一种改进的显性多核支持向量机

在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne learning,MKL)方法应运而生.最近,有的学者提出了一种简单有效的稀疏MKL算法,即GMKL(Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定.然而,GMKL算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息.另一方面,MultiK-MHKS算法则考虑了利用典型关联分析(Ca...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 40; no. 10; pp. 2288 - 2294
Main Author 张凯军 梁循
Format Journal Article
LanguageChinese
Published 中国人民大学 北京100872 2014
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.3724/SP.J.1004.2014.02288

Cover

Abstract 在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne learning,MKL)方法应运而生.最近,有的学者提出了一种简单有效的稀疏MKL算法,即GMKL(Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定.然而,GMKL算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息.另一方面,MultiK-MHKS算法则考虑了利用典型关联分析(Canonical correlation analysis,CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题.本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine IDMK-SVM).我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性.最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势.
AbstractList 在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne learning,MKL)方法应运而生.最近,有的学者提出了一种简单有效的稀疏MKL算法,即GMKL(Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定.然而,GMKL算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息.另一方面,MultiK-MHKS算法则考虑了利用典型关联分析(Canonical correlation analysis,CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题.本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine IDMK-SVM).我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性.最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势.
在支持向量机(Support vector machine, SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果。如何充分利用多个不同核函数的特点,来共同提高SVM 学习的效果,已成为一个研究热点。于是,多核学习(Multiple kernel learning, MKL)方法应运而生。最近,有的学者提出了一种简单有效的稀疏MKL 算法,即GMKL (Generalized MKL)算法,它结合了L1范式和L2范式的优点,形成了一个对核权重的弹性限定。然而, GMKL 算法也并没有考虑到如何在充分利用已经选用的核函数中的共有信息。另一方面, MultiK-MHKS 算法则考虑了利用典型关联分析(Canonical correlation analysis, CCA)来获取核函数之间的共有信息,但是却没有考虑到核函数的筛选问题。本文模型则基于这两种算法进行了一定程度的改进,我们称我们的算法为改进的显性多核支持向量机(Improved domain multiple kernel support vector machine, IDMK-SVM)。我们证明了本文的模型保持了GMKL的特性,并且证明了算法的收敛性。最后通过模拟实验,本文证明了本文的多核学习方法相比于传统的多核学习方法有一定的精确性优势。
Abstract_FL In support vector machine (SVM), it is critical to define the kernel function and a different kernel would cause different classification accuracy. People have started pursuing how to make the most use of multiple kernels harmoniously to improve the SVM performance, hence, the multiple kernel learning (MKL). Recently, an efficient generalized multiple kernel learning (GMKL) method was presented, which combines the advantages of L1-norm and L2-norm. However, the GMKL algorithm does not make the most use of the common information among the selected kernels. On the other hand, the MultiK-MHKS algorithm uses the canonical correlation analysis (CCA) to get the common information among the kernels while ignoring the selecting of kernels. So this paper tries to combine them and an improved domain multiple kernel support vector machine (IDMK-SVM) is presented. Simulation experiments demonstrate that the IDMK-SVM gets a higher classification precision than the existing typical MKL algorithms.
Author 张凯军 梁循
AuthorAffiliation 中国人民大学,北京100872
AuthorAffiliation_xml – name: 中国人民大学 北京100872
Author_FL LIANG Xun
ZHANG Kai-Jun
Author_FL_xml – sequence: 1
  fullname: ZHANG Kai-Jun
– sequence: 2
  fullname: LIANG Xun
Author_xml – sequence: 1
  fullname: 张凯军 梁循
BookMark eNotj7tKA0EYhQeJYIx5AysLC2HXf_65binBKwEF04fdmclFdKMJ4qWKINgoKqSQaGEhpLSNFvoyZqJv4UrkFKf5OJdZkktbqSNknkLIFPLl3Z1wK6QAPESgPAREradInmrFAwoY5UgeUPCAUyFnSLHTaSZAFVcRMsiTpa9hdzy48b2378_Hcf_SP3z47mD00vfPQ9979dcXo7v7n6tb__Q-R6Zr8X7HFf-9QCprq5XSRlDeXt8srZQDIzQGwqIC5wytsUSJbIWLTEyTyEihgFmbSBCGShszdFYjU046rTnNZKzSihXI4iT2JE5rcVqv7rWO22lWWD23jdPk72T2FjEDFyagabTS-lEzQw_bzYO4fVaVEoWOADn7BZijYBo
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1004.2014.02288
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate An Improved Domain Multiple Kernel Support Vector Machine
DocumentTitle_FL An Improved Domain Multiple Kernel Support Vector Machine
EISSN 1874-1029
EndPage 2294
ExternalDocumentID zdhxb201410022
662589024
GrantInformation_xml – fundername: 国家自然科学基金; 北京市自然科学基金; 中国人民大学品牌计划(10XNI029)资助Supported by National Natural Science Foundation of China; National Natural Science Foundation of Beijing; Brand Plan of Renmin University of China
  funderid: (71271211); (4132067); (71271211); (4132067); (10XNI029)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c582-5d270eec1f3b75187e9ca1b9c65703ddb605c16da32ed8237e6e8841414cd7873
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:36:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 支持向量机
Multiple kernel learning (MKL)
classification precision
分类精度
support vector machine (SVM)
canonical correlation analysis (CCA)
多核学习
典型关联分析
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582-5d270eec1f3b75187e9ca1b9c65703ddb605c16da32ed8237e6e8841414cd7873
Notes Multiple kernel learning (MKL), classification precision, canonical correlation analysis (CCA), supportvector machine (SVM)
In support vector machine (SVM), it is critical to define the kernel function and a different kernel would cause different classification accuracy. People have started pursuing how to make the most use of multiple kernels harmoniously to improve the SVM performance, hence, the multiple kernel learning (MKL). Recently, an efficient generalized multiple kernel learning (GMKL) method was presented, which combines the advantages of Ll-norm and L2-norm. However, the GMKL algorithm does not make the most use of the common information among the selected kernels. On the other hand, the MultiK-MHKS algorithm uses the canonical correlation analysis (CCA) to get the common information among the kernels while ignoring the selecting of kernels. So this paper tries to combine them and an improved domain multiple kernel support vector machine (IDMK-SVM) is presented. Simulation experiments demonstrate t
PageCount 7
ParticipantIDs wanfang_journals_zdhxb201410022
chongqing_primary_662589024
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2014
Publisher 中国人民大学 北京100872
Publisher_xml – name: 中国人民大学 北京100872
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.043096
Snippet 在支持向量机(Support vector machine,SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果.如何充分利用多个不同核函数的特点,来共同提高SVM学习的效果,已成为一个研究热点.于是,多核学习(Multiple kerne...
在支持向量机(Support vector machine, SVM)中,对核函数的定义非常重要,不同的核会产生不同的分类结果。如何充分利用多个不同核函数的特点,来共同提高SVM 学习的效果,已成为一个研究热点。于是,多核学习(Multiple kernel learning,...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2288
SubjectTerms 典型关联分析
分类精度
多核学习
支持向量机
Title 一种改进的显性多核支持向量机
URI http://lib.cqvip.com/qk/90250X/201410/662589024.html
https://d.wanfangdata.com.cn/periodical/zdhxb201410022
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Fq2FzggnqKURw_4AtolcRw7PjrZLFUFiENBva2SONtVD1seWwntqUhIXECA1AMqHDgg9ciRwgF-hqbwF8w42W6KKvGQVpEzM7ZnPFl7xo8xIVdMyrhvsrSVYbRbnmZOK5Gct7gy3OSizxMbt-DWbbFwly8u-8uNxqfarqX1UdrOxoeeK_kfrQIM9IqnZP9Bs_uFAgDSoF94gobh-Vc6pjGnYYCbFWJJtaRBh8aCKgAqGgc07FIVIkppGnCLAmCMCcgC9LFPNUcsQLSDRZXZddfSRGBmIo1yqIKEogFUYVEqopWDvzrhJECs1kgfaKoDm4ioEraWDtXClgkof6JkxIQR1oy00lYLCSg-nJIAZ6ziA1jXuj5N4U4nKKumgIqQ4ZCGHQvR-IMywlIEK28lOLJ0bcKlrKh1hGGIZH0uFHzbFvqf9c_UqXfGrLwxsBrYGSuvU_590PAk47hsfae9iHtGcKLN5W1nmvtAOO6xGTxOmd0eCyRHyAyT0vWbZOZGePOenlqiYLipWtfpK-gda5aW8DES4PRd4np2bQEa3j1v6tlhmH9R89x91wM_Ez3n0ujwMQiTnU6s2qQ8JYqiXT9MMIwkMlgbrjwA-8geVxv2k-FKzbJaOkGOVy7RvC6_75OkMR6cIsdqgTJPk6vfdzb2tl8Um59_fHu7t_W0ePO12Nje_bBVvN8pNj8Wz5_svnr989nL4t2XM2SpGy9FC63qlo9W5oN35xsmnTzP3L6X4hKgzFWWuKnKcE-WZ0wK_nbmCpN4LDcYWSkXeRBwaH-eGRhtvLOkOVwb5ufIvJdIAHqJY1gGVn4_CVwZJH1lvD5LhRSzZG5f6N79MphLTwjm41o7nyWXq2boVX_xR72Dyj7_R4o5chTT5RTdBdIcPVzPL4LROkovVR_IL1plbZs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E6%94%B9%E8%BF%9B%E7%9A%84%E6%98%BE%E6%80%A7%E5%A4%9A%E6%A0%B8%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%87%AF%E5%86%9B&rft.au=%E6%A2%81%E5%BE%AA&rft.date=2014&rft.pub=%E4%B8%AD%E5%9B%BD%E4%BA%BA%E6%B0%91%E5%A4%A7%E5%AD%A6+%E5%8C%97%E4%BA%AC100872&rft.issn=0254-4156&rft.issue=10&rft.spage=2288&rft.epage=2294&rft_id=info:doi/10.3724%2FSP.J.1004.2014.02288&rft.externalDocID=zdhxb201410022
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg