Effect of Different Cooking Methods on the True Retention of Vitamins, Minerals, and Bioactive Compounds in Shiitake Mushrooms (Lentinula edodes)
This study investigated the effect of cooking methods including steaming, blanching, microwaving, boiling, and roasting on the true retention of minerals, vitamins, and bioactive compounds in shiitake mushrooms (Lentinus edodes). The proximate composition significantly decreased after cooking. In ge...
Saved in:
Published in | FOOD SCIENCE AND TECHNOLOGY RESEARCH Vol. 25; no. 1; pp. 115 - 122 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tsukuba
Japanese Society for Food Science and Technology
2019
The Japanese Society for Food Science and Technology Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study investigated the effect of cooking methods including steaming, blanching, microwaving, boiling, and roasting on the true retention of minerals, vitamins, and bioactive compounds in shiitake mushrooms (Lentinus edodes). The proximate composition significantly decreased after cooking. In general, the true retentions of minerals were lowest in the boiled samples. Microwaved and roasted samples showed higher true retentions of minerals than other cooking methods. Boiling resulted in the lowest true retention levels of vitamins and bioactive compounds, while roasting resulted in the higher true retention values. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities of blanched, boiled, and steamed samples decreased compared with the activities of the raw samples. However, the antioxidant activities of microwaved and roasted samples were maintained or increased. These results suggest that cooking causes changes in nutritional content that are dependent on the type of cooking method. In addition, when estimating the dietary intake of nutrients in the future, nutrient retention should be taken into consideration. |
---|---|
AbstractList | This study investigated the effect of cooking methods including steaming, blanching, microwaving, boiling, and roasting on the true retention of minerals, vitamins, and bioactive compounds in shiitake mushrooms (Lentinus edodes). The proximate composition significantly decreased after cooking. In general, the true retentions of minerals were lowest in the boiled samples. Microwaved and roasted samples showed higher true retentions of minerals than other cooking methods. Boiling resulted in the lowest true retention levels of vitamins and bioactive compounds, while roasting resulted in the higher true retention values. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities of blanched, boiled, and steamed samples decreased compared with the activities of the raw samples. However, the antioxidant activities of microwaved and roasted samples were maintained or increased. These results suggest that cooking causes changes in nutritional content that are dependent on the type of cooking method. In addition, when estimating the dietary intake of nutrients in the future, nutrient retention should be taken into consideration. |
Author | Kim, Younghwa Lee, Hana Jeong, Heon Sang Lee, Kyeongmin Choi, Youngmin Lee, Junsoo |
Author_xml | – sequence: 1 fullname: Lee, Kyeongmin organization: Graduate School of Agricultural Science, Hokkaido University – sequence: 1 fullname: Lee, Hana organization: Division of Food and Animal Sciences, Chungbuk National University – sequence: 1 fullname: Kim, Younghwa organization: School of Food Biotechnology and Nutrition, Kyungsung University – sequence: 1 fullname: Jeong, Heon Sang organization: Division of Food and Animal Sciences, Chungbuk National University – sequence: 1 fullname: Lee, Junsoo organization: Division of Food and Animal Sciences, Chungbuk National University – sequence: 1 fullname: Choi, Youngmin organization: Food and Nutrition Division, Department of Agrofood Resources, National Institute of Agricultural Sciences |
BookMark | eNp1Ud1qFDEUHqSCbfXKFwh4o-isOZnJ_NwIda1V2EXQ6m3IzJx0sp1J1iQj-Bi-sWfZ0oLgRZJD8v2c8-UsO3HeYZY9B74qoKjempjCSsgVgHyUnULTQF60TXlCdVGWeVXx6kl2FuOOc5BtI06zP5fGYJ-YN-yDpTKgS2zt_a11N2yLafRDZN6xNCK7Dguyr5gIYumKKD9s0rN18Q3bWodBT1RpN7D31us-2V9IUvPeL45ErGPfRkuEW2TbJY7B-zmyl5uDmlsmzXDwA8ZXT7PHhoTw2d15nn3_eHm9_pRvvlx9Xl9s8l42IuUFom6NBhB9p6saCugrFF1Z6Rpkh4BFrQdTSt3qAbtK8q6uTFnzemhN1YEpzrMXR9198D8XjEnt_BIcWSohCgGyFI0kFBxRffAxBjSqpxEO86eg7aSAq0Py6pC8ElJR8sR5_Q9nH-ysw-__oK-O6BkH2-vJu4myfGjGzKXx9AtKcGgV50JyUBxKWiBpo2Zb4G0rSOndUWkXk77Be1cdku0nfHC9s75_6EcdFLriLwOItw4 |
CitedBy_id | crossref_primary_10_3390_foods11172713 crossref_primary_10_3390_foods13050685 crossref_primary_10_1016_j_nfs_2025_100215 crossref_primary_10_3390_foods12132573 crossref_primary_10_1016_j_focha_2024_100718 crossref_primary_10_3390_jof8090964 crossref_primary_10_1016_j_ijgfs_2021_100416 crossref_primary_10_1016_j_foodres_2023_113223 crossref_primary_10_1002_fsn3_2860 crossref_primary_10_17475_kastorman_1660553 crossref_primary_10_1111_1750_3841_16697 crossref_primary_10_1016_j_nfs_2024_100203 crossref_primary_10_3390_nu17030423 crossref_primary_10_3746_jkfn_2023_52_1_55 crossref_primary_10_3389_fsufs_2022_882939 crossref_primary_10_1002_jsfa_11469 crossref_primary_10_3390_foods9050611 crossref_primary_10_1080_19476337_2020_1799077 crossref_primary_10_3390_molecules28227469 crossref_primary_10_3390_molecules28166009 crossref_primary_10_1016_j_jfoodeng_2020_110116 crossref_primary_10_28948_ngumuh_1092860 crossref_primary_10_1016_j_ijgfs_2023_100743 crossref_primary_10_3390_antiox12081650 crossref_primary_10_3746_jkfn_2021_50_8_799 |
Cites_doi | 10.1016/S0924-8579(98)00084-3 10.1016/S0925-5214(00)00133-2 10.1111/j.1365-2621.2012.02959.x 10.1016/j.foodres.2008.10.009 10.1007/s00253-012-4552-8 10.1111/j.1365-2621.2009.01935.x 10.1021/ba-1982-0200.ch021 10.1111/j.1750-3841.2008.00761.x 10.1021/jf0634350 10.1016/j.lwt.2012.06.026 10.1016/j.foodchem.2013.12.047 10.1021/jf020071c 10.1016/S0308-8146(03)00202-4 10.1021/jf049571r 10.1016/j.foodres.2009.07.012 10.1016/j.foodchem.2004.03.053 10.3177/jnsv.36.4-SupplementI_S25 10.1108/00346659710161858 10.1021/jf102285b 10.1016/j.foodres.2010.04.024 10.1016/j.foodres.2010.10.030 10.1016/j.foodchem.2005.08.004 10.1021/jf001525d 10.3136/fstr.7.250 10.1016/j.fitote.2010.06.005 10.1080/02652030802429104 10.1002/jsfa.1589 10.1079/PNS2006491 10.1016/S0891-5849(98)00315-3 10.1007/s13197-011-0560-4 10.1002/jsfa.3876 10.1021/jf60202a021 10.1073/pnas.93.8.3487 10.1021/jf0115589 10.1016/S0031-9422(96)00626-7 10.1016/j.foodchem.2008.12.018 |
ContentType | Journal Article |
Copyright | 2019 by Japanese Society for Food Science and Technology Copyright Japan Science and Technology Agency 2019 |
Copyright_xml | – notice: 2019 by Japanese Society for Food Science and Technology – notice: Copyright Japan Science and Technology Agency 2019 |
CorporateAuthor | School of Food Biotechnology and Nutrition Hokkaido University Division of Food and Animal Sciences Kyungsung University Food and Nutrition Division Graduate School of Agricultural Science National Institute of Agricultural Sciences Department of Agrofood Resources Chungbuk National University |
CorporateAuthor_xml | – name: Graduate School of Agricultural Science – name: Department of Agrofood Resources – name: Division of Food and Animal Sciences – name: Food and Nutrition Division – name: Chungbuk National University – name: School of Food Biotechnology and Nutrition – name: Hokkaido University – name: National Institute of Agricultural Sciences – name: Kyungsung University |
DBID | AAYXX CITATION 7QO 7QR 7T7 8FD C1K F28 FR3 K9. P64 |
DOI | 10.3136/fstr.25.115 |
DatabaseName | CrossRef Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Biotechnology Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1881-3984 |
EndPage | 122 |
ExternalDocumentID | 10_3136_fstr_25_115 fm4foods_2019_002501_014_0115_01223910992 article_fstr_25_1_25_115_article_char_en |
GroupedDBID | .L7 .LE 2WC 53G 5GY ABBTS ABJNI ACGFO ACIWK ACPRK ADBBV ADDVE AENEX AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS CS3 DU5 HH5 JMI JSF JSH KUZGX O1H OK1 PQQKQ RJT RZJ TKC TR2 ~KM AAYXX CITATION 7QO 7QR 7T7 8FD C1K F28 FR3 K9. P64 |
ID | FETCH-LOGICAL-c582t-3eea9fa112cba67131c6e2b46a715be1e37adf45a9adeb650b76f4707d9f6b1f3 |
ISSN | 1344-6606 |
IngestDate | Mon Jun 30 08:34:03 EDT 2025 Tue Jul 01 01:16:38 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Thu Jul 10 16:10:20 EDT 2025 Wed Sep 03 06:29:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c582t-3eea9fa112cba67131c6e2b46a715be1e37adf45a9adeb650b76f4707d9f6b1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/fstr/25/1/25_115/_article/-char/en |
PQID | 2232154285 |
PQPubID | 1996352 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2232154285 crossref_citationtrail_10_3136_fstr_25_115 crossref_primary_10_3136_fstr_25_115 medicalonline_journals_fm4foods_2019_002501_014_0115_01223910992 jstage_primary_article_fstr_25_1_25_115_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019 20190101 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Tsukuba |
PublicationPlace_xml | – name: Tsukuba |
PublicationTitle | FOOD SCIENCE AND TECHNOLOGY RESEARCH |
PublicationTitleAlternate | Food Science and Technology Research |
PublicationYear | 2019 |
Publisher | Japanese Society for Food Science and Technology The Japanese Society for Food Science and Technology Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society for Food Science and Technology – name: The Japanese Society for Food Science and Technology – name: Japan Science and Technology Agency |
References | Kenny, O. and O'Beirne, D. (2009). The effects of washing treatment on antioxidant retention in ready-to-use iceberg lettuce. Int. J. Food Sci. & Technol., 44, 1146-1156. Medoua, G.N. and Oldewage-Theron, W.H. (2014). Effect of drying and cooking on nutritional value and antioxidant capacity of morogo (Amaranthus hybridus) a traditional leafy vegetable grown in South Africa. J. Food Sci. Technol., 51, 736-742. Yang, J.H., Tseng, Y.H., Chang, H.L., Lee, Y.L., and Mau, J.L. (2004). Storage stability of monascal adlay. Food Chem., 90, 303-309. Thane, C. and Reddy, S. (1997). Processing of fruits and vegetables:effect on carotenoids. Nutr. & Food Sci., 97, 58-65. Kimura, M. and Itokawa, Y. (1990). Cooking losses of minerals in foods and its nutritional significance. J. Nutr. Sci. Vitaminol., 36, S25-S32. Badiani, A., Stipa, S., Bitossi, F., Prini, M., Bonaldo, A., Gatta, P.P., Rotolo, M., and Testi, S. (2013). True retention of nutrients upon household cooking of farmed portion-size European sea bass (Dicentrarchus labrax L.). LWT-Food Sci. Technol., 50, 72-77. Zhang, G. and Bown, A.W. (1997). The rapid determination of γ-aminobutyric acid. Phytochemistry, 44, 1007-1009. Mattila, P., Konko, K., Eurola, M., Pihlava, J.M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M., and Piironen, V. (2001). Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem., 49, 2343-2348. Manzi, P., Marconi, S., Aguzzi, A., and Pizzoferrato, L. (2004). Commercial mushrooms: nutritional quality and effect of cooking. Food Chem., 84, 201-206. Wang, N., Hatcher, D.W., Tyler, R.T., Toews, R., and Gawalko, E.J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int., 43, 589-594. Yamaguchi, T., Mizobuchi, T., Kajikawa, R., Kawashima, H., Miyabe, F., Terao, J., Takamura, H., and Matoba, T. (2001). Radicalscavenging activity of vegetables and the effect of cooking on their activity. Food Sci. & Technol. Res., 7, 250-257. Guillamon, E., Garcia-Lafuente, A., Lozano, M., D'Arrigo, M., Rostagno, M.A., Villares, A., and Martinez, J.A. (2010). Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia, 81, 715-723. Sharma, P. and Gujral, H.S. (2011). Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int., 44, 235-240. Choi, Y., Lee, S.M., Chun, J., Lee, H.B., and Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem., 99, 381-387. Zou, Y., Lu, Y., and Wei, D. (2004). Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem., 52, 5032-5039. Puupponen-Pimiä, R., Häkkinen, S.T., Aarni, M., Suortti, T., Lampi, A., Eurola, M., Piironen, V., Nuutila, A.M., and Oksman-Caldentey, K.M. (2003). Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food & Agric., 83, 1389-1402. Hirasawa, M., Shouji, N., Neta, T., Fukushima, K., and Takada, K. (1999). Three kinds of antibacterial substances from Lentinus edodes (Berk.) Sing. (Shiitake, an edible mushroom). Int. J. Antimicrob. Agents, 11, 151-157. Murphy, E.W., Criner, P.E., and Gray, B.C. (1975). Comparisons of methods for calculating retention of nutrients in cooked foods. J. Agric. Food Chem., 23, 1153-1157. Dewanto, V., Wu, X., Adom, K.K., and Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50, 3010-3014. Jimenez-Monreal, A.M., Garcia-Diz, L., Martiınez-Tome, M., Mariscal, M., and Murcia, M.A. (2009). Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci., 74, H97-H103. Erdman, J.W. Jr. and Klein, B.P. (1982). Harvesting, processing and cooking influences on vitamin C in foods, In Seib, P.A. and Tolbert, B.M. (Eds.), Ascorbic acid: Chemistry, metabolism and uses (pp. 499-532). Washington, D.C. Nguyen, T.H., Nagasaka, R., and Ohshima, T. (2012). Effects of extraction solvents, cooking procedures and storage conditions on the contents of ergothioneine and phenolic compounds and antioxidative capacity of the cultivated mushroom Flammulina velutipes. Int. J. Food Sci. Tech., 47, 1193-1205. Falandysz, J. and Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl. Microbiol. Biotechnol., 97. 477-501. Jiang, T., Wang, Q., Xu, S., Jahangir, M.M., and Ying, T. (2010). Structure and composition changes in the cell wall in relation to texture of shiitake mushrooms (Lentinula edodes) stored in modified atmosphere packaging. J. Sci. Food Agric., 90, 742-749. Shao, S., Hernandez, M., Kramer, J.K.G., Rinker, D.L., and Tsao, R. (2010). Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J. Agric. Food Chem., 58, 11616-11625. Faller, A.L.K. and Fialho, E. (2009). The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res. Int., 42, 210-215. Francisco, M., Velasco, P., Moreno, D.A., Garcia-Viguera, C., and Cartea, M.E. (2010). Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int., 43, 1455-1463. Jensen, L.G., Olsen, O., Kops, O., Wolf, N., Thomsen, K.K., and von Wettstein, D. (1996). Transgenic barley expressing a protein-engineered, thermostable (1,3–1,4)-beta-glucanase during germination. Proc. Natl. Acad. Sci. USA, 93, 3487-3491. de Roman, M., Boa, E., and Woodward, S. (2006). Wild-gathered fungi for health and rural livelihoods. Proc. Nutr. Soc., 65, 190-197. Kim, D.O., Lee, K.W., Lee, H.J., and Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 50, 3713-3717. Brownmiller, C., Howard, L.R., and Prior, R.L. (2008). Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J. Food Sci., 73, H72-H79. Kim, G.P., Lee, J., Ahn, K.G., Hwang, Y.S., Choi, Y., Chun, J., Chang, W.S., and Choung, M.G. (2014). Differential responses of B vitamins in black soybean seeds. Food Chem., 153, 101-108. Lee, S., Choi, Y., Jeong, H.S., Lee, J., and Sung, J. (2018). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Sci. Biotech., 27, 333-342. Marley, E.C., Mackay, E., and Young, G. (2009). Characterisation of vitamin B12 immunoaffinity columns and method development for determination of vitamin B12 in a range of foods, juices and pharmaceutical products using immunoaffinity clean-up and high performance liquid chromatography with UV detection. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess., 26, 282-288. Ersoy, B. and Özeren, A. (2009). The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem., 115, 419-422. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237. Chen, L. and Eitenmiller, R.R. (2007). Optimization of the trienzyme extraction for the microbiological assay of folate in vegetables. J. Agric. Food. Chem., 55, 3884-3888. Lee, S.K. and Kader, A.A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol., 20, 207-220. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: Shao, S., Hernandez, M., Kramer, J.K.G., Rinker, D.L., and Tsao, R. (2010). Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J. Agric. Food Chem., 58, 11616-11625. – reference: Francisco, M., Velasco, P., Moreno, D.A., Garcia-Viguera, C., and Cartea, M.E. (2010). Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int., 43, 1455-1463. – reference: Wang, N., Hatcher, D.W., Tyler, R.T., Toews, R., and Gawalko, E.J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int., 43, 589-594. – reference: Marley, E.C., Mackay, E., and Young, G. (2009). Characterisation of vitamin B12 immunoaffinity columns and method development for determination of vitamin B12 in a range of foods, juices and pharmaceutical products using immunoaffinity clean-up and high performance liquid chromatography with UV detection. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess., 26, 282-288. – reference: Erdman, J.W. Jr. and Klein, B.P. (1982). Harvesting, processing and cooking influences on vitamin C in foods, In Seib, P.A. and Tolbert, B.M. (Eds.), Ascorbic acid: Chemistry, metabolism and uses (pp. 499-532). Washington, D.C. – reference: Yamaguchi, T., Mizobuchi, T., Kajikawa, R., Kawashima, H., Miyabe, F., Terao, J., Takamura, H., and Matoba, T. (2001). Radicalscavenging activity of vegetables and the effect of cooking on their activity. Food Sci. & Technol. Res., 7, 250-257. – reference: Medoua, G.N. and Oldewage-Theron, W.H. (2014). Effect of drying and cooking on nutritional value and antioxidant capacity of morogo (Amaranthus hybridus) a traditional leafy vegetable grown in South Africa. J. Food Sci. Technol., 51, 736-742. – reference: Mattila, P., Konko, K., Eurola, M., Pihlava, J.M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M., and Piironen, V. (2001). Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem., 49, 2343-2348. – reference: Lee, S., Choi, Y., Jeong, H.S., Lee, J., and Sung, J. (2018). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Sci. Biotech., 27, 333-342. – reference: Kimura, M. and Itokawa, Y. (1990). Cooking losses of minerals in foods and its nutritional significance. J. Nutr. Sci. Vitaminol., 36, S25-S32. – reference: Chen, L. and Eitenmiller, R.R. (2007). Optimization of the trienzyme extraction for the microbiological assay of folate in vegetables. J. Agric. Food. Chem., 55, 3884-3888. – reference: Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237. – reference: Guillamon, E., Garcia-Lafuente, A., Lozano, M., D'Arrigo, M., Rostagno, M.A., Villares, A., and Martinez, J.A. (2010). Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia, 81, 715-723. – reference: Hirasawa, M., Shouji, N., Neta, T., Fukushima, K., and Takada, K. (1999). Three kinds of antibacterial substances from Lentinus edodes (Berk.) Sing. (Shiitake, an edible mushroom). Int. J. Antimicrob. Agents, 11, 151-157. – reference: Puupponen-Pimiä, R., Häkkinen, S.T., Aarni, M., Suortti, T., Lampi, A., Eurola, M., Piironen, V., Nuutila, A.M., and Oksman-Caldentey, K.M. (2003). Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food & Agric., 83, 1389-1402. – reference: Dewanto, V., Wu, X., Adom, K.K., and Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50, 3010-3014. – reference: Faller, A.L.K. and Fialho, E. (2009). The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res. Int., 42, 210-215. – reference: Nguyen, T.H., Nagasaka, R., and Ohshima, T. (2012). Effects of extraction solvents, cooking procedures and storage conditions on the contents of ergothioneine and phenolic compounds and antioxidative capacity of the cultivated mushroom Flammulina velutipes. Int. J. Food Sci. Tech., 47, 1193-1205. – reference: Ersoy, B. and Özeren, A. (2009). The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem., 115, 419-422. – reference: Jiang, T., Wang, Q., Xu, S., Jahangir, M.M., and Ying, T. (2010). Structure and composition changes in the cell wall in relation to texture of shiitake mushrooms (Lentinula edodes) stored in modified atmosphere packaging. J. Sci. Food Agric., 90, 742-749. – reference: Murphy, E.W., Criner, P.E., and Gray, B.C. (1975). Comparisons of methods for calculating retention of nutrients in cooked foods. J. Agric. Food Chem., 23, 1153-1157. – reference: Falandysz, J. and Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl. Microbiol. Biotechnol., 97. 477-501. – reference: Jimenez-Monreal, A.M., Garcia-Diz, L., Martiınez-Tome, M., Mariscal, M., and Murcia, M.A. (2009). Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci., 74, H97-H103. – reference: Thane, C. and Reddy, S. (1997). Processing of fruits and vegetables:effect on carotenoids. Nutr. & Food Sci., 97, 58-65. – reference: Zou, Y., Lu, Y., and Wei, D. (2004). Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem., 52, 5032-5039. – reference: Zhang, G. and Bown, A.W. (1997). The rapid determination of γ-aminobutyric acid. Phytochemistry, 44, 1007-1009. – reference: Sharma, P. and Gujral, H.S. (2011). Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int., 44, 235-240. – reference: Choi, Y., Lee, S.M., Chun, J., Lee, H.B., and Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem., 99, 381-387. – reference: Jensen, L.G., Olsen, O., Kops, O., Wolf, N., Thomsen, K.K., and von Wettstein, D. (1996). Transgenic barley expressing a protein-engineered, thermostable (1,3–1,4)-beta-glucanase during germination. Proc. Natl. Acad. Sci. USA, 93, 3487-3491. – reference: Manzi, P., Marconi, S., Aguzzi, A., and Pizzoferrato, L. (2004). Commercial mushrooms: nutritional quality and effect of cooking. Food Chem., 84, 201-206. – reference: Kim, D.O., Lee, K.W., Lee, H.J., and Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 50, 3713-3717. – reference: Brownmiller, C., Howard, L.R., and Prior, R.L. (2008). Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J. Food Sci., 73, H72-H79. – reference: de Roman, M., Boa, E., and Woodward, S. (2006). Wild-gathered fungi for health and rural livelihoods. Proc. Nutr. Soc., 65, 190-197. – reference: Badiani, A., Stipa, S., Bitossi, F., Prini, M., Bonaldo, A., Gatta, P.P., Rotolo, M., and Testi, S. (2013). True retention of nutrients upon household cooking of farmed portion-size European sea bass (Dicentrarchus labrax L.). LWT-Food Sci. Technol., 50, 72-77. – reference: Kim, G.P., Lee, J., Ahn, K.G., Hwang, Y.S., Choi, Y., Chun, J., Chang, W.S., and Choung, M.G. (2014). Differential responses of B vitamins in black soybean seeds. Food Chem., 153, 101-108. – reference: Kenny, O. and O'Beirne, D. (2009). The effects of washing treatment on antioxidant retention in ready-to-use iceberg lettuce. Int. J. Food Sci. & Technol., 44, 1146-1156. – reference: Lee, S.K. and Kader, A.A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol., 20, 207-220. – reference: Yang, J.H., Tseng, Y.H., Chang, H.L., Lee, Y.L., and Mau, J.L. (2004). Storage stability of monascal adlay. Food Chem., 90, 303-309. – ident: 13 doi: 10.1016/S0924-8579(98)00084-3 – ident: 21 doi: 10.1016/S0925-5214(00)00133-2 – ident: 27 doi: 10.1111/j.1365-2621.2012.02959.x – ident: 10 doi: 10.1016/j.foodres.2008.10.009 – ident: 9 doi: 10.1007/s00253-012-4552-8 – ident: 16 doi: 10.1111/j.1365-2621.2009.01935.x – ident: 7 doi: 10.1021/ba-1982-0200.ch021 – ident: 2 doi: 10.1111/j.1750-3841.2008.00761.x – ident: 3 doi: 10.1021/jf0634350 – ident: 1 doi: 10.1016/j.lwt.2012.06.026 – ident: 18 doi: 10.1016/j.foodchem.2013.12.047 – ident: 17 doi: 10.1021/jf020071c – ident: 22 doi: 10.1016/S0308-8146(03)00202-4 – ident: 37 doi: 10.1021/jf049571r – ident: 33 doi: 10.1016/j.foodres.2009.07.012 – ident: 20 – ident: 35 doi: 10.1016/j.foodchem.2004.03.053 – ident: 19 doi: 10.3177/jnsv.36.4-SupplementI_S25 – ident: 32 doi: 10.1108/00346659710161858 – ident: 31 doi: 10.1021/jf102285b – ident: 11 doi: 10.1016/j.foodres.2010.04.024 – ident: 30 doi: 10.1016/j.foodres.2010.10.030 – ident: 4 doi: 10.1016/j.foodchem.2005.08.004 – ident: 24 doi: 10.1021/jf001525d – ident: 34 doi: 10.3136/fstr.7.250 – ident: 12 doi: 10.1016/j.fitote.2010.06.005 – ident: 23 doi: 10.1080/02652030802429104 – ident: 28 doi: 10.1002/jsfa.1589 – ident: 5 doi: 10.1079/PNS2006491 – ident: 29 doi: 10.1016/S0891-5849(98)00315-3 – ident: 25 doi: 10.1007/s13197-011-0560-4 – ident: 15 doi: 10.1002/jsfa.3876 – ident: 26 doi: 10.1021/jf60202a021 – ident: 14 doi: 10.1073/pnas.93.8.3487 – ident: 6 doi: 10.1021/jf0115589 – ident: 36 doi: 10.1016/S0031-9422(96)00626-7 – ident: 8 doi: 10.1016/j.foodchem.2008.12.018 |
SSID | ssj0015982 |
Score | 2.2866411 |
Snippet | This study investigated the effect of cooking methods including steaming, blanching, microwaving, boiling, and roasting on the true retention of minerals,... |
SourceID | proquest crossref medicalonline jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Antioxidants Bioactive compounds Biological activity Blanching Boiling Cooking cooking methods Diet dietary bioactive compounds Dietary intake Dietary minerals Food processing Minerals Mushrooms Nutrient retention Nutrients nutritional composition Ovenware Retention Roasting Scavenging shiitake mushroom (Lentinula edodes) Steaming true retention Vitamins |
Title | Effect of Different Cooking Methods on the True Retention of Vitamins, Minerals, and Bioactive Compounds in Shiitake Mushrooms (Lentinula edodes) |
URI | https://www.jstage.jst.go.jp/article/fstr/25/1/25_115/_article/-char/en http://mol.medicalonline.jp/library/journal/download?GoodsID=fm4foods/2019/002501/014&name=0115-0122e https://www.proquest.com/docview/2232154285 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Food Science and Technology Research, 2019, Vol.25(1), pp.115-122 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKggQSQjxFYUE-7AHopsSJnceN56ridaGL9hbZiUMD2wRtUiH4F_wjfhrjR9y09LBwiSrHk8idL-OZ8TwQOpCECQqahiciX3iUldJLRBp4QZ7msig5i4Wu9vkhmh3TNyfsZDT6PYhaWnVimv_cmVfyP1yFMeCrypL9B866h8IA_Ab-whU4DNdz8diWHgZ975Xtc9LBB94o7_fkvW4N3R8GTOZnK9WhobPRjUDyqer4svc2V7r4dNvHcr6oGq4FoZYXqvOSDpv9uKiA6CtIglW7UCq3dtm-U8-sV6d8IoumUGInHaq8R6pucp89pOM1nTd_YksNOZe0DQt6-0M29edltR0uNOP1OrBo0ehABC2uBlNte2g9vPjOh14NKzWNCA4p9aLItwWyzViSEC9MTTO5Xm6bhOkNfBohTEyCqN3Picl73t4qQtPLpmy7s2nApo5mWJB7a6N04YtgOCnyTBFnAQMril1AFwMwVMzW4AwwosojapPfrslkiCrip4M3b-hEl76AWaDqPVxdmqM6UzLlL11BK0Dz6-iatVzwcwPDG2gk65vocp_Y3t5CvwwccVNiB0ds4YgtHHFTY4AjVnDEDo6KpIfjIe7BeIgBLdhBETso4qrGPRSxgyJ-5ICIDRAf30bHR6_nL2ee7fjh5SwJOi-UkqclBxsgFzyKSUjySAaCRjwGmSKJDGNelJTxlBdSgHEh4qiksR8XaRkJUoZ30F7d1PIuwrmMcp9xkqQkoSwthEyDkiWFCHO_KPxgjJ70_3mW23L4qivLabaDu2N04CZ_M1Vgdk-LDfPcJCsa1pPsTHdD5VaCKBujZxvczqyUaUEi0RK-0zZTX0mmTRaS-YRmypbL1MF4mKrTbVjQfg-QNTXcBZ2eBgm7d74l3EdX1IuMk3Ef7XUAhwegdnfioUb2Hy1T35o |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Different+Cooking+Methods+on+the+True+Retention+of+Vitamins%2C+Minerals%2C+and+Bioactive+Compounds+in+Shiitake+Mushrooms+%28Lentinula+edodes%29&rft.jtitle=Food+science+and+technology+research&rft.au=Lee%2C+Kyeongmin&rft.au=Lee%2C+Hana&rft.au=Choi%2C+Youngmin&rft.au=Kim%2C+Younghwa&rft.date=2019&rft.issn=1344-6606&rft.eissn=1881-3984&rft.volume=25&rft.issue=1&rft.spage=115&rft.epage=122&rft_id=info:doi/10.3136%2Ffstr.25.115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3136_fstr_25_115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6606&client=summon |