Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity

•Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells.•PARPi leads to greater levels of replication stress in ATRX KO cells than WT.•IDH1 R132H and ATRX KO have similar levels of PARP inhibitor sensitivity.•ATRi and PARPi have greater synergy in ATRX KO cells. Alpha Tha...

Full description

Saved in:
Bibliographic Details
Published inTranslational oncology Vol. 14; no. 9; p. 101147
Main Authors Garbarino, Jennifer, Eckroate, Jillian, Sundaram, Ranjini K., Jensen, Ryan B., Bindra, Ranjit S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2021
Neoplasia Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells.•PARPi leads to greater levels of replication stress in ATRX KO cells than WT.•IDH1 R132H and ATRX KO have similar levels of PARP inhibitor sensitivity.•ATRi and PARPi have greater synergy in ATRX KO cells. Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
AbstractList Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
•Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells.•PARPi leads to greater levels of replication stress in ATRX KO cells than WT.•IDH1 R132H and ATRX KO have similar levels of PARP inhibitor sensitivity.•ATRi and PARPi have greater synergy in ATRX KO cells. Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
• Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells. • PARPi leads to greater levels of replication stress in ATRX KO cells than WT. • IDH1 R132H and ATRX KO have similar levels of PARP inhibitor sensitivity. • ATRi and PARPi have greater synergy in ATRX KO cells. Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
ArticleNumber 101147
Author Jensen, Ryan B.
Sundaram, Ranjini K.
Garbarino, Jennifer
Bindra, Ranjit S.
Eckroate, Jillian
Author_xml – sequence: 1
  givenname: Jennifer
  surname: Garbarino
  fullname: Garbarino, Jennifer
  organization: Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06511, USA
– sequence: 2
  givenname: Jillian
  surname: Eckroate
  fullname: Eckroate, Jillian
  organization: Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 3
  givenname: Ranjini K.
  surname: Sundaram
  fullname: Sundaram, Ranjini K.
  organization: Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 4
  givenname: Ryan B.
  surname: Jensen
  fullname: Jensen, Ryan B.
  email: ryan.jensen@yale.edu
  organization: Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 5
  givenname: Ranjit S.
  surname: Bindra
  fullname: Bindra, Ranjit S.
  email: ranjit.bindra@yale.edu
  organization: Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34118569$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhleoiH7AP0Boj1wSbK_Xu4sQUlQoVIqgqorEzfLa43bCxk5tJ1L-PV4SqraXnGyN5308mue0OHLeQVG8pWRKCRUfFtMUVK5NGWF0LFHevChOaFeJSc2q6ujR_bg4jXFBiKAdY6-K44pT2taiOyku5j7G0ttydnP9u9TeWQix_PJjVgZYKQylAQs6xVI5U17Nrq9KdHfYY_KhjOAiJtxg2r4uXlo1RHizP8-KXxdfb86_T-Y_v12ez-YTXbcsTYTlDem4tUqTrm80JQ0XnHGSB9XCUCtq3vbWmEZxqxtlW0N6UiswTVdTyqqz4nLHNV4t5CrgUoWt9Arlv4IPt1KFhHoACbrVlQJhhVacsr4XDWspM8TmWTqoM-vzjrVa90swGlxe6PAE-vTF4Z289RvZMlK1vMqA93tA8PdriEkuMWoYBuXAr6NkNSc1rWoyzv3u8V8Pn_wXkRv4rkGHLCSAfWihRI6-5ULufMvRt9z5zrGPz2Iak0rox4lxOBTeLwCysQ1CkFEjOA0GQ3aeV4qHAJ-eAfSADrUa_sD2cPwvt5rcLA
CitedBy_id crossref_primary_10_1186_s41016_024_00371_6
crossref_primary_10_3389_fmolb_2024_1434398
crossref_primary_10_3390_cancers15082228
crossref_primary_10_1016_j_esmoop_2023_102217
crossref_primary_10_1016_j_coph_2023_102380
crossref_primary_10_3390_cancers14102561
crossref_primary_10_1093_neuonc_noae016
crossref_primary_10_1007_s11864_022_01024_5
crossref_primary_10_1016_j_beem_2024_101939
crossref_primary_10_1016_j_celrep_2021_110100
crossref_primary_10_3390_cancers15010259
crossref_primary_10_1016_j_celrep_2022_111081
crossref_primary_10_1200_JCO_23_00402
crossref_primary_10_3390_cancers14123015
crossref_primary_10_1038_s41576_023_00666_x
crossref_primary_10_3390_biom11081188
crossref_primary_10_3390_cancers14071821
crossref_primary_10_1016_j_ejcped_2024_100156
crossref_primary_10_1038_s41598_023_45786_w
crossref_primary_10_1007_s00401_022_02478_5
crossref_primary_10_1093_neuonc_noac022
crossref_primary_10_3390_cancers16050938
crossref_primary_10_1038_s41571_024_00863_5
crossref_primary_10_1186_s12885_022_09669_z
crossref_primary_10_3390_cancers14133159
crossref_primary_10_1007_s00066_022_02020_2
crossref_primary_10_1016_j_eswa_2024_126173
crossref_primary_10_1038_s41467_025_57595_y
crossref_primary_10_1016_j_ygyno_2023_07_020
crossref_primary_10_1038_s41598_022_09614_x
Cites_doi 10.1073/pnas.1720391115
10.1667/RR14746.1
10.1016/j.molonc.2011.07.001
10.1002/1878-0261.12573
10.1158/1078-0432.CCR-16-2273
10.1016/j.febslet.2010.07.029
10.1083/jcb.200806068
10.1083/jcb.201404111
10.1080/14728222.2018.1487953
10.1016/j.celrep.2013.04.018
10.1093/bioinformatics/btw230
10.1038/s41586-018-0261-5
10.1038/nrclinonc.2016.204
10.1038/s41388-020-1328-y
10.1200/JCO.2020.38.6_suppl.TPS254
10.1016/j.molcel.2018.05.014
10.1038/nrm.2017.67
10.1126/sciadv.aaz3221
10.1074/jbc.M112.411603
10.1126/scitranslmed.aaq1427
10.1038/ncomms8538
10.1038/s41467-018-06498-2
10.1158/0008-5472.CAN-16-2773
10.1126/scitranslmed.aal2463
10.1038/nsmb.1550
10.1016/j.ccr.2010.12.014
10.1093/hmg/ddu596
10.1093/narcan/zcab018
10.1007/s11864-018-0572-7
10.1242/jcs.053702
10.1038/s41568-018-0034-3
10.1038/nsmb.2062
10.1038/cddis.2016.121
10.1038/s41586-020-2363-0
10.1126/scitranslmed.aac8228
10.1371/journal.pone.0204159
10.1038/nsmb.2076
10.7573/dic.212540
10.1038/nature10860
10.1158/1078-0432.CCR-17-2796
10.1016/j.celrep.2015.03.036
10.1016/j.trecan.2016.02.003
10.3892/ijo.2012.1564
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
2021 The Authors. Published by Elsevier Inc. 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: 2021 The Authors. Published by Elsevier Inc. 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.tranon.2021.101147
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-5233
ExternalDocumentID oai_doaj_org_article_ec8c3ae6f6ca412bb672812d0fc589e5
PMC8203843
34118569
10_1016_j_tranon_2021_101147
S193652332100139X
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA215990
– fundername: NCI NIH HHS
  grantid: T32 CA193200
GroupedDBID ---
.1-
.FO
0R~
1P~
29Q
2WC
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AAKDD
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
E3Z
EBS
EJD
F5P
FDB
GROUPED_DOAJ
GX1
HYE
IPNFZ
IXB
KQ8
OC~
OK1
OO-
RIG
ROL
RPM
SSZ
TR2
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
M~E
NCXOZ
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c582t-6f47094ffac09b7c107464240936c6d1f6548bfdd7a4fc7af8d0b05aed7951123
IEDL.DBID IXB
ISSN 1936-5233
IngestDate Wed Aug 27 00:15:35 EDT 2025
Thu Aug 21 18:03:55 EDT 2025
Fri Jul 11 10:45:14 EDT 2025
Sat Mar 15 01:21:12 EDT 2025
Tue Jul 01 01:56:56 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Tue Jul 25 21:00:26 EDT 2023
Tue Aug 26 16:32:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords IDH1 R132H
Glioma
DNA damage response
ATRX
PARP inhibitor
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-6f47094ffac09b7c107464240936c6d1f6548bfdd7a4fc7af8d0b05aed7951123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S193652332100139X
PMID 34118569
PQID 2540513502
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ec8c3ae6f6ca412bb672812d0fc589e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8203843
proquest_miscellaneous_2540513502
pubmed_primary_34118569
crossref_primary_10_1016_j_tranon_2021_101147
crossref_citationtrail_10_1016_j_tranon_2021_101147
elsevier_sciencedirect_doi_10_1016_j_tranon_2021_101147
elsevier_clinicalkey_doi_10_1016_j_tranon_2021_101147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Translational oncology
PublicationTitleAlternate Transl Oncol
PublicationYear 2021
Publisher Elsevier Inc
Neoplasia Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Neoplasia Press
– name: Elsevier
References Udugama, Sanij, Voon (bib0005) 2018; 115
Sulkowski, Oeck, Dow (bib0024) 2020; 582
Lloyd, Wijnhoven, Ramos-Montoya (bib0031) 2020; 39
Iwase, Xiang, Ghosh (bib0004) 2011; 18
Toledo L.I., Murga M., Zur R., et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Publ Gr. 2010. doi:10.1038/nsmb.2076.
Lamarche, Orazio, Weitzman (bib0043) 2010; 584
Haase, Garcia-Fabiani, Carney (bib0006) 2018; 22
Brogna, Wen (bib0039) 2009; 16
Helleday (bib0045) 2011; 5
Reifenberger, Wirsching, Knobbe-Thomsen, Weller (bib0002) 2016; 14
Di Veroli, Fornari, Wang (bib0036) 2016; 32
Murphy, Fitzgerald, Ro (bib0015) 2014; 206
Smith, Mun Tho, Xu, Gillespie (bib0017) 2010; 108
Sulkowski, Corso, Robinson (bib0023) 2017; 9
Udugama, Chang, Chan (bib0047) 2015; 43
Shiotani, Nguyen, Håkansson (bib0034) 2013; 3
Kurnit, Coleman, Westin (bib0029) 2018; 19
Chan, Laddha, Lewis (bib0001) 2018; 9
McCann, Hurvitz (bib0028) 2018; 7
Xu, Yang, Liu (bib0021) 2011; 19
Sule, Van Doorn, Sundaram, Ganesa, Vasquez, Bindra (bib0042) 2021; 3
Liang, Zhao, Diplas (bib0041) 2019
Leung, Ghosal, Wang (bib0008) 2013; 288
Koschmann, Calinescu, Nunez (bib0013) 2016; 8
Wang, Wild, Turcan (bib0025) 2020; 6
Maya-Mendoza, Moudry, Merchut-Maya, Lee, Strauss, Bartek (bib0044) 2018; 559
Vassin, Anantha, Sokolova, Kanner, Borowiec (bib0016) 2009; 122
Voon, Hughes, Rode (bib0003) 2015; 11
Clynes, Jelinska, Xella (bib0010) 2015; 6
Wang, Yang, Wild (bib0038) 2019; 10
Oeck, Malewicz, Hurst, Al-Refae, Krysztofiak, Jendrossek (bib0035) 2017; 188
Saldivar, Cortez, Cimprich (bib0014) 2017; 18
Okita, Narita, Miyakita (bib0022) 2012; 41
Voon, Collas, Wong (bib0007) 2016; 2
Reichert, Daignault, Teply, Devitt, Heath (bib0048) 2020; 38
Huh, Ivanochko, Hashem (bib0009) 2016; 7
Lecona, Fernandez-Capetillo (bib0018) 2018; 18
Kim, George, Ragland (bib0033) 2017; 23
Published 2018. Accessed 21 April 2021.
Simpkins F. Combination ATR and PARP inhibitor (CAPRI) trial with AZD6738 and olaparib in recurrent ovarian cancer - full text view - ClinicalTrials.gov. clinicaltrials.gov.
Schoonen, Kok, Wierenga (bib0032) 2019; 13
Núñez, Mendez, Kadiyala (bib0030) 2019; 11
Lu, Kwintkiewicz, Liu (bib0026) 2017; 77
Molenaar, Radivoyevitch, Nagata (bib0027) 2018; 24
Brosnan-Cashman, Yuan, Graham (bib0037) 2018; 13
Levy, Kernohan, Jiang, Bérubé (bib0040) 2014; 24
Juhász, Elbakry, Mathes, Löbrich (bib0011) 2018; 71
Raghunandan, Yeo, Walter (bib0012) 2019; 00
Lu, Ward, Kapoor (bib0020) 2012; 483
Sugimura, Takebayashi, Taguchi, Takeda, Okumura (bib0046) 2008; 183
Sulkowski (10.1016/j.tranon.2021.101147_bib0024) 2020; 582
Lamarche (10.1016/j.tranon.2021.101147_bib0043) 2010; 584
Sule (10.1016/j.tranon.2021.101147_bib0042) 2021; 3
Koschmann (10.1016/j.tranon.2021.101147_bib0013) 2016; 8
Oeck (10.1016/j.tranon.2021.101147_bib0035) 2017; 188
Lecona (10.1016/j.tranon.2021.101147_bib0018) 2018; 18
Di Veroli (10.1016/j.tranon.2021.101147_bib0036) 2016; 32
10.1016/j.tranon.2021.101147_bib0019
Levy (10.1016/j.tranon.2021.101147_bib0040) 2014; 24
Lu (10.1016/j.tranon.2021.101147_bib0026) 2017; 77
Shiotani (10.1016/j.tranon.2021.101147_bib0034) 2013; 3
Clynes (10.1016/j.tranon.2021.101147_bib0010) 2015; 6
Sugimura (10.1016/j.tranon.2021.101147_bib0046) 2008; 183
Wang (10.1016/j.tranon.2021.101147_bib0038) 2019; 10
Molenaar (10.1016/j.tranon.2021.101147_bib0027) 2018; 24
Schoonen (10.1016/j.tranon.2021.101147_bib0032) 2019; 13
Liang (10.1016/j.tranon.2021.101147_bib0041) 2019
Voon (10.1016/j.tranon.2021.101147_bib0003) 2015; 11
Lu (10.1016/j.tranon.2021.101147_bib0020) 2012; 483
Sulkowski (10.1016/j.tranon.2021.101147_bib0023) 2017; 9
10.1016/j.tranon.2021.101147_bib0049
Haase (10.1016/j.tranon.2021.101147_bib0006) 2018; 22
Murphy (10.1016/j.tranon.2021.101147_bib0015) 2014; 206
Kim (10.1016/j.tranon.2021.101147_bib0033) 2017; 23
Iwase (10.1016/j.tranon.2021.101147_bib0004) 2011; 18
Kurnit (10.1016/j.tranon.2021.101147_bib0029) 2018; 19
Wang (10.1016/j.tranon.2021.101147_bib0025) 2020; 6
Núñez (10.1016/j.tranon.2021.101147_bib0030) 2019; 11
Udugama (10.1016/j.tranon.2021.101147_bib0047) 2015; 43
Xu (10.1016/j.tranon.2021.101147_bib0021) 2011; 19
Smith (10.1016/j.tranon.2021.101147_bib0017) 2010; 108
Brosnan-Cashman (10.1016/j.tranon.2021.101147_bib0037) 2018; 13
Huh (10.1016/j.tranon.2021.101147_bib0009) 2016; 7
Lloyd (10.1016/j.tranon.2021.101147_bib0031) 2020; 39
Leung (10.1016/j.tranon.2021.101147_bib0008) 2013; 288
Voon (10.1016/j.tranon.2021.101147_bib0007) 2016; 2
Brogna (10.1016/j.tranon.2021.101147_bib0039) 2009; 16
Udugama (10.1016/j.tranon.2021.101147_bib0005) 2018; 115
McCann (10.1016/j.tranon.2021.101147_bib0028) 2018; 7
Vassin (10.1016/j.tranon.2021.101147_bib0016) 2009; 122
Reichert (10.1016/j.tranon.2021.101147_bib0048) 2020; 38
Reifenberger (10.1016/j.tranon.2021.101147_bib0002) 2016; 14
Helleday (10.1016/j.tranon.2021.101147_bib0045) 2011; 5
Maya-Mendoza (10.1016/j.tranon.2021.101147_bib0044) 2018; 559
Chan (10.1016/j.tranon.2021.101147_bib0001) 2018; 9
Juhász (10.1016/j.tranon.2021.101147_bib0011) 2018; 71
Saldivar (10.1016/j.tranon.2021.101147_bib0014) 2017; 18
Okita (10.1016/j.tranon.2021.101147_bib0022) 2012; 41
Raghunandan (10.1016/j.tranon.2021.101147_bib0012) 2019; 00
References_xml – volume: 11
  year: 2019
  ident: bib0030
  article-title: IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response
  publication-title: Sci. Transl. Med.
– volume: 206
  start-page: 493
  year: 2014
  end-page: 507
  ident: bib0015
  article-title: Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery
  publication-title: J. Cell Biol.
– volume: 122
  start-page: 4070
  year: 2009
  end-page: 4080
  ident: bib0016
  article-title: Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress
  publication-title: J. Cell Sci.
– reference: Simpkins F. Combination ATR and PARP inhibitor (CAPRI) trial with AZD6738 and olaparib in recurrent ovarian cancer - full text view - ClinicalTrials.gov. clinicaltrials.gov.
– volume: 19
  start-page: 17
  year: 2011
  end-page: 30
  ident: bib0021
  article-title: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
  publication-title: Cancer Cell
– volume: 24
  start-page: 1705
  year: 2018
  end-page: 1715
  ident: bib0027
  article-title: Idh1/2 mutations sensitize acute myeloid leukemia to parp inhibition and this is reversed by idh1/2-mutant inhibitors
  publication-title: Clin. Cancer Res.
– volume: 7
  year: 2016
  ident: bib0009
  article-title: Stalled replication forks within heterochromatin require ATRX for protection
  publication-title: Cell Death. Dis.
– volume: 9
  start-page: eaal2463
  year: 2017
  ident: bib0023
  article-title: 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity
  publication-title: Sci. Transl. Med.
– volume: 115
  start-page: 4737
  year: 2018
  end-page: 4742
  ident: bib0005
  article-title: Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2
  start-page: 114
  year: 2016
  end-page: 116
  ident: bib0007
  article-title: Compromised telomeric heterochromatin promotes ALTernative lengthening of telomeres
  publication-title: Trends Cancer
– volume: 38
  year: 2020
  ident: bib0048
  article-title: Targeting resistant prostate cancer with ATR and PARP inhibition (TRAP trial): a phase II study
  publication-title: J. Clin. Oncol.
– volume: 22
  start-page: 599
  year: 2018
  end-page: 613
  ident: bib0006
  article-title: Mutant ATRX: uncovering a new therapeutic target for glioma
  publication-title: Expert Opin. Ther. Targets
– volume: 6
  start-page: eaaz3221
  year: 2020
  ident: bib0025
  article-title: Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas
  publication-title: Sci. Adv.
– reference: Toledo L.I., Murga M., Zur R., et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Publ Gr. 2010. doi:10.1038/nsmb.2076.
– volume: 108
  start-page: 73
  year: 2010
  end-page: 112
  ident: bib0017
  article-title: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer
  publication-title: Advances in Cancer Research
– volume: 18
  start-page: 769
  year: 2011
  end-page: 776
  ident: bib0004
  article-title: ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome
  publication-title: Nat. Struct. Mol. Biol.
– volume: 183
  start-page: 1203
  year: 2008
  end-page: 1212
  ident: bib0046
  article-title: PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA
  publication-title: J. Cell Biol.
– volume: 23
  start-page: 3097
  year: 2017
  end-page: 3108
  ident: bib0033
  article-title: Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models
  publication-title: Clin. Cancer Res.
– volume: 19
  start-page: 1
  year: 2018
  ident: bib0029
  article-title: Using PARP inhibitors in the treatment of patients with ovarian cancer
  publication-title: Curr. Treat. Options Oncol.
– year: 2019
  ident: bib0041
  article-title: Genome-wide CRISPR-Cas9 screen reveals selective vulnerability of ATRX -mutant cancers to WEE1 inhibition
  publication-title: Cancer Res.
– reference: . Published 2018. Accessed 21 April 2021.
– volume: 24
  start-page: 1824
  year: 2014
  end-page: 1835
  ident: bib0040
  article-title: ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions
  publication-title: Hum. Mol. Genet.
– volume: 9
  year: 2018
  ident: bib0001
  article-title: ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup
  publication-title: Nat. Commun.
– volume: 18
  start-page: 586
  year: 2018
  end-page: 595
  ident: bib0018
  article-title: Targeting ATR in cancer
  publication-title: Nat. Rev. Cancer
– volume: 43
  start-page: 10227
  year: 2015
  end-page: 10237
  ident: bib0047
  article-title: Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres
  publication-title: Nucleic. Acids Res.
– volume: 11
  start-page: 405
  year: 2015
  end-page: 418
  ident: bib0003
  article-title: ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes
  publication-title: Cell Rep.
– volume: 39
  start-page: 4869
  year: 2020
  end-page: 4883
  ident: bib0031
  article-title: Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells
  publication-title: Oncogene
– volume: 13
  year: 2018
  ident: bib0037
  article-title: ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner
  publication-title: PLoS One
– volume: 32
  start-page: 2866
  year: 2016
  end-page: 2868
  ident: bib0036
  article-title: Combenefit: an interactive platform for the analysis and visualization of drug combinations
  publication-title: Bioinformatics
– volume: 483
  start-page: 474
  year: 2012
  end-page: 478
  ident: bib0020
  article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation
  publication-title: Nature
– volume: 5
  start-page: 387
  year: 2011
  end-page: 393
  ident: bib0045
  article-title: The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings
  publication-title: Mol. Oncol.
– volume: 16
  start-page: 107
  year: 2009
  end-page: 113
  ident: bib0039
  article-title: Nonsense-mediated mRNA decay (NMD) mechanisms
  publication-title: Nat. Struct. Mol. Biol.
– volume: 584
  start-page: 3682
  year: 2010
  end-page: 3695
  ident: bib0043
  article-title: The MRN complex in double-strand break repair and telomere maintenance
  publication-title: FEBS Lett.
– volume: 188
  start-page: 114
  year: 2017
  end-page: 120
  ident: bib0035
  article-title: The focinator v2-0-graphical interface, four channels, colocalization analysis and cell phase identification
  publication-title: Radiat. Res.
– volume: 8
  start-page: 328ra28
  year: 2016
  ident: bib0013
  article-title: ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: 7538
  year: 2015
  ident: bib0010
  article-title: Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX
  publication-title: Nat. Commun.
– volume: 18
  start-page: 622
  year: 2017
  end-page: 636
  ident: bib0014
  article-title: The essential kinase ATR: ensuring faithful duplication of a challenging genome
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 582
  start-page: 586
  year: 2020
  end-page: 591
  ident: bib0024
  article-title: Oncometabolites suppress DNA repair by disrupting local chromatin signalling
  publication-title: Nature
– volume: 7
  year: 2018
  ident: bib0028
  article-title: Advances in the use of PARP inhibitor therapy for breast cancer
  publication-title: Drugs Context
– volume: 559
  start-page: 279
  year: 2018
  end-page: 284
  ident: bib0044
  article-title: High speed of fork progression induces DNA replication stress and genomic instability
  publication-title: Nature
– volume: 13
  start-page: 2422
  year: 2019
  end-page: 2440
  ident: bib0032
  article-title: Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells
  publication-title: Mol. Oncol
– volume: 41
  start-page: 1325
  year: 2012
  end-page: 1336
  ident: bib0022
  article-title: IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy
  publication-title: Int. J. Oncol.
– volume: 71
  start-page: 11
  year: 2018
  end-page: 24
  ident: bib0011
  article-title: ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination
  publication-title: Mol. Cell
– volume: 3
  year: 2021
  ident: bib0042
  article-title: Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors
  publication-title: NAR Cancer
– volume: 00
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0012
  article-title: Functional crosstalk between the fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery
  publication-title: Hum. Mol. Genet.
– volume: 3
  start-page: 1651
  year: 2013
  end-page: 1662
  ident: bib0034
  article-title: Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1
  publication-title: Cell Rep.
– volume: 288
  start-page: 6342
  year: 2013
  end-page: 6350
  ident: bib0008
  article-title: Alpha thalassemia/mental retardation syndrome X-linked gene product ATRX is required for proper replication restart and cellular resistance to replication stress
  publication-title: J. Biol. Chem.
– volume: 77
  start-page: 1709
  year: 2017
  end-page: 1718
  ident: bib0026
  article-title: Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair
  publication-title: Cancer Res.
– volume: 10
  year: 2019
  ident: bib0038
  article-title: G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma
  publication-title: Nat. Commun.
– volume: 14
  start-page: 434
  year: 2016
  end-page: 452
  ident: bib0002
  article-title: Advances in the molecular genetics of gliomas — implications for classification and therapy
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 115
  start-page: 4737
  issue: 18
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0005
  article-title: Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1720391115
– ident: 10.1016/j.tranon.2021.101147_bib0049
– volume: 188
  start-page: 114
  issue: 1
  year: 2017
  ident: 10.1016/j.tranon.2021.101147_bib0035
  article-title: The focinator v2-0-graphical interface, four channels, colocalization analysis and cell phase identification
  publication-title: Radiat. Res.
  doi: 10.1667/RR14746.1
– volume: 5
  start-page: 387
  issue: 4
  year: 2011
  ident: 10.1016/j.tranon.2021.101147_bib0045
  article-title: The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2011.07.001
– volume: 13
  start-page: 2422
  issue: 11
  year: 2019
  ident: 10.1016/j.tranon.2021.101147_bib0032
  article-title: Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells
  publication-title: Mol. Oncol
  doi: 10.1002/1878-0261.12573
– volume: 23
  start-page: 3097
  issue: 12
  year: 2017
  ident: 10.1016/j.tranon.2021.101147_bib0033
  article-title: Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-2273
– volume: 584
  start-page: 3682
  issue: 17
  year: 2010
  ident: 10.1016/j.tranon.2021.101147_bib0043
  article-title: The MRN complex in double-strand break repair and telomere maintenance
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.07.029
– volume: 183
  start-page: 1203
  issue: 7
  year: 2008
  ident: 10.1016/j.tranon.2021.101147_bib0046
  article-title: PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200806068
– volume: 206
  start-page: 493
  issue: 4
  year: 2014
  ident: 10.1016/j.tranon.2021.101147_bib0015
  article-title: Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404111
– volume: 22
  start-page: 599
  issue: 7
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0006
  article-title: Mutant ATRX: uncovering a new therapeutic target for glioma
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2018.1487953
– volume: 3
  start-page: 1651
  issue: 5
  year: 2013
  ident: 10.1016/j.tranon.2021.101147_bib0034
  article-title: Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.04.018
– volume: 32
  start-page: 2866
  issue: 18
  year: 2016
  ident: 10.1016/j.tranon.2021.101147_bib0036
  article-title: Combenefit: an interactive platform for the analysis and visualization of drug combinations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw230
– volume: 00
  start-page: 1
  issue: 00
  year: 2019
  ident: 10.1016/j.tranon.2021.101147_bib0012
  article-title: Functional crosstalk between the fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery
  publication-title: Hum. Mol. Genet.
– volume: 108
  start-page: 73
  year: 2010
  ident: 10.1016/j.tranon.2021.101147_bib0017
  article-title: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer
– volume: 559
  start-page: 279
  issue: 7713
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0044
  article-title: High speed of fork progression induces DNA replication stress and genomic instability
  publication-title: Nature
  doi: 10.1038/s41586-018-0261-5
– volume: 14
  start-page: 434
  issue: 7
  year: 2016
  ident: 10.1016/j.tranon.2021.101147_bib0002
  article-title: Advances in the molecular genetics of gliomas — implications for classification and therapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.204
– volume: 39
  start-page: 4869
  issue: 25
  year: 2020
  ident: 10.1016/j.tranon.2021.101147_bib0031
  article-title: Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells
  publication-title: Oncogene
  doi: 10.1038/s41388-020-1328-y
– volume: 38
  issue: 6_suppl
  year: 2020
  ident: 10.1016/j.tranon.2021.101147_bib0048
  article-title: Targeting resistant prostate cancer with ATR and PARP inhibition (TRAP trial): a phase II study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.6_suppl.TPS254
– volume: 71
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0011
  article-title: ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.05.014
– volume: 18
  start-page: 622
  issue: 10
  year: 2017
  ident: 10.1016/j.tranon.2021.101147_bib0014
  article-title: The essential kinase ATR: ensuring faithful duplication of a challenging genome
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.67
– volume: 6
  start-page: eaaz3221
  issue: 17
  year: 2020
  ident: 10.1016/j.tranon.2021.101147_bib0025
  article-title: Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz3221
– volume: 288
  start-page: 6342
  issue: 9
  year: 2013
  ident: 10.1016/j.tranon.2021.101147_bib0008
  article-title: Alpha thalassemia/mental retardation syndrome X-linked gene product ATRX is required for proper replication restart and cellular resistance to replication stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.411603
– volume: 11
  issue: 479
  year: 2019
  ident: 10.1016/j.tranon.2021.101147_bib0030
  article-title: IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaq1427
– volume: 6
  start-page: 7538
  issue: 1
  year: 2015
  ident: 10.1016/j.tranon.2021.101147_bib0010
  article-title: Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8538
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0001
  article-title: ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06498-2
– volume: 77
  start-page: 1709
  issue: 7
  year: 2017
  ident: 10.1016/j.tranon.2021.101147_bib0026
  article-title: Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2773
– volume: 9
  start-page: eaal2463
  issue: 375
  year: 2017
  ident: 10.1016/j.tranon.2021.101147_bib0023
  article-title: 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aal2463
– volume: 16
  start-page: 107
  issue: 2
  year: 2009
  ident: 10.1016/j.tranon.2021.101147_bib0039
  article-title: Nonsense-mediated mRNA decay (NMD) mechanisms
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1550
– volume: 43
  start-page: 10227
  year: 2015
  ident: 10.1016/j.tranon.2021.101147_bib0047
  article-title: Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres
  publication-title: Nucleic. Acids Res.
– volume: 19
  start-page: 17
  issue: 1
  year: 2011
  ident: 10.1016/j.tranon.2021.101147_bib0021
  article-title: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.12.014
– volume: 24
  start-page: 1824
  issue: 7
  year: 2014
  ident: 10.1016/j.tranon.2021.101147_bib0040
  article-title: ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu596
– volume: 3
  issue: 2
  year: 2021
  ident: 10.1016/j.tranon.2021.101147_bib0042
  article-title: Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors
  publication-title: NAR Cancer
  doi: 10.1093/narcan/zcab018
– volume: 19
  start-page: 1
  issue: 12
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0029
  article-title: Using PARP inhibitors in the treatment of patients with ovarian cancer
  publication-title: Curr. Treat. Options Oncol.
  doi: 10.1007/s11864-018-0572-7
– volume: 122
  start-page: 4070
  issue: 22
  year: 2009
  ident: 10.1016/j.tranon.2021.101147_bib0016
  article-title: Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.053702
– volume: 18
  start-page: 586
  issue: 9
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0018
  article-title: Targeting ATR in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0034-3
– volume: 18
  start-page: 769
  issue: 7
  year: 2011
  ident: 10.1016/j.tranon.2021.101147_bib0004
  article-title: ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2062
– volume: 7
  year: 2016
  ident: 10.1016/j.tranon.2021.101147_bib0009
  article-title: Stalled replication forks within heterochromatin require ATRX for protection
  publication-title: Cell Death. Dis.
  doi: 10.1038/cddis.2016.121
– volume: 582
  start-page: 586
  issue: 7813
  year: 2020
  ident: 10.1016/j.tranon.2021.101147_bib0024
  article-title: Oncometabolites suppress DNA repair by disrupting local chromatin signalling
  publication-title: Nature
  doi: 10.1038/s41586-020-2363-0
– volume: 8
  start-page: 328ra28
  issue: 328
  year: 2016
  ident: 10.1016/j.tranon.2021.101147_bib0013
  article-title: ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aac8228
– volume: 13
  issue: 9
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0037
  article-title: ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204159
– ident: 10.1016/j.tranon.2021.101147_bib0019
  doi: 10.1038/nsmb.2076
– volume: 10
  issue: 943
  year: 2019
  ident: 10.1016/j.tranon.2021.101147_bib0038
  article-title: G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma
  publication-title: Nat. Commun.
– year: 2019
  ident: 10.1016/j.tranon.2021.101147_bib0041
  article-title: Genome-wide CRISPR-Cas9 screen reveals selective vulnerability of ATRX -mutant cancers to WEE1 inhibition
  publication-title: Cancer Res.
– volume: 7
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0028
  article-title: Advances in the use of PARP inhibitor therapy for breast cancer
  publication-title: Drugs Context
  doi: 10.7573/dic.212540
– volume: 483
  start-page: 474
  issue: 7390
  year: 2012
  ident: 10.1016/j.tranon.2021.101147_bib0020
  article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation
  publication-title: Nature
  doi: 10.1038/nature10860
– volume: 24
  start-page: 1705
  issue: 7
  year: 2018
  ident: 10.1016/j.tranon.2021.101147_bib0027
  article-title: Idh1/2 mutations sensitize acute myeloid leukemia to parp inhibition and this is reversed by idh1/2-mutant inhibitors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-2796
– volume: 11
  start-page: 405
  issue: 3
  year: 2015
  ident: 10.1016/j.tranon.2021.101147_bib0003
  article-title: ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.03.036
– volume: 2
  start-page: 114
  issue: 3
  year: 2016
  ident: 10.1016/j.tranon.2021.101147_bib0007
  article-title: Compromised telomeric heterochromatin promotes ALTernative lengthening of telomeres
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2016.02.003
– volume: 41
  start-page: 1325
  issue: 4
  year: 2012
  ident: 10.1016/j.tranon.2021.101147_bib0022
  article-title: IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2012.1564
SSID ssj0061922
Score 2.3906646
Snippet •Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells.•PARPi leads to greater levels of replication stress in ATRX KO cells than...
Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is...
• Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells. • PARPi leads to greater levels of replication stress in ATRX KO cells...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101147
SubjectTerms ATRX
DNA damage response
Glioma
IDH1 R132H
Original Research
PARP inhibitor
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlD6WX0u0zfaFCr6aWZEvyMds2LKW7LMsu5Cb0ZF2KU5Ls_--MZIekPaSHHv2QjT6N_H1jjWYI-dgkL7livvK68fi3qq20VwIOu9a7TjPmcb_zxaU8v22-LdvlXqkvjAkr6YELcJ-i117YKJP0tmHcOak4kFKok291F3P2UuC8yZkq32D0CnhZT5boaolp01yO7NoCC6ww9ylneIphaZU9Usq5-w-46W_t-WcI5R4nLZ6Qx6OYpPPSiVPyIA5PycOLcbn8GVl8h7fRVaLzm-sl9Xlz34Z-uZzTNbBQv6Yh5mgOaodAr-bXV7Qf7noHk3xNNxjZXkpLPCe3i683n8-rsXBCBZjwbSVTo8BtS8n6unPKY9Al-BngygnpZWAJi8W7FIKyMFbKJh1qV7c2BtWhABMvyAkgFF8RarV2QOnwRMsa1nnbseClEykTPe9mREzIGT9mFcfiFj_NFD72wxS8DeJtCt4zUu1a_SpZNY7cf4aDsrsXc2LnE2ApZrQUc8xSZqSdhtRM207hQwkP6o-8XO3ajbKkyI1_aPlhshwDsxaXYuwQV_cbw1EoM9HWfEZeFkvadQ50BSIO0KoDGzvo_eGVob_LmcFBzgndiNf_A6435BF2pcTTvSUn2_V9fAcCbOve57n2GwCsLGg
  priority: 102
  providerName: Directory of Open Access Journals
Title Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S193652332100139X
https://dx.doi.org/10.1016/j.tranon.2021.101147
https://www.ncbi.nlm.nih.gov/pubmed/34118569
https://www.proquest.com/docview/2540513502
https://pubmed.ncbi.nlm.nih.gov/PMC8203843
https://doaj.org/article/ec8c3ae6f6ca412bb672812d0fc589e5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JL6bvbR1ChV7OWZUvycZN2CaUJIU3AN6GH1bgUb_Bu_n9nJHuJ20NKj5YtSx6NZr6x5kHIpzI4UUjmMqdKh3-rqkw5yeGyrpytFWMO453PzsXpdfm1qZoDcjLFwqBb5Sj7k0yP0npsWY7UXN523fI7QA8BZhQGoSCOaUAOcxgMg_ia40kao31QpJNlgUYXn8Lnoo_XDvTBBrOgFgybGBZZuaeeYhb_mZb6G4X-6Ux5Tzutn5InI6ykqzTzZ-Sg7Z-TR2fjwfkLsv4Go9FNoKury4a6GOa3pZ_PV3QAfdQN1LfRr4Oa3tOL1eUF7fqbzsJ2H-gWfdxTkYmX5Hr95erkNBtLKGSuUsUuE6GUYMCFYFxeW-nQ_RIsDjDquHDCs4Bl423wXhpYNWmC8rnNK9N6WSMU46_IIVCofUOoUcqCcoc3Glay2pmaeScsD1HlF_WC8Ily2o35xbHMxS89OZL91IneGumtE70XJNv3uk35NR54_hgXZf8sZseODZvhhx7ZQ7dOOW5aEYQzJSusFbIAIOPzAFSp22pBqmlJ9RSACiITXtQ9MLjc95sx6T_0_Dhxjob9i4cypm83d1tdIGRmvMqLBXmdOGn_cYAwkOJAWjnjsdnXz-_03U3MEQ7AjquSv_3vGb8jj_EqudO9J4e74a79APhrZ4_if4ujuM1-A3R-Lb8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQIuiDflaSQ4Rq2dxE4OHLosVcu21WrpSrkZ27HZIJSu0q4Qv4s_yEwe1QYOi5D2GCd24s_2zDfxjIeQt5G3gktmA5tEFv9WxUFiZQiXaWxNmjBmMd55sRTT0-hTFmd75FcXC4Nula3sb2R6La3bkmGL5vC8KIafgXoIMKMwCAV5TNZ6Vh65nz_Abtu8nx3CIL_jfPJx9WEatKkFAhsnfBsIH0kwbLzXdpQaadEtEZg4GDuhsCJnHtOpG5_nUkNvpPZJPjKjWLtcpkhRQmj3BrkJ7EOiNJhlB534R4OEN1vZAq28sIvXq53KtqCA1njsKmdYxDCryyV9WKcN6KnFv2nvn96bl9Th5B652_JYOm6guk_2XPmA3Fq0O_UPyWQOb6NrT8erk4zaOq5wQw-XY1qBAiwqmrvakYTqMqfH45NjWpRnhQH5UtENOtU3WS0ekdNrAfYx2QeE3FNCdZIYYBPQomYRS61OWW6FCX3NMXg6IGGHnLLtgeaYV-O76jzXvqkGb4V4qwbvAQl2tc6bAz2ueP4AB2X3LB7HXResq6-qnY_K2cSG2gkvrI4YN0ZIDswpH3lAJXXxgMTdkKou4hVkNDRUXPFyuavXWxX_UPNNN3MUCAzcBdKlW19sFEeOzsJ4xAfkSTOTdp0DSoOIA7SyN8d6ve_fKYuz-lByYJJhEoXP_vuLX5Pb09Viruaz5dFzcgfvNL58L8j-trpwL4H8bc2rerFR8uW6V_dvAPxp1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+ATRX+confers+DNA+repair+defects+and+PARP+inhibitor+sensitivity&rft.jtitle=Translational+oncology&rft.au=Garbarino%2C+Jennifer&rft.au=Eckroate%2C+Jillian&rft.au=Sundaram%2C+Ranjini+K.&rft.au=Jensen%2C+Ryan+B.&rft.date=2021-09-01&rft.pub=Elsevier+Inc&rft.issn=1936-5233&rft.eissn=1936-5233&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1016%2Fj.tranon.2021.101147&rft.externalDocID=S193652332100139X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-5233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-5233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-5233&client=summon