A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials
•Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance.•All participating subjects were BCI/EEG naïve subjects, implying general applicabili...
Saved in:
Published in | Clinical neurophysiology Vol. 126; no. 1; pp. 154 - 159 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ireland Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1388-2457 1872-8952 1872-8952 |
DOI | 10.1016/j.clinph.2014.05.003 |
Cover
Abstract | •Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance.•All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed approach.
Applications of brain–computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).
The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation.
ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute.
The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis.
The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation. |
---|---|
AbstractList | Applications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).
The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation.
ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute.
The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis.
The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation. Applications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).OBJECTIVEApplications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation.METHODSThe templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation.ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute.RESULTSICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute.The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis.CONCLUSIONThe results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis.The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation.SIGNIFICANCEThe results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation. Highlights • Accurate single trial detection of the intention of step initiation from scalp EEG. • Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance. • All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed approach. •Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance.•All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed approach. Applications of brain–computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP). The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation. ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute. The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis. The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation. |
Author | Mrachacz-Kersting, Natalie Jiang, Ning Gizzi, Leonardo Dremstrup, Kim Farina, Dario |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0003-1579-3114 surname: Jiang fullname: Jiang, Ning organization: Department Neurorehabilitaion Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany – sequence: 2 givenname: Leonardo orcidid: 0000-0003-3009-6261 surname: Gizzi fullname: Gizzi, Leonardo organization: Pain Clinic Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, Göttingen, Germany – sequence: 3 givenname: Natalie surname: Mrachacz-Kersting fullname: Mrachacz-Kersting, Natalie organization: Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark – sequence: 4 givenname: Kim surname: Dremstrup fullname: Dremstrup, Kim organization: Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark – sequence: 5 givenname: Dario surname: Farina fullname: Farina, Dario email: dario.farina@bccn.uni-goettingen.de organization: Department Neurorehabilitaion Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24910150$$D View this record in MEDLINE/PubMed |
BookMark | eNqVks9qFTEYxYNU7B99A5Es3cyYZJLJREQoxVah4EJdh9zMl5rrTHJNMoXu-g6-oU9ipre6EKS4yRc-zjmB88sxOggxAELPKWkpof2rbWsnH3ZfW0Yob4loCekeoSM6SNYMSrCDeu-GoWFcyEN0nPOWECIJZ0_QIeOqZghyhMop3iTjw8_bHzbOu6VAwj7U0xkL2MWEsw9XEzQleTPhEQrY4mPA0eEr40sV--LN3cqlOOM5XsMMoeAEkykwYhtT8bZ6d7HUfU3JT9FjVwc8u58n6Mv5u89n75vLjxcfzk4vGysGVhpOJVeuGxRh0hjeO6aGYWOBW9kLLp3pRNcLYYhVqlcKOOU90LEfqRqlca47QS_3ubsUvy-Qi559tjBNJkBcsqZ9J4XsBsar9MW9dNnMMOpd8rNJN_p3U1XA9wKbYs4J3B8JJXoFord6D0SvQDQRugKpttd_2awvd3WVWvv0kPnt3gy1pGsPSWfrIVgYfaoY9Bj9_wasopXGN7iBvI1LChWApjozTfSn9cOs_4VyQphgtAa8-XfAw-__AleV1EI |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac0488 crossref_primary_10_1109_ACCESS_2022_3167703 crossref_primary_10_1109_TNSRE_2017_2703586 crossref_primary_10_1007_s11571_024_10164_3 crossref_primary_10_1109_TNNLS_2023_3305621 crossref_primary_10_1109_TNSRE_2018_2855053 crossref_primary_10_1186_s12984_015_0087_4 crossref_primary_10_1088_1741_2552_ab882e crossref_primary_10_1016_j_cmpb_2018_07_013 crossref_primary_10_1109_TBCAS_2017_2669911 crossref_primary_10_1109_TITS_2017_2740427 crossref_primary_10_1080_2326263X_2015_1114978 crossref_primary_10_2490_jjrmc_55_761 crossref_primary_10_3389_fnbot_2024_1491721 crossref_primary_10_1038_s41598_019_43594_9 crossref_primary_10_1371_journal_pone_0214711 crossref_primary_10_1016_j_clinph_2018_01_018 crossref_primary_10_1109_ACCESS_2020_3006907 crossref_primary_10_3389_fnins_2017_00326 crossref_primary_10_1016_j_riai_2017_07_002 crossref_primary_10_1186_s12984_015_0095_4 crossref_primary_10_3389_fnhum_2022_841312 crossref_primary_10_3389_fnins_2016_00359 crossref_primary_10_1016_j_neuroscience_2018_09_046 crossref_primary_10_1371_journal_pone_0267577 crossref_primary_10_1109_ACCESS_2021_3075253 crossref_primary_10_1142_S0129065716500295 crossref_primary_10_3389_fnins_2014_00376 crossref_primary_10_3389_fnins_2017_00170 crossref_primary_10_1016_j_bspc_2019_01_017 crossref_primary_10_1007_s10055_021_00538_x crossref_primary_10_1088_1741_2552_ad6189 crossref_primary_10_1016_j_ifacol_2021_12_019 crossref_primary_10_1080_13102818_2018_1437569 crossref_primary_10_1088_1741_2552_ac15e3 crossref_primary_10_1088_1741_2560_12_3_036007 crossref_primary_10_1155_2020_8573754 crossref_primary_10_1186_s12984_020_00675_5 crossref_primary_10_1097_PHM_0000000000000914 crossref_primary_10_3389_fnins_2017_00733 crossref_primary_10_1016_j_compbiomed_2018_05_024 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_3389_fnins_2021_721387 crossref_primary_10_1016_j_bspc_2024_107001 crossref_primary_10_3389_fnins_2016_00528 crossref_primary_10_1109_TNSRE_2021_3106897 crossref_primary_10_3389_fninf_2017_00045 crossref_primary_10_1109_JSEN_2021_3119074 crossref_primary_10_3390_s17122725 crossref_primary_10_3389_fnhum_2015_00306 crossref_primary_10_3390_bios12121134 crossref_primary_10_1088_1741_2552_ab08c8 crossref_primary_10_1016_j_neuropsychologia_2015_09_012 crossref_primary_10_3389_fnins_2017_00660 crossref_primary_10_3389_fnhum_2023_1070404 crossref_primary_10_3389_fnhum_2015_00708 crossref_primary_10_1016_j_bbr_2020_112663 crossref_primary_10_3390_s21062020 crossref_primary_10_1097_NPT_0000000000000311 crossref_primary_10_1088_1741_2552_ab914d crossref_primary_10_1155_2015_346217 crossref_primary_10_3389_fnhum_2022_1077416 crossref_primary_10_1142_S0129065721500593 crossref_primary_10_1088_1741_2552_ab9842 crossref_primary_10_1371_journal_pone_0182542 crossref_primary_10_1109_TNSRE_2022_3157959 crossref_primary_10_1152_jn_00918_2015 crossref_primary_10_1590_2446_4740_0777 crossref_primary_10_1109_TNSRE_2016_2531118 crossref_primary_10_3390_s19245444 crossref_primary_10_3934_mbe_2023455 crossref_primary_10_1088_1741_2560_12_5_056013 crossref_primary_10_1038_nrneurol_2016_113 crossref_primary_10_3389_fncom_2018_00003 crossref_primary_10_1109_TNSRE_2020_2966826 crossref_primary_10_3390_electronics11203297 crossref_primary_10_1016_j_neuroimage_2020_117076 crossref_primary_10_1016_j_clinph_2016_11_001 crossref_primary_10_1088_1741_2552_ab4dba crossref_primary_10_1016_j_jneumeth_2018_10_006 crossref_primary_10_1109_JBHI_2016_2546311 crossref_primary_10_3389_fnins_2017_00356 crossref_primary_10_3233_NRE_172394 crossref_primary_10_1088_1741_2552_ab9a99 |
Cites_doi | 10.1109/NER.2009.5109332 10.1007/BF00336013 10.1186/1743-0003-9-76 10.1002/mds.870100105 10.1016/S1388-2457(01)00662-9 10.1016/j.nbd.2013.12.005 10.1088/1741-2560/8/6/066009 10.1016/j.bbr.2005.02.031 10.1002/mds.23844 10.1016/S0987-7053(01)00262-3 10.1109/TBME.2013.2294203 10.1016/j.clinph.2014.01.016 10.1007/s11517-012-1018-1 10.1109/TNSRE.2012.2194309 10.1177/1545968312465195 10.3389/fnins.2010.00198 10.1016/j.clinph.2004.09.007 10.1016/j.clinph.2009.05.006 10.1016/j.clinph.2013.05.006 10.1109/72.761722 10.1088/1741-2560/10/3/036014 10.1109/TBME.2008.2001139 10.1186/1743-0003-8-66 10.1016/0013-4694(66)90100-3 10.1113/jphysiol.2011.222851 10.1002/mds.1123 10.1002/ana.23879 10.1186/1743-0003-9-65 10.1088/1741-2560/8/2/025009 10.1016/S0079-6123(06)59014-4 10.1023/A:1009533405695 10.1016/j.clinph.2008.09.027 |
ContentType | Journal Article |
Copyright | 2014 International Federation of Clinical Neurophysiology. International Federation of Clinical Neurophysiology. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 International Federation of Clinical Neurophysiology. – notice: International Federation of Clinical Neurophysiology. – notice: Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.clinph.2014.05.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8952 |
EndPage | 159 |
ExternalDocumentID | 24910150 10_1016_j_clinph_2014_05_003 S1388245714002521 1_s2_0_S1388245714002521 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA AADPK AAIAV ABLVK ABYKQ AFMIJ AHPSJ AJBFU EFLBG LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c582t-41749f389027aa46f2988bce4c76547fa353655a0c99699e4146e1d6d19d7aff3 |
IEDL.DBID | AIKHN |
ISSN | 1388-2457 1872-8952 |
IngestDate | Fri Sep 05 09:07:42 EDT 2025 Thu Apr 03 07:10:11 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Jul 01 03:39:59 EDT 2025 Fri Feb 23 02:25:12 EST 2024 Sun Feb 23 10:18:47 EST 2025 Tue Aug 26 17:38:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gait initiation Movement related cortical potential Brain–computer interface Independent component analysis |
Language | English |
License | Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c582t-41749f389027aa46f2988bce4c76547fa353655a0c99699e4146e1d6d19d7aff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3009-6261 0000-0003-1579-3114 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/38524 |
PMID | 24910150 |
PQID | 1637573824 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1637573824 pubmed_primary_24910150 crossref_primary_10_1016_j_clinph_2014_05_003 crossref_citationtrail_10_1016_j_clinph_2014_05_003 elsevier_sciencedirect_doi_10_1016_j_clinph_2014_05_003 elsevier_clinicalkeyesjournals_1_s2_0_S1388245714002521 elsevier_clinicalkey_doi_10_1016_j_clinph_2014_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Clinical neurophysiology |
PublicationTitleAlternate | Clin Neurophysiol |
PublicationYear | 2015 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Neuper, Wörtz, Pfurtscheller (b0090) 2006; 159 Niazi, Mrachacz-Kersting, Jiang, Dremstrup, Farina (b0105) 2012; 20 Gizzi, Nielsen, Felici, Moreno, Pons, Farina (b0040) 2012; 9 Gilden, Vaughan, Costa (b0035) 1966; 20 Mrachacz-Kersting, Kristensen, Niazi, Farina (b0075) 2012; 590 Do Nascimento, Farina (b0080) 2008; 55 Niazi, Jiang, Jochumsen, Nielsen, Dremstrup, Farina (b0095) 2013; 51 Pennycott, Wyss, Vallery, Klamroth-Marganska, Riener (b0110) 2012; 9 Garipelli, Chavarriaga, Millán (b0030) 2013; 10 Duff, Chen, Cheng, Liu, Blake, Wolf (b0020) 2013; 27 Gangadhar G, Chavarriaga R, Mill R. Anticipation Based Brain-Computer Interfacing (aBCI). 4th Int. IEEE EMBS Conf. Neural Eng. 2009. p. 459–62. Belda-Lois, Mena-del Horno, Bermejo-Bosch, Moreno, Pons, Farina (b0005) 2011; 8 Rektor, Bares, Kubová (b0130) 2001; 112 Kropp, Kiewitt, Göbel, Vetter, Gerber (b0070) 2000; 25 Shoushtarian, Murphy, Iansek (b0140) 2011; 26 Toledo, López-Azcárate, Garcia-Garcia, Guridi, Valencia, Artieda (b0150) 2014; 64 Rektor, Bareš, Kaňovský, Kukleta (b0125) 2001; 16 Vidaurre, Sannelli, Müller, Blankertz (b0160) 2011; 8 Xu, Jiang, Lin, Mrachacz-Kersting, Dremstrup, Farina (b0165) 2014; 61 Vidailhet, Atchison, Stocchi, Thompson, Rothwell, Marsden (b0155) 1995; 10 Slobounov, Hallett, Stanhope, Shibasaki (b0145) 2005; 116 Do Nascimento, Nielsen, Voigt (b0085) 2005; 161 Deecke, Grözinger, Kornhuber (b0015) 1976; 23 Niazi, Jiang, Tiberghien, Nielsen, Dremstrup, Farina (b0100) 2011; 8 Ramos-Murguialday, Broetz, Rea, Läer, Yilmaz, Brasil (b0120) 2013; 74 Kaiser, Kreilinger, Müller-Putz, Neuper (b0065) 2011; 5 Hashimoto, Ushiba (b0050) 2013; 124 Blankertz, Tangermann, Vidaurre, Fazli, Sannelli, Haufe (b0010) 2010; 4 Gu, Dremstrup, Farina (b0045) 2009; 120 Pfurtscheller, Solis-Escalante (b0115) 2009; 120 Heida, Poppe, de Vos, van Putten, van Vugt (b0055) 2014; 125 Hyvärinen (b0060) 1999; 10 Rektor, Kanovsky, Bares, Louvel, Lamarche (b0135) 2001; 31 Niazi (10.1016/j.clinph.2014.05.003_b0105) 2012; 20 Pennycott (10.1016/j.clinph.2014.05.003_b0110) 2012; 9 Gu (10.1016/j.clinph.2014.05.003_b0045) 2009; 120 Vidaurre (10.1016/j.clinph.2014.05.003_b0160) 2011; 8 Shoushtarian (10.1016/j.clinph.2014.05.003_b0140) 2011; 26 Belda-Lois (10.1016/j.clinph.2014.05.003_b0005) 2011; 8 Hyvärinen (10.1016/j.clinph.2014.05.003_b0060) 1999; 10 Xu (10.1016/j.clinph.2014.05.003_b0165) 2014; 61 Slobounov (10.1016/j.clinph.2014.05.003_b0145) 2005; 116 Deecke (10.1016/j.clinph.2014.05.003_b0015) 1976; 23 Rektor (10.1016/j.clinph.2014.05.003_b0135) 2001; 31 Neuper (10.1016/j.clinph.2014.05.003_b0090) 2006; 159 Niazi (10.1016/j.clinph.2014.05.003_b0095) 2013; 51 Niazi (10.1016/j.clinph.2014.05.003_b0100) 2011; 8 Gizzi (10.1016/j.clinph.2014.05.003_b0040) 2012; 9 Hashimoto (10.1016/j.clinph.2014.05.003_b0050) 2013; 124 Garipelli (10.1016/j.clinph.2014.05.003_b0030) 2013; 10 Pfurtscheller (10.1016/j.clinph.2014.05.003_b0115) 2009; 120 Kropp (10.1016/j.clinph.2014.05.003_b0070) 2000; 25 Kaiser (10.1016/j.clinph.2014.05.003_b0065) 2011; 5 Ramos-Murguialday (10.1016/j.clinph.2014.05.003_b0120) 2013; 74 Rektor (10.1016/j.clinph.2014.05.003_b0130) 2001; 112 Vidailhet (10.1016/j.clinph.2014.05.003_b0155) 1995; 10 Mrachacz-Kersting (10.1016/j.clinph.2014.05.003_b0075) 2012; 590 Rektor (10.1016/j.clinph.2014.05.003_b0125) 2001; 16 Blankertz (10.1016/j.clinph.2014.05.003_b0010) 2010; 4 Duff (10.1016/j.clinph.2014.05.003_b0020) 2013; 27 Toledo (10.1016/j.clinph.2014.05.003_b0150) 2014; 64 Gilden (10.1016/j.clinph.2014.05.003_b0035) 1966; 20 10.1016/j.clinph.2014.05.003_b0025 Do Nascimento (10.1016/j.clinph.2014.05.003_b0085) 2005; 161 Heida (10.1016/j.clinph.2014.05.003_b0055) 2014; 125 Do Nascimento (10.1016/j.clinph.2014.05.003_b0080) 2008; 55 |
References_xml | – volume: 120 start-page: 24 year: 2009 end-page: 29 ident: b0115 article-title: Could the beta rebound in the EEG be suitable to realize a “brain switch”? publication-title: Clin Neurophysiol – volume: 8 start-page: 025009 year: 2011 ident: b0160 article-title: Co-adaptive calibration to improve BCI efficiency publication-title: J Neural Eng – volume: 125 start-page: 1819 year: 2014 end-page: 1825 ident: b0055 article-title: Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson’s disease publication-title: Clin Neurophysiol – volume: 23 start-page: 99 year: 1976 end-page: 119 ident: b0015 article-title: Voluntary finger movement in man: cerebral potentials and theory publication-title: Biol Cybern – volume: 16 start-page: 698 year: 2001 end-page: 704 ident: b0125 article-title: Intracerebral recording of readiness potential induced by a complex motor task publication-title: Mov Disord – volume: 55 start-page: 2675 year: 2008 end-page: 2678 ident: b0080 article-title: Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion publication-title: IEEE Trans Biomed Eng – volume: 161 start-page: 141 year: 2005 end-page: 154 ident: b0085 article-title: Influence of directional orientations during gait initiation and stepping on movement-related cortical potentials publication-title: Behav Brain Res – volume: 20 start-page: 433 year: 1966 end-page: 438 ident: b0035 article-title: Summated human EEG potentials with voluntary movement publication-title: Electroencephalogr Clin Neurophysiol – volume: 10 start-page: 036014 year: 2013 ident: b0030 article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials publication-title: J Neural Eng – volume: 590 start-page: 1669 year: 2012 end-page: 1682 ident: b0075 article-title: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity publication-title: J Physiol – volume: 112 start-page: 2146 year: 2001 end-page: 2153 ident: b0130 article-title: Movement-related potentials in the basal ganglia: a SEEG readiness potential study publication-title: Clin Neurophysiol – volume: 124 start-page: 2153 year: 2013 end-page: 2160 ident: b0050 article-title: EEG-based classification of imaginary left and right foot movements using beta rebound publication-title: Clin Neurophysiol – volume: 116 start-page: 315 year: 2005 end-page: 323 ident: b0145 article-title: Role of cerebral cortex in human postural control: an EEG study publication-title: Clin Neurophysiol – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: b0060 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans Neural Netw – reference: Gangadhar G, Chavarriaga R, Mill R. Anticipation Based Brain-Computer Interfacing (aBCI). 4th Int. IEEE EMBS Conf. Neural Eng. 2009. p. 459–62. – volume: 20 start-page: 595 year: 2012 end-page: 604 ident: b0105 article-title: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 120 start-page: 1596 year: 2009 end-page: 1600 ident: b0045 article-title: Single-trial discrimination of type and speed of wrist movements from EEG recordings publication-title: Clin Neurophysiol – volume: 31 start-page: 253 year: 2001 end-page: 261 ident: b0135 article-title: Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study publication-title: Neurophysiol Clin – volume: 25 start-page: 33 year: 2000 end-page: 41 ident: b0070 article-title: Reliability and stability of contingent negative variation publication-title: Appl Psychophysiol Biofeedback – volume: 26 start-page: 2347 year: 2011 end-page: 2353 ident: b0140 article-title: Examination of central gait control mechanisms in Parkinson’s disease using movement-related potentials publication-title: Mov Disord – volume: 9 start-page: 76 year: 2012 ident: b0040 article-title: Motor modules in robot-aided walking publication-title: J Neuroeng Rehabil – volume: 61 start-page: 288 year: 2014 end-page: 296 ident: b0165 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain–computer interface applications publication-title: IEEE Trans Biomed Eng – volume: 74 start-page: 100 year: 2013 end-page: 108 ident: b0120 article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann Neurol – volume: 10 start-page: 18 year: 1995 end-page: 21 ident: b0155 article-title: The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure publication-title: Mov Disord – volume: 8 start-page: 66 year: 2011 ident: b0005 article-title: Rehabilitation of gait after stroke: a review towards a top-down approach publication-title: J Neuroeng Rehabil – volume: 5 start-page: 86 year: 2011 ident: b0065 article-title: First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier publication-title: Front Neuropro – volume: 8 start-page: 066009 year: 2011 ident: b0100 article-title: Detection of movement intention from single-trial movement-related cortical potentials publication-title: J Neural Eng – volume: 159 start-page: 211 year: 2006 end-page: 222 ident: b0090 article-title: ERD/ERS patterns reflecting sensorimotor activation and deactivation publication-title: Prog Brain Res – volume: 4 start-page: 198 year: 2010 ident: b0010 article-title: The Berlin brain–computer interface: non-medical uses of BCI technology publication-title: Front Neurosci – volume: 64 start-page: 60 year: 2014 end-page: 65 ident: b0150 article-title: High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease publication-title: Neurobiol Dis – volume: 9 start-page: 65 year: 2012 ident: b0110 article-title: Towards more effective robotic gait training for stroke rehabilitation: a review publication-title: J Neuroeng Rehabil – volume: 51 start-page: 507 year: 2013 end-page: 512 ident: b0095 article-title: Detection of movement-related cortical potentials based on subject-independent training publication-title: Med Biol Eng Comput – volume: 27 start-page: 306 year: 2013 end-page: 315 ident: b0020 article-title: Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke publication-title: Neurorehabil Neural Repair – volume: 5 start-page: 86 year: 2011 ident: 10.1016/j.clinph.2014.05.003_b0065 article-title: First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier publication-title: Front Neuropro – ident: 10.1016/j.clinph.2014.05.003_b0025 doi: 10.1109/NER.2009.5109332 – volume: 23 start-page: 99 year: 1976 ident: 10.1016/j.clinph.2014.05.003_b0015 article-title: Voluntary finger movement in man: cerebral potentials and theory publication-title: Biol Cybern doi: 10.1007/BF00336013 – volume: 9 start-page: 76 year: 2012 ident: 10.1016/j.clinph.2014.05.003_b0040 article-title: Motor modules in robot-aided walking publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-76 – volume: 10 start-page: 18 year: 1995 ident: 10.1016/j.clinph.2014.05.003_b0155 article-title: The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure publication-title: Mov Disord doi: 10.1002/mds.870100105 – volume: 112 start-page: 2146 year: 2001 ident: 10.1016/j.clinph.2014.05.003_b0130 article-title: Movement-related potentials in the basal ganglia: a SEEG readiness potential study publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00662-9 – volume: 64 start-page: 60 year: 2014 ident: 10.1016/j.clinph.2014.05.003_b0150 article-title: High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2013.12.005 – volume: 8 start-page: 066009 year: 2011 ident: 10.1016/j.clinph.2014.05.003_b0100 article-title: Detection of movement intention from single-trial movement-related cortical potentials publication-title: J Neural Eng doi: 10.1088/1741-2560/8/6/066009 – volume: 161 start-page: 141 year: 2005 ident: 10.1016/j.clinph.2014.05.003_b0085 article-title: Influence of directional orientations during gait initiation and stepping on movement-related cortical potentials publication-title: Behav Brain Res doi: 10.1016/j.bbr.2005.02.031 – volume: 26 start-page: 2347 year: 2011 ident: 10.1016/j.clinph.2014.05.003_b0140 article-title: Examination of central gait control mechanisms in Parkinson’s disease using movement-related potentials publication-title: Mov Disord doi: 10.1002/mds.23844 – volume: 31 start-page: 253 year: 2001 ident: 10.1016/j.clinph.2014.05.003_b0135 article-title: Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study publication-title: Neurophysiol Clin doi: 10.1016/S0987-7053(01)00262-3 – volume: 61 start-page: 288 year: 2014 ident: 10.1016/j.clinph.2014.05.003_b0165 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain–computer interface applications publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2294203 – volume: 125 start-page: 1819 year: 2014 ident: 10.1016/j.clinph.2014.05.003_b0055 article-title: Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson’s disease publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.01.016 – volume: 51 start-page: 507 year: 2013 ident: 10.1016/j.clinph.2014.05.003_b0095 article-title: Detection of movement-related cortical potentials based on subject-independent training publication-title: Med Biol Eng Comput doi: 10.1007/s11517-012-1018-1 – volume: 20 start-page: 595 year: 2012 ident: 10.1016/j.clinph.2014.05.003_b0105 article-title: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2194309 – volume: 27 start-page: 306 year: 2013 ident: 10.1016/j.clinph.2014.05.003_b0020 article-title: Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968312465195 – volume: 4 start-page: 198 year: 2010 ident: 10.1016/j.clinph.2014.05.003_b0010 article-title: The Berlin brain–computer interface: non-medical uses of BCI technology publication-title: Front Neurosci doi: 10.3389/fnins.2010.00198 – volume: 116 start-page: 315 year: 2005 ident: 10.1016/j.clinph.2014.05.003_b0145 article-title: Role of cerebral cortex in human postural control: an EEG study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.09.007 – volume: 120 start-page: 1596 year: 2009 ident: 10.1016/j.clinph.2014.05.003_b0045 article-title: Single-trial discrimination of type and speed of wrist movements from EEG recordings publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.05.006 – volume: 124 start-page: 2153 year: 2013 ident: 10.1016/j.clinph.2014.05.003_b0050 article-title: EEG-based classification of imaginary left and right foot movements using beta rebound publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.05.006 – volume: 10 start-page: 626 year: 1999 ident: 10.1016/j.clinph.2014.05.003_b0060 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans Neural Netw doi: 10.1109/72.761722 – volume: 10 start-page: 036014 year: 2013 ident: 10.1016/j.clinph.2014.05.003_b0030 article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials publication-title: J Neural Eng doi: 10.1088/1741-2560/10/3/036014 – volume: 55 start-page: 2675 year: 2008 ident: 10.1016/j.clinph.2014.05.003_b0080 article-title: Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2001139 – volume: 8 start-page: 66 year: 2011 ident: 10.1016/j.clinph.2014.05.003_b0005 article-title: Rehabilitation of gait after stroke: a review towards a top-down approach publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-8-66 – volume: 20 start-page: 433 year: 1966 ident: 10.1016/j.clinph.2014.05.003_b0035 article-title: Summated human EEG potentials with voluntary movement publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(66)90100-3 – volume: 590 start-page: 1669 year: 2012 ident: 10.1016/j.clinph.2014.05.003_b0075 article-title: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity publication-title: J Physiol doi: 10.1113/jphysiol.2011.222851 – volume: 16 start-page: 698 year: 2001 ident: 10.1016/j.clinph.2014.05.003_b0125 article-title: Intracerebral recording of readiness potential induced by a complex motor task publication-title: Mov Disord doi: 10.1002/mds.1123 – volume: 74 start-page: 100 year: 2013 ident: 10.1016/j.clinph.2014.05.003_b0120 article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann Neurol doi: 10.1002/ana.23879 – volume: 9 start-page: 65 year: 2012 ident: 10.1016/j.clinph.2014.05.003_b0110 article-title: Towards more effective robotic gait training for stroke rehabilitation: a review publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-65 – volume: 8 start-page: 025009 year: 2011 ident: 10.1016/j.clinph.2014.05.003_b0160 article-title: Co-adaptive calibration to improve BCI efficiency publication-title: J Neural Eng doi: 10.1088/1741-2560/8/2/025009 – volume: 159 start-page: 211 year: 2006 ident: 10.1016/j.clinph.2014.05.003_b0090 article-title: ERD/ERS patterns reflecting sensorimotor activation and deactivation publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)59014-4 – volume: 25 start-page: 33 year: 2000 ident: 10.1016/j.clinph.2014.05.003_b0070 article-title: Reliability and stability of contingent negative variation publication-title: Appl Psychophysiol Biofeedback doi: 10.1023/A:1009533405695 – volume: 120 start-page: 24 year: 2009 ident: 10.1016/j.clinph.2014.05.003_b0115 article-title: Could the beta rebound in the EEG be suitable to realize a “brain switch”? publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.09.027 |
SSID | ssj0007042 |
Score | 2.4678552 |
Snippet | •Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically... Highlights • Accurate single trial detection of the intention of step initiation from scalp EEG. • Independent component analysis (ICA) preprocessing helps to... Applications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 154 |
SubjectTerms | Adult Brain-Computer Interfaces Brain–computer interface Electroencephalography - methods Evoked Potentials - physiology Female Gait - physiology Gait initiation Humans Independent component analysis Intention Male Movement - physiology Movement related cortical potential Neurology Young Adult |
Title | A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245714002521 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245714002521 https://dx.doi.org/10.1016/j.clinph.2014.05.003 https://www.ncbi.nlm.nih.gov/pubmed/24910150 https://www.proquest.com/docview/1637573824 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbKVkJcEOV3C62MxNVsEtvx-riqqBZQe4FKvVmOY6NFbbLqulfEO_CGPElnHGcFKqiIYyJPnGTG82PPzEfIm7bBtCnM09FtxYRVFbNgtZlqi1pLMBo8wQGdnNbLM_HhXJ7vkKOxFgbTKrPuH3R60tb5ziz_zdl6tZp9Kjl4h0Jixzkw3FhMvltxXcsJ2V28_7g83SpkVSQMHRzPkGCsoEtpXliAuMZTiVKkFp4jetZtC_U3DzRZouNH5GF2IelieMs9suO7x-T-ST4kf0LigjYI_PDz-w-XMRsodoW4CtZ5Ck4qxf2BC88SYgdtfUzpWB3tA_1iVxEGr-LAMYrVJ_SyT03FI02FL76lELGmLXC67iNmG4EIPyVnx-8-Hy1ZBldgTs6ryASEIjpwPGZU1oo6VHo-b5wXTiEecbBc8lpKWziIiLT2AlSqL9u6LXWrbAj8GZl0fedfEOqA2HMnGw384II3lZbwZAeeQgiysFPCxx9qXO48jgAYF2ZMMftqBjYYZIMpJHYsnRK2pVoPnTfuGC9HXpmxqhT0oAHTcAed-hOd3-TFvDGl2VSmMLcE7lfK32T2H-Z8PQqTgeWMZzS28_01zFVzJRWHeabk-SBl26-HSLnEDar9_573JXkAV3LYQnpFJvHq2h-AUxWbQ3Lv7bfyMC-dGwsQINU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIgEXxD9b_ozE1WwS2_H6WFVUC3R7oZV6sxzHRotKsuq616rv0Dfsk3TGcQqooCKuu571JjOeGdvfzEfI-7ZB2BTidHRbMWFVxSxEbabaotYSggZPdECL_Xp-KD4fyaMNsjPWwiCsMvv-wacnb50_mea3OV0tl9OvJYfsUEjsOAeBG4vJ7wjJFeL6Ppz9xHmoIjHo4GiGw8f6uQTywvLDFd5JlCI18By5s27Gp7_lnykO7T4kD3ICSbeH__iIbPjuMbm7yFfkT0jcpg3SPlyeX7jM2ECxJ8RJsM5TSFEpng4ce5b4OmjrYwJjdbQP9JtdRhi8jIO-KNae0B99aikeaSp78S2F_Wo6AKerPiLWCAz4KTnc_XiwM2eZWoE5OasiE7AR0YHjJaOyVtSh0rNZ47xwCtmIg-WS11LawsF-SGsvwKH6sq3bUrfKhsCfkc2u7_wLQh0Ie-5ko0EbXPCm0hJ-2UGeEIIs7ITw8YUal_uOI_3FsRkBZt_NoAaDajCFxH6lE8KupVZD341bxstRV2asKQUvaCAw3CKn_iTn13kpr01p1pUpzA1z-1XyN4v9hznfjcZkYDHjDY3tfH8Kc9Vgv4rDPBPyfLCy66eHfXKJx1Nb_z3vW3JvfrDYM3uf9r-8JPfhGzkcJr0im_Hk1L-G9Co2b9LyuQKEnCGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brain-computer+interface+for+single-trial+detection+of+gait+initiation+from+movement+related+cortical+potentials&rft.jtitle=Clinical+neurophysiology&rft.au=Jiang%2C+Ning&rft.au=Gizzi%2C+Leonardo&rft.au=Mrachacz-Kersting%2C+Natalie&rft.au=Dremstrup%2C+Kim&rft.date=2015-01-01&rft.eissn=1872-8952&rft.volume=126&rft.issue=1&rft.spage=154&rft_id=info:doi/10.1016%2Fj.clinph.2014.05.003&rft_id=info%3Apmid%2F24910150&rft.externalDocID=24910150 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245714X00131%2Fcov150h.gif |