一种改进的显性多核支持向量机
在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne learning,MKL)方法应运而生.最近,有的学者提出了一种简单有效的稀疏MKL算法,即GMKL(Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定.然而,GMKL算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息.另一方面,MultiK-MHKS算法则考虑了利用典型关联分析(Ca...
Saved in:
Published in | 自动化学报 Vol. 40; no. 10; pp. 2288 - 2294 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国人民大学 北京100872
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.3724/SP.J.1004.2014.02288 |
Cover
Abstract | 在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne learning,MKL)方法应运而生.最近,有的学者提出了一种简单有效的稀疏MKL算法,即GMKL(Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定.然而,GMKL算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息.另一方面,MultiK-MHKS算法则考虑了利用典型关联分析(Canonical correlation analysis,CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题.本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine IDMK-SVM).我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性.最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势. |
---|---|
AbstractList | 在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne learning,MKL)方法应运而生.最近,有的学者提出了一种简单有效的稀疏MKL算法,即GMKL(Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定.然而,GMKL算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息.另一方面,MultiK-MHKS算法则考虑了利用典型关联分析(Canonical correlation analysis,CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题.本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine IDMK-SVM).我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性.最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势. 在支持向量机(Support vector machine, SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果。如何充分利用多个不同核函数的特点,来共同提高SVM 学习的效果,已成为一个研究热点。于是,多核学习(Multiple kernel learning, MKL)方法应运而生。最近,有的学者提出了一种简单有效的稀疏MKL 算法,即GMKL (Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定。然而, GMKL 算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息。另一方面, MultiK-MHKS 算法则考虑了利用典型关联分析(Canonical correlation analysis, CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题。本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine, IDMK-SVM)。我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性。最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势。 |
Abstract_FL | In support vector machine (SVM), it is critical to define the kernel function and a different kernel would cause different classification accuracy. People have started pursuing how to make the most use of multiple kernels harmoniously to improve the SVM performance, hence, the multiple kernel learning (MKL). Recently, an efficient generalized multiple kernel learning (GMKL) method was presented, which combines the advantages of L1-norm and L2-norm. However, the GMKL algorithm does not make the most use of the common information among the selected kernels. On the other hand, the MultiK-MHKS algorithm uses the canonical correlation analysis (CCA) to get the common information among the kernels while ignoring the selecting of kernels. So this paper tries to combine them and an improved domain multiple kernel support vector machine (IDMK-SVM) is presented. Simulation experiments demonstrate that the IDMK-SVM gets a higher classification precision than the existing typical MKL algorithms. |
Author | 张凯军 梁循 |
AuthorAffiliation | 中国人民大学,北京100872 |
AuthorAffiliation_xml | – name: 中国人民大学 北京100872 |
Author_FL | LIANG Xun ZHANG Kai-Jun |
Author_FL_xml | – sequence: 1 fullname: ZHANG Kai-Jun – sequence: 2 fullname: LIANG Xun |
Author_xml | – sequence: 1 fullname: 张凯军 梁循 |
BookMark | eNotj7tKA0EYhQeJYIx5AysLC2HXf_65binBKwEF04fdmclFdKMJ4qWKINgoKqSQaGEhpLSNFvoyZqJv4UrkFKf5OJdZkktbqSNknkLIFPLl3Z1wK6QAPESgPAREradInmrFAwoY5UgeUPCAUyFnSLHTaSZAFVcRMsiTpa9hdzy48b2378_Hcf_SP3z47mD00vfPQ9979dcXo7v7n6tb__Q-R6Zr8X7HFf-9QCprq5XSRlDeXt8srZQDIzQGwqIC5wytsUSJbIWLTEyTyEihgFmbSBCGShszdFYjU046rTnNZKzSihXI4iT2JE5rcVqv7rWO22lWWD23jdPk72T2FjEDFyagabTS-lEzQw_bzYO4fVaVEoWOADn7BZijYBo |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3724/SP.J.1004.2014.02288 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | An Improved Domain Multiple Kernel Support Vector Machine |
DocumentTitle_FL | An Improved Domain Multiple Kernel Support Vector Machine |
EISSN | 1874-1029 |
EndPage | 2294 |
ExternalDocumentID | zdhxb201410022 662589024 |
GrantInformation_xml | – fundername: 国家自然科学基金; 北京市自然科学基金; 中国人民大学品牌计划(10XNI029)资助Supported by National Natural Science Foundation of China; National Natural Science Foundation of Beijing; Brand Plan of Renmin University of China funderid: (71271211); (4132067); (71271211); (4132067); (10XNI029) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c582-5d270eec1f3b75187e9ca1b9c65703ddb605c16da32ed8237e6e8841414cd7873 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:36:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | 支持向量机 Multiple kernel learning (MKL) classification precision 分类精度 support vector machine (SVM) canonical correlation analysis (CCA) 多核学习 典型关联分析 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c582-5d270eec1f3b75187e9ca1b9c65703ddb605c16da32ed8237e6e8841414cd7873 |
Notes | Multiple kernel learning (MKL), classification precision, canonical correlation analysis (CCA), supportvector machine (SVM) In support vector machine (SVM), it is critical to define the kernel function and a different kernel would cause different classification accuracy. People have started pursuing how to make the most use of multiple kernels harmoniously to improve the SVM performance, hence, the multiple kernel learning (MKL). Recently, an efficient generalized multiple kernel learning (GMKL) method was presented, which combines the advantages of Ll-norm and L2-norm. However, the GMKL algorithm does not make the most use of the common information among the selected kernels. On the other hand, the MultiK-MHKS algorithm uses the canonical correlation analysis (CCA) to get the common information among the kernels while ignoring the selecting of kernels. So this paper tries to combine them and an improved domain multiple kernel support vector machine (IDMK-SVM) is presented. Simulation experiments demonstrate t |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zdhxb201410022 chongqing_primary_662589024 |
PublicationCentury | 2000 |
PublicationDate | 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2014 |
Publisher | 中国人民大学 北京100872 |
Publisher_xml | – name: 中国人民大学 北京100872 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.043096 |
Snippet | 在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne... 在支持向量机(Support vector machine, SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果。如何充分利用多个不同核函数的特点,来共同提高SVM 学习的效果,已成为一个研究热点。于是,多核学习(Multiple kernel learning,... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 2288 |
SubjectTerms | 典型关联分析 分类精度 多核学习 支持向量机 |
Title | 一种改进的显性多核支持向量机 |
URI | http://lib.cqvip.com/qk/90250X/201410/662589024.html https://d.wanfangdata.com.cn/periodical/zdhxb201410022 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Fq2FzggnqKURw_4AtolcRw7PjrZLFUFiENBva2SONtVD1seWwntqUhIXECA1AMqHDgg9ciRwgF-hqbwF8w42W6KKvGQVpEzM7ZnPFl7xo8xIVdMyrhvsrSVYbRbnmZOK5Gct7gy3OSizxMbt-DWbbFwly8u-8uNxqfarqX1UdrOxoeeK_kfrQIM9IqnZP9Bs_uFAgDSoF94gobh-Vc6pjGnYYCbFWJJtaRBh8aCKgAqGgc07FIVIkppGnCLAmCMCcgC9LFPNUcsQLSDRZXZddfSRGBmIo1yqIKEogFUYVEqopWDvzrhJECs1kgfaKoDm4ioEraWDtXClgkof6JkxIQR1oy00lYLCSg-nJIAZ6ziA1jXuj5N4U4nKKumgIqQ4ZCGHQvR-IMywlIEK28lOLJ0bcKlrKh1hGGIZH0uFHzbFvqf9c_UqXfGrLwxsBrYGSuvU_590PAk47hsfae9iHtGcKLN5W1nmvtAOO6xGTxOmd0eCyRHyAyT0vWbZOZGePOenlqiYLipWtfpK-gda5aW8DES4PRd4np2bQEa3j1v6tlhmH9R89x91wM_Ez3n0ujwMQiTnU6s2qQ8JYqiXT9MMIwkMlgbrjwA-8geVxv2k-FKzbJaOkGOVy7RvC6_75OkMR6cIsdqgTJPk6vfdzb2tl8Um59_fHu7t_W0ePO12Nje_bBVvN8pNj8Wz5_svnr989nL4t2XM2SpGy9FC63qlo9W5oN35xsmnTzP3L6X4hKgzFWWuKnKcE-WZ0wK_nbmCpN4LDcYWSkXeRBwaH-eGRhtvLOkOVwb5ufIvJdIAHqJY1gGVn4_CVwZJH1lvD5LhRSzZG5f6N79MphLTwjm41o7nyWXq2boVX_xR72Dyj7_R4o5chTT5RTdBdIcPVzPL4LROkovVR_IL1plbZs |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E6%94%B9%E8%BF%9B%E7%9A%84%E6%98%BE%E6%80%A7%E5%A4%9A%E6%A0%B8%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%87%AF%E5%86%9B&rft.au=%E6%A2%81%E5%BE%AA&rft.date=2014&rft.pub=%E4%B8%AD%E5%9B%BD%E4%BA%BA%E6%B0%91%E5%A4%A7%E5%AD%A6+%E5%8C%97%E4%BA%AC100872&rft.issn=0254-4156&rft.issue=10&rft.spage=2288&rft.epage=2294&rft_id=info:doi/10.3724%2FSP.J.1004.2014.02288&rft.externalDocID=zdhxb201410022 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |