The role of artificial intelligence in the management of liver diseases
Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct‐acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs ca...
Saved in:
Published in | The Kaohsiung journal of medical sciences Vol. 40; no. 11; pp. 962 - 971 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
BP, Asia
Wiley Publishing Asia Pty Ltd
01.11.2024
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1607-551X 2410-8650 2410-8650 |
DOI | 10.1002/kjm2.12901 |
Cover
Loading…
Abstract | Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct‐acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost‐effective identification of high‐risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high‐throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non‐linear data and identify hidden patterns within real‐world datasets. The combination of AI and multi‐omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non‐invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision‐making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases. |
---|---|
AbstractList | Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct‐acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost‐effective identification of high‐risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high‐throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non‐linear data and identify hidden patterns within real‐world datasets. The combination of AI and multi‐omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non‐invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision‐making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases. Abstract Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct‐acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost‐effective identification of high‐risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high‐throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non‐linear data and identify hidden patterns within real‐world datasets. The combination of AI and multi‐omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non‐invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision‐making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases. Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct-acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost-effective identification of high-risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high-throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non-linear data and identify hidden patterns within real-world datasets. The combination of AI and multi-omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non-invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision-making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases.Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct-acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost-effective identification of high-risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high-throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non-linear data and identify hidden patterns within real-world datasets. The combination of AI and multi-omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non-invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision-making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases. |
Audience | Academic |
Author | Chuang, Wan‐Long Lu, Ming‐Ying Yu, Ming‐Lung |
AuthorAffiliation | 3 School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease National Sun Yat‐sen University Kaohsiung Taiwan 1 Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan 2 School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research Kaohsiung Medical University Kaohsiung Taiwan |
AuthorAffiliation_xml | – name: 3 School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease National Sun Yat‐sen University Kaohsiung Taiwan – name: 1 Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan – name: 2 School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research Kaohsiung Medical University Kaohsiung Taiwan |
Author_xml | – sequence: 1 givenname: Ming‐Ying surname: Lu fullname: Lu, Ming‐Ying organization: National Sun Yat‐sen University – sequence: 2 givenname: Wan‐Long surname: Chuang fullname: Chuang, Wan‐Long organization: Kaohsiung Medical University – sequence: 3 givenname: Ming‐Lung orcidid: 0000-0001-8145-1900 surname: Yu fullname: Yu, Ming‐Lung email: fish6069@gmail.com organization: National Sun Yat‐sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39440678$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl9v1SAYxomZcWfTGz-AaeKNMemRf23hyiyLzumMNzPxjlB46Ti2ZYOemX176bqpZ1kMFwT4vc_LA88B2hvDCAi9JHhNMKbvfm4GuiZUYvIErSgnuBR1hffQitS4KauK_NhHByltMOa1lM0ztM8k57huxAqdnF9AEUMPRXCFjpN33njdF36coO99B6OBvCimjA161B0MME4z3PtriIX1CXSC9Bw9dbpP8OJuPkTfP344P_5Unn07OT0-OitNJSgpWYtb2hDHuGMUWqstrloJ0nJHKoJdvqxswZpW26apRSOg4sAxY0JwK23LDtHpomuD3qjL6Acdb1TQXt1uhNip2YXpQVnauIYxZjnV3FDXGg7G1LWzzhioWdZ6v2hdbtshN83Gou53RHdPRn-hunCtCBGywgJnhTd3CjFcbSFNavDJ5IfTI4RtUowQ2VDOBc3o6wfoJmzjmN8qU5Tj_JOV-Et1Ojvwowu5sZlF1ZEgXEhJ8Ky1foTKw8LgTQ6H83l_p-DVv07_WLzPQQbwApgYUorglPGTnnyYjfteEazmqKk5auo2arnk7YOSe9VHYbLAv_LNbv5Dqi-fv9Kl5jehFuHG |
CitedBy_id | crossref_primary_10_1002_kjm2_12932 crossref_primary_10_3748_wjg_v31_i10_103716 |
Cites_doi | 10.1007/s00441-023-03816-z 10.1016/j.jhep.2017.07.025 10.3350/cmh.2020.0018 10.1053/j.gastro.2022.02.025 10.1016/j.jhepr.2022.100443 10.3350/cmh.2023.0287 10.3350/cmh.2024.0155 10.1016/j.aca.2020.06.043 10.1016/j.jhep.2020.05.052 10.1111/liv.14849 10.1148/radiol.2017171928 10.3390/cancers12123562 10.1007/s10620-020-06156-y 10.1016/j.biortech.2022.128539 10.1016/j.jhep.2020.07.026 10.1016/j.jhep.2022.01.018 10.1053/j.semdp.2023.02.002 10.1038/s41598-020-65875-4 10.1038/s41568-020-00327-9 10.1016/j.dld.2021.06.011 10.1053/j.gastro.2018.11.001 10.3748/wjg.v27.i16.1664 10.1002/hep.32347 10.1016/j.jvir.2018.01.769 10.1016/j.clinimag.2021.06.033 10.1148/rg.2021210025 10.1016/j.surg.2023.05.023 10.1080/14787210.2023.2225771 10.1038/s41598-020-67013-6 10.1016/j.cgh.2019.07.060 10.1002/hep.27750 10.3748/wjg.v27.i21.2681 10.1007/s12072-022-10323-w 10.1016/j.semcancer.2022.01.005 10.1007/s00330-021-07803-2 10.7883/yoken.JJID.2017.089 10.1002/hep.31603 10.1002/hep.32285 10.3414/ME13-01-0122 10.1007/s00167-022-07181-2 10.1109/TCBB.2017.2690848 10.1002/hep.31207 10.1111/jgh.15763 10.1109/TNNLS.2020.3041755 10.1016/j.artmed.2020.101822 10.1053/j.gastro.2022.09.005 10.1016/S0140-6736(18)32279-7 10.1097/SLA.0b013e31821ad884 10.1111/ijlh.13537 10.1038/s41583-023-00740-7 10.3390/biom11030473 10.1155/2022/8626234 10.3350/cmh.2024.0152 10.1001/jamanetworkopen.2020.15626 10.1148/radiol.2017170706 10.3389/frai.2020.00026 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Kaohsiung Medical University. 2024 The Author(s). The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia, Ltd on behalf of Kaohsiung Medical University. COPYRIGHT 2024 John Wiley & Sons, Inc. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Kaohsiung Medical University. – notice: 2024 The Author(s). The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia, Ltd on behalf of Kaohsiung Medical University. – notice: COPYRIGHT 2024 John Wiley & Sons, Inc. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1002/kjm2.12901 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Lu et al |
EISSN | 2410-8650 |
EndPage | 971 |
ExternalDocumentID | oai_doaj_org_article_d27f7333d42a4c2fbc4ecc66fdfcce63 PMC11895080 A814899102 39440678 10_1002_kjm2_12901 KJM212901 |
Genre | reviewArticle Journal Article Review |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: National Sun Yat‐sen University funderid: MOHW112‐TDU‐B‐221‐124007; NSTC 112‐2321‐B‐001‐006 – fundername: National Sun Yat-sen University grantid: MOHW112-TDU-B-221-124007 – fundername: National Sun Yat-sen University grantid: NSTC 112-2321-B-001-006 – fundername: National Sun Yat‐sen University grantid: MOHW112‐TDU‐B‐221‐124007; NSTC 112‐2321‐B‐001‐006 |
GroupedDBID | --- --K .1- .FO .~1 0R~ 0SF 123 188 1B1 1OC 1P~ 1~. 24P 2UF 2WC 3O- 4.4 457 53G 5VS 6I. 71M 7X7 8FI 8FJ 8P~ AACTN AAEDW AAFTH AAHHS AAIKJ AALRI AAQFI AAXUO ABBQC ABMAC ABUWG ABVKL ABWVN ABXDB ACCFJ ACCMX ACRPL ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN AEEZP AEKER AENEX AEQDE AEVXI AEXQZ AFCTW AFKRA AFRHN AGHFR AGYEJ AINHJ AITUG AIWBW AJBDE AJOXV AJRQY AJUYK AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AVUZU BENPR CCPQU CEFSP CNMHZ EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA GBLVA GROUPED_DOAJ HMCUK HVGLF HZ~ IAO IHE IHR IPNFZ ITC J1W M41 MO0 M~E N9A NCXOZ O-L O9- OK1 OVD OVEED OZT P-8 P-9 P2P P6G PC. PIMPY PQQKQ Q38 RIG ROL RPZ SDF SDG SEL SES SSZ TEORI TR2 TUXDW UKHRP UZ5 WIN Z5R AAYWO AAYXX ABJNI ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION PHGZM PHGZT RPM AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5821-3b0b271f34f32ebdad05b9e9d4f1510f5519bedcbad776878e54e4033884d9db3 |
IEDL.DBID | DOA |
ISSN | 1607-551X 2410-8650 |
IngestDate | Wed Aug 27 01:25:13 EDT 2025 Thu Aug 21 18:37:49 EDT 2025 Thu Jul 10 22:18:34 EDT 2025 Fri Jul 25 21:29:15 EDT 2025 Tue Jun 17 22:01:49 EDT 2025 Tue Jun 10 21:00:49 EDT 2025 Mon Jul 21 05:56:08 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Wed Jan 22 17:13:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | algorithms hepatitis C virus (HCV) hepatocellular carcinoma (HCC) machine learning (ML) artificial intelligence (AI) |
Language | English |
License | Attribution 2024 The Author(s). The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia, Ltd on behalf of Kaohsiung Medical University. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5821-3b0b271f34f32ebdad05b9e9d4f1510f5519bedcbad776878e54e4033884d9db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8145-1900 |
OpenAccessLink | https://doaj.org/article/d27f7333d42a4c2fbc4ecc66fdfcce63 |
PMID | 39440678 |
PQID | 3124010058 |
PQPubID | 4570184 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d27f7333d42a4c2fbc4ecc66fdfcce63 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11895080 proquest_miscellaneous_3119724482 proquest_journals_3124010058 gale_infotracmisc_A814899102 gale_infotracacademiconefile_A814899102 pubmed_primary_39440678 crossref_citationtrail_10_1002_kjm2_12901 crossref_primary_10_1002_kjm2_12901 wiley_primary_10_1002_kjm2_12901_KJM212901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | BP, Asia |
PublicationPlace_xml | – name: BP, Asia – name: China (Republic : 1949- ) – name: Kaohsiung |
PublicationTitle | The Kaohsiung journal of medical sciences |
PublicationTitleAlternate | Kaohsiung J Med Sci |
PublicationYear | 2024 |
Publisher | Wiley Publishing Asia Pty Ltd John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Wiley Publishing Asia Pty Ltd – name: John Wiley & Sons, Inc – name: Wiley |
References | 2023; 31 2021; 27 2018; 287 2018; 286 2021; 21 2021; 66 2024; 30 2020; 12 2020; 10 2021; 73 2020; 18 2023; 21 2023; 24 2022; 162 2020; 3 2021; 31 2023; 174 2023; 370 2022; 37 2022; 75 2022; 76 2022; 33 2018; 71 2022; 77 2021; 41 2019; 156 2014; 53 2021; 80 2018; 29 2021; 43 2023; 13 2023; 164 2017; 67 2020; 104 2022; 86 2011; 254 2023; 40 2020; 1131 2022; 2022 2018; 392 2021; 11 2022; 4 2023; 394 2020; 73 2015; 61 2020; 72 2022; 12 2020; 26 2022; 54 2022; 16 2018; 15 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Lu MY (e_1_2_10_38_1) 2023; 13 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Hsu PY (e_1_2_10_36_1) 2022; 12 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 86 start-page: 799 year: 2022 end-page: 815 article-title: Immune checkpoint inhibitors in HCC: cellular, molecular and systemic data publication-title: Semin Cancer Biol – volume: 4 year: 2022 article-title: Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction publication-title: JHEP Rep – volume: 18 start-page: 2650 year: 2020 end-page: 2666 article-title: Contemporary epidemiology of chronic liver disease and cirrhosis publication-title: Clin Gastroenterol Hepatol – volume: 174 start-page: 723 year: 2023 end-page: 726 article-title: Evaluating prediction model performance publication-title: Surgery – volume: 10 start-page: 9458 year: 2020 article-title: Detection of hepatocellular carcinoma in contrast‐enhanced magnetic resonance imaging using deep learning classifier: a multi‐center retrospective study publication-title: Sci Rep – volume: 12 start-page: 5576 year: 2022 end-page: 5588 article-title: Artificial intelligence based on serum biomarkers predicts the efficacy of lenvatinib for unresectable hepatocellular carcinoma publication-title: Am J Cancer Res – volume: 3 year: 2020 article-title: Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis publication-title: JAMA Netw Open – volume: 31 start-page: 7047 year: 2021 end-page: 7057 article-title: Deep learning‐based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC publication-title: Eur Radiol – volume: 80 start-page: 72 year: 2021 end-page: 76 article-title: Understanding artificial intelligence based radiology studies: CNN architecture publication-title: Clin Imaging – volume: 3 start-page: 26 year: 2020 article-title: Explainable AI in Fintech risk management publication-title: Front Artif Intell – volume: 21 start-page: 199 year: 2021 end-page: 211 article-title: Designing deep learning studies in cancer diagnostics publication-title: Nat Rev Cancer – volume: 30 start-page: 274 year: 2024 end-page: 275 article-title: Correspondence on letter regarding "toward hepatitis C virus elimination using artificial intelligence" publication-title: Clin Mol Hepatol – volume: 41 start-page: 1420 year: 2021 end-page: 1426 article-title: Bag‐of‐words technique in natural language processing: a primer for radiologists publication-title: Radiographics – volume: 287 start-page: 146 year: 2018 end-page: 155 article-title: Liver fibrosis: deep convolutional neural network for staging by using Gadoxetic acid‐enhanced hepatobiliary phase MR images publication-title: Radiology – volume: 392 start-page: 1789 year: 2018 end-page: 1858 article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet – volume: 2022 start-page: 8626234 year: 2022 end-page: 8626239 article-title: Processing decision tree data using internet of things (IoT) and artificial intelligence technologies with special reference to medical application publication-title: Biomed Res Int – volume: 10 start-page: 10521 year: 2020 article-title: Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data publication-title: Sci Rep – volume: 53 start-page: 419 year: 2014 end-page: 427 article-title: The evolution of boosting algorithms. From machine learning to statistical modelling publication-title: Methods Inf Med – volume: 164 year: 2023 article-title: Molecular markers of response to anti‐PD1 therapy in advanced hepatocellular carcinoma publication-title: Gastroenterology – volume: 156 start-page: 492 year: 2019 end-page: 509 article-title: Genomic medicine and implications for hepatocellular carcinoma prevention and therapy publication-title: Gastroenterology – volume: 370 year: 2023 article-title: Artificial intelligence and machine learning approaches in composting process: a review publication-title: Bioresour Technol – volume: 33 start-page: 1324 year: 2022 end-page: 1337 article-title: Robust stochastic gradient descent with student‐t distribution based first‐order momentum publication-title: IEEE Trans Neural Netw Learn Syst – volume: 75 start-page: 473 year: 2022 end-page: 488 article-title: Hepatic fibrosis 2022: unmet needs and a blueprint for the future publication-title: Hepatology – volume: 286 start-page: 887 year: 2018 end-page: 896 article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast‐enhanced CT: a preliminary study publication-title: Radiology – volume: 12 start-page: 3562 year: 2020 article-title: Single‐cell spatial analysis of tumor and immune microenvironment on whole‐slide image reveals hepatocellular carcinoma subtypes publication-title: Cancers (Basel) – volume: 104 year: 2020 article-title: Automated machine learning: review of the state‐of‐the‐art and opportunities for healthcare publication-title: Artif Intell Med – volume: 41 start-page: 1265 year: 2021 end-page: 1277 article-title: Factors associated with treatment failure of direct‐acting antivirals for chronic hepatitis C: a real‐world nationwide hepatitis C virus registry programme in Taiwan publication-title: Liver Int – volume: 394 start-page: 17 year: 2023 end-page: 31 article-title: The benefits and pitfalls of machine learning for biomarker discovery publication-title: Cell Tissue Res – volume: 73 start-page: 2546 year: 2021 end-page: 2563 article-title: Application of artificial intelligence for the diagnosis and treatment of liver diseases publication-title: Hepatology – volume: 29 start-page: 850 year: 2018 end-page: 857.e1 article-title: Predicting treatment response to intra‐arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept publication-title: J Vasc Interv Radiol – volume: 67 start-page: 1204 year: 2017 end-page: 1212 article-title: Hepatocellular carcinoma risk following direct‐acting antiviral HCV therapy: a systematic review, meta‐analyses, and meta‐regression publication-title: J Hepatol – volume: 40 start-page: 71 year: 2023 end-page: 87 article-title: Artificial intelligence and machine learning overview in pathology & laboratory medicine: a general review of data preprocessing and basic supervised concepts publication-title: Semin Diagn Pathol – volume: 73 start-page: 1434 year: 2020 end-page: 1445 article-title: Personalized surveillance for hepatocellular carcinoma in cirrhosis—using machine learning adapted to HCV status publication-title: J Hepatol – volume: 72 start-page: 2000 year: 2020 end-page: 2013 article-title: Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides publication-title: Hepatology – volume: 76 start-page: 483 year: 2022 end-page: 491 article-title: Machine learning algorithms for predicting direct‐acting antiviral treatment failure in chronic hepatitis C: an HCV‐TARGET analysis publication-title: Hepatology – volume: 77 start-page: 116 year: 2022 end-page: 127 article-title: Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology publication-title: J Hepatol – volume: 21 start-page: 847 year: 2023 end-page: 862 article-title: Global importance of new treatment strategies to efforts to control hepatitis B virus publication-title: Expert Rev Anti Infect Ther – volume: 24 start-page: 693 year: 2023 end-page: 710 article-title: Reconstructing computational system dynamics from neural data with recurrent neural networks publication-title: Nat Rev Neurosci – volume: 162 year: 2022 article-title: Deep learning‐based classification of hepatocellular nodular lesions on whole‐slide histopathologic images publication-title: Gastroenterology – volume: 30 start-page: 326 year: 2024 end-page: 344 article-title: Unmet needs in the post‐DAA era: the risk and molecular mechanisms of hepatocellular carcinoma after HCV eradication publication-title: Clin Mol Hepatol – volume: 43 start-page: 15 issue: Suppl 1 year: 2021 end-page: 22 article-title: Machine learning in health care and laboratory medicine: general overview of supervised learning and auto‐ML publication-title: Int J Lab Hematol – volume: 66 start-page: 29 year: 2021 end-page: 40 article-title: Evolving role and future directions of natural language processing in gastroenterology publication-title: Dig Dis Sci – volume: 15 start-page: 861 year: 2018 end-page: 868 article-title: Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 61 start-page: 1832 year: 2015 end-page: 1841 article-title: Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data publication-title: Hepatology – volume: 26 start-page: 251 year: 2020 end-page: 260 article-title: Unmet needs of chronic hepatitis C in the era of direct‐acting antiviral therapy publication-title: Clin Mol Hepatol – volume: 30 start-page: 64 year: 2024 end-page: 79 article-title: Artificial intelligence predicts direct‐acting antivirals failure among hepatitis C virus patients: a nationwide hepatitis C virus registry program publication-title: Clin Mol Hepatol – volume: 13 start-page: 190 year: 2023 end-page: 203 article-title: Decision tree algorithm predicts hepatocellular carcinoma among chronic hepatitis C patients following viral eradication publication-title: Am J Cancer Res – volume: 54 start-page: 299 year: 2022 end-page: 308 article-title: The application of artificial intelligence in hepatology: a systematic review publication-title: Dig Liver Dis – volume: 16 start-page: 590 year: 2022 end-page: 602 article-title: Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images publication-title: Hepatol Int – volume: 73 start-page: 1460 year: 2020 end-page: 1469 article-title: Association of inflammatory biomarkers with clinical outcomes in nivolumab‐treated patients with advanced hepatocellular carcinoma publication-title: J Hepatol – volume: 1131 start-page: 146 year: 2020 end-page: 155 article-title: Constructing bi‐plots for random forest: tutorial publication-title: Anal Chim Acta – volume: 27 start-page: 2681 year: 2021 end-page: 2709 article-title: Status quo and future prospects of artificial neural network from the perspective of gastroenterologists publication-title: World J Gastroenterol – volume: 27 start-page: 1664 year: 2021 end-page: 1690 article-title: Artificial intelligence in gastroenterology and hepatology: status and challenges publication-title: World J Gastroenterol – volume: 37 start-page: 678 year: 2022 end-page: 684 article-title: Development of novel deep multimodal representation learning‐based model for the differentiation of liver tumors on B‐mode ultrasound images publication-title: J Gastroenterol Hepatol – volume: 71 start-page: 51 year: 2018 end-page: 57 article-title: Data mining and machine learning algorithms using IL28B genotype and biochemical markers best predicted advanced liver fibrosis in chronic hepatitis C publication-title: Jpn J Infect Dis – volume: 11 start-page: 11 year: 2021 article-title: Coupling machine learning and lipidomics as a tool to investigate metabolic dysfunction‐associated fatty liver disease. A general overview biomolecules publication-title: Biomolecules – volume: 254 start-page: 108 year: 2011 end-page: 113 article-title: Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria publication-title: Ann Surg – volume: 31 start-page: 1196 year: 2023 end-page: 1202 article-title: Supervised machine learning and associated algorithms: applications in orthopedic surgery publication-title: Knee Surg Sports Traumatol Arthrosc – ident: e_1_2_10_11_1 doi: 10.1007/s00441-023-03816-z – ident: e_1_2_10_6_1 doi: 10.1016/j.jhep.2017.07.025 – ident: e_1_2_10_7_1 doi: 10.3350/cmh.2020.0018 – ident: e_1_2_10_45_1 doi: 10.1053/j.gastro.2022.02.025 – ident: e_1_2_10_9_1 doi: 10.1016/j.jhepr.2022.100443 – ident: e_1_2_10_34_1 doi: 10.3350/cmh.2023.0287 – ident: e_1_2_10_8_1 doi: 10.3350/cmh.2024.0155 – ident: e_1_2_10_18_1 doi: 10.1016/j.aca.2020.06.043 – ident: e_1_2_10_59_1 doi: 10.1016/j.jhep.2020.05.052 – ident: e_1_2_10_5_1 doi: 10.1111/liv.14849 – ident: e_1_2_10_40_1 doi: 10.1148/radiol.2017171928 – ident: e_1_2_10_54_1 doi: 10.3390/cancers12123562 – ident: e_1_2_10_27_1 doi: 10.1007/s10620-020-06156-y – ident: e_1_2_10_17_1 doi: 10.1016/j.biortech.2022.128539 – ident: e_1_2_10_50_1 doi: 10.1016/j.jhep.2020.07.026 – ident: e_1_2_10_52_1 doi: 10.1016/j.jhep.2022.01.018 – ident: e_1_2_10_21_1 doi: 10.1053/j.semdp.2023.02.002 – ident: e_1_2_10_43_1 doi: 10.1038/s41598-020-65875-4 – ident: e_1_2_10_56_1 doi: 10.1038/s41568-020-00327-9 – ident: e_1_2_10_23_1 doi: 10.1016/j.dld.2021.06.011 – ident: e_1_2_10_53_1 doi: 10.1053/j.gastro.2018.11.001 – ident: e_1_2_10_10_1 doi: 10.3748/wjg.v27.i16.1664 – ident: e_1_2_10_58_1 doi: 10.1002/hep.32347 – ident: e_1_2_10_37_1 doi: 10.1016/j.jvir.2018.01.769 – ident: e_1_2_10_24_1 doi: 10.1016/j.clinimag.2021.06.033 – ident: e_1_2_10_26_1 doi: 10.1148/rg.2021210025 – ident: e_1_2_10_28_1 doi: 10.1016/j.surg.2023.05.023 – ident: e_1_2_10_4_1 doi: 10.1080/14787210.2023.2225771 – ident: e_1_2_10_30_1 doi: 10.1038/s41598-020-67013-6 – ident: e_1_2_10_3_1 doi: 10.1016/j.cgh.2019.07.060 – ident: e_1_2_10_33_1 doi: 10.1002/hep.27750 – ident: e_1_2_10_22_1 doi: 10.3748/wjg.v27.i21.2681 – ident: e_1_2_10_47_1 doi: 10.1007/s12072-022-10323-w – ident: e_1_2_10_49_1 doi: 10.1016/j.semcancer.2022.01.005 – ident: e_1_2_10_42_1 doi: 10.1007/s00330-021-07803-2 – volume: 12 start-page: 5576 year: 2022 ident: e_1_2_10_36_1 article-title: Artificial intelligence based on serum biomarkers predicts the efficacy of lenvatinib for unresectable hepatocellular carcinoma publication-title: Am J Cancer Res – ident: e_1_2_10_32_1 doi: 10.7883/yoken.JJID.2017.089 – ident: e_1_2_10_12_1 doi: 10.1002/hep.31603 – ident: e_1_2_10_29_1 doi: 10.1002/hep.32285 – ident: e_1_2_10_19_1 doi: 10.3414/ME13-01-0122 – ident: e_1_2_10_16_1 doi: 10.1007/s00167-022-07181-2 – ident: e_1_2_10_31_1 doi: 10.1109/TCBB.2017.2690848 – ident: e_1_2_10_48_1 doi: 10.1002/hep.31207 – ident: e_1_2_10_41_1 doi: 10.1111/jgh.15763 – ident: e_1_2_10_20_1 doi: 10.1109/TNNLS.2020.3041755 – volume: 13 start-page: 190 year: 2023 ident: e_1_2_10_38_1 article-title: Decision tree algorithm predicts hepatocellular carcinoma among chronic hepatitis C patients following viral eradication publication-title: Am J Cancer Res – ident: e_1_2_10_57_1 doi: 10.1016/j.artmed.2020.101822 – ident: e_1_2_10_51_1 doi: 10.1053/j.gastro.2022.09.005 – ident: e_1_2_10_2_1 doi: 10.1016/S0140-6736(18)32279-7 – ident: e_1_2_10_46_1 doi: 10.1097/SLA.0b013e31821ad884 – ident: e_1_2_10_14_1 doi: 10.1111/ijlh.13537 – ident: e_1_2_10_25_1 doi: 10.1038/s41583-023-00740-7 – ident: e_1_2_10_13_1 doi: 10.3390/biom11030473 – ident: e_1_2_10_15_1 doi: 10.1155/2022/8626234 – ident: e_1_2_10_35_1 doi: 10.3350/cmh.2024.0152 – ident: e_1_2_10_39_1 doi: 10.1001/jamanetworkopen.2020.15626 – ident: e_1_2_10_44_1 doi: 10.1148/radiol.2017170706 – ident: e_1_2_10_55_1 doi: 10.3389/frai.2020.00026 |
SSID | ssj0046997 |
Score | 2.3558438 |
SecondaryResourceType | review_article |
Snippet | Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct‐acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the... Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct-acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the... Abstract Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct‐acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 962 |
SubjectTerms | Algorithms Antiviral Agents - therapeutic use Antiviral drugs Artificial Intelligence artificial intelligence (AI) Carcinoma, Hepatocellular - diagnosis Care and treatment Classification Datasets Decision trees Development and progression Diagnosis Disease Management Hepatitis B Hepatitis C hepatitis C virus (HCV) hepatocellular carcinoma (HCC) Humans Liver cancer Liver diseases Liver Diseases - diagnosis Liver Diseases - pathology Liver Neoplasms - diagnosis Machine Learning machine learning (ML) Natural language processing Neural networks Precision Medicine - methods Review Support vector machines |
SummonAdditionalLinks | – databaseName: Proquest Health & Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gSIgXxDeFgYpAQiCFtUmapE9oIMY0dDwx6d6i5msMtnbstv8fO82VK6C93V3c6uzYsZ04PxPySrvay6AkrR1zVDguaMetpq6WrQSHASEtbugvvsr9Q3GwbJZ5w22VyyrXa2JaqP3gcI98h4MjgtyhavT7s18Uu0bh6WpuoXGd3EDoMky-1HJKuCDzG5uryEpRiAyWEzwp2_n545S9wz2YeuaQEm7_v6vzhnv6u3RyM6RNPmnvDrmdg8lyd5z9u-Ra6O-Rm4t8XH6ffAYlKLF-sBxiiToywkWUxxs4nPClhCCwPJ3qYJD4BMs1ynx6s3pADvc-ffu4T3PnBOrw4ivltrJM1ZGLyFmwvvNVY9vQehFB_FUEYbQWmLCdV5BvKB0aEUQF6aoWvvWWPyRb_dCHx6QEGWruXePrKEXT-TbUSnVdAM_mdKhYQd6sxWdchhXH7hYnZgREZgZFbZKoC_Jyoj0bwTT-S_UBZ2GiQADs9MNwfmSyPRnPVFSccy9YJxyL1glQRimjj84FyQvyGufQoJnC33Fdvm0ATCHgldnVkAdCbIwMbM8owbzcfHitBSab98r8UcaCvJiG8UksWevDcIk02NENsl94xaNRaSaW8DYyhgkF0TN1mvE8H-mPvyfwb0gIsXFvVZC3SfOuEKT5crBg6dOTq5l4Sm4xiNXGK5bbZOvi_DI8g1jrwj5PBvUb-0glWA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-mTUK8IMZnYaAgkBBIZW2SJqnEy4YY09AhHph0b1E-x2Drod32_2Onve7KEBJv14tbNY4d26n9MyGvtK-DjEqWtWe-FJ6L0nKnS1_LVoLBAJcWD_RnX-ThsTiaN_MN8n5VC9PjQ4wHbqgZeb9GBbduuXsNGvrzxzl7h6coEPtsYW0tSjkTX1f7MMR9fWsVWakS_IL5CE7Kdq_vnZijjNp_c29eM05_Jk6uO7TZIh3cJXcGV5Lu9Wu_TTZid4_cmg0fy--TTyACFLMH6SJRlJAeLIKerqFwwgUFF5Cej1kwSHyGyRp0-HazfECODz5--3BYDn0TSo9lryV3lWOqTlwkzqILNlSNa2MbRALmVwmY0TqYhLNBQbShdGxEFBUEq1qENjj-kGx2iy4-JhR4qHnwTaiTFI0NbayVsjaCXfM6Vqwgb1bsM34AFcfeFmemh0NmBlltMqsL8nKk_dVDafyVah9XYaRA-Ov8x-LixAzaZAJTSXHOg2BWeJacFyCKUqaQvI-SF-Q1rqFBJYXX8XaoNYBJIdyV2dMQBYJnjBPYmVCCcvnp8EoKzKDcS8PBJ4Iwtmp0QV6Mw3gnJqx1cXGFNNjPDWJfeMSjXmjGKWEtMjoJBdETcZrMeTrSnX7P0N8QDmLb3qogb7Pk_YOR5vPRjOVfT_6H-Cm5zcBv68std8jm5cVVfAZ-16V7ntXrN91pJhY priority: 102 providerName: Wiley-Blackwell |
Title | The role of artificial intelligence in the management of liver diseases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fkjm2.12901 https://www.ncbi.nlm.nih.gov/pubmed/39440678 https://www.proquest.com/docview/3124010058 https://www.proquest.com/docview/3119724482 https://pubmed.ncbi.nlm.nih.gov/PMC11895080 https://doaj.org/article/d27f7333d42a4c2fbc4ecc66fdfcce63 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BkBAvE99kbFUQSAiksMR27ORxg45pqGNCDPXNir_EvlLEtv9_d3EaNYDghZeqqa9t7nzO_S45_w7gVWULJ72SWWGZzYTlImu4qTJbyFpiwEBISzf0Z4dy_1gczMv5SqsvqgmL9MDRcNuOqaA4506wRlgWjBX4r1IGF6z1suP5xJi3TKbiNRhzvthWReYqQ0wwH4hJ2fbZ6QV7R3dfilEo6hj7f78urwSmX4smV8FsF4327sN6DyPTnXj6D-CWbx_C3Vn_oPwRfMTpT6lyMF2ElJSMRBHpyQoDJx6kCP_Si6EChoTPqVAj7Z_bXD6G473p1_f7Wd8zIbO05TXjJjdMFYGLwJk3rnF5aWpfOxHQ8HlAY9QGlTCNU5hpqMqXwoscE9VKuNoZ_gTW2kXrn0GKNqy4s6UrghRl42pfKNU0HmOarXzOEnizNJ-2PaE49bU415EKmWkyte5MncDLQfZHpNH4o9QuzcIgQdTX3QfoELp3CP0vh0jgNc2hpgWKp2Obfp8BKkVUV3qnwgwQUTEpsDmSxIVlx8NLL9D9wr7UHPEQprB5WSXwYhimb1KxWusX1yRDvdww78WfeBqdZlCJ9iETQEigGrnTSOfxSHvyvaP9xlSQWvbmCbztPO8vhtSfDmase7fxP0z6HO4xxHJxC-YmrF39vPZbiMWuzARuM3GEr2quJnBnd3p49GXSLUU8-vxtOv1wA8-JNN4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJtAASNACKTQxHZeB4TKo2y73Z5aaW8mfrWFdlO6rRB_it_ITF5sAPXW22Y9sTLjsecbezwD8Dw3sU1dloax4SaURsiwFDoPTZwWKRoMhLS0oT_ZTke7cnOaTJfgV3cXhsIquzWxXqhtZWiPfFWgIULfIUryd8ffQ6oaRaerXQmNRi3G7ucPdNnmbzc-4vi-4Hz9086HUdhWFQgNXQoNhY40z2IvpBfcaVvaKNGFK6z0-GmRRwhRaGeNLm2GWDzLXSKdjNCVy6UtrBbY7yW4jIY3ohDCbNo7eOhpNsVc0igLsZtpnw6Vr377esTf0J5PPDCAdZ2Af63Bgjn8O1RzEULXNnD9BlxvwStba7TtJiy52S24MmmP52_DZ1Q6RvGKrPKMdLJJT8EOFvJ-4gND0MmO-rgbIj6k8BDWnhbN78Duhcj0LizPqpm7DwxlmAtrEhv7VCalLVycZWXp0JKa3EU8gFed-JRp05hTNY1D1SRg5opErWpRB_Cspz1uknf8l-o9jUJPQQm36z-qkz3Vzl9leeYzIYSVvJSGe20kKn-aeuuNcakI4CWNoaJlAT_HlO3tBmSKEmyptRz9TsTixMDKgBKnsxk2d1qg2uVkrv4ofwBP-2Z6k0LkZq46IxqqIIfeNnZxr1GaniW6_UywJIB8oE4Dnocts4P9Otk4OqBUKDgK4HWteecIUo03J7z-9eB8Jp7A1dHOZEttbWyPH8I1jjixud65AsunJ2fuEeK8U_24nlwMvlz0bP4N70liQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKVHFBvAkUCAKEQAqb2I6dHBAqlKXtshUHKu3NJH5Aod2UbivEr_F1zOTFBlBvvW3WEysznvHM2PMAeJyZxEqnZJQYZiJhuIgKXmaRSWQuUWGgSUsH-tNdubUndmbpbAV-dbkwFFbZ7Yn1Rm0rQ2fkI46KCH2HOM1Gvg2L-LA5fnX0PaIOUnTT2rXTaFhk4n7-QPdt8XJ7E9f6CWPjtx_fbEVth4HIUIJoxMu4ZCrxXHjOXGkLG6dl7nIrPH5m7NGcyEtnTVlYhXa5ylwqnIjRrcuEzW3Jcd4LcFFxVJsoS2rWO3vodTaNXWSsIpxm1pdGZaNvXw_ZCzr_SQbKsO4Z8K9mWFKNf4dtLpvTtT4cX4HLrSEbbjScdxVW3PwarE3bq_rr8A4ZMKTYxbDyIfFnU6oi3F-qAYoPIRqg4WEfg0PABxQqErY3R4sbsHcuNL0Jq_Nq7m5DiDTMuDWpTbwUaWFzlyhVFA61qslczAJ41pFPm7akOXXWONBNMWamidS6JnUAj3rYo6aQx3-hXtMq9BBUfLv-ozr-rFtZ1pYprzjnVrBCGOZLI1AQpPTWG-MkD-ApraGmLQI_xxRtpgMiRcW29EaGPija5YTA-gASRdsMhzsu0O3WstB_BCGAh_0wvUnhcnNXnRIMdZNDzxunuNUwTY8SZUKTiRJANmCnAc7Dkfn-l7rwODqj1DQ4DuB5zXlnEFJPdqas_nXnbCQewBrKsX6_vTu5C5cYmoxNpuc6rJ4cn7p7aPKdlPdr2Qrh03kL82-YSGZ3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+artificial+intelligence+in+the+management+of+liver+diseases&rft.jtitle=The+Kaohsiung+journal+of+medical+sciences&rft.au=Lu%2C+Ming-Ying&rft.au=Chuang%2C+Wan-Long&rft.au=Yu%2C+Ming-Lung&rft.date=2024-11-01&rft.eissn=2410-8650&rft.volume=40&rft.issue=11&rft.spage=962&rft_id=info:doi/10.1002%2Fkjm2.12901&rft_id=info%3Apmid%2F39440678&rft.externalDocID=39440678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-551X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-551X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-551X&client=summon |