A Monte Carlo appraisal of tree abundance and stand basal area estimation in forest inventories based on terrestrial laser scanning

Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simula...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of forest research Vol. 49; no. 1; pp. 41 - 52
Main Authors Corona, P, Di Biase, R.M, Fattorini, L, D’Amati, M
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 2019
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN0045-5067
1208-6037
1208-6037
DOI10.1139/cjfr-2017-0462

Cover

Abstract Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simulation study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection with the Horvitz–Thompson estimator based on conventional plot sampling, in which all the trees within plots are recorded. Results show that single-scan TLS provides more efficient estimators with respect to those provided by the conventional plot sampling in the case of low-density forests when no distance sampling correction is performed. In low-density forests, uncorrected estimators lead to a small bias (1%–6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius too much. The bias increases in forests with clustered spatial structures and in dense forests, where the bias levels (30%–50%) deteriorate the performance of uncorrected estimators. Even if the bias-corrected estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to outperform conventional plot sampling. Therefore, there is no convenience in using TLS-based estimation in high-density forests.
AbstractList Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simulation study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection with the Horvitz-Thompson estimator based on conventional plot sampling, in which all the trees within plots are recorded. Results show that single-scan TLS provides more efficient estimators with respect to those provided by the conventional plot sampling in the case of low-density forests when no distance sampling correction is performed. In low-density forests, uncorrected estimators lead to a small bias (1%-6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius too much. The bias increases in forests with clustered spatial structures and in dense forests, where the bias levels (30%-50%) deteriorate the performance of uncorrected estimators. Even if the bias- corrected estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to outperform conventional plot sampling. Therefore, there is no convenience in using TLS-based estimation in high-density forests.Key words: plot sampling, TLS-based detection, distance sampling, hybrid inference, simulation study.La non-detection des arbres est un probleme important lors de l'utilisation d'un scanner laser terrestre (SLT) a balayage unique pour les inventaires forestiers. Une approche d'inference hybride est adoptee. En se fondant sur l'echantillonnage a distance, on peut deduire une fonction de detection permettant de determiner la probabilite d'inclusion de chaque arbre present dans chaque placette. Une etude par simulation est realisee pour comparer les estimateurs fondes sur le SLT qui ont ete corriges ou non pour la non-detection a l'aide de l'estimateur de Horvitz-Thompson, lequel est base sur un echantillonnage conventionnel de placettes dans lequel tous les arbres des placettes sont enregistres. Les resultats montrent que le SLT a balayage unique produit des estimateurs plus efficaces que ceux provenant d'un echantillonnage conventionnel de placettes dans le cas des forets a faible densite lorsqu'aucune correction d'echantillonnage a distance n'est effectuee. Dans les forets a faible densite, les estimateurs non corriges entrainent un leger biais (de 1 a 6 %), qui augmente avec la taille de la placette. Par consequent, il faut prendre garde de ne pas trop agrandir le rayon de la placette. Le biais augmente dans les forets ayant une structure spatiale regroupee et dans les forets denses, pour lesquelles la taille du biais (de 30 a 50 %) deteriore la performance des estimateurs non corriges. Meme si la correction du biais des estimateurs s'avere efficace pour reduire le biais (inferieur a 15 %), ces reductions ne sont pas suffisantes pour surpasser l'echantillonnage conventionnel de placettes. Par consequent, il n'y a pas d'avantage a utiliser une estimation fondee sur le SLT dans les forets a forte densite. [Traduit par la Redaction]Mots-cles : echantillonnage de placettes, detection par scanner laser terrestre (SLT), echantillonnage a distance, inference hybride, etude par simulation.
Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance sampling, a detection function is assumed, so that the inclusion probability of each tree included within each plot can be determined. A simulation study is performed to compare the TLS-based estimators corrected and uncorrected for non-detection with the Horvitz–Thompson estimator based on conventional plot sampling, in which all the trees within plots are recorded. Results show that single-scan TLS provides more efficient estimators with respect to those provided by the conventional plot sampling in the case of low-density forests when no distance sampling correction is performed. In low-density forests, uncorrected estimators lead to a small bias (1%–6%), increasing with plot size. Therefore, care must be taken in enlarging the plot radius too much. The bias increases in forests with clustered spatial structures and in dense forests, where the bias levels (30%–50%) deteriorate the performance of uncorrected estimators. Even if the bias-corrected estimators prove to be effective in reducing the bias (below 15%), these reductions are not sufficient to outperform conventional plot sampling. Therefore, there is no convenience in using TLS-based estimation in high-density forests.
Abstract_FL La non-détection des arbres est un problème important lors de l’utilisation d’un scanner laser terrestre (SLT) à balayage unique pour les inventaires forestiers. Une approche d’inférence hybride est adoptée. En se fondant sur l’échantillonnage à distance, on peut déduire une fonction de détection permettant de déterminer la probabilité d’inclusion de chaque arbre présent dans chaque placette. Une étude par simulation est réalisée pour comparer les estimateurs fondés sur le SLT qui ont été corrigés ou non pour la non-détection à l’aide de l’estimateur de Horvitz-Thompson, lequel est basé sur un échantillonnage conventionnel de placettes dans lequel tous les arbres des placettes sont enregistrés. Les résultats montrent que le SLT à balayage unique produit des estimateurs plus efficaces que ceux provenant d’un échantillonnage conventionnel de placettes dans le cas des forêts à faible densité lorsqu’aucune correction d’échantillonnage à distance n’est effectuée. Dans les forêts à faible densité, les estimateurs non corrigés entraînent un léger biais (de 1 à 6 %), qui augmente avec la taille de la placette. Par conséquent, il faut prendre garde de ne pas trop agrandir le rayon de la placette. Le biais augmente dans les forêts ayant une structure spatiale regroupée et dans les forêts denses, pour lesquelles la taille du biais (de 30 à 50 %) détériore la performance des estimateurs non corrigés. Même si la correction du biais des estimateurs s’avère efficace pour réduire le biais (inférieur à 15 %), ces réductions ne sont pas suffisantes pour surpasser l’échantillonnage conventionnel de placettes. Par conséquent, il n’y a pas d’avantage à utiliser une estimation fondée sur le SLT dans les forêts à forte densité. [Traduit par la Rédaction]
Audience Academic
Author Di Biase, R.M
D’Amati, M
Fattorini, L
Corona, P
Author_xml – sequence: 1
  givenname: P
  surname: Corona
  fullname: Corona, P
  organization: Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Research Centre for Forestry and Wood, Rome, Italy
– sequence: 2
  givenname: R.M
  surname: Di Biase
  fullname: Di Biase, R.M
  organization: Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Research Centre for Forestry and Wood, Rome, Italy
– sequence: 3
  givenname: L
  surname: Fattorini
  fullname: Fattorini, L
  organization: University of Siena, Siena, Italy
– sequence: 4
  givenname: M
  surname: D’Amati
  fullname: D’Amati, M
  organization: University of Siena, Siena, Italy
BookMark eNqVksuLFDEQxhtZwdnVq-egFz30bl79Og6Dj4V1BR_nUJ2uHjP0JL1JWvTsP27iLugsIyKBpKj6fZUK-U6LE-ssFsVTRs8ZE92F3o2-5JQ1JZU1f1CsGKdtWVPRnBQrSmVVVrRuHhWnIewopaIWdFX8WJN3zkYkG_CTIzDPHkyAibiRRI9IoF_sAFanyA4kxLz3kAnwCARDNHuIxlliLBmdT4kUfUUbnTcYMosDSeWIPhe9SdIpJT0JGqw1dvu4eDjCFPDJ3XlWfH796tPmbXn1_s3lZn1V6qrlsYRBgGyEQEklAyY7RBzF0FQVo33TtyPyWnd9O7Sib1HgULdjxQfZt9APoDtxVry47Tt7d7OkWdTeBI3TBBbdEhTnleC1rGSd0Of30J1bvE3TKc46WTW0lfw3tYUJlbGjix50bqrWVcNoQlmTqPIItUWLHqb0haNJ6QP-2RFez-ZG_QmdH4HSGnBv9NGuLw8EOv_6t7iFJQR1-fHDf7DXh-zdINq7EDyOavbJEf67YlRlX6rsS5V9qbIvk0DeE2gTfzkovcBMf5exW5n1OvkIwesv_7rqJxHB9r0
CitedBy_id crossref_primary_10_31167_csecfv0i45_19887
crossref_primary_10_3897_neobiota_92_112164
crossref_primary_10_1016_j_foreco_2021_118939
crossref_primary_10_1016_j_envsoft_2022_105337
Cites_doi 10.1214/11-AOAS509
10.1016/j.isprsjprs.2015.07.007
10.3390/rs4010001
10.1201/9780203498880
10.1002/0470011351
10.12899/ASR-1617
10.1080/02827581.2017.1368698
10.1007/978-1-4612-0795-5
10.1139/cjfr-2018-0072
10.1111/j.1365-2664.2009.01737.x
10.1007/s10651-012-0216-1
10.1002/env.1046
10.1139/cjfr-2014-0203
10.1016/j.envres.2015.10.017
10.1007/s10651-017-0376-0
10.12899/asr-1354
10.1093/oso/9780198507833.001.0001
10.1139/cjfr-2013-0535
10.1016/j.isprsjprs.2016.01.006
10.1093/oso/9780198506492.001.0001
10.1139/cjfr-2017-0019
10.3390/rs70101095
ContentType Journal Article
Copyright COPYRIGHT 2019 NRC Research Press
2019 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2019 NRC Research Press
– notice: 2019 Published by NRC Research Press
DBID AAYXX
CITATION
ISN
ISR
7SN
7SS
7T7
8FD
C1K
FR3
P64
RC3
U9A
7S9
L.6
DOI 10.1139/cjfr-2017-0462
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Career and Technical Education (Alumni Edition)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Entomology Abstracts



CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1208-6037
EndPage 52
ExternalDocumentID A571021917
10_1139_cjfr_2017_0462
cjfr-2017-0462
GroupedDBID 08R
0R
1AW
29B
2XV
3V.
4.4
4P2
5GY
5RP
7RQ
7X2
7XC
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAYJJ
ABDBF
ABFLS
ABJCF
ABPTK
ABUWG
ACGFS
ACGOD
ACIWK
ACPRK
ADKZR
AENEX
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
B4K
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
COF
CS3
D8U
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EJD
EMK
EPL
ESX
GNUQQ
GUQSH
HCIFZ
HZ
I-F
IAO
ICQ
IEA
IEP
IFM
IOF
IRD
ISN
ISR
ITC
ITF
ITG
ITH
L6V
LA8
LK5
M0K
M2O
M2P
M2Q
M3C
M3G
M7R
M7S
MBDVC
MV1
N95
NMEPN
NRXXU
NYCZX
N~3
O9-
OVD
P2P
PADUT
PATMY
PCBAR
PEA
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
PYCSY
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
SJFOW
TUS
U5U
UQL
VH1
Y6R
ZCG
00T
0R~
6J9
AAHBH
AAYXX
ABJNI
ACGFO
ACUHS
AEGXH
AEUYN
AI.
AIAGR
APEBS
CCPQU
CITATION
ECGQY
HZ~
IPNFZ
ONR
PHGZM
PHGZT
PQGLB
PV9
RZL
TEORI
VQG
XOL
YV5
ZY4
7SN
7SS
7T7
8FD
C1K
FR3
P64
RC3
U9A
7S9
L.6
ID FETCH-LOGICAL-c582t-ad3a4733e4041a149eeef3d75510b7b8fe26c9b8d83b8e3ed68f52d4b8abdac93
ISSN 0045-5067
1208-6037
IngestDate Thu Jul 10 19:13:27 EDT 2025
Sun Sep 07 13:32:07 EDT 2025
Wed Mar 19 01:50:36 EDT 2025
Fri Mar 14 03:14:25 EDT 2025
Tue Jun 10 15:33:03 EDT 2025
Sat Mar 08 18:29:48 EST 2025
Wed Mar 05 05:10:14 EST 2025
Wed Mar 05 05:19:04 EST 2025
Thu Jul 10 10:05:26 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Wed Nov 11 00:33:11 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582t-ad3a4733e4041a149eeef3d75510b7b8fe26c9b8d83b8e3ed68f52d4b8abdac93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://hdl.handle.net/11365/1068574
PQID 2194570842
PQPubID 47747
PageCount 12
ParticipantIDs gale_infotraccpiq_571021917
gale_infotracgeneralonefile_A571021917
gale_infotracmisc_A571021917
crossref_primary_10_1139_cjfr_2017_0462
gale_incontextgauss_ISN_A571021917
nrcresearch_primary_10_1139_cjfr_2017_0462
proquest_journals_2194570842
proquest_miscellaneous_2253264546
crossref_citationtrail_10_1139_cjfr_2017_0462
gale_infotracacademiconefile_A571021917
gale_incontextgauss_ISR_A571021917
PublicationCentury 2000
PublicationDate 20190000
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationTitle Canadian journal of forest research
PublicationYear 2019
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg18/ref18
refg20/ref20
refg22/ref22
refg9/ref9
refg25/ref25
refg11/ref11
refg6/ref6
Ducey M.J. (refg10/ref10) 2013; 39
refg14/ref14
refg8/ref8
refg5/ref5
refg23/ref23
refg17/ref17
refg19/ref19
refg21/ref21
refg7/ref7
refg4/ref4
refg12/ref12
refg1/ref1
Barabesi L. (refg2/ref2) 1996; 8
Liang X. (refg15/ref15) 2011; 22
refg3/ref3
refg24/ref24
refg16/ref16
refg13/ref13
References_xml – ident: refg5/ref5
  doi: 10.1214/11-AOAS509
– ident: refg13/ref13
  doi: 10.1016/j.isprsjprs.2015.07.007
– ident: refg17/ref17
  doi: 10.3390/rs4010001
– volume: 39
  start-page: 410
  issue: 5
  year: 2013
  ident: refg10/ref10
  publication-title: Can. J. Remote Sens.
– ident: refg12/ref12
  doi: 10.1201/9780203498880
– ident: refg22/ref22
  doi: 10.1002/0470011351
– volume: 8
  start-page: 563
  issue: 3
  year: 1996
  ident: refg2/ref2
  publication-title: Ital. J. Appl. Stat.
– ident: refg8/ref8
  doi: 10.12899/ASR-1617
– ident: refg18/ref18
  doi: 10.1080/02827581.2017.1368698
– ident: refg23/ref23
  doi: 10.1007/978-1-4612-0795-5
– ident: refg14/ref14
  doi: 10.1139/cjfr-2018-0072
– ident: refg24/ref24
  doi: 10.1111/j.1365-2664.2009.01737.x
– ident: refg3/ref3
  doi: 10.1007/s10651-012-0216-1
– ident: refg4/ref4
  doi: 10.1002/env.1046
– ident: refg9/ref9
  doi: 10.1139/cjfr-2014-0203
– ident: refg7/ref7
  doi: 10.1016/j.envres.2015.10.017
– volume: 22
  start-page: 37
  issue: 2
  year: 2011
  ident: refg15/ref15
  publication-title: Photogramm. J. Finl.
– ident: refg19/ref19
  doi: 10.1007/s10651-017-0376-0
– ident: refg11/ref11
  doi: 10.12899/asr-1354
– ident: refg25/ref25
  doi: 10.1093/oso/9780198507833.001.0001
– ident: refg1/ref1
  doi: 10.1139/cjfr-2013-0535
– ident: refg16/ref16
  doi: 10.1016/j.isprsjprs.2016.01.006
– ident: refg6/ref6
  doi: 10.1093/oso/9780198506492.001.0001
– ident: refg21/ref21
  doi: 10.1139/cjfr-2017-0019
– ident: refg20/ref20
  doi: 10.3390/rs70101095
SSID ssj0003630
Score 2.265389
Snippet Non-detection of trees is an important issue when using single-scan TLS in forest inventories. A hybrid inference approach is adopted. Quoting from distance...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Bias
Computer simulation
Density
distance sampling
détection par scanner laser terrestre (SLT)
Estimators
forest inventory
Forests
hybrid inference
inférence hybride
Inventories
Inventory data
Observations
Optical radar
plot sampling
probability
Rayon
Sampling
simulation study
stand basal area
Technology application
Terrestrial ecosystems
Timber inventory
TLS-based detection
Trees
Vegetation mapping
échantillonnage de placettes
échantillonnage à distance
étude par simulation
Title A Monte Carlo appraisal of tree abundance and stand basal area estimation in forest inventories based on terrestrial laser scanning
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2017-0462
https://www.proquest.com/docview/2194570842
https://www.proquest.com/docview/2253264546
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyF4QHyKsYIMQkyiSklj5-ux7agGEn0om7S3yHHsqWhKRz8e4JU_h3-SO9tJE20TjJcoik-Ok_vFvrvc_UzI25Rz7UdSe0UgQo_rQnl5gIW6MY90rJNYmZjul1l0fMo_n4Vnnc7vRtbSdpMP5M9r60r-R6twDfSKVbK30GzdKVyAc9AvHEHDcPwnHY_wk9wozNq4WBp6cLFYW-sSfzb3RY51HlVNgIka9GHZQnoAsBX7SLBhKxcx6gHWK1yAM8yAXKIHjbJgj-LvBGX28DA7fIC5jQzQ0m521DRua6aDBh2F69VxCtWx5wkSJ4hWfdnRoj9eCLvP43xQB4SmYoOjKRe7EgkUrpI00hE-wS6s6wIYjQlyNp_U-YWtjBMzU_PQC327VcdA2ck58BMv8i1JTDV7W8LTFkrtVGz5tNyibllyry4XDNlW5Te9AlzBco2VuruFsU5XbAvcIXtBHA_DLtkbjY_G03rhZxFzFU926I4jFG7yod1DywZylsD9ciUrXVyxC4yxc_KQPHBeCh1ZyD0iHVU-JnenRperH0_IrxE1yKMGebRGHl1qisijNfIoYI4a5FGDPIrIozvk0UVJLUZoA3nUII9CcwN51CCPVsh7Sk6nH08mx57bzsOTYRJsPFEwwWPGFPf5UIBnrpTSrIjBZvfzOE-0CiKZ5kmRsDxRTBVRosOg4Hki8kLIlD0j3XJZqueEBjqNmQjBO4wUT4dMRLJgkV8kwxjcMF_vE696wZl0XPe45cpFZnxelmaokAwVkqFC9slhLX9pWV5ulHyD-sqQOqXE3KxzsV2vs09fZ9koRGsd4x83Cs1bQodOSC9hbFK4ehh4QqRka0ketCTl5eJ71mh912o9t3T113XTawnCOiJbze8bEPzra-hVCM3cnLLOoBsexn7Cofl13Yy3wUTOUi23IBOE4DDykEcvbnO_A3IPpw4b--yR7ma1VS_BG9jkr9xX-Ac_Sgx8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Monte+Carlo+appraisal+of+tree+abundance+and+stand+basal+area+estimation+in+forest+inventories+based+on+terrestrial+laser+scanning&rft.jtitle=Canadian+journal+of+forest+research&rft.au=Corona%2C+P&rft.au=Di+Biase%2C+R.M&rft.au=Fattorini%2C+L&rft.au=D%E2%80%99Amati%2C+M&rft.date=2019&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.eissn=1208-6037&rft.volume=49&rft.issue=1&rft.spage=41&rft.epage=52&rft_id=info:doi/10.1139%2Fcjfr-2017-0462&rft.externalDocID=cjfr-2017-0462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-5067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-5067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-5067&client=summon