Machine learning‐directed electrical impedance tomography to predict metabolically vulnerable plaques

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low‐density lipoprotein (oxLDL), a marker of plaque vulnerability....

Full description

Saved in:
Bibliographic Details
Published inBioengineering & translational medicine Vol. 9; no. 1; pp. e10616 - n/a
Main Authors Chen, Justin, Wang, Shaolei, Wang, Kaidong, Abiri, Parinaz, Huang, Zi‐Yu, Yin, Junyi, Jabalera, Alejandro M., Arianpour, Brian, Roustaei, Mehrdad, Zhu, Enbo, Zhao, Peng, Cavallero, Susana, Duarte‐Vogel, Sandra, Stark, Elena, Luo, Yuan, Benharash, Peyman, Tai, Yu‐Chong, Cui, Qingyu, Hsiai, Tzung K.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…