A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials

•Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance.•All participating subjects were BCI/EEG naïve subjects, implying general applicabili...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 126; no. 1; pp. 154 - 159
Main Authors Jiang, Ning, Gizzi, Leonardo, Mrachacz-Kersting, Natalie, Dremstrup, Kim, Farina, Dario
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ireland Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN1388-2457
1872-8952
1872-8952
DOI10.1016/j.clinph.2014.05.003

Cover

Abstract •Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance.•All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed approach. Applications of brain–computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP). The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation. ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute. The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis. The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation.
AbstractList Applications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP). The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation. ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute. The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis. The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation.
Applications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).OBJECTIVEApplications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP).The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation.METHODSThe templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation.ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute.RESULTSICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute.The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis.CONCLUSIONThe results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis.The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation.SIGNIFICANCEThe results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation.
Highlights • Accurate single trial detection of the intention of step initiation from scalp EEG. • Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance. • All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed approach.
•Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically remove EEG artifacts and enhances detection performance.•All participating subjects were BCI/EEG naïve subjects, implying general applicability of the proposed approach. Applications of brain–computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be detected from scalp EEG and used to control rehabilitation devices, resulting in a patient-driven rehabilitation paradigm. In this study, we present and validate a BCI system for detection of gait initiation using movement related cortical potentials (MRCP). The templates of MRCP were extracted from 9-channel scalp EEG during gait initiation in 9 healthy subjects. Independent component analysis (ICA) was used to remove artifacts, and the Laplacian spatial filter was applied to enhance the signal-to-noise ratio of MRCP. Following these pre-processing steps, a matched filter was used to perform single-trial detection of gait initiation. ICA preprocessing was shown to significantly improve the detection performance. With ICA preprocessing, across all subjects, the true positive rate (TPR) of the detection was 76.9±8.97%, and the false positive rate was 2.93±1.09 per minute. The results demonstrate the feasibility of detecting the intention of gait initiation from EEG signals, on a single trial basis. The results are important for the development of new gait rehabilitation strategies, either for recovery/replacement of function or for neuromodulation.
Author Mrachacz-Kersting, Natalie
Jiang, Ning
Gizzi, Leonardo
Dremstrup, Kim
Farina, Dario
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0003-1579-3114
  surname: Jiang
  fullname: Jiang, Ning
  organization: Department Neurorehabilitaion Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
– sequence: 2
  givenname: Leonardo
  orcidid: 0000-0003-3009-6261
  surname: Gizzi
  fullname: Gizzi, Leonardo
  organization: Pain Clinic Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, Göttingen, Germany
– sequence: 3
  givenname: Natalie
  surname: Mrachacz-Kersting
  fullname: Mrachacz-Kersting, Natalie
  organization: Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark
– sequence: 4
  givenname: Kim
  surname: Dremstrup
  fullname: Dremstrup, Kim
  organization: Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark
– sequence: 5
  givenname: Dario
  surname: Farina
  fullname: Farina, Dario
  email: dario.farina@bccn.uni-goettingen.de
  organization: Department Neurorehabilitaion Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24910150$$D View this record in MEDLINE/PubMed
BookMark eNqVks9qFTEYxYNU7B99A5Es3cyYZJLJREQoxVah4EJdh9zMl5rrTHJNMoXu-g6-oU9ipre6EKS4yRc-zjmB88sxOggxAELPKWkpof2rbWsnH3ZfW0Yob4loCekeoSM6SNYMSrCDeu-GoWFcyEN0nPOWECIJZ0_QIeOqZghyhMop3iTjw8_bHzbOu6VAwj7U0xkL2MWEsw9XEzQleTPhEQrY4mPA0eEr40sV--LN3cqlOOM5XsMMoeAEkykwYhtT8bZ6d7HUfU3JT9FjVwc8u58n6Mv5u89n75vLjxcfzk4vGysGVhpOJVeuGxRh0hjeO6aGYWOBW9kLLp3pRNcLYYhVqlcKOOU90LEfqRqlca47QS_3ubsUvy-Qi559tjBNJkBcsqZ9J4XsBsar9MW9dNnMMOpd8rNJN_p3U1XA9wKbYs4J3B8JJXoFord6D0SvQDQRugKpttd_2awvd3WVWvv0kPnt3gy1pGsPSWfrIVgYfaoY9Bj9_wasopXGN7iBvI1LChWApjozTfSn9cOs_4VyQphgtAa8-XfAw-__AleV1EI
CitedBy_id crossref_primary_10_1088_1741_2552_ac0488
crossref_primary_10_1109_ACCESS_2022_3167703
crossref_primary_10_1109_TNSRE_2017_2703586
crossref_primary_10_1007_s11571_024_10164_3
crossref_primary_10_1109_TNNLS_2023_3305621
crossref_primary_10_1109_TNSRE_2018_2855053
crossref_primary_10_1186_s12984_015_0087_4
crossref_primary_10_1088_1741_2552_ab882e
crossref_primary_10_1016_j_cmpb_2018_07_013
crossref_primary_10_1109_TBCAS_2017_2669911
crossref_primary_10_1109_TITS_2017_2740427
crossref_primary_10_1080_2326263X_2015_1114978
crossref_primary_10_2490_jjrmc_55_761
crossref_primary_10_3389_fnbot_2024_1491721
crossref_primary_10_1038_s41598_019_43594_9
crossref_primary_10_1371_journal_pone_0214711
crossref_primary_10_1016_j_clinph_2018_01_018
crossref_primary_10_1109_ACCESS_2020_3006907
crossref_primary_10_3389_fnins_2017_00326
crossref_primary_10_1016_j_riai_2017_07_002
crossref_primary_10_1186_s12984_015_0095_4
crossref_primary_10_3389_fnhum_2022_841312
crossref_primary_10_3389_fnins_2016_00359
crossref_primary_10_1016_j_neuroscience_2018_09_046
crossref_primary_10_1371_journal_pone_0267577
crossref_primary_10_1109_ACCESS_2021_3075253
crossref_primary_10_1142_S0129065716500295
crossref_primary_10_3389_fnins_2014_00376
crossref_primary_10_3389_fnins_2017_00170
crossref_primary_10_1016_j_bspc_2019_01_017
crossref_primary_10_1007_s10055_021_00538_x
crossref_primary_10_1088_1741_2552_ad6189
crossref_primary_10_1016_j_ifacol_2021_12_019
crossref_primary_10_1080_13102818_2018_1437569
crossref_primary_10_1088_1741_2552_ac15e3
crossref_primary_10_1088_1741_2560_12_3_036007
crossref_primary_10_1155_2020_8573754
crossref_primary_10_1186_s12984_020_00675_5
crossref_primary_10_1097_PHM_0000000000000914
crossref_primary_10_3389_fnins_2017_00733
crossref_primary_10_1016_j_compbiomed_2018_05_024
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_3389_fnins_2021_721387
crossref_primary_10_1016_j_bspc_2024_107001
crossref_primary_10_3389_fnins_2016_00528
crossref_primary_10_1109_TNSRE_2021_3106897
crossref_primary_10_3389_fninf_2017_00045
crossref_primary_10_1109_JSEN_2021_3119074
crossref_primary_10_3390_s17122725
crossref_primary_10_3389_fnhum_2015_00306
crossref_primary_10_3390_bios12121134
crossref_primary_10_1088_1741_2552_ab08c8
crossref_primary_10_1016_j_neuropsychologia_2015_09_012
crossref_primary_10_3389_fnins_2017_00660
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_3389_fnhum_2015_00708
crossref_primary_10_1016_j_bbr_2020_112663
crossref_primary_10_3390_s21062020
crossref_primary_10_1097_NPT_0000000000000311
crossref_primary_10_1088_1741_2552_ab914d
crossref_primary_10_1155_2015_346217
crossref_primary_10_3389_fnhum_2022_1077416
crossref_primary_10_1142_S0129065721500593
crossref_primary_10_1088_1741_2552_ab9842
crossref_primary_10_1371_journal_pone_0182542
crossref_primary_10_1109_TNSRE_2022_3157959
crossref_primary_10_1152_jn_00918_2015
crossref_primary_10_1590_2446_4740_0777
crossref_primary_10_1109_TNSRE_2016_2531118
crossref_primary_10_3390_s19245444
crossref_primary_10_3934_mbe_2023455
crossref_primary_10_1088_1741_2560_12_5_056013
crossref_primary_10_1038_nrneurol_2016_113
crossref_primary_10_3389_fncom_2018_00003
crossref_primary_10_1109_TNSRE_2020_2966826
crossref_primary_10_3390_electronics11203297
crossref_primary_10_1016_j_neuroimage_2020_117076
crossref_primary_10_1016_j_clinph_2016_11_001
crossref_primary_10_1088_1741_2552_ab4dba
crossref_primary_10_1016_j_jneumeth_2018_10_006
crossref_primary_10_1109_JBHI_2016_2546311
crossref_primary_10_3389_fnins_2017_00356
crossref_primary_10_3233_NRE_172394
crossref_primary_10_1088_1741_2552_ab9a99
Cites_doi 10.1109/NER.2009.5109332
10.1007/BF00336013
10.1186/1743-0003-9-76
10.1002/mds.870100105
10.1016/S1388-2457(01)00662-9
10.1016/j.nbd.2013.12.005
10.1088/1741-2560/8/6/066009
10.1016/j.bbr.2005.02.031
10.1002/mds.23844
10.1016/S0987-7053(01)00262-3
10.1109/TBME.2013.2294203
10.1016/j.clinph.2014.01.016
10.1007/s11517-012-1018-1
10.1109/TNSRE.2012.2194309
10.1177/1545968312465195
10.3389/fnins.2010.00198
10.1016/j.clinph.2004.09.007
10.1016/j.clinph.2009.05.006
10.1016/j.clinph.2013.05.006
10.1109/72.761722
10.1088/1741-2560/10/3/036014
10.1109/TBME.2008.2001139
10.1186/1743-0003-8-66
10.1016/0013-4694(66)90100-3
10.1113/jphysiol.2011.222851
10.1002/mds.1123
10.1002/ana.23879
10.1186/1743-0003-9-65
10.1088/1741-2560/8/2/025009
10.1016/S0079-6123(06)59014-4
10.1023/A:1009533405695
10.1016/j.clinph.2008.09.027
ContentType Journal Article
Copyright 2014 International Federation of Clinical Neurophysiology.
International Federation of Clinical Neurophysiology.
Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2014 International Federation of Clinical Neurophysiology.
– notice: International Federation of Clinical Neurophysiology.
– notice: Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinph.2014.05.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 159
ExternalDocumentID 24910150
10_1016_j_clinph_2014_05_003
S1388245714002521
1_s2_0_S1388245714002521
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
AADPK
AAIAV
ABLVK
ABYKQ
AFMIJ
AHPSJ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c582t-41749f389027aa46f2988bce4c76547fa353655a0c99699e4146e1d6d19d7aff3
IEDL.DBID AIKHN
ISSN 1388-2457
1872-8952
IngestDate Fri Sep 05 09:07:42 EDT 2025
Thu Apr 03 07:10:11 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 03:39:59 EDT 2025
Fri Feb 23 02:25:12 EST 2024
Sun Feb 23 10:18:47 EST 2025
Tue Aug 26 17:38:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gait initiation
Movement related cortical potential
Brain–computer interface
Independent component analysis
Language English
License Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-41749f389027aa46f2988bce4c76547fa353655a0c99699e4146e1d6d19d7aff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3009-6261
0000-0003-1579-3114
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/38524
PMID 24910150
PQID 1637573824
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1637573824
pubmed_primary_24910150
crossref_primary_10_1016_j_clinph_2014_05_003
crossref_citationtrail_10_1016_j_clinph_2014_05_003
elsevier_sciencedirect_doi_10_1016_j_clinph_2014_05_003
elsevier_clinicalkeyesjournals_1_s2_0_S1388245714002521
elsevier_clinicalkey_doi_10_1016_j_clinph_2014_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2015
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Neuper, Wörtz, Pfurtscheller (b0090) 2006; 159
Niazi, Mrachacz-Kersting, Jiang, Dremstrup, Farina (b0105) 2012; 20
Gizzi, Nielsen, Felici, Moreno, Pons, Farina (b0040) 2012; 9
Gilden, Vaughan, Costa (b0035) 1966; 20
Mrachacz-Kersting, Kristensen, Niazi, Farina (b0075) 2012; 590
Do Nascimento, Farina (b0080) 2008; 55
Niazi, Jiang, Jochumsen, Nielsen, Dremstrup, Farina (b0095) 2013; 51
Pennycott, Wyss, Vallery, Klamroth-Marganska, Riener (b0110) 2012; 9
Garipelli, Chavarriaga, Millán (b0030) 2013; 10
Duff, Chen, Cheng, Liu, Blake, Wolf (b0020) 2013; 27
Gangadhar G, Chavarriaga R, Mill R. Anticipation Based Brain-Computer Interfacing (aBCI). 4th Int. IEEE EMBS Conf. Neural Eng. 2009. p. 459–62.
Belda-Lois, Mena-del Horno, Bermejo-Bosch, Moreno, Pons, Farina (b0005) 2011; 8
Rektor, Bares, Kubová (b0130) 2001; 112
Kropp, Kiewitt, Göbel, Vetter, Gerber (b0070) 2000; 25
Shoushtarian, Murphy, Iansek (b0140) 2011; 26
Toledo, López-Azcárate, Garcia-Garcia, Guridi, Valencia, Artieda (b0150) 2014; 64
Rektor, Bareš, Kaňovský, Kukleta (b0125) 2001; 16
Vidaurre, Sannelli, Müller, Blankertz (b0160) 2011; 8
Xu, Jiang, Lin, Mrachacz-Kersting, Dremstrup, Farina (b0165) 2014; 61
Vidailhet, Atchison, Stocchi, Thompson, Rothwell, Marsden (b0155) 1995; 10
Slobounov, Hallett, Stanhope, Shibasaki (b0145) 2005; 116
Do Nascimento, Nielsen, Voigt (b0085) 2005; 161
Deecke, Grözinger, Kornhuber (b0015) 1976; 23
Niazi, Jiang, Tiberghien, Nielsen, Dremstrup, Farina (b0100) 2011; 8
Ramos-Murguialday, Broetz, Rea, Läer, Yilmaz, Brasil (b0120) 2013; 74
Kaiser, Kreilinger, Müller-Putz, Neuper (b0065) 2011; 5
Hashimoto, Ushiba (b0050) 2013; 124
Blankertz, Tangermann, Vidaurre, Fazli, Sannelli, Haufe (b0010) 2010; 4
Gu, Dremstrup, Farina (b0045) 2009; 120
Pfurtscheller, Solis-Escalante (b0115) 2009; 120
Heida, Poppe, de Vos, van Putten, van Vugt (b0055) 2014; 125
Hyvärinen (b0060) 1999; 10
Rektor, Kanovsky, Bares, Louvel, Lamarche (b0135) 2001; 31
Niazi (10.1016/j.clinph.2014.05.003_b0105) 2012; 20
Pennycott (10.1016/j.clinph.2014.05.003_b0110) 2012; 9
Gu (10.1016/j.clinph.2014.05.003_b0045) 2009; 120
Vidaurre (10.1016/j.clinph.2014.05.003_b0160) 2011; 8
Shoushtarian (10.1016/j.clinph.2014.05.003_b0140) 2011; 26
Belda-Lois (10.1016/j.clinph.2014.05.003_b0005) 2011; 8
Hyvärinen (10.1016/j.clinph.2014.05.003_b0060) 1999; 10
Xu (10.1016/j.clinph.2014.05.003_b0165) 2014; 61
Slobounov (10.1016/j.clinph.2014.05.003_b0145) 2005; 116
Deecke (10.1016/j.clinph.2014.05.003_b0015) 1976; 23
Rektor (10.1016/j.clinph.2014.05.003_b0135) 2001; 31
Neuper (10.1016/j.clinph.2014.05.003_b0090) 2006; 159
Niazi (10.1016/j.clinph.2014.05.003_b0095) 2013; 51
Niazi (10.1016/j.clinph.2014.05.003_b0100) 2011; 8
Gizzi (10.1016/j.clinph.2014.05.003_b0040) 2012; 9
Hashimoto (10.1016/j.clinph.2014.05.003_b0050) 2013; 124
Garipelli (10.1016/j.clinph.2014.05.003_b0030) 2013; 10
Pfurtscheller (10.1016/j.clinph.2014.05.003_b0115) 2009; 120
Kropp (10.1016/j.clinph.2014.05.003_b0070) 2000; 25
Kaiser (10.1016/j.clinph.2014.05.003_b0065) 2011; 5
Ramos-Murguialday (10.1016/j.clinph.2014.05.003_b0120) 2013; 74
Rektor (10.1016/j.clinph.2014.05.003_b0130) 2001; 112
Vidailhet (10.1016/j.clinph.2014.05.003_b0155) 1995; 10
Mrachacz-Kersting (10.1016/j.clinph.2014.05.003_b0075) 2012; 590
Rektor (10.1016/j.clinph.2014.05.003_b0125) 2001; 16
Blankertz (10.1016/j.clinph.2014.05.003_b0010) 2010; 4
Duff (10.1016/j.clinph.2014.05.003_b0020) 2013; 27
Toledo (10.1016/j.clinph.2014.05.003_b0150) 2014; 64
Gilden (10.1016/j.clinph.2014.05.003_b0035) 1966; 20
10.1016/j.clinph.2014.05.003_b0025
Do Nascimento (10.1016/j.clinph.2014.05.003_b0085) 2005; 161
Heida (10.1016/j.clinph.2014.05.003_b0055) 2014; 125
Do Nascimento (10.1016/j.clinph.2014.05.003_b0080) 2008; 55
References_xml – volume: 120
  start-page: 24
  year: 2009
  end-page: 29
  ident: b0115
  article-title: Could the beta rebound in the EEG be suitable to realize a “brain switch”?
  publication-title: Clin Neurophysiol
– volume: 8
  start-page: 025009
  year: 2011
  ident: b0160
  article-title: Co-adaptive calibration to improve BCI efficiency
  publication-title: J Neural Eng
– volume: 125
  start-page: 1819
  year: 2014
  end-page: 1825
  ident: b0055
  article-title: Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson’s disease
  publication-title: Clin Neurophysiol
– volume: 23
  start-page: 99
  year: 1976
  end-page: 119
  ident: b0015
  article-title: Voluntary finger movement in man: cerebral potentials and theory
  publication-title: Biol Cybern
– volume: 16
  start-page: 698
  year: 2001
  end-page: 704
  ident: b0125
  article-title: Intracerebral recording of readiness potential induced by a complex motor task
  publication-title: Mov Disord
– volume: 55
  start-page: 2675
  year: 2008
  end-page: 2678
  ident: b0080
  article-title: Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion
  publication-title: IEEE Trans Biomed Eng
– volume: 161
  start-page: 141
  year: 2005
  end-page: 154
  ident: b0085
  article-title: Influence of directional orientations during gait initiation and stepping on movement-related cortical potentials
  publication-title: Behav Brain Res
– volume: 20
  start-page: 433
  year: 1966
  end-page: 438
  ident: b0035
  article-title: Summated human EEG potentials with voluntary movement
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 10
  start-page: 036014
  year: 2013
  ident: b0030
  article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials
  publication-title: J Neural Eng
– volume: 590
  start-page: 1669
  year: 2012
  end-page: 1682
  ident: b0075
  article-title: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity
  publication-title: J Physiol
– volume: 112
  start-page: 2146
  year: 2001
  end-page: 2153
  ident: b0130
  article-title: Movement-related potentials in the basal ganglia: a SEEG readiness potential study
  publication-title: Clin Neurophysiol
– volume: 124
  start-page: 2153
  year: 2013
  end-page: 2160
  ident: b0050
  article-title: EEG-based classification of imaginary left and right foot movements using beta rebound
  publication-title: Clin Neurophysiol
– volume: 116
  start-page: 315
  year: 2005
  end-page: 323
  ident: b0145
  article-title: Role of cerebral cortex in human postural control: an EEG study
  publication-title: Clin Neurophysiol
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: b0060
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans Neural Netw
– reference: Gangadhar G, Chavarriaga R, Mill R. Anticipation Based Brain-Computer Interfacing (aBCI). 4th Int. IEEE EMBS Conf. Neural Eng. 2009. p. 459–62.
– volume: 20
  start-page: 595
  year: 2012
  end-page: 604
  ident: b0105
  article-title: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 120
  start-page: 1596
  year: 2009
  end-page: 1600
  ident: b0045
  article-title: Single-trial discrimination of type and speed of wrist movements from EEG recordings
  publication-title: Clin Neurophysiol
– volume: 31
  start-page: 253
  year: 2001
  end-page: 261
  ident: b0135
  article-title: Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study
  publication-title: Neurophysiol Clin
– volume: 25
  start-page: 33
  year: 2000
  end-page: 41
  ident: b0070
  article-title: Reliability and stability of contingent negative variation
  publication-title: Appl Psychophysiol Biofeedback
– volume: 26
  start-page: 2347
  year: 2011
  end-page: 2353
  ident: b0140
  article-title: Examination of central gait control mechanisms in Parkinson’s disease using movement-related potentials
  publication-title: Mov Disord
– volume: 9
  start-page: 76
  year: 2012
  ident: b0040
  article-title: Motor modules in robot-aided walking
  publication-title: J Neuroeng Rehabil
– volume: 61
  start-page: 288
  year: 2014
  end-page: 296
  ident: b0165
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain–computer interface applications
  publication-title: IEEE Trans Biomed Eng
– volume: 74
  start-page: 100
  year: 2013
  end-page: 108
  ident: b0120
  article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann Neurol
– volume: 10
  start-page: 18
  year: 1995
  end-page: 21
  ident: b0155
  article-title: The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure
  publication-title: Mov Disord
– volume: 8
  start-page: 66
  year: 2011
  ident: b0005
  article-title: Rehabilitation of gait after stroke: a review towards a top-down approach
  publication-title: J Neuroeng Rehabil
– volume: 5
  start-page: 86
  year: 2011
  ident: b0065
  article-title: First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier
  publication-title: Front Neuropro
– volume: 8
  start-page: 066009
  year: 2011
  ident: b0100
  article-title: Detection of movement intention from single-trial movement-related cortical potentials
  publication-title: J Neural Eng
– volume: 159
  start-page: 211
  year: 2006
  end-page: 222
  ident: b0090
  article-title: ERD/ERS patterns reflecting sensorimotor activation and deactivation
  publication-title: Prog Brain Res
– volume: 4
  start-page: 198
  year: 2010
  ident: b0010
  article-title: The Berlin brain–computer interface: non-medical uses of BCI technology
  publication-title: Front Neurosci
– volume: 64
  start-page: 60
  year: 2014
  end-page: 65
  ident: b0150
  article-title: High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease
  publication-title: Neurobiol Dis
– volume: 9
  start-page: 65
  year: 2012
  ident: b0110
  article-title: Towards more effective robotic gait training for stroke rehabilitation: a review
  publication-title: J Neuroeng Rehabil
– volume: 51
  start-page: 507
  year: 2013
  end-page: 512
  ident: b0095
  article-title: Detection of movement-related cortical potentials based on subject-independent training
  publication-title: Med Biol Eng Comput
– volume: 27
  start-page: 306
  year: 2013
  end-page: 315
  ident: b0020
  article-title: Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke
  publication-title: Neurorehabil Neural Repair
– volume: 5
  start-page: 86
  year: 2011
  ident: 10.1016/j.clinph.2014.05.003_b0065
  article-title: First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier
  publication-title: Front Neuropro
– ident: 10.1016/j.clinph.2014.05.003_b0025
  doi: 10.1109/NER.2009.5109332
– volume: 23
  start-page: 99
  year: 1976
  ident: 10.1016/j.clinph.2014.05.003_b0015
  article-title: Voluntary finger movement in man: cerebral potentials and theory
  publication-title: Biol Cybern
  doi: 10.1007/BF00336013
– volume: 9
  start-page: 76
  year: 2012
  ident: 10.1016/j.clinph.2014.05.003_b0040
  article-title: Motor modules in robot-aided walking
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-9-76
– volume: 10
  start-page: 18
  year: 1995
  ident: 10.1016/j.clinph.2014.05.003_b0155
  article-title: The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure
  publication-title: Mov Disord
  doi: 10.1002/mds.870100105
– volume: 112
  start-page: 2146
  year: 2001
  ident: 10.1016/j.clinph.2014.05.003_b0130
  article-title: Movement-related potentials in the basal ganglia: a SEEG readiness potential study
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00662-9
– volume: 64
  start-page: 60
  year: 2014
  ident: 10.1016/j.clinph.2014.05.003_b0150
  article-title: High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2013.12.005
– volume: 8
  start-page: 066009
  year: 2011
  ident: 10.1016/j.clinph.2014.05.003_b0100
  article-title: Detection of movement intention from single-trial movement-related cortical potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/6/066009
– volume: 161
  start-page: 141
  year: 2005
  ident: 10.1016/j.clinph.2014.05.003_b0085
  article-title: Influence of directional orientations during gait initiation and stepping on movement-related cortical potentials
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2005.02.031
– volume: 26
  start-page: 2347
  year: 2011
  ident: 10.1016/j.clinph.2014.05.003_b0140
  article-title: Examination of central gait control mechanisms in Parkinson’s disease using movement-related potentials
  publication-title: Mov Disord
  doi: 10.1002/mds.23844
– volume: 31
  start-page: 253
  year: 2001
  ident: 10.1016/j.clinph.2014.05.003_b0135
  article-title: Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study
  publication-title: Neurophysiol Clin
  doi: 10.1016/S0987-7053(01)00262-3
– volume: 61
  start-page: 288
  year: 2014
  ident: 10.1016/j.clinph.2014.05.003_b0165
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain–computer interface applications
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2294203
– volume: 125
  start-page: 1819
  year: 2014
  ident: 10.1016/j.clinph.2014.05.003_b0055
  article-title: Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson’s disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.01.016
– volume: 51
  start-page: 507
  year: 2013
  ident: 10.1016/j.clinph.2014.05.003_b0095
  article-title: Detection of movement-related cortical potentials based on subject-independent training
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-012-1018-1
– volume: 20
  start-page: 595
  year: 2012
  ident: 10.1016/j.clinph.2014.05.003_b0105
  article-title: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2194309
– volume: 27
  start-page: 306
  year: 2013
  ident: 10.1016/j.clinph.2014.05.003_b0020
  article-title: Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968312465195
– volume: 4
  start-page: 198
  year: 2010
  ident: 10.1016/j.clinph.2014.05.003_b0010
  article-title: The Berlin brain–computer interface: non-medical uses of BCI technology
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2010.00198
– volume: 116
  start-page: 315
  year: 2005
  ident: 10.1016/j.clinph.2014.05.003_b0145
  article-title: Role of cerebral cortex in human postural control: an EEG study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.09.007
– volume: 120
  start-page: 1596
  year: 2009
  ident: 10.1016/j.clinph.2014.05.003_b0045
  article-title: Single-trial discrimination of type and speed of wrist movements from EEG recordings
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.05.006
– volume: 124
  start-page: 2153
  year: 2013
  ident: 10.1016/j.clinph.2014.05.003_b0050
  article-title: EEG-based classification of imaginary left and right foot movements using beta rebound
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.05.006
– volume: 10
  start-page: 626
  year: 1999
  ident: 10.1016/j.clinph.2014.05.003_b0060
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.761722
– volume: 10
  start-page: 036014
  year: 2013
  ident: 10.1016/j.clinph.2014.05.003_b0030
  article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/3/036014
– volume: 55
  start-page: 2675
  year: 2008
  ident: 10.1016/j.clinph.2014.05.003_b0080
  article-title: Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2001139
– volume: 8
  start-page: 66
  year: 2011
  ident: 10.1016/j.clinph.2014.05.003_b0005
  article-title: Rehabilitation of gait after stroke: a review towards a top-down approach
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-8-66
– volume: 20
  start-page: 433
  year: 1966
  ident: 10.1016/j.clinph.2014.05.003_b0035
  article-title: Summated human EEG potentials with voluntary movement
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(66)90100-3
– volume: 590
  start-page: 1669
  year: 2012
  ident: 10.1016/j.clinph.2014.05.003_b0075
  article-title: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.222851
– volume: 16
  start-page: 698
  year: 2001
  ident: 10.1016/j.clinph.2014.05.003_b0125
  article-title: Intracerebral recording of readiness potential induced by a complex motor task
  publication-title: Mov Disord
  doi: 10.1002/mds.1123
– volume: 74
  start-page: 100
  year: 2013
  ident: 10.1016/j.clinph.2014.05.003_b0120
  article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann Neurol
  doi: 10.1002/ana.23879
– volume: 9
  start-page: 65
  year: 2012
  ident: 10.1016/j.clinph.2014.05.003_b0110
  article-title: Towards more effective robotic gait training for stroke rehabilitation: a review
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-9-65
– volume: 8
  start-page: 025009
  year: 2011
  ident: 10.1016/j.clinph.2014.05.003_b0160
  article-title: Co-adaptive calibration to improve BCI efficiency
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/2/025009
– volume: 159
  start-page: 211
  year: 2006
  ident: 10.1016/j.clinph.2014.05.003_b0090
  article-title: ERD/ERS patterns reflecting sensorimotor activation and deactivation
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(06)59014-4
– volume: 25
  start-page: 33
  year: 2000
  ident: 10.1016/j.clinph.2014.05.003_b0070
  article-title: Reliability and stability of contingent negative variation
  publication-title: Appl Psychophysiol Biofeedback
  doi: 10.1023/A:1009533405695
– volume: 120
  start-page: 24
  year: 2009
  ident: 10.1016/j.clinph.2014.05.003_b0115
  article-title: Could the beta rebound in the EEG be suitable to realize a “brain switch”?
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.09.027
SSID ssj0007042
Score 2.4678552
Snippet •Accurate single trial detection of the intention of step initiation from scalp EEG.•Independent component analysis (ICA) preprocessing helps to automatically...
Highlights • Accurate single trial detection of the intention of step initiation from scalp EEG. • Independent component analysis (ICA) preprocessing helps to...
Applications of brain-computer interfacing (BCI) in neurorehabilitation have received increasing attention. The intention to perform a motor task can be...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154
SubjectTerms Adult
Brain-Computer Interfaces
Brain–computer interface
Electroencephalography - methods
Evoked Potentials - physiology
Female
Gait - physiology
Gait initiation
Humans
Independent component analysis
Intention
Male
Movement - physiology
Movement related cortical potential
Neurology
Young Adult
Title A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245714002521
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245714002521
https://dx.doi.org/10.1016/j.clinph.2014.05.003
https://www.ncbi.nlm.nih.gov/pubmed/24910150
https://www.proquest.com/docview/1637573824
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbKVkJcEOV3C62MxNVsEtvx-riqqBZQe4FKvVmOY6NFbbLqulfEO_CGPElnHGcFKqiIYyJPnGTG82PPzEfIm7bBtCnM09FtxYRVFbNgtZlqi1pLMBo8wQGdnNbLM_HhXJ7vkKOxFgbTKrPuH3R60tb5ziz_zdl6tZp9Kjl4h0Jixzkw3FhMvltxXcsJ2V28_7g83SpkVSQMHRzPkGCsoEtpXliAuMZTiVKkFp4jetZtC_U3DzRZouNH5GF2IelieMs9suO7x-T-ST4kf0LigjYI_PDz-w-XMRsodoW4CtZ5Ck4qxf2BC88SYgdtfUzpWB3tA_1iVxEGr-LAMYrVJ_SyT03FI02FL76lELGmLXC67iNmG4EIPyVnx-8-Hy1ZBldgTs6ryASEIjpwPGZU1oo6VHo-b5wXTiEecbBc8lpKWziIiLT2AlSqL9u6LXWrbAj8GZl0fedfEOqA2HMnGw384II3lZbwZAeeQgiysFPCxx9qXO48jgAYF2ZMMftqBjYYZIMpJHYsnRK2pVoPnTfuGC9HXpmxqhT0oAHTcAed-hOd3-TFvDGl2VSmMLcE7lfK32T2H-Z8PQqTgeWMZzS28_01zFVzJRWHeabk-SBl26-HSLnEDar9_573JXkAV3LYQnpFJvHq2h-AUxWbQ3Lv7bfyMC-dGwsQINU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIgEXxD9b_ozE1WwS2_H6WFVUC3R7oZV6sxzHRotKsuq616rv0Dfsk3TGcQqooCKuu571JjOeGdvfzEfI-7ZB2BTidHRbMWFVxSxEbabaotYSggZPdECL_Xp-KD4fyaMNsjPWwiCsMvv-wacnb50_mea3OV0tl9OvJYfsUEjsOAeBG4vJ7wjJFeL6Ppz9xHmoIjHo4GiGw8f6uQTywvLDFd5JlCI18By5s27Gp7_lnykO7T4kD3ICSbeH__iIbPjuMbm7yFfkT0jcpg3SPlyeX7jM2ECxJ8RJsM5TSFEpng4ce5b4OmjrYwJjdbQP9JtdRhi8jIO-KNae0B99aikeaSp78S2F_Wo6AKerPiLWCAz4KTnc_XiwM2eZWoE5OasiE7AR0YHjJaOyVtSh0rNZ47xwCtmIg-WS11LawsF-SGsvwKH6sq3bUrfKhsCfkc2u7_wLQh0Ie-5ko0EbXPCm0hJ-2UGeEIIs7ITw8YUal_uOI_3FsRkBZt_NoAaDajCFxH6lE8KupVZD341bxstRV2asKQUvaCAw3CKn_iTn13kpr01p1pUpzA1z-1XyN4v9hznfjcZkYDHjDY3tfH8Kc9Vgv4rDPBPyfLCy66eHfXKJx1Nb_z3vW3JvfrDYM3uf9r-8JPfhGzkcJr0im_Hk1L-G9Co2b9LyuQKEnCGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brain-computer+interface+for+single-trial+detection+of+gait+initiation+from+movement+related+cortical+potentials&rft.jtitle=Clinical+neurophysiology&rft.au=Jiang%2C+Ning&rft.au=Gizzi%2C+Leonardo&rft.au=Mrachacz-Kersting%2C+Natalie&rft.au=Dremstrup%2C+Kim&rft.date=2015-01-01&rft.eissn=1872-8952&rft.volume=126&rft.issue=1&rft.spage=154&rft_id=info:doi/10.1016%2Fj.clinph.2014.05.003&rft_id=info%3Apmid%2F24910150&rft.externalDocID=24910150
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245714X00131%2Fcov150h.gif