels (30%–50%) deteriorate the performance of uncorrected estimators. Even if the bias-corrected estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to outperform conventional plot sampling. Therefore, there is no convenience in using TLS-based estimation in high-density forests. |
Abstract_FL | La non-détection des arbres est un problème important lors de l’utilisation d’un scanner laser terrestre (SLT) à balayage unique pour les inventaires forestiers. Une approche d’inférence hybride est adoptée. En se fondant sur l’échantillonnage à distance, on peut déduire une fonction de détection permettant de déterminer la probabilité d’inclusion de chaque arbre présent dans chaque placette. Une étude par simulation est réalisée pour comparer les estimateurs fondés sur le SLT qui ont été corrigés ou non pour la non-détection à l’aide de l’estimateur de Horvitz-Thompson, lequel est basé sur un échantillonnage conventionnel de placettes dans lequel tous les arbres des placettes sont enregistrés. Les résultats montrent que le SLT à balayage unique produit des estimateurs plus efficaces que ceux provenant d’un échantillonnage conventionnel de placettes dans le cas des forêts à faible densité lorsqu’aucune correction d’échantillonnage à distance n’est effectuée. Dans les forêts à faible densité, les estimateurs non corrigés entraînent un léger biais (de 1 à 6 %), qui augmente avec la taille de la placette. Par conséquent, il faut prendre garde de ne pas trop agrandir le rayon de la placette. Le biais augmente dans les forêts ayant une structure spatiale regroupée et dans les forêts denses, pour lesquelles la taille du biais (de 30 à 50 %) détériore la performance des estimateurs non corrigés. Même si la correction du biais des estimateurs s’avère efficace pour réduire le biais (inférieur à 15 %), ces réductions ne sont pas suffisantes pour surpasser l’échantillonnage conventionnel de placettes. Par conséquent, il n’y a pas d’avantage à utiliser une estimation fondée sur le SLT dans les forêts à forte densité. [Traduit par la Rédaction] |
Audience | Academic |
Author | Di Biase, R.M D’Amati, M Fattorini, L Corona, P |
Author_xml | – sequence: 1 givenname: P surname: Corona fullname: Corona, P organization: Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Research Centre for Forestry and Wood, Rome, Italy – sequence: 2 givenname: R.M surname: Di Biase fullname: Di Biase, R.M organization: Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Research Centre for Forestry and Wood, Rome, Italy – sequence: 3 givenname: L surname: Fattorini fullname: Fattorini, L organization: University of Siena, Siena, Italy – sequence: 4 givenname: M surname: D’Amati fullname: D’Amati, M organization: University of Siena, Siena, Italy |
BookMark | eNqVksuLFDEQxhtZwdnVq-egFz30bl79Og6Dj4V1BR_nUJ2uHjP0JL1JWvTsP27iLugsIyKBpKj6fZUK-U6LE-ssFsVTRs8ZE92F3o2-5JQ1JZU1f1CsGKdtWVPRnBQrSmVVVrRuHhWnIewopaIWdFX8WJN3zkYkG_CTIzDPHkyAibiRRI9IoF_sAFanyA4kxLz3kAnwCARDNHuIxlliLBmdT4kUfUUbnTcYMosDSeWIPhe9SdIpJT0JGqw1dvu4eDjCFPDJ3XlWfH796tPmbXn1_s3lZn1V6qrlsYRBgGyEQEklAyY7RBzF0FQVo33TtyPyWnd9O7Sib1HgULdjxQfZt9APoDtxVry47Tt7d7OkWdTeBI3TBBbdEhTnleC1rGSd0Of30J1bvE3TKc46WTW0lfw3tYUJlbGjix50bqrWVcNoQlmTqPIItUWLHqb0haNJ6QP-2RFez-ZG_QmdH4HSGnBv9NGuLw8EOv_6t7iFJQR1-fHDf7DXh-zdINq7EDyOavbJEf67YlRlX6rsS5V9qbIvk0DeE2gTfzkovcBMf5exW5n1OvkIwesv_7rqJxHB9r0 |
CitedBy_id | crossref_primary_10_31167_csecfv0i45_19887 crossref_primary_10_3897_neobiota_92_112164 crossref_primary_10_1016_j_foreco_2021_118939 crossref_primary_10_1016_j_envsoft_2022_105337 |
Cites_doi | 10.1214/11-AOAS509 10.1016/j.isprsjprs.2015.07.007 10.3390/rs4010001 10.1201/9780203498880 10.1002/0470011351 10.12899/ASR-1617 10.1080/02827581.2017.1368698 10.1007/978-1-4612-0795-5 10.1139/cjfr-2018-0072 10.1111/j.1365-2664.2009.01737.x 10.1007/s10651-012-0216-1 10.1002/env.1046 10.1139/cjfr-2014-0203 10.1016/j.envres.2015.10.017 10.1007/s10651-017-0376-0 10.12899/asr-1354 10.1093/oso/9780198507833.001.0001 10.1139/cjfr-2013-0535 10.1016/j.isprsjprs.2016.01.006 10.1093/oso/9780198506492.001.0001 10.1139/cjfr-2017-0019 10.3390/rs70101095 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 NRC Research Press 2019 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2019 NRC Research Press – notice: 2019 Published by NRC Research Press |
DBID | AAYXX CITATION ISN ISR 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7S9 L.6 |
DOI | 10.1139/cjfr-2017-0462 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Career and Technical Education (Alumni Edition) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1208-6037 |
EndPage | 52 |
ExternalDocumentID | A571021917 10_1139_cjfr_2017_0462 cjfr-2017-0462 |
GroupedDBID | 08R 0R 1AW 29B 2XV 3V. 4.4 4P2 5GY 5RP 7RQ 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAYJJ ABDBF ABFLS ABJCF ABPTK ABUWG ACGFS ACGOD ACIWK ACPRK ADKZR AENEX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC B4K BCR BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CAG COF CS3 D8U DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EJD EMK EPL ESX GNUQQ GUQSH HCIFZ HZ I-F IAO ICQ IEA IEP IFM IOF IRD ISN ISR ITC ITF ITG ITH L6V LA8 LK5 M0K M2O M2P M2Q M3C M3G M7R M7S MBDVC MV1 N95 NMEPN NRXXU NYCZX N~3 O9- OVD P2P PADUT PATMY PCBAR PEA PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS PYCSY QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP SJFOW TUS U5U UQL VH1 Y6R ZCG 00T 0R~ 6J9 AAHBH AAYXX ABJNI ACGFO ACUHS AEGXH AEUYN AI. AIAGR APEBS CCPQU CITATION ECGQY HZ~ IPNFZ ONR PHGZM PHGZT PQGLB PV9 RZL TEORI VQG XOL YV5 ZY4 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7S9 L.6 |
ID | FETCH-LOGICAL-c582t-ad3a4733e4041a149eeef3d75510b7b8fe26c9b8d83b8e3ed68f52d4b8abdac93 |
ISSN | 0045-5067 1208-6037 |
IngestDate | Thu Jul 10 19:13:27 EDT 2025 Sun Sep 07 13:32:07 EDT 2025 Wed Mar 19 01:50:36 EDT 2025 Fri Mar 14 03:14:25 EDT 2025 Tue Jun 10 15:33:03 EDT 2025 Sat Mar 08 18:29:48 EST 2025 Wed Mar 05 05:10:14 EST 2025 Wed Mar 05 05:19:04 EST 2025 Thu Jul 10 10:05:26 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Wed Nov 11 00:33:11 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c582t-ad3a4733e4041a149eeef3d75510b7b8fe26c9b8d83b8e3ed68f52d4b8abdac93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://hdl.handle.net/11365/1068574 |
PQID | 2194570842 |
PQPubID | 47747 |
PageCount | 12 |
ParticipantIDs | gale_infotraccpiq_571021917 gale_infotracgeneralonefile_A571021917 gale_infotracmisc_A571021917 crossref_primary_10_1139_cjfr_2017_0462 gale_incontextgauss_ISN_A571021917 nrcresearch_primary_10_1139_cjfr_2017_0462 proquest_journals_2194570842 proquest_miscellaneous_2253264546 crossref_citationtrail_10_1139_cjfr_2017_0462 gale_infotracacademiconefile_A571021917 gale_incontextgauss_ISR_A571021917 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationTitle | Canadian journal of forest research |
PublicationYear | 2019 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg18/ref18 refg20/ref20 refg22/ref22 refg9/ref9 refg25/ref25 refg11/ref11 refg6/ref6 Ducey M.J. (refg10/ref10) 2013; 39 refg14/ref14 refg8/ref8 refg5/ref5 refg23/ref23 refg17/ref17 refg19/ref19 refg21/ref21 refg7/ref7 refg4/ref4 refg12/ref12 refg1/ref1 Barabesi L. (refg2/ref2) 1996; 8 Liang X. (refg15/ref15) 2011; 22 refg3/ref3 refg24/ref24 refg16/ref16 refg13/ref13 |
References_xml | – ident: refg5/ref5 doi: 10.1214/11-AOAS509 – ident: refg13/ref13 doi: 10.1016/j.isprsjprs.2015.07.007 – ident: refg17/ref17 doi: 10.3390/rs4010001 – volume: 39 start-page: 410 issue: 5 year: 2013 ident: refg10/ref10 publication-title: Can. J. Remote Sens. – ident: refg12/ref12 doi: 10.1201/9780203498880 – ident: refg22/ref22 doi: 10.1002/0470011351 – volume: 8 start-page: 563 issue: 3 year: 1996 ident: refg2/ref2 publication-title: Ital. J. Appl. Stat. – ident: refg8/ref8 doi: 10.12899/ASR-1617 – ident: refg18/ref18 doi: 10.1080/02827581.2017.1368698 – ident: refg23/ref23 doi: 10.1007/978-1-4612-0795-5 – ident: refg14/ref14 doi: 10.1139/cjfr-2018-0072 – ident: refg24/ref24 doi: 10.1111/j.1365-2664.2009.01737.x – ident: refg3/ref3 doi: 10.1007/s10651-012-0216-1 – ident: refg4/ref4 doi: 10.1002/env.1046 – ident: refg9/ref9 doi: 10.1139/cjfr-2014-0203 – ident: refg7/ref7 doi: 10.1016/j.envres.2015.10.017 – volume: 22 start-page: 37 issue: 2 year: 2011 ident: refg15/ref15 publication-title: Photogramm. J. Finl. – ident: refg19/ref19 doi: 10.1007/s10651-017-0376-0 – ident: refg11/ref11 doi: 10.12899/asr-1354 – ident: refg25/ref25 doi: 10.1093/oso/9780198507833.001.0001 – ident: refg1/ref1 doi: 10.1139/cjfr-2013-0535 – ident: refg16/ref16 doi: 10.1016/j.isprsjprs.2016.01.006 – ident: refg6/ref6 doi: 10.1093/oso/9780198506492.001.0001 – ident: refg21/ref21 doi: 10.1139/cjfr-2017-0019 – ident: refg20/ref20 doi: 10.3390/rs70101095 |
SSID | ssj0003630 |
Score | 2.265389 |
Snippet | Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Bias Computer simulation Density distance sampling détection par scanner laser terrestre (SLT) Estimators forest inventory Forests hybrid inference inférence hybride Inventories Inventory data Observations Optical radar plot sampling probability Rayon Sampling simulation study stand basal area Technology application Terrestrial ecosystems Timber inventory TLS-based detection Trees Vegetation mapping échantillonnage de placettes échantillonnage à distance étude par simulation |
Title | A Monte Carlo appraisal of tree abundance and stand basal area estimation in forest inventories based on terrestrial laser scanning |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2017-0462 https://www.proquest.com/docview/2194570842 https://www.proquest.com/docview/2253264546 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyF4QHyKsYIMQkyiSklj5-ux7agGEn0om7S3yHHsqWhKRz8e4JU_h3-SO9tJE20TjJcoik-Ok_vFvrvc_UzI25Rz7UdSe0UgQo_rQnl5gIW6MY90rJNYmZjul1l0fMo_n4Vnnc7vRtbSdpMP5M9r60r-R6twDfSKVbK30GzdKVyAc9AvHEHDcPwnHY_wk9wozNq4WBp6cLFYW-sSfzb3RY51HlVNgIka9GHZQnoAsBX7SLBhKxcx6gHWK1yAM8yAXKIHjbJgj-LvBGX28DA7fIC5jQzQ0m521DRua6aDBh2F69VxCtWx5wkSJ4hWfdnRoj9eCLvP43xQB4SmYoOjKRe7EgkUrpI00hE-wS6s6wIYjQlyNp_U-YWtjBMzU_PQC327VcdA2ck58BMv8i1JTDV7W8LTFkrtVGz5tNyibllyry4XDNlW5Te9AlzBco2VuruFsU5XbAvcIXtBHA_DLtkbjY_G03rhZxFzFU926I4jFG7yod1DywZylsD9ciUrXVyxC4yxc_KQPHBeCh1ZyD0iHVU-JnenRperH0_IrxE1yKMGebRGHl1qisijNfIoYI4a5FGDPIrIozvk0UVJLUZoA3nUII9CcwN51CCPVsh7Sk6nH08mx57bzsOTYRJsPFEwwWPGFPf5UIBnrpTSrIjBZvfzOE-0CiKZ5kmRsDxRTBVRosOg4Hki8kLIlD0j3XJZqueEBjqNmQjBO4wUT4dMRLJgkV8kwxjcMF_vE696wZl0XPe45cpFZnxelmaokAwVkqFC9slhLX9pWV5ulHyD-sqQOqXE3KxzsV2vs09fZ9koRGsd4x83Cs1bQodOSC9hbFK4ehh4QqRka0ketCTl5eJ71mh912o9t3T113XTawnCOiJbze8bEPzra-hVCM3cnLLOoBsexn7Cofl13Yy3wUTOUi23IBOE4DDykEcvbnO_A3IPpw4b--yR7ma1VS_BG9jkr9xX-Ac_Sgx8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Monte+Carlo+appraisal+of+tree+abundance+and+stand+basal+area+estimation+in+forest+inventories+based+on+terrestrial+laser+scanning&rft.jtitle=Canadian+journal+of+forest+research&rft.au=Corona%2C+P&rft.au=Di+Biase%2C+R.M&rft.au=Fattorini%2C+L&rft.au=D%E2%80%99Amati%2C+M&rft.date=2019&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.eissn=1208-6037&rft.volume=49&rft.issue=1&rft.spage=41&rft.epage=52&rft_id=info:doi/10.1139%2Fcjfr-2017-0462&rft.externalDocID=cjfr-2017-0462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-5067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-5067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-5067&client=summon |