A long road/read to rapid high-resolution HLA typing: The nanopore perspective

Next-generation sequencing (NGS) has been widely adopted for clinical HLA typing and advanced immunogenetics researches. Current methodologies still face challenges in resolving cis–trans ambiguity involving distant variant positions, and the turnaround time is affected by testing volume and batchin...

Full description

Saved in:
Bibliographic Details
Published inHuman immunology Vol. 82; no. 7; pp. 488 - 495
Main Author Liu, Chang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Next-generation sequencing (NGS) has been widely adopted for clinical HLA typing and advanced immunogenetics researches. Current methodologies still face challenges in resolving cis–trans ambiguity involving distant variant positions, and the turnaround time is affected by testing volume and batching. Nanopore sequencing may become a promising addition to the existing options for HLA typing. The technology delivered by the MinION sequencer of Oxford Nanopore Technologies (ONT) can record the ionic current changes during the translocation of DNA/RNA strands through transmembrane pores and translate the signals to sequence reads. It features simple and flexible library preparations, long sequencing reads, portable and affordable sequencing devices, and rapid, real-time sequencing. However, the error rate of the sequencing reads is high and remains a hurdle for its broad application. This review article will provide a brief overview of this technology and then focus on the opportunities and challenges of using nanopore sequencing for high-resolution HLA typing and immunogenetics research.
AbstractList Next-generation sequencing (NGS) has been widely adopted for clinical HLA typing and advanced immunogenetics researches. Current methodologies still face challenges in resolving cis-trans ambiguity involving distant variant positions, and the turnaround time is affected by testing volume and batching. Nanopore sequencing may become a promising addition to the existing options for HLA typing. The technology delivered by the MinION sequencer of Oxford Nanopore Technologies (ONT) can record the ionic current changes during the translocation of DNA/RNA strands through transmembrane pores and translate the signals to sequence reads. It features simple and flexible library preparations, long sequencing reads, portable and affordable sequencing devices, and rapid, real-time sequencing. However, the error rate of the sequencing reads is high and remains a hurdle for its broad application. This review article will provide a brief overview of this technology and then focus on the opportunities and challenges of using nanopore sequencing for high-resolution HLA typing and immunogenetics research.Next-generation sequencing (NGS) has been widely adopted for clinical HLA typing and advanced immunogenetics researches. Current methodologies still face challenges in resolving cis-trans ambiguity involving distant variant positions, and the turnaround time is affected by testing volume and batching. Nanopore sequencing may become a promising addition to the existing options for HLA typing. The technology delivered by the MinION sequencer of Oxford Nanopore Technologies (ONT) can record the ionic current changes during the translocation of DNA/RNA strands through transmembrane pores and translate the signals to sequence reads. It features simple and flexible library preparations, long sequencing reads, portable and affordable sequencing devices, and rapid, real-time sequencing. However, the error rate of the sequencing reads is high and remains a hurdle for its broad application. This review article will provide a brief overview of this technology and then focus on the opportunities and challenges of using nanopore sequencing for high-resolution HLA typing and immunogenetics research.
Next-generation sequencing (NGS) has been widely adopted for clinical HLA typing and advanced immunogenetics researches. Current methodologies still face challenges in resolving cis-trans ambiguity involving distant variant positions, and the turnaround time is affected by testing volume and batching. Nanopore sequencing may become a promising addition to the existing options for HLA typing. The technology delivered by the MinION sequencer of Oxford Nanopore Technologies (ONT) can record the ionic current changes during the translocation of DNA/RNA strands through transmembrane pores and translate the signals to sequence reads. It features simple and flexible library preparations, long sequencing reads, portable and affordable sequencing devices, and rapid, real-time sequencing. However, the error rate of the sequencing reads is high and remains a hurdle for its broad application. This review article will provide a brief overview of this technology and then focus on the opportunities and challenges of using nanopore sequencing for high-resolution HLA typing and immunogenetics research.
Author Liu, Chang
Author_xml – sequence: 1
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: cliu32@wustl.edu
  organization: Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63105, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32386782$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFr2zAUhcXoWNNu_2AMP-7F7pUs23IZg1C2dRC2l-5ZqNJ1osyWPMkO5N9XIenY-pInXdA534FzrsiF8w4JeU-hoEDrm22xmQc7DAUDBgXwAqB9RRZUNG1OaV1fkAXQVuRCVO0luYpxCwANNPwNuSxZKepGsAX5scx679ZZ8MrcBFQmm3wW1GhNtrHrTR4w-n6erHfZ_WqZTfvRuvVt9rDBzCnnRx8wGzHEEfVkd_iWvO5UH_Hd6b0mv75-ebi7z1c_v32_W65yXQk25Q1VGpq6RCipFpVKN1VADaPKmLZilLeUK47A8VHQpmPC6LrtWNNBJdJdXpPPR-44Pw5oNLopqF6OwQ4q7KVXVv7_4-xGrv1ONjXUZQUJ8PEECP7PjHGSg40a-1459HOUjAOltKqAJ-mHf7P-hjyXmAS3R4EOPsaAndR2UofOUrTtJQV5WExu5XExeVhMApdpsWTmL8zP_DO2UwGYWt5ZDDJqi06jsSFNIY235wCfXgB0b53Vqv-N-_P2J8gzxpM
CitedBy_id crossref_primary_10_1007_s00414_021_02763_0
crossref_primary_10_3389_fpubh_2021_599285
crossref_primary_10_1016_j_humimm_2021_11_008
crossref_primary_10_3389_fgene_2024_1304312
crossref_primary_10_3389_fimmu_2023_1251772
crossref_primary_10_3389_fimmu_2021_682334
crossref_primary_10_3390_genes16030342
crossref_primary_10_1166_jbn_2022_3280
crossref_primary_10_1016_j_humimm_2021_02_005
crossref_primary_10_1159_000538176
crossref_primary_10_3389_fgene_2021_635601
crossref_primary_10_3390_transplantology5020009
crossref_primary_10_1007_s00414_022_02914_x
crossref_primary_10_1016_j_humimm_2022_09_004
crossref_primary_10_3389_fimmu_2022_1007425
crossref_primary_10_1016_j_iotech_2021_100052
crossref_primary_10_1038_s42003_023_05496_5
crossref_primary_10_1111_tan_15127
crossref_primary_10_3389_fimmu_2023_1188381
crossref_primary_10_3389_fimmu_2023_1199618
crossref_primary_10_1016_j_humimm_2021_05_006
crossref_primary_10_1111_tan_15632
crossref_primary_10_1111_tan_14981
Cites_doi 10.1182/blood-2014-09-599969
10.1007/978-1-4939-8546-3_14
10.1038/ng.3257
10.1093/bioinformatics/btu548
10.1016/j.humimm.2018.10.008
10.1038/nmeth.3444
10.1056/NEJMoa1500140
10.1016/j.humimm.2015.09.014
10.1186/s13059-016-1103-0
10.1111/j.1399-0039.2004.00140.x
10.1016/j.humimm.2017.06.237
10.1016/j.jmoldx.2019.09.005
10.1007/s13577-017-0168-8
10.1016/j.humimm.2019.07.137
10.1371/journal.pcbi.1005151
10.1016/j.jmoldx.2016.03.009
10.1101/gr.215087.116
10.1111/tan.13057
10.1016/j.jmoldx.2018.02.006
10.1038/nmeth.3930
10.1007/978-1-4939-8546-3_12
10.1159/000502487
10.3201/eid2202.151796
10.1371/journal.pone.0127153
10.1007/978-1-0716-0327-7_6
10.1111/iji.12213
10.1186/1471-2164-12-42
10.1186/1471-2164-15-63
10.1111/ajt.15258
10.1186/s12859-017-1671-3
10.1016/j.humimm.2009.08.009
10.3389/fgene.2018.00152
10.4049/jimmunol.1602183
10.1038/s41380-019-0583-1
10.1016/j.humimm.2019.03.001
10.1186/s13059-018-1462-9
10.1016/j.fsigen.2018.11.012
10.1093/nar/gkt481
10.1016/j.humimm.2014.12.016
10.1034/j.1399-0039.1999.530101.x
10.1038/nmeth.4577
10.1016/j.humimm.2019.01.009
10.1038/nbt.4060
10.1038/s41467-019-11713-9
10.1111/tan.13184
10.1038/nature16996
10.1016/j.humimm.2015.03.001
10.1186/1471-2164-15-325
10.12688/f1000research.11354.1
10.1186/s13742-016-0140-7
10.1038/nbt.3423
10.1038/s41592-019-0617-2
10.1016/j.humimm.2017.07.012
10.1038/s41587-020-0407-5
10.1371/journal.pone.0165810
10.1073/pnas.1707945114
10.1186/s13059-018-1388-2
10.1101/gr.214270.116
10.1093/bioinformatics/btz235
10.12688/f1000research.6037.2
10.1111/tan.13730
10.1111/tan.13901
10.1038/nmeth.4189
10.4049/jimmunol.175.12.8379
10.1038/nmeth.3290
10.1038/nmeth.4184
10.1186/s12864-017-3575-z
10.1016/j.humimm.2019.03.007
ContentType Journal Article
Copyright 2020 American Society for Histocompatibility and Immunogenetics
Copyright © 2020 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 American Society for Histocompatibility and Immunogenetics
– notice: Copyright © 2020 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.humimm.2020.04.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1879-1166
EndPage 495
ExternalDocumentID PMC7606350
32386782
10_1016_j_humimm_2020_04_009
S0198885920301890
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R41 AI142919
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMG
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M29
M41
MO0
N9A
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c582t-71ac0763e031c85a0761a01d21add95214914a4e04eb817f28dc69f27f0588dc3
IEDL.DBID .~1
ISSN 0198-8859
1879-1166
IngestDate Thu Aug 21 18:01:57 EDT 2025
Thu Jul 10 22:31:13 EDT 2025
Wed Feb 19 02:27:50 EST 2025
Thu Apr 24 23:00:22 EDT 2025
Tue Jul 01 00:42:57 EDT 2025
Fri Feb 23 02:44:15 EST 2024
Tue Aug 26 16:46:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords PRG
Consensus sequence
Next-generation sequencing
ONT
Nanopore sequencing
INC-Seq
Human leukocyte antigen
SNV
SMRT
NGS
HLA
Sequencing error
PCR
Language English
License Copyright © 2020 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-71ac0763e031c85a0761a01d21add95214914a4e04eb817f28dc69f27f0588dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7606350
PMID 32386782
PQID 2401115504
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606350
proquest_miscellaneous_2401115504
pubmed_primary_32386782
crossref_citationtrail_10_1016_j_humimm_2020_04_009
crossref_primary_10_1016_j_humimm_2020_04_009
elsevier_sciencedirect_doi_10_1016_j_humimm_2020_04_009
elsevier_clinicalkey_doi_10_1016_j_humimm_2020_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Human immunology
PublicationTitleAlternate Hum Immunol
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Turner, Hayhurst, Hayward, Bultitude, Barker, Robinson (b0045) 2018; 91
Boegel, Bukur, Castle, Sahin (b0115) 2018; 1802
Yao, Barlow, Sargent (b0375) 2005; 175
Byrne, Beaudin, Olsen, Jain, Cole, Palmer (b0380) 2017
Erlich, Jia, Anderson, Banks, Gao, Carrington (b0270) 2011; 12
Mayor, Robinson, McWhinnie, Ranade, Eng, Midwinter (b0040) 2015; 10
Deamer, Akeson, Branton (b0120) 2016; 34
Gandhi, Ferriola, Lind, Duke, Huynh, Papazoglou (b0020) 2017; 78
Erlich (b0005) 2015; 76
Rang, Kloosterman, de Ridder (b0135) 2018; 19
Weimer, Montgomery, Petraroia, Crawford, Schmitz (b0015) 2016; 18
Liu, Duffy, Weimer, Montgomery, Jennemann, Hill (b0250) 2020; 15
Liu, Xiao, Hoisington-Lopez, Lang, Quenzel, Duffy (b0230) 2018
Gilpatrick, Lee, Graham, Raimondeau, Bowen, Heron (b0340) 2020
Hiby, King, Sharkey, Loke (b0370) 1999; 53
Garrison, Marth (b0280) 2012
Loman, Quick, Simpson (b0285) 2015; 12
Szolek, Schubert, Mohr, Sturm, Feldhahn, Kohlbacher (b0090) 2014; 30
Klasberg, Putke, Surendranath, Schmidt, Lange, Schöfl (b0200) 2019; 80
Osoegawa, Vayntrub, Wenda, De Santis, Barsakis, Ivanova (b0065) 2019; 80
van Deutekom, Kooter, Geerligs, Ruzius, Meulenberg, Surendranath (b0320) 2017; 78
Ammar, Paton, Torti, Shlien, Bader (b0180) 2015; 4
Petersdorf, Gooley, Malkki, Bacigalupo, Cesbron, Du Toit (b0345) 2014; 124
Garalde, Snell, Jachimowicz, Sipos, Lloyd, Bruce (b0160) 2018
Schofl, Lang, Quenzel, Bohme, Sauter, Hofmann (b0030) 2017; 18
Jain, Fiddes, Miga, Olsen, Paten, Akeson (b0145) 2015; 12
Jain, Olsen, Paten, Akeson (b0125) 2016; 17
Hoenen, Groseth, Rosenke, Fischer, Hoenen, Judson (b0150) 2016; 22
Vaser, Sovic, Nagarajan, Sikic (b0290) 2017; 27
Zhang, Lian, Dai, Zheng, Chen, Zheng (b0365) 2017; 199
Huang, Dinh, Heron, Gasiewski, Kneib, Mehler (b0055) 2019; 19
Bai, Ni, Cooper, Wei, Fury (b0105) 2014; 15
Quick, Loman, Duraffour, Simpson, Severi, Cowley (b0155) 2016; 530
Clark, Wrzesinski, Garcia, Hall, Kleinman, Hyde (b0385) 2020; 25
Dilthey, Cox, Iqbal, Nelson, McVean (b0300) 2015; 47
De Santis, Truong, Martinez, D'Orsogna (b0210) 2020
Koren, Walenz, Berlin, Miller, Bergman, Phillippy (b0275) 2017; 27
Lange, Bohme, Hofmann, Lang, Sauter, Schone (b0025) 2014; 15
Klasberg S, Putke K, Surendranath V, Schmidt A, Lange V, Schofl G: Nanotyper: an HLA genotyping algorithm for nanoporesequencing data
Cretu Stancu, van Roosmalen, Renkens, Nieboer, Middelkamp, de Ligt (b0175) 2017
Dilthey, Gourraud, Mentzer, Cereb, Iqbal, McVean (b0305) 2016; 12
Simpson, Workman, Zuzarte, David, Dursi, Timp (b0165) 2017
Duke, Lind, Mackiewicz, Ferriola, Papazoglou, Derbeneva (b0255) 2015; 42
Barone, Saito, Beutner, Campo, Dong, Goswami (b0010) 2015; 76
Cargou, Ralazamahaleo, Blouin, Top, Elsermans, Andreani (b0225) 2019
Lan, Yin, Reed, Moua, Thomas, Zhang (b0215) 2015; 76
Lee, Kingsford (b0080) 2018; 19
Dilthey, Mentzer, Carapito, Cutland, Cereb, Madhi (b0075) 2019; 35
Liu, Yang, Duffy, Mohanakumar, Mitra, Zody (b0095) 2013; 41
Albrecht, Zweiniger, Surendranath, Lang, Schofl, Dahl (b0070) 2017; 90
Montgomery, Liu, Petraroia, Weimer (b0205) 2020; 22
van Deutekom, Mulder, Rozemuller (b0325) 2019; 80
Jain, Koren, Miga, Quick, Rand, Sasani (b0140) 2018
Gabriel, Danzer, Hackl, Kopal, Hufnagl, Hofer (b0035) 2009; 70
Creary, Guerra, Chong, Brown, Turner, Robinson (b0060) 2019; 80
Ka, Lee, Hong, Cho, Sung, Kim (b0110) 2017; 18
2019.
Rand, Jain, Eizenga, Musselman-Brown, Olsen, Akeson (b0335) 2017; 14
Yin, Lan, Nguyen, Valenzuela, Takemura, Bolon (b0220) 2016; 11
Li, Chng, Boey, Ng, Wilm, Nagarajan (b0245) 2016; 5
2020.
Liu, Berry (b0190) 2020; 2120
Liu, Yang (b0100) 2018; 1802
Workman, Tang, Tang, Jain, Tyson, Razaghi (b0130) 2019; 16
Nakano, Shiroma, Shimoji, Tamotsu, Ashimine, Ohki (b0295) 2017; 30
Xie, Yeo, Wong, Piper, Long, Kirkness (b0085) 2017
Schofl G, Klasberg S, Surendranath V, Putke K, Schmidt A, Lange V: Typing in the third generation: Class I and Class II HLA genotyping performance using nanopore long-read data
Loose, Malla, Stout (b0260) 2016; 13
Hoarau, Cesari, Caillens, Cadet, Pabion (b0360) 2004; 63
Petersdorf, Malkki, O'HUigin, Carrington, Gooley, Haagenson (b0350) 2015; 373
Ton, Cree, Gronert-Sum, Merriman, Stamp, Kennedy (b0195) 2018; 9
Klasberg, Surendranath, Lange, Schofl (b0265) 2019; 46
Cornelis, Gansemans, Vander Plaetsen, Weymaere, Willems, Deforce (b0235) 2019; 38
Matern, Olieslagers, Voorter, Groeneweg, Tilanus (b0240) 2020; 95
Jain, Tyson, Loose, Ip, Eccles, O'Grady (b0170) 2017; 6
Liu, Xiao, Hoisington-Lopez, Lang, Quenzel, Duffy (b0185) 2018; 20
Liu, Begik, Lucas, Ramirez, Mason, Wiener (b0355) 2019; 10
Allen, Yang, Garrett, Ball, Maiers, Morris (b0050) 2018; 79
Zhang (10.1016/j.humimm.2020.04.009_b0365) 2017; 199
Loman (10.1016/j.humimm.2020.04.009_b0285) 2015; 12
Jain (10.1016/j.humimm.2020.04.009_b0125) 2016; 17
Gandhi (10.1016/j.humimm.2020.04.009_b0020) 2017; 78
Szolek (10.1016/j.humimm.2020.04.009_b0090) 2014; 30
Clark (10.1016/j.humimm.2020.04.009_b0385) 2020; 25
Dilthey (10.1016/j.humimm.2020.04.009_b0300) 2015; 47
Workman (10.1016/j.humimm.2020.04.009_b0130) 2019; 16
Liu (10.1016/j.humimm.2020.04.009_b0095) 2013; 41
Allen (10.1016/j.humimm.2020.04.009_b0050) 2018; 79
Byrne (10.1016/j.humimm.2020.04.009_b0380) 2017
Jain (10.1016/j.humimm.2020.04.009_b0145) 2015; 12
Klasberg (10.1016/j.humimm.2020.04.009_b0200) 2019; 80
van Deutekom (10.1016/j.humimm.2020.04.009_b0320) 2017; 78
Petersdorf (10.1016/j.humimm.2020.04.009_b0345) 2014; 124
Mayor (10.1016/j.humimm.2020.04.009_b0040) 2015; 10
Hoenen (10.1016/j.humimm.2020.04.009_b0150) 2016; 22
Gilpatrick (10.1016/j.humimm.2020.04.009_b0340) 2020
Klasberg (10.1016/j.humimm.2020.04.009_b0265) 2019; 46
Liu (10.1016/j.humimm.2020.04.009_b0100) 2018; 1802
Boegel (10.1016/j.humimm.2020.04.009_b0115) 2018; 1802
Ammar (10.1016/j.humimm.2020.04.009_b0180) 2015; 4
Dilthey (10.1016/j.humimm.2020.04.009_b0305) 2016; 12
Albrecht (10.1016/j.humimm.2020.04.009_b0070) 2017; 90
Jain (10.1016/j.humimm.2020.04.009_b0140) 2018
Li (10.1016/j.humimm.2020.04.009_b0245) 2016; 5
Osoegawa (10.1016/j.humimm.2020.04.009_b0065) 2019; 80
Creary (10.1016/j.humimm.2020.04.009_b0060) 2019; 80
De Santis (10.1016/j.humimm.2020.04.009_b0210) 2020
Deamer (10.1016/j.humimm.2020.04.009_b0120) 2016; 34
Liu (10.1016/j.humimm.2020.04.009_b0355) 2019; 10
Lange (10.1016/j.humimm.2020.04.009_b0025) 2014; 15
Quick (10.1016/j.humimm.2020.04.009_b0155) 2016; 530
Simpson (10.1016/j.humimm.2020.04.009_b0165) 2017
Liu (10.1016/j.humimm.2020.04.009_b0250) 2020; 15
Barone (10.1016/j.humimm.2020.04.009_b0010) 2015; 76
Rang (10.1016/j.humimm.2020.04.009_b0135) 2018; 19
Hiby (10.1016/j.humimm.2020.04.009_b0370) 1999; 53
Huang (10.1016/j.humimm.2020.04.009_b0055) 2019; 19
Lee (10.1016/j.humimm.2020.04.009_b0080) 2018; 19
Petersdorf (10.1016/j.humimm.2020.04.009_b0350) 2015; 373
Schofl (10.1016/j.humimm.2020.04.009_b0030) 2017; 18
Lan (10.1016/j.humimm.2020.04.009_b0215) 2015; 76
Cretu Stancu (10.1016/j.humimm.2020.04.009_b0175) 2017
Garalde (10.1016/j.humimm.2020.04.009_b0160) 2018
van Deutekom (10.1016/j.humimm.2020.04.009_b0325) 2019; 80
Dilthey (10.1016/j.humimm.2020.04.009_b0075) 2019; 35
Liu (10.1016/j.humimm.2020.04.009_b0185) 2018; 20
Loose (10.1016/j.humimm.2020.04.009_b0260) 2016; 13
Liu (10.1016/j.humimm.2020.04.009_b0230) 2018
10.1016/j.humimm.2020.04.009_b0315
10.1016/j.humimm.2020.04.009_b0310
Ton (10.1016/j.humimm.2020.04.009_b0195) 2018; 9
Jain (10.1016/j.humimm.2020.04.009_b0170) 2017; 6
Cargou (10.1016/j.humimm.2020.04.009_b0225) 2019
Vaser (10.1016/j.humimm.2020.04.009_b0290) 2017; 27
Erlich (10.1016/j.humimm.2020.04.009_b0005) 2015; 76
Montgomery (10.1016/j.humimm.2020.04.009_b0205) 2020; 22
Erlich (10.1016/j.humimm.2020.04.009_b0270) 2011; 12
Weimer (10.1016/j.humimm.2020.04.009_b0015) 2016; 18
Turner (10.1016/j.humimm.2020.04.009_b0045) 2018; 91
Xie (10.1016/j.humimm.2020.04.009_b0085) 2017
Hoarau (10.1016/j.humimm.2020.04.009_b0360) 2004; 63
Bai (10.1016/j.humimm.2020.04.009_b0105) 2014; 15
Liu (10.1016/j.humimm.2020.04.009_b0190) 2020; 2120
Ka (10.1016/j.humimm.2020.04.009_b0110) 2017; 18
Matern (10.1016/j.humimm.2020.04.009_b0240) 2020; 95
10.1016/j.humimm.2020.04.009_b0330
Koren (10.1016/j.humimm.2020.04.009_b0275) 2017; 27
Yao (10.1016/j.humimm.2020.04.009_b0375) 2005; 175
Cornelis (10.1016/j.humimm.2020.04.009_b0235) 2019; 38
Garrison (10.1016/j.humimm.2020.04.009_b0280) 2012
Gabriel (10.1016/j.humimm.2020.04.009_b0035) 2009; 70
Duke (10.1016/j.humimm.2020.04.009_b0255) 2015; 42
Nakano (10.1016/j.humimm.2020.04.009_b0295) 2017; 30
Rand (10.1016/j.humimm.2020.04.009_b0335) 2017; 14
Yin (10.1016/j.humimm.2020.04.009_b0220) 2016; 11
References_xml – volume: 5
  start-page: 34
  year: 2016
  ident: b0245
  article-title: INC-Seq: accurate single molecule reads using nanopore sequencing
  publication-title: GigaScience
– volume: 17
  start-page: 239
  year: 2016
  ident: b0125
  article-title: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
  publication-title: Genome Biol.
– volume: 80
  start-page: 116
  year: 2019
  ident: b0200
  article-title: P084 Typing in the third generation: A HLA typing approach for nanopore sequencing data
  publication-title: Hum. Immunol.
– volume: 34
  start-page: 518
  year: 2016
  ident: b0120
  article-title: Three decades of nanopore sequencing
  publication-title: Nat. Biotechnol.
– volume: 30
  start-page: 149
  year: 2017
  ident: b0295
  article-title: Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area
  publication-title: Hum. Cell
– volume: 27
  start-page: 737
  year: 2017
  ident: b0290
  article-title: Fast and accurate de novo genome assembly from long uncorrected reads
  publication-title: Genome Res.
– volume: 76
  start-page: 887
  year: 2015
  ident: b0005
  article-title: HLA typing using next generation sequencing: An overview
  publication-title: Hum. Immunol.
– volume: 15
  year: 2020
  ident: b0250
  article-title: Performance of a multiplexed amplicon-based next-generation sequencing assay for HLA typing
  publication-title: PLoS ONE
– year: 2020
  ident: b0210
  article-title: Rapid high resolution HLA genotyping by MinION Oxford Nanopore Sequencing for Deceased Donor Organ Allocation
  publication-title: HLA
– volume: 1802
  start-page: 177
  year: 2018
  ident: b0115
  article-title: In silico typing of classical and non-classical HLA alleles from standard RNA-Seq Reads
  publication-title: Methods Mol. Biol.
– volume: 10
  start-page: 4079
  year: 2019
  ident: b0355
  article-title: Accurate detection of m(6)A RNA modifications in native RNA sequences
  publication-title: Nat. Commun.
– volume: 18
  start-page: 668
  year: 2016
  ident: b0015
  article-title: Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing
  publication-title: J. Mol. Diagn.
– volume: 42
  start-page: 346
  year: 2015
  ident: b0255
  article-title: Towards allele-level human leucocyte antigens genotyping - assessing two next-generation sequencing platforms: Ion Torrent Personal Genome Machine and Illumina MiSeq
  publication-title: Int. J. Immunogenet.
– reference: Klasberg S, Putke K, Surendranath V, Schmidt A, Lange V, Schofl G: Nanotyper: an HLA genotyping algorithm for nanoporesequencing data (
– volume: 6
  start-page: 760
  year: 2017
  ident: b0170
  article-title: MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry
  publication-title: F1000Res
– year: 2020
  ident: b0340
  article-title: Targeted nanopore sequencing with Cas9-guided adapter ligation
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 733
  year: 2015
  ident: b0285
  article-title: A complete bacterial genome assembled de novo using only nanopore sequencing data
  publication-title: Nat. Methods
– volume: 12
  start-page: 42
  year: 2011
  ident: b0270
  article-title: Next-generation sequencing for HLA typing of class I loci
  publication-title: BMC Genomics
– year: 2017
  ident: b0380
  article-title: Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of Individual B cells
  publication-title: bioRxiv
– year: 2018
  ident: b0160
  article-title: Highly parallel direct RNA sequencing on an array of nanopores
  publication-title: Nat. Methods
– volume: 95
  start-page: 117
  year: 2020
  ident: b0240
  article-title: Insights into the polymorphism in HLA-DRA and its evolutionary relationship with HLA haplotypes
  publication-title: HLA
– volume: 19
  start-page: 90
  year: 2018
  ident: b0135
  article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
  publication-title: Genome Biol.
– volume: 11
  year: 2016
  ident: b0220
  article-title: Application of high-throughput next-generation sequencing for HLA typing on buccal extracted DNA: Results from over 10,000 donor recruitment samples
  publication-title: PLoS ONE
– volume: 25
  start-page: 37
  year: 2020
  ident: b0385
  article-title: Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain
  publication-title: Mol. Psychiatry
– year: 2018
  ident: b0230
  article-title: Accurate typing of human leukocyte antigen class I genes by Oxford nanopore sequencing
  publication-title: J Mol Diagnostics
– volume: 27
  start-page: 722
  year: 2017
  ident: b0275
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res.
– volume: 13
  start-page: 751
  year: 2016
  ident: b0260
  article-title: Real-time selective sequencing using nanopore technology
  publication-title: Nat. Meth.
– volume: 199
  start-page: 2030
  year: 2017
  ident: b0365
  article-title: alpha3-deletion isoform of HLA-A11 modulates cytotoxicity of NK cells: correlations with HIV-1 infection of cells
  publication-title: J. Immunol.
– volume: 41
  year: 2013
  ident: b0095
  article-title: ATHLATES: accurate typing of human leukocyte antigen through exome sequencing
  publication-title: Nucleic Acids Res.
– volume: 12
  year: 2016
  ident: b0305
  article-title: High-accuracy HLA type inference from whole-genome sequencing data using population reference graphs
  publication-title: PLoS Comput. Biol.
– year: 2017
  ident: b0085
  article-title: Fast and accurate HLA typing from short-read next-generation sequence data with xHLA
  publication-title: Proc. Natl. Acad. Sci. U S. A.
– volume: 18
  start-page: 161
  year: 2017
  ident: b0030
  article-title: 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned
  publication-title: BMC Genomics
– volume: 15
  start-page: 63
  year: 2014
  ident: b0025
  article-title: Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing
  publication-title: BMC Genomics
– volume: 79
  start-page: 848
  year: 2018
  ident: b0050
  article-title: Improved accuracy of clinical HLA genotyping by next-generation DNA sequencing affects unrelated donor search results for hematopoietic stem cell transplantation
  publication-title: Hum. Immunol.
– volume: 19
  start-page: 16
  year: 2018
  ident: b0080
  article-title: Kourami: graph-guided assembly for novel human leukocyte antigen allele discovery
  publication-title: Genome Biol.
– volume: 53
  start-page: 1
  year: 1999
  ident: b0370
  article-title: Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo
  publication-title: Tissue Antigens
– volume: 80
  start-page: 461
  year: 2019
  ident: b0325
  article-title: Accuracy of NGS HLA typing data influenced by STR
  publication-title: Hum. Immunol.
– volume: 124
  start-page: 3996
  year: 2014
  ident: b0345
  article-title: HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation
  publication-title: Blood
– volume: 80
  start-page: 228
  year: 2019
  ident: b0065
  article-title: Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop
  publication-title: Hum. Immunol.
– reference: ). 2019.
– volume: 10
  year: 2015
  ident: b0040
  article-title: HLA typing for the next generation
  publication-title: PLoS ONE
– volume: 175
  start-page: 8379
  year: 2005
  ident: b0375
  article-title: Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses
  publication-title: J. Immunol.
– volume: 35
  start-page: 4394
  year: 2019
  ident: b0075
  article-title: HLA*LA-HLA typing from linearly projected graph alignments
  publication-title: Bioinformatics
– volume: 18
  start-page: 258
  year: 2017
  ident: b0110
  article-title: HLAscan: genotyping of the HLA region using next-generation sequencing data
  publication-title: BMC Bioinf.
– volume: 30
  start-page: 3310
  year: 2014
  ident: b0090
  article-title: OptiType: precision HLA typing from next-generation sequencing data
  publication-title: Bioinformatics
– volume: 530
  start-page: 228
  year: 2016
  ident: b0155
  article-title: Real-time, portable genome sequencing for Ebola surveillance
  publication-title: Nature
– reference: Schofl G, Klasberg S, Surendranath V, Putke K, Schmidt A, Lange V: Typing in the third generation: Class I and Class II HLA genotyping performance using nanopore long-read data (
– volume: 76
  start-page: 166
  year: 2015
  ident: b0215
  article-title: Impact of three Illumina library construction methods on GC bias and HLA genotype calling
  publication-title: Hum. Immunol.
– year: 2018
  ident: b0140
  article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads
  publication-title: Nat. Biotechnol.
– volume: 19
  start-page: 1955
  year: 2019
  ident: b0055
  article-title: Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation
  publication-title: Am. J. Transplant.
– volume: 1802
  start-page: 203
  year: 2018
  ident: b0100
  article-title: Using exome and amplicon-based sequencing data for high-resolution HLA typing with ATHLATES
  publication-title: Methods Mol. Biol.
– reference: . 2020.
– year: 2019
  ident: b0225
  article-title: Evaluation of the AllType kit for HLA typing using the Ion Torrent S5 XL platform
  publication-title: HLA
– volume: 46
  start-page: 312
  year: 2019
  ident: b0265
  article-title: Bioinformatics strategies, challenges, and opportunities for next generation sequencing-based HLA genotyping
  publication-title: Transfus. Med. Hemother.
– volume: 47
  start-page: 682
  year: 2015
  ident: b0300
  article-title: Improved genome inference in the MHC using a population reference graph
  publication-title: Nat. Genet.
– volume: 78
  start-page: 190
  year: 2017
  ident: b0320
  article-title: P177 NGS typing results using oxford nanopore sequencing: Can minion data be reliably used for HLA typing?
  publication-title: Hum. Immunol.
– volume: 90
  start-page: 79
  year: 2017
  ident: b0070
  article-title: Dual redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles
  publication-title: HLA
– year: 2017
  ident: b0175
  article-title: Mapping and phasing of structural variation in patient genomes using nanopore sequencing
  publication-title: bioRxiv
– volume: 2120
  start-page: 93
  year: 2020
  ident: b0190
  article-title: Rapid high-resolution typing of class I HLA genes by nanopore sequencing
  publication-title: Methods Mol. Biol.
– volume: 76
  start-page: 903
  year: 2015
  ident: b0010
  article-title: HLA-genotyping of clinical specimens using Ion Torrent-based NGS
  publication-title: Hum. Immunol.
– volume: 4
  start-page: 17
  year: 2015
  ident: b0180
  article-title: Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes
  publication-title: F1000Res
– volume: 78
  start-page: 642
  year: 2017
  ident: b0020
  article-title: Assessing a single targeted next generation sequencing for human leukocyte antigen typing protocol for interoperability, as performed by users with variable experience
  publication-title: Hum. Immunol.
– volume: 22
  start-page: 101
  year: 2020
  ident: b0205
  article-title: Using nanopore whole-transcriptome sequencing for human leukocyte antigen genotyping and correlating donor human leukocyte antigen expression with flow cytometric crossmatch results
  publication-title: J. Mol. Diagn.
– volume: 15
  start-page: 325
  year: 2014
  ident: b0105
  article-title: Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads
  publication-title: BMC Genomics
– year: 2017
  ident: b0165
  article-title: Detecting DNA cytosine methylation using nanopore sequencing
  publication-title: Nat. Methods
– volume: 63
  start-page: 58
  year: 2004
  ident: b0360
  article-title: HLA DQA1 genes generate multiple transcripts by alternative splicing and polyadenylation of the 3' untranslated region
  publication-title: Tissue Antigens
– volume: 12
  start-page: 351
  year: 2015
  ident: b0145
  article-title: Improved data analysis for the MinION nanopore sequencer
  publication-title: Nat. Methods
– volume: 9
  start-page: 152
  year: 2018
  ident: b0195
  article-title: Multiplexed nanopore sequencing of HLA-B locus in Maori and Pacific Island samples
  publication-title: Front. Genet.
– volume: 91
  start-page: 88
  year: 2018
  ident: b0045
  article-title: Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines
  publication-title: HLA
– volume: 70
  start-page: 960
  year: 2009
  ident: b0035
  article-title: Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification
  publication-title: Hum. Immunol.
– volume: 22
  start-page: 331
  year: 2016
  ident: b0150
  article-title: Nanopore sequencing as a rapidly deployable Ebola outbreak tool
  publication-title: Emerg. Infect. Dis.
– volume: 80
  start-page: 449
  year: 2019
  ident: b0060
  article-title: Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop
  publication-title: Hum. Immunol.
– volume: 20
  start-page: 428
  year: 2018
  ident: b0185
  article-title: Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore Sequencing
  publication-title: J. Mol. Diagn.
– year: 2012
  ident: b0280
  article-title: Haplotype-based variant detection from short-read sequencing
  publication-title: arXiv
– volume: 38
  start-page: 204
  year: 2019
  ident: b0235
  article-title: Forensic tri-allelic SNP genotyping using nanopore sequencing
  publication-title: Forensic Sci. Int. Genet.
– volume: 373
  start-page: 599
  year: 2015
  ident: b0350
  article-title: High HLA-DP expression and graft-versus-host disease
  publication-title: N. Engl. J. Med.
– volume: 16
  start-page: 1297
  year: 2019
  ident: b0130
  article-title: Nanopore native RNA sequencing of a human poly(A) transcriptome
  publication-title: Nat. Methods
– volume: 14
  start-page: 411
  year: 2017
  ident: b0335
  article-title: Mapping DNA methylation with high-throughput nanopore sequencing
  publication-title: Nat. Methods
– volume: 124
  start-page: 3996
  year: 2014
  ident: 10.1016/j.humimm.2020.04.009_b0345
  article-title: HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation
  publication-title: Blood
  doi: 10.1182/blood-2014-09-599969
– volume: 1802
  start-page: 203
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0100
  article-title: Using exome and amplicon-based sequencing data for high-resolution HLA typing with ATHLATES
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8546-3_14
– volume: 47
  start-page: 682
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0300
  article-title: Improved genome inference in the MHC using a population reference graph
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3257
– volume: 30
  start-page: 3310
  year: 2014
  ident: 10.1016/j.humimm.2020.04.009_b0090
  article-title: OptiType: precision HLA typing from next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu548
– volume: 79
  start-page: 848
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0050
  article-title: Improved accuracy of clinical HLA genotyping by next-generation DNA sequencing affects unrelated donor search results for hematopoietic stem cell transplantation
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2018.10.008
– volume: 12
  start-page: 733
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0285
  article-title: A complete bacterial genome assembled de novo using only nanopore sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3444
– volume: 373
  start-page: 599
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0350
  article-title: High HLA-DP expression and graft-versus-host disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1500140
– volume: 76
  start-page: 903
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0010
  article-title: HLA-genotyping of clinical specimens using Ion Torrent-based NGS
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2015.09.014
– volume: 17
  start-page: 239
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0125
  article-title: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-1103-0
– volume: 63
  start-page: 58
  year: 2004
  ident: 10.1016/j.humimm.2020.04.009_b0360
  article-title: HLA DQA1 genes generate multiple transcripts by alternative splicing and polyadenylation of the 3' untranslated region
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2004.00140.x
– volume: 15
  year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0250
  article-title: Performance of a multiplexed amplicon-based next-generation sequencing assay for HLA typing
  publication-title: PLoS ONE
– volume: 78
  start-page: 190
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0320
  article-title: P177 NGS typing results using oxford nanopore sequencing: Can minion data be reliably used for HLA typing?
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2017.06.237
– volume: 22
  start-page: 101
  year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0205
  article-title: Using nanopore whole-transcriptome sequencing for human leukocyte antigen genotyping and correlating donor human leukocyte antigen expression with flow cytometric crossmatch results
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2019.09.005
– volume: 30
  start-page: 149
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0295
  article-title: Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area
  publication-title: Hum. Cell
  doi: 10.1007/s13577-017-0168-8
– year: 2012
  ident: 10.1016/j.humimm.2020.04.009_b0280
  article-title: Haplotype-based variant detection from short-read sequencing
  publication-title: arXiv
– volume: 80
  start-page: 116
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0200
  article-title: P084 Typing in the third generation: A HLA typing approach for nanopore sequencing data
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2019.07.137
– volume: 12
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0305
  article-title: High-accuracy HLA type inference from whole-genome sequencing data using population reference graphs
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005151
– volume: 18
  start-page: 668
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0015
  article-title: Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2016.03.009
– volume: 27
  start-page: 722
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0275
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res.
  doi: 10.1101/gr.215087.116
– volume: 90
  start-page: 79
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0070
  article-title: Dual redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles
  publication-title: HLA
  doi: 10.1111/tan.13057
– volume: 20
  start-page: 428
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0185
  article-title: Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore Sequencing
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2018.02.006
– volume: 13
  start-page: 751
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0260
  article-title: Real-time selective sequencing using nanopore technology
  publication-title: Nat. Meth.
  doi: 10.1038/nmeth.3930
– volume: 1802
  start-page: 177
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0115
  article-title: In silico typing of classical and non-classical HLA alleles from standard RNA-Seq Reads
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8546-3_12
– volume: 46
  start-page: 312
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0265
  article-title: Bioinformatics strategies, challenges, and opportunities for next generation sequencing-based HLA genotyping
  publication-title: Transfus. Med. Hemother.
  doi: 10.1159/000502487
– volume: 22
  start-page: 331
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0150
  article-title: Nanopore sequencing as a rapidly deployable Ebola outbreak tool
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2202.151796
– volume: 10
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0040
  article-title: HLA typing for the next generation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127153
– volume: 2120
  start-page: 93
  year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0190
  article-title: Rapid high-resolution typing of class I HLA genes by nanopore sequencing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-0327-7_6
– volume: 42
  start-page: 346
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0255
  article-title: Towards allele-level human leucocyte antigens genotyping - assessing two next-generation sequencing platforms: Ion Torrent Personal Genome Machine and Illumina MiSeq
  publication-title: Int. J. Immunogenet.
  doi: 10.1111/iji.12213
– volume: 12
  start-page: 42
  year: 2011
  ident: 10.1016/j.humimm.2020.04.009_b0270
  article-title: Next-generation sequencing for HLA typing of class I loci
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-42
– ident: 10.1016/j.humimm.2020.04.009_b0310
– volume: 15
  start-page: 63
  year: 2014
  ident: 10.1016/j.humimm.2020.04.009_b0025
  article-title: Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-63
– volume: 19
  start-page: 1955
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0055
  article-title: Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.15258
– volume: 18
  start-page: 258
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0110
  article-title: HLAscan: genotyping of the HLA region using next-generation sequencing data
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1671-3
– volume: 70
  start-page: 960
  year: 2009
  ident: 10.1016/j.humimm.2020.04.009_b0035
  article-title: Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2009.08.009
– volume: 9
  start-page: 152
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0195
  article-title: Multiplexed nanopore sequencing of HLA-B locus in Maori and Pacific Island samples
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00152
– volume: 199
  start-page: 2030
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0365
  article-title: alpha3-deletion isoform of HLA-A11 modulates cytotoxicity of NK cells: correlations with HIV-1 infection of cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1602183
– volume: 25
  start-page: 37
  year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0385
  article-title: Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0583-1
– volume: 80
  start-page: 449
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0060
  article-title: Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2019.03.001
– volume: 19
  start-page: 90
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0135
  article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1462-9
– volume: 38
  start-page: 204
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0235
  article-title: Forensic tri-allelic SNP genotyping using nanopore sequencing
  publication-title: Forensic Sci. Int. Genet.
  doi: 10.1016/j.fsigen.2018.11.012
– volume: 41
  year: 2013
  ident: 10.1016/j.humimm.2020.04.009_b0095
  article-title: ATHLATES: accurate typing of human leukocyte antigen through exome sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt481
– year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0175
  article-title: Mapping and phasing of structural variation in patient genomes using nanopore sequencing
  publication-title: bioRxiv
– volume: 76
  start-page: 166
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0215
  article-title: Impact of three Illumina library construction methods on GC bias and HLA genotype calling
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2014.12.016
– volume: 53
  start-page: 1
  year: 1999
  ident: 10.1016/j.humimm.2020.04.009_b0370
  article-title: Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.1999.530101.x
– year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0380
  article-title: Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of Individual B cells
  publication-title: bioRxiv
– year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0160
  article-title: Highly parallel direct RNA sequencing on an array of nanopores
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4577
– volume: 80
  start-page: 228
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0065
  article-title: Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2019.01.009
– year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0140
  article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4060
– volume: 10
  start-page: 4079
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0355
  article-title: Accurate detection of m(6)A RNA modifications in native RNA sequences
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11713-9
– ident: 10.1016/j.humimm.2020.04.009_b0330
– volume: 91
  start-page: 88
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0045
  article-title: Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines
  publication-title: HLA
  doi: 10.1111/tan.13184
– ident: 10.1016/j.humimm.2020.04.009_b0315
– volume: 530
  start-page: 228
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0155
  article-title: Real-time, portable genome sequencing for Ebola surveillance
  publication-title: Nature
  doi: 10.1038/nature16996
– volume: 76
  start-page: 887
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0005
  article-title: HLA typing using next generation sequencing: An overview
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2015.03.001
– year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0225
  article-title: Evaluation of the AllType kit for HLA typing using the Ion Torrent S5 XL platform
  publication-title: HLA
– year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0230
  article-title: Accurate typing of human leukocyte antigen class I genes by Oxford nanopore sequencing
  publication-title: J Mol Diagnostics
  doi: 10.1016/j.jmoldx.2018.02.006
– volume: 15
  start-page: 325
  year: 2014
  ident: 10.1016/j.humimm.2020.04.009_b0105
  article-title: Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-325
– volume: 6
  start-page: 760
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0170
  article-title: MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry
  publication-title: F1000Res
  doi: 10.12688/f1000research.11354.1
– volume: 5
  start-page: 34
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0245
  article-title: INC-Seq: accurate single molecule reads using nanopore sequencing
  publication-title: GigaScience
  doi: 10.1186/s13742-016-0140-7
– volume: 34
  start-page: 518
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0120
  article-title: Three decades of nanopore sequencing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3423
– volume: 16
  start-page: 1297
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0130
  article-title: Nanopore native RNA sequencing of a human poly(A) transcriptome
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0617-2
– volume: 78
  start-page: 642
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0020
  article-title: Assessing a single targeted next generation sequencing for human leukocyte antigen typing protocol for interoperability, as performed by users with variable experience
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2017.07.012
– year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0340
  article-title: Targeted nanopore sequencing with Cas9-guided adapter ligation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0407-5
– volume: 11
  year: 2016
  ident: 10.1016/j.humimm.2020.04.009_b0220
  article-title: Application of high-throughput next-generation sequencing for HLA typing on buccal extracted DNA: Results from over 10,000 donor recruitment samples
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0165810
– year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0085
  article-title: Fast and accurate HLA typing from short-read next-generation sequence data with xHLA
  publication-title: Proc. Natl. Acad. Sci. U S. A.
  doi: 10.1073/pnas.1707945114
– volume: 19
  start-page: 16
  year: 2018
  ident: 10.1016/j.humimm.2020.04.009_b0080
  article-title: Kourami: graph-guided assembly for novel human leukocyte antigen allele discovery
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1388-2
– volume: 27
  start-page: 737
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0290
  article-title: Fast and accurate de novo genome assembly from long uncorrected reads
  publication-title: Genome Res.
  doi: 10.1101/gr.214270.116
– volume: 35
  start-page: 4394
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0075
  article-title: HLA*LA-HLA typing from linearly projected graph alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz235
– volume: 4
  start-page: 17
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0180
  article-title: Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes
  publication-title: F1000Res
  doi: 10.12688/f1000research.6037.2
– volume: 95
  start-page: 117
  year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0240
  article-title: Insights into the polymorphism in HLA-DRA and its evolutionary relationship with HLA haplotypes
  publication-title: HLA
  doi: 10.1111/tan.13730
– year: 2020
  ident: 10.1016/j.humimm.2020.04.009_b0210
  article-title: Rapid high resolution HLA genotyping by MinION Oxford Nanopore Sequencing for Deceased Donor Organ Allocation
  publication-title: HLA
  doi: 10.1111/tan.13901
– volume: 14
  start-page: 411
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0335
  article-title: Mapping DNA methylation with high-throughput nanopore sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4189
– volume: 175
  start-page: 8379
  year: 2005
  ident: 10.1016/j.humimm.2020.04.009_b0375
  article-title: Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.12.8379
– volume: 12
  start-page: 351
  year: 2015
  ident: 10.1016/j.humimm.2020.04.009_b0145
  article-title: Improved data analysis for the MinION nanopore sequencer
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3290
– year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0165
  article-title: Detecting DNA cytosine methylation using nanopore sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4184
– volume: 18
  start-page: 161
  year: 2017
  ident: 10.1016/j.humimm.2020.04.009_b0030
  article-title: 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3575-z
– volume: 80
  start-page: 461
  year: 2019
  ident: 10.1016/j.humimm.2020.04.009_b0325
  article-title: Accuracy of NGS HLA typing data influenced by STR
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2019.03.007
SSID ssj0007074
Score 2.450242
SecondaryResourceType review_article
Snippet Next-generation sequencing (NGS) has been widely adopted for clinical HLA typing and advanced immunogenetics researches. Current methodologies still face...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 488
SubjectTerms Alleles
Consensus sequence
Histocompatibility Testing - methods
HLA Antigens - genetics
Human leukocyte antigen
Humans
Immunogenetics - methods
Nanopore Sequencing
Next-generation sequencing
Sequencing error
Title A long road/read to rapid high-resolution HLA typing: The nanopore perspective
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0198885920301890
https://dx.doi.org/10.1016/j.humimm.2020.04.009
https://www.ncbi.nlm.nih.gov/pubmed/32386782
https://www.proquest.com/docview/2401115504
https://pubmed.ncbi.nlm.nih.gov/PMC7606350
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hUKteKkpfAYq2Etdtdu11vOYWRY1CU3JoQXBbre01uAI7Sp0DF347M36EBipR9WTLnpHs8ezMN955ABw6kWbRwGqeCJdyxLcZjxGXcC2tdAjJYzGgeueT2WBypr5dBBcbMOpqYSitsrX9jU2vrXV7pd9Ksz_P8_5PBCcYvgWRR6heRxS3KxWSln-5e0jzCEXTiRmJOVF35XN1jtfV8ia_oXp0T9QNTykt8e_u6Sn8fJxF-YdbGm_D6xZPsmHzyG9gwxU78KKZMHm7Ay9P2r3ztzAbsuuyuGSL0qZ9hIopq0q2sPM8ZdSzmGPc3aohm3wfsuqWKqmOGOoRK2xRIk53bP5QmvkOzsZfT0cT3k5T4EmgvYqH0iYCrYnDZZzowNIPDCtk6kk0cRF6cRVJZZUTysVahpmn02QQZV6YiUDjuf8eNouycB-BKem0i2Ts-z5NEQ90omLri4iaoZGJ6IHfCdEkbatxmnhxbbqcsl-mEb0h0RuhDIq-B3zFNW9abTxDH3Tfx3RlpGj4DPqCZ_jCFd-aqv0D5-dODQyuQtpasYUrl78N4iJ0GhjtqR58aNRi9Q4-oiKEBCiVcE1hVgTU4Xv9TpFf1Z2-Qwwv_UDs_vcT78Erj5Jw6vzifdisFkv3CVFUFR_Uy-QAtobH08mMjtMf59N7qYkc0w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaijfq4RGn62vTlSr1aa4O9mNxWUSPS7O6liZSbZcA0RAmstuwh_z4zYGi3qZSqNwQeyQzjmW_wzGdCvjieF_HUapZxlzPAtwVLAZcwLaxwAMlTPsV-58VymlzIb5fqcocc970wWFbpfX_n01tv7e9MvDYnq7KcfAdwAumbigNE9TqGvH0X2anUiOzOTs-S5eCQI96RMcN4hgJ9B11b5nW1uS1vsSU94C3nKVYm_j1CPUSgfxZS_haZTvbJnoeUdNbN-gXZcdUBedIdMnl3QJ4u_Pb5S7Kc0Zu6-kHXtc0ngBZz2tR0bVdlTpG2mEHq7S2RJvMZbe6wmeqIginRylY1QHVHV7-6M1-Ri5Ov58cJ8wcqsEzpoGGRsBkHh-JgJWdaWfyHYbnIAwFeLoZALmMhrXRculSLqAh0nk3jIogKrjRch6_JqKor95ZQKZx2sUjDMMSDxJXOZGpDHiMfGnqJMQl7JZrMs43joRc3pi8ruzad6g2q3nBpQPVjwgapVce28ch41X8f03eSgu8zEA4ekYsGuS1r-wfJz70ZGFiIuLtiK1dvfhqARhA3IOGTY_KmM4vhHUIARoAKQCvRlsEMA5Dke_tJVV61ZN8RZJih4of_PeNP5Flyvpib-eny7B15HmBNTltu_J6MmvXGfQBQ1aQf_aK5B2-dHeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+long+road%2Fread+to+rapid+high-resolution+HLA+typing%3A+The+nanopore+perspective&rft.jtitle=Human+immunology&rft.au=Liu%2C+Chang&rft.date=2021-07-01&rft.issn=0198-8859&rft.volume=82&rft.issue=7&rft.spage=488&rft.epage=495&rft_id=info:doi/10.1016%2Fj.humimm.2020.04.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_humimm_2020_04_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0198-8859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0198-8859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0198-8859&client=summon