基于视觉显著性改进的水果图像模糊聚类分割算法

准确分割水果图像是采摘机器人实现视觉定位的关键技术。该文针对传统模糊聚类对初始聚类中心敏感、计算量大和易出现图像过分割等问题,结合机器人的视觉特性,提出了一种基于多尺度视觉显著性改进的水果图像模糊聚类分割算法。首先,选择适当的颜色模型把彩色水果图像转换为灰度图像;然后对灰度图像做不同尺度的高斯滤波处理,基于视觉显著性的特点,融合了多个不同尺度的高斯滤波图像,形成图像聚类空间;最后,用直方图和模拟退火粒子群算法对图像的传统模糊聚类分割算法进行了改进,用改进的算法分别对采集到的100张成熟荔枝和柑橘图像,各随机选取50张,进行图像分割试验。试验结果表明:该方法对成熟荔枝和柑橘的图像平均果实分割率分...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 6; pp. 157 - 165
Main Author 陈科尹 邹湘军 熊俊涛 彭红星 郭艾侠 陈丽娟
Format Journal Article
LanguageChinese
Published 华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州 510642%华南农业大学信息学院,广州 510642 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.06.020

Cover

Abstract 准确分割水果图像是采摘机器人实现视觉定位的关键技术。该文针对传统模糊聚类对初始聚类中心敏感、计算量大和易出现图像过分割等问题,结合机器人的视觉特性,提出了一种基于多尺度视觉显著性改进的水果图像模糊聚类分割算法。首先,选择适当的颜色模型把彩色水果图像转换为灰度图像;然后对灰度图像做不同尺度的高斯滤波处理,基于视觉显著性的特点,融合了多个不同尺度的高斯滤波图像,形成图像聚类空间;最后,用直方图和模拟退火粒子群算法对图像的传统模糊聚类分割算法进行了改进,用改进的算法分别对采集到的100张成熟荔枝和柑橘图像,各随机选取50张,进行图像分割试验。试验结果表明:该方法对成熟荔枝和柑橘的图像平均果实分割率分别为95.56%和93.68%,平均运行时间分别为0.724和0.790 s,解决了水果图像过分割等问题,满足实际作业中采摘机器人对果实图像分割率和实时性的要求,为图像分割及其实时获取提供了一种新的基础算法,为视觉精确定位提供了有效的试验数据。
AbstractList TP751; 准确分割水果图像是采摘机器人实现视觉定位的关键技术.该文针对传统模糊聚类对初始聚类中心敏感、计算量大和易出现图像过分割等问题,结合机器人的视觉特性,提出了一种基于多尺度视觉显著性改进的水果图像模糊聚类分割算法.首先,选择适当的颜色模型把彩色水果图像转换为灰度图像;然后对灰度图像做不同尺度的高斯滤波处理,基于视觉显著性的特点,融合了多个不同尺度的高斯滤波图像,形成图像聚类空间;最后,用直方图和模拟退火粒子群算法对图像的传统模糊聚类分割算法进行了改进,用改进的算法分别对采集到的100张成熟荔枝和柑橘图像,各随机选取50张,进行图像分割试验.试验结果表明:该方法对成熟荔枝和柑橘的图像平均果实分割率分别为95.56%和93.68%,平均运行时间分别为0.724和0.790 s,解决了水果图像过分割等问题,满足实际作业中采摘机器人对果实图像分割率和实时性的要求,为图像分割及其实时获取提供了一种新的基础算法,为视觉精确定位提供了有效的试验数据.
准确分割水果图像是采摘机器人实现视觉定位的关键技术。该文针对传统模糊聚类对初始聚类中心敏感、计算量大和易出现图像过分割等问题,结合机器人的视觉特性,提出了一种基于多尺度视觉显著性改进的水果图像模糊聚类分割算法。首先,选择适当的颜色模型把彩色水果图像转换为灰度图像;然后对灰度图像做不同尺度的高斯滤波处理,基于视觉显著性的特点,融合了多个不同尺度的高斯滤波图像,形成图像聚类空间;最后,用直方图和模拟退火粒子群算法对图像的传统模糊聚类分割算法进行了改进,用改进的算法分别对采集到的100张成熟荔枝和柑橘图像,各随机选取50张,进行图像分割试验。试验结果表明:该方法对成熟荔枝和柑橘的图像平均果实分割率分别为95.56%和93.68%,平均运行时间分别为0.724和0.790 s,解决了水果图像过分割等问题,满足实际作业中采摘机器人对果实图像分割率和实时性的要求,为图像分割及其实时获取提供了一种新的基础算法,为视觉精确定位提供了有效的试验数据。
Abstract_FL The vision location system of the picking robot, which is an important part of the robot, is mainly used to detect the spatial position of the fruit and provide the motion control system of the robot with position information. Extracting the fruit waited for picking in a complex background by selecting an appropriate image segmentation technology provides us with the full assurance to obtain the position information of the fruit. So, aiming at the problems that the traditional fuzzy clustering is sensitive to the initial clustering centers and has large amounts of calculation and image over-segmentation, combining with the picking robot visual characteristics, an improved fuzzy clustering segmentation algorithm based on the multi-scale visual saliency for fruit image was put forward in this paper. First, a color model of the litchi and citrus image was discussed respectively, their diagrams of the R-I color model was expatiated, the fruit color image was converted into gray image by selecting a R-I color model; the gray image was processed with different scale Gaussian filters and the image clustering segmentation space was formed by blending all the different scale Gaussian filtering images according to the visual saliency, effect chart of the multi-scale visual saliency image algorithm was given based on R-I, and the over-segmentation problem most of the fruit image fuzzy clustering segmentation algorithms was solved. Second, the high dimensional clustering segmentation space based on pixels was changed into the low dimensional clustering segmentation space based on the histogram and the gray level by using the histogram method and the specific steps of image segmentation algorithm was given; the calculation of the fuzzy clustering image segmentation algorithm was greatly decreased and the fuzzy clustering image segmentation speed was improved. Furthermore, in the light of the problems that the fuzzy clustering algorithm easily fell into the local extreme value, the clustering center was optimized with the particle swarm algorithm based on simulated annealing, and the image clustering segmentation performance was improved. At the same time, the cooling strategy and state acceptance probability function of the particle swarm algorithm based on simulated annealing was nonlinearly reformed. Finally, the fuzzy clustering image segmentation algorithm based on multi-scale visual saliency of this paper was tested with 50 randomly selected images each of the 100 ripe litchi images and 100 ripe citrus images, and the contrast effect charts of the traditional and improved fruit image segmentation algorithms were given. The experimental results showed that:for the ripe litchi and citrus image, the average fruit segmentation rate of this method was 95.56% and 93.68%, and the average running time was 0.724 s and 0.790 s. The algorithm could meet the requirement of fruit image segmentation and real-time operation of the picking robot in the real picking activities;It has also provided a new basis algorithm for the image segmentation and its real-time research, and offered testing data for the vision accurate location of the picking robot.
Author 陈科尹 邹湘军 熊俊涛 彭红星 郭艾侠 陈丽娟
AuthorAffiliation 华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州510642 华南农业大学信息学院,广州510642
AuthorAffiliation_xml – name: 华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州 510642%华南农业大学信息学院,广州 510642
Author_xml – sequence: 1
  fullname: 陈科尹 邹湘军 熊俊涛 彭红星 郭艾侠 陈丽娟
BookMark eNo9jztLA0EcxLeIYIz5EIJgded_d28vu6UGXxCwSR_2XvGCbjSHaDpFCcZCEZRIIorVWYkaGyPEL-M9PoYnEacZGH7MMDMop5rKRWgeg06FKRYbuh8ESscARDM5FjoBTHUwdSCQQ_n_fBoVg8C3gGFaAjBwHi1HD6Pv0UUadtKwG9-O06tefBTG1x_p1yDpn8Yv7_H9XTQYRyeX8dNjMjxPj_vJ62d01om6b8lzLx7ezKIpT24HbvHPC6i6ulItr2uVzbWN8lJFsxknWombAkyLG8CIMCnzOBclxzNc23YzAeYuEYQ6UgpLMkINwhxJGMXY5lng0AJamNQeSOVJVa81mvstlQ3WVLtuH1q_l8EEQjJybkLaW01V3_Mzdrfl78hWu2YwbAiDcvoDkXZyYw
ClassificationCodes TP751
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.06.020
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Improved fruit fuzzy clustering image segmentation algorithm based on visual saliency
DocumentTitle_FL Improved fruit fuzzy clustering image segmentation algorithm based on visual saliency
EndPage 165
ExternalDocumentID nygcxb201306022
45149438
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c582-786906b840529635f8897df4ecceeee018e2923daa9ba523425da25311c8ba5d3
ISSN 1002-6819
IngestDate Thu May 29 04:04:17 EDT 2025
Wed Feb 14 11:03:11 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords image processing
particle swarm
simulated annealing
采摘机器人
图像处理
picking robot
fuzzy clustering
模糊聚类
粒子群算法
模拟退火
multi-scale visual saliency
多尺度视觉显著性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582-786906b840529635f8897df4ecceeee018e2923daa9ba523425da25311c8ba5d3
Notes 11-2047/S
Chen Keyin, Zou Xiangjun, Xiong Juntao, Peng Hongxing, Guo Aixia, Chen Lijuan (1. Key Lab of Key Technology on South Agricultural Machine and Equipment Ministry of Education, South China Agricultural University, Guangzhou 510642, China; 2. College of lnformatics, South China Agricultural University, Guangzhou 510642, China)
image processing; fuzzy clustering; simulated annealing; multi-scale visual saliency; particle swarm;picking robot
The vision location system of the picking robot, which is an important part of the robot, is mainly used to detect the spatial position of the fruit and provide the motion control system of the robot with position information. Extracting the fruit waited for picking in a complex background by selecting an appropriate image segmentation technology provides us with the full assurance to obtain the position information of the fruit. So, aiming at the problems that the traditional fuzzy clustering is sensitive to the initial clustering centers and has large amounts of calcu
PageCount 9
ParticipantIDs wanfang_journals_nygcxb201306022
chongqing_primary_45149438
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州 510642%华南农业大学信息学院,广州 510642
Publisher_xml – name: 华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州 510642%华南农业大学信息学院,广州 510642
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 1.9892827
Snippet ...
TP751;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 157
SubjectTerms 图像处理
多尺度视觉显著性
模拟退火
模糊聚类
粒子群算法
采摘机器人
Title 基于视觉显著性改进的水果图像模糊聚类分割算法
URI http://lib.cqvip.com/qk/90712X/201306/45149438.html
https://d.wanfangdata.com.cn/periodical/nygcxb201306022
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNLQVRA_iJ7Z-0ENzWradr2SS46SdoRb0tEJvy3zt1stWawvak6IU60ERlEoriqd6ErVerFD_jDu7P8P3MtkPVIp1DyHk5X3lzea9zLwkhEw5Hs8yL4mr4J4bVS9LYR5M47wqWJ7CQxSnmcS9w9dv8Pmb3sIiWxwZnRnKWlpbTabT9b_uK_kfq0Ib2BV3yR7Bsn2i0AB1sC-UYGEo_8nGNGRURlQFNPSwFCENBQ18KnivImnIqRRUaZC0qfSxRVgIRRAgSgSpiEpFQ59KoOMhSFlU6YoMqZzVvJSmw6hwqYgQFAAXG7EUtARIR9hIAVtsqpTuLLQ8DIVRDoKC0IgBWOXll734WHfjmh0IJjQpRhWgMI0IpDTNYI4GXCsSAKj31NBQUimRIfb1UV3EBj1kBWHC0cpyLGFMDC9Vwe5C00Kuka5AJwMDCnPIEHUCbo4ZURmVNF0NE1q7UBMIaWBVhmTRmgANlBvxht-0lFtkjVtAv8GFmdyN3zBvam794QTs8shtE0_Y5V0Yv7sqV3KpXRUymO4zwGRDV58o61gDF91PnPQgvpWeK0bJMcf3bcxhja4tDOJfG5f4_QnaxssR7MHGaAePPeCD9SWzXbzdoJ8ThRkBTKcHGGmOkykj6sxhguK5JEvLreYdiLb05rdWI241h-K02mlyyiywJoPy33KGjKwvnSUng-aKOWQmP0dU-93-z_1n3d2N7u5m8fqg-2KreLBbvPzW_bHT2X5cfPpavH3T3jloP3pefHjf2Xvafbjd-fy9_WSjvfml83Gr2Ht1ntSisDY7XzV3iVRThmtIvHiNJ8LDD9sQYzeEkH7W8GACy-Fn2SJ3YKmTxbFMYua44Mmy2AH_ZKcCGjL3AhlrLbfyi2QySeIkjZnHrcT1_MyXIk15nHPJEs_nCRsnE_3BqN8uj4yp9-w2TibN6NTNPHK33rrfTO8lOJwWh4h64jD8S-SEo-9jwXeAl8nY6spafgWi4tXkqn4SfgF2EYxt
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%A7%86%E8%A7%89%E6%98%BE%E8%91%97%E6%80%A7%E6%94%B9%E8%BF%9B%E7%9A%84%E6%B0%B4%E6%9E%9C%E5%9B%BE%E5%83%8F%E6%A8%A1%E7%B3%8A%E8%81%9A%E7%B1%BB%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%88%E7%A7%91%E5%B0%B9+%E9%82%B9%E6%B9%98%E5%86%9B+%E7%86%8A%E4%BF%8A%E6%B6%9B+%E5%BD%AD%E7%BA%A2%E6%98%9F+%E9%83%AD%E8%89%BE%E4%BE%A0+%E9%99%88%E4%B8%BD%E5%A8%9F&rft.date=2013&rft.issn=1002-6819&rft.volume=29&rft.issue=6&rft.spage=157&rft.epage=165&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.06.020&rft.externalDocID=45149438
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg