Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle

1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom Submitted 1 May 2008 ; accepted in fi...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: endocrinology and metabolism Vol. 295; no. 3; pp. E595 - E604
Main Authors Greenhaff, P. L, Karagounis, L. G, Peirce, N, Simpson, E. J, Hazell, M, Layfield, R, Wackerhage, H, Smith, K, Atherton, P, Selby, A, Rennie, M. J
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom Submitted 1 May 2008 ; accepted in final form 21 June 2008 We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. muscle protein synthesis; muscle protein breakdown Address for reprint requests and other correspondence: P. Greenhaff, School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK (e-mail: paul.greenhaff{at}nottingham.ac.uk )
AbstractList 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom Submitted 1 May 2008 ; accepted in final form 21 June 2008 We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. muscle protein synthesis; muscle protein breakdown Address for reprint requests and other correspondence: P. Greenhaff, School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK (e-mail: paul.greenhaff{at}nottingham.ac.uk )
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-...]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d...- phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser... and p70... Thr... increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser..., 4E-BP1 Thr..., or GSK3β Ser... and decreased that of eEF2 Thr..., higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. (ProQuest: ... denotes formulae/symbols omitted.)
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
Author Selby, A
Hazell, M
Greenhaff, P. L
Wackerhage, H
Atherton, P
Layfield, R
Karagounis, L. G
Rennie, M. J
Peirce, N
Smith, K
Simpson, E. J
AuthorAffiliation 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
AuthorAffiliation_xml – name: 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
Author_xml – sequence: 1
  fullname: Greenhaff, P. L
– sequence: 2
  fullname: Karagounis, L. G
– sequence: 3
  fullname: Peirce, N
– sequence: 4
  fullname: Simpson, E. J
– sequence: 5
  fullname: Hazell, M
– sequence: 6
  fullname: Layfield, R
– sequence: 7
  fullname: Wackerhage, H
– sequence: 8
  fullname: Smith, K
– sequence: 9
  fullname: Atherton, P
– sequence: 10
  fullname: Selby, A
– sequence: 11
  fullname: Rennie, M. J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18577697$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URLeFP8ABWRw4NYsdx_m4IKHSAlIlLuVseZ1x4pVjp7HTsmf-ON6PLlAJ5INHM8_7akYzZ-jEeQcIvaZkSSnP38v1CK71y4YUlC5zQupnaJEKeUY55ydoQWjDMloXzSk6C2FNCKl4kb9Ap7TmVVU21QL9_GSCDMErI6PxDq8gPgA4HHvAoDWoGLDXWA7GeSyVaQOWrsXGhdkah5MimM7JFHcXeF6Zu9nElLemkwHCxQ4eJx8hJeM8OX8PU1Ljfh6kw8MclIWX6LmWNsCrw3-Ovl9f3V5-yW6-ff56-fEmU7ymMdOsaKiqW10zuaJlI1klK8ZWRa0layUtOG9TzFirGii1pBpoqSjTRHFFE3mOPux9x3k1QKvAxUlaMU5mkNNGeGnE3xVnetH5e5FzVlasTAbvDgaTv5shRDGYoMBa6cDPQZQNpxUvt-DbJ-Dap-HTcCJn6eWkzhP05s92jn08LicB9R5Qkw9hAi2Uibs1pe6MFZSI7R2Iwx2I3R2I7R0kaf5EenT_nyjbi3rT9Q9mAjH2m2C89d3myOcNF0xc8YYnvvk3fz1bews_4qPwt06MrWa_AFAw4Ok
CODEN AJPMD9
CitedBy_id crossref_primary_10_1016_j_afos_2020_06_001
crossref_primary_10_13070_mm_en_2_201
crossref_primary_10_1371_journal_pone_0220757
crossref_primary_10_3945_an_116_014506
crossref_primary_10_3945_jn_114_199604
crossref_primary_10_1042_CS20100597
crossref_primary_10_1111_j_1753_4887_2011_00420_x
crossref_primary_10_3945_ajcn_114_103184
crossref_primary_10_1111_j_1753_4887_2011_00443_x
crossref_primary_10_1016_j_nutres_2013_12_007
crossref_primary_10_1017_S0007114521002609
crossref_primary_10_1038_srep17535
crossref_primary_10_1186_s12970_018_0215_1
crossref_primary_10_1152_japplphysiol_00625_2015
crossref_primary_10_1186_1550_2783_11_20
crossref_primary_10_1113_jphysiol_2008_164483
crossref_primary_10_3389_fnut_2020_00025
crossref_primary_10_1152_ajpcell_00209_2019
crossref_primary_10_1097_MCO_0b013e32831cef61
crossref_primary_10_1016_j_arr_2013_07_003
crossref_primary_10_1152_japplphysiol_00244_2017
crossref_primary_10_2337_db22_0079
crossref_primary_10_1007_s00726_014_1866_0
crossref_primary_10_1371_journal_pone_0018090
crossref_primary_10_1139_H09_042
crossref_primary_10_1152_japplphysiol_00608_2019
crossref_primary_10_1113_jphysiol_2008_160333
crossref_primary_10_3390_nu5030852
crossref_primary_10_1111_j_1748_1716_2010_02187_x
crossref_primary_10_1097_CCM_0b013e3181b6ec1f
crossref_primary_10_1007_s00125_015_3751_0
crossref_primary_10_1152_ajpendo_00378_2018
crossref_primary_10_1002_oby_24022
crossref_primary_10_1007_s00421_017_3792_9
crossref_primary_10_3390_nu12102915
crossref_primary_10_1021_pr900081q
crossref_primary_10_1186_1756_0500_4_488
crossref_primary_10_1038_ki_2015_247
crossref_primary_10_3945_jn_109_118372
crossref_primary_10_1007_s12576_016_0506_8
crossref_primary_10_1152_japplphysiol_00411_2014
crossref_primary_10_3945_an_113_003699
crossref_primary_10_1136_thoraxjnl_2012_202764
crossref_primary_10_1016_j_clnu_2016_11_012
crossref_primary_10_1113_JP275766
crossref_primary_10_1016_j_ajcnut_2024_01_004
crossref_primary_10_1016_j_nutos_2021_01_005
crossref_primary_10_1016_j_clnu_2017_09_025
crossref_primary_10_1007_s00421_009_1289_x
crossref_primary_10_1093_gerona_glu103
crossref_primary_10_1016_j_clnu_2017_09_024
crossref_primary_10_1016_j_metabol_2019_153996
crossref_primary_10_1016_j_clnu_2015_02_013
crossref_primary_10_1113_jphysiol_2012_228833
crossref_primary_10_3945_jn_110_135038
crossref_primary_10_1017_S0954422423000124
crossref_primary_10_1016_j_clnu_2016_04_025
crossref_primary_10_1186_1550_2783_8_18
crossref_primary_10_1152_japplphysiol_01009_2016
crossref_primary_10_1016_j_arr_2021_101463
crossref_primary_10_1152_ajpcell_00207_2024
crossref_primary_10_3945_jn_110_127647
crossref_primary_10_1002_mnfr_201700287
crossref_primary_10_3390_nu16203428
crossref_primary_10_3945_ajcn_2009_27543
crossref_primary_10_1007_s00421_010_1808_9
crossref_primary_10_1111_j_1748_1716_2012_02404_x
crossref_primary_10_14814_phy2_13628
crossref_primary_10_3945_ajcn_117_169615
crossref_primary_10_3390_nu9030184
crossref_primary_10_1113_JP276504
crossref_primary_10_3389_fnut_2019_00144
crossref_primary_10_3389_fphys_2017_01045
crossref_primary_10_3389_fphys_2019_00736
crossref_primary_10_1111_sms_12170
crossref_primary_10_1186_1750_2187_7_7
crossref_primary_10_1038_oby_2010_290
crossref_primary_10_1515_bmc_2019_0002
crossref_primary_10_3390_nu12072023
crossref_primary_10_2337_db15_0021
crossref_primary_10_1038_nrendo_2014_171
crossref_primary_10_1152_ajpendo_90569_2008
crossref_primary_10_3390_nu15184003
crossref_primary_10_3390_nu11112824
crossref_primary_10_1152_japplphysiol_00395_2012
crossref_primary_10_1002_jcsm_13030
crossref_primary_10_2519_jospt_2018_0615
crossref_primary_10_1152_japplphysiol_00452_2009
crossref_primary_10_1007_s00223_014_9925_9
crossref_primary_10_1152_japplphysiol_00962_2010
crossref_primary_10_1139_H09_137
crossref_primary_10_1152_ajpendo_00227_2015
crossref_primary_10_1016_j_ajcnut_2024_05_009
crossref_primary_10_1113_JP270774
crossref_primary_10_1139_H09_012
crossref_primary_10_3389_fendo_2018_00443
crossref_primary_10_1017_S0007114517001829
crossref_primary_10_1080_15502783_2024_2434734
crossref_primary_10_1016_j_ajcnut_2024_04_032
crossref_primary_10_1016_j_bbrc_2017_10_085
crossref_primary_10_1179_1743288X11Y_0000000002
crossref_primary_10_1152_ajpregu_00348_2010
crossref_primary_10_1111_bcp_15877
crossref_primary_10_1186_s12970_017_0184_9
crossref_primary_10_1152_ajpendo_00257_2016
crossref_primary_10_1007_s13668_020_00338_w
crossref_primary_10_1017_S0029665110003927
crossref_primary_10_14814_phy2_12433
crossref_primary_10_1007_s13668_016_0161_y
crossref_primary_10_1002_oby_22213
crossref_primary_10_1097_MCO_0b013e32831fd97a
crossref_primary_10_1017_S0954422411000084
crossref_primary_10_1164_rccm_201205_0954SO
crossref_primary_10_1007_s00421_016_3417_8
crossref_primary_10_1093_bmb_ldq008
crossref_primary_10_1016_j_metabol_2016_12_010
crossref_primary_10_1152_ajpregu_00077_2010
crossref_primary_10_1371_journal_pgen_1003389
crossref_primary_10_1096_fj_15_273474
crossref_primary_10_1016_j_phanu_2018_01_003
crossref_primary_10_1007_s12011_018_1539_z
crossref_primary_10_1113_jphysiol_2011_206193
crossref_primary_10_1249_MSS_0000000000003541
crossref_primary_10_3389_fphys_2015_00245
crossref_primary_10_1002_oby_20943
crossref_primary_10_1186_s12970_017_0202_y
crossref_primary_10_3390_ijms23105431
crossref_primary_10_3390_nu8040181
crossref_primary_10_1186_s13063_023_07329_6
crossref_primary_10_1113_jphysiol_2011_225003
crossref_primary_10_1007_s11357_021_00386_2
crossref_primary_10_1017_S0007114524000163
crossref_primary_10_3389_fphys_2017_00541
crossref_primary_10_1186_1550_2783_10_5
crossref_primary_10_1016_j_clnu_2017_05_029
crossref_primary_10_1016_j_isci_2023_108634
crossref_primary_10_1097_WCO_0b013e32832f15e1
crossref_primary_10_1249_JES_0000000000000173
crossref_primary_10_1111_apha_12086
crossref_primary_10_17338_trainology_1_2_28
crossref_primary_10_1152_ajpendo_00276_2011
crossref_primary_10_1210_jc_2017_00360
crossref_primary_10_1530_EJE_14_0902
crossref_primary_10_3390_nu11050989
crossref_primary_10_3390_nu4070740
crossref_primary_10_1007_s00421_022_04896_5
crossref_primary_10_1152_japplphysiol_00632_2016
crossref_primary_10_1210_jc_2008_2686
crossref_primary_10_1097_MCO_0b013e32834d19bc
crossref_primary_10_1093_nutrit_nuz077
crossref_primary_10_1002_jcsm_13005
crossref_primary_10_1177_0884533617693592
crossref_primary_10_1519_JSC_0000000000004909
crossref_primary_10_1017_S0029665115000130
crossref_primary_10_1038_s41598_017_05483_x
crossref_primary_10_3390_nu17010132
crossref_primary_10_1016_j_arr_2011_11_001
crossref_primary_10_3389_fphys_2017_00310
crossref_primary_10_1007_s40279_015_0450_4
crossref_primary_10_1096_fj_201800049RR
crossref_primary_10_1152_ajpendo_00481_2014
crossref_primary_10_1093_advances_nmaa015
crossref_primary_10_1210_jc_2013_3970
crossref_primary_10_1016_j_biocel_2013_05_039
crossref_primary_10_1097_SPC_0b013e328359e6dd
crossref_primary_10_1186_gm122
crossref_primary_10_3390_nu13020647
crossref_primary_10_3945_jn_112_168203
crossref_primary_10_1152_japplphysiol_00170_2012
crossref_primary_10_3945_an_115_011650
crossref_primary_10_1016_j_clnu_2017_09_008
crossref_primary_10_1134_S0362119716060104
crossref_primary_10_1016_j_clnu_2020_03_017
crossref_primary_10_1113_jphysiol_2009_184416
crossref_primary_10_1007_s00424_014_1579_y
crossref_primary_10_1152_ajpcell_00225_2018
crossref_primary_10_1016_j_clnu_2021_01_002
crossref_primary_10_1186_1743_7075_9_40
crossref_primary_10_1016_j_cnd_2019_01_003
crossref_primary_10_1186_s40064_016_2736_x
crossref_primary_10_1016_j_bbadis_2008_10_011
crossref_primary_10_1016_j_tifs_2023_104178
crossref_primary_10_1038_s41387_022_00213_3
crossref_primary_10_1038_s41538_017_0002_4
crossref_primary_10_1016_j_clnu_2018_06_963
crossref_primary_10_1111_apha_12532
crossref_primary_10_1113_JP281907
crossref_primary_10_4236_fns_2023_145026
crossref_primary_10_1007_s00394_021_02782_y
crossref_primary_10_1113_JP270343
crossref_primary_10_1080_17461391_2014_936325
crossref_primary_10_1016_j_clnu_2014_09_016
crossref_primary_10_1093_jn_nxab353
crossref_primary_10_1017_S0007114516003949
crossref_primary_10_1016_j_biocel_2013_06_011
crossref_primary_10_3390_nu14030563
crossref_primary_10_1016_j_cger_2015_04_011
crossref_primary_10_1113_jphysiol_2010_201525
crossref_primary_10_3389_fnut_2019_00087
crossref_primary_10_3945_ajcn_117_157818
crossref_primary_10_14814_phy2_12466
crossref_primary_10_1371_journal_pone_0012033
crossref_primary_10_3945_ajcn_111_017061
crossref_primary_10_1007_s40279_014_0258_7
crossref_primary_10_1016_j_nut_2012_04_012
crossref_primary_10_1002_jcsm_12005
crossref_primary_10_1080_10408398_2021_1890689
crossref_primary_10_1093_nutrit_nuab083
crossref_primary_10_1093_jn_nxaa251
crossref_primary_10_1111_acel_13202
crossref_primary_10_1016_j_clnu_2012_09_002
crossref_primary_10_3803_EnM_2020_406
crossref_primary_10_1139_H09_093
crossref_primary_10_1152_japplphysiol_00354_2012
crossref_primary_10_1210_jendso_bvad178
crossref_primary_10_3390_nu14071524
crossref_primary_10_1016_j_meatsci_2015_05_009
crossref_primary_10_1093_jas_skaa268
crossref_primary_10_3390_nu11051084
crossref_primary_10_3390_nu4111664
crossref_primary_10_3945_ajcn_111_020800
crossref_primary_10_3945_ajcn_112_045708
crossref_primary_10_1038_s41574_019_0274_7
crossref_primary_10_1152_ajpcell_00374_2015
crossref_primary_10_1152_japplphysiol_01343_2011
crossref_primary_10_1096_fj_201700158RR
crossref_primary_10_3945_ajcn_2008_26401
crossref_primary_10_1016_j_nutres_2015_09_006
crossref_primary_10_1152_japplphysiol_91481_2008
crossref_primary_10_1007_s00421_017_3775_x
crossref_primary_10_1016_j_mad_2013_11_003
crossref_primary_10_1113_EP085647
crossref_primary_10_1080_17461391_2015_1073362
crossref_primary_10_3389_fphys_2016_00361
crossref_primary_10_2337_db11_0799
crossref_primary_10_1097_CCM_0b013e3181cc4b53
crossref_primary_10_1152_ajpendo_00110_2022
crossref_primary_10_1007_s00394_021_02590_4
crossref_primary_10_1016_j_arr_2018_07_005
crossref_primary_10_1016_j_freeradbiomed_2016_01_016
crossref_primary_10_1136_bjsports_2012_091100
crossref_primary_10_3945_ajcn_2010_29819
crossref_primary_10_1152_japplphysiol_91351_2008
crossref_primary_10_1186_1743_7075_10_15
crossref_primary_10_1017_S0954422423000197
crossref_primary_10_1017_S0029665120007879
crossref_primary_10_1017_S0007114522003087
crossref_primary_10_3945_jn_113_175984
crossref_primary_10_1113_jphysiol_2010_197632
crossref_primary_10_2460_ajvr_72_2_248
crossref_primary_10_1016_j_domaniend_2025_106940
crossref_primary_10_3389_fnut_2021_797004
crossref_primary_10_1007_s00421_015_3121_0
crossref_primary_10_1007_s40279_019_01053_5
crossref_primary_10_1139_apnm_2016_0564
crossref_primary_10_1016_j_expneurol_2013_06_003
crossref_primary_10_3389_fnut_2021_640621
crossref_primary_10_1097_MCO_0b013e3283516850
crossref_primary_10_1152_ajpendo_00517_2011
crossref_primary_10_1249_MSS_0b013e3182364162
crossref_primary_10_1113_jphysiol_2010_192856
crossref_primary_10_1093_jn_nxy026
crossref_primary_10_1152_ajpendo_00174_2018
crossref_primary_10_1113_JP275430
crossref_primary_10_1210_jc_2013_1502
crossref_primary_10_1042_CS20140447
crossref_primary_10_1152_ajpendo_00112_2015
crossref_primary_10_3390_nu9020094
crossref_primary_10_3390_nu12092496
crossref_primary_10_1007_s13361_015_1262_3
crossref_primary_10_1016_j_ijnurstu_2020_103783
crossref_primary_10_1152_ajpendo_00230_2016
crossref_primary_10_14814_phy2_12715
crossref_primary_10_1017_S002966511000399X
crossref_primary_10_1134_S0022093021040104
crossref_primary_10_1113_JP278828
crossref_primary_10_1113_jphysiol_2014_285577
crossref_primary_10_1113_jphysiol_2009_170738
crossref_primary_10_1089_rej_2009_1015
crossref_primary_10_1249_MSS_0b013e31820751cb
crossref_primary_10_1186_s12970_017_0177_8
crossref_primary_10_1007_s12020_012_9676_1
crossref_primary_10_1016_j_nutos_2021_02_005
crossref_primary_10_1113_EP087492
crossref_primary_10_1113_JP275443
crossref_primary_10_1152_ajpendo_00157_2020
crossref_primary_10_1017_S0007114517002409
crossref_primary_10_1152_japplphysiol_00901_2010
crossref_primary_10_1042_CS20231198
crossref_primary_10_1530_JOE_17_0186
crossref_primary_10_1042_CS20231197
crossref_primary_10_1016_j_nut_2009_10_013
crossref_primary_10_1152_japplphysiol_91234_2008
crossref_primary_10_31744_einstein_journal_2019RB4898
crossref_primary_10_3390_nu10020180
crossref_primary_10_1007_s00125_009_1430_8
crossref_primary_10_1152_ajpendo_00609_2009
crossref_primary_10_1152_japplphysiol_00934_2010
crossref_primary_10_1002_iub_1291
crossref_primary_10_1097_CCM_0b013e3182257410
crossref_primary_10_1113_JP275444
crossref_primary_10_3390_ijerph192114579
crossref_primary_10_1096_fj_13_230227
crossref_primary_10_3390_nu14132767
crossref_primary_10_3390_nu8070405
crossref_primary_10_1111_j_1600_0838_2009_00967_x
crossref_primary_10_1113_jphysiol_2009_177220
crossref_primary_10_1007_s00726_022_03221_w
crossref_primary_10_1519_JSC_0b013e3181cb6fd3
crossref_primary_10_1002_mas_21507
crossref_primary_10_1186_1475_2891_13_9
crossref_primary_10_3390_nu13030729
crossref_primary_10_1371_journal_pone_0015606
crossref_primary_10_1007_s12603_018_1105_6
crossref_primary_10_1007_s00018_017_2481_5
crossref_primary_10_1080_15502783_2023_2263409
crossref_primary_10_1186_s12970_017_0189_4
crossref_primary_10_3390_ijerph19148718
crossref_primary_10_1016_j_clnu_2023_08_010
crossref_primary_10_1152_ajpendo_00446_2010
crossref_primary_10_1139_apnm_2013_0591
crossref_primary_10_1152_japplphysiol_00295_2021
crossref_primary_10_1371_journal_pone_0032391
crossref_primary_10_1097_MCC_0b013e328357cb5e
crossref_primary_10_1152_japplphysiol_00076_2009
crossref_primary_10_3390_nu12041177
crossref_primary_10_1097_WCO_0b013e3283313b14
crossref_primary_10_3390_nu16101493
crossref_primary_10_1016_j_exger_2018_04_025
crossref_primary_10_1152_japplphysiol_00610_2017
crossref_primary_10_1007_s12603_013_0374_3
crossref_primary_10_1017_S0029665120008009
crossref_primary_10_1097_MCO_0b013e3283318a25
crossref_primary_10_1186_s12986_021_00574_z
crossref_primary_10_3945_ajcn_117_159855
crossref_primary_10_1113_jphysiol_2013_253203
crossref_primary_10_3389_fnut_2019_00181
crossref_primary_10_1113_jphysiol_2011_222802
crossref_primary_10_1016_j_mad_2014_03_002
crossref_primary_10_1210_clinem_dgac613
crossref_primary_10_1139_apnm_2013_0244
crossref_primary_10_1186_1550_2783_10_42
crossref_primary_10_1139_apnm_2015_0543
crossref_primary_10_14814_phy2_13931
crossref_primary_10_1093_gerona_gls141
crossref_primary_10_1177_1941738120944256
crossref_primary_10_1016_j_nutres_2014_09_011
crossref_primary_10_1186_1465_9921_14_117
crossref_primary_10_3389_fnut_2023_1177897
Cites_doi 10.1172/JCI115287
10.1210/jc.85.12.4900
10.1007/s10522-007-9114-6
10.1074/jbc.274.24.16741
10.1016/j.cmet.2007.11.004
10.1016/j.cmet.2007.11.001
10.1113/jphysiol.2003.050674
10.1042/cs0760447
10.1113/jphysiol.2007.134593
10.1152/ajpendo.00271.2005
10.1007/s12020-007-0007-x
10.1111/j.1365-2362.1990.tb01789.x
10.1172/JCI116124
10.1016/0026-0495(95)90047-0
10.1152/ajpendo.00301.2007
10.1152/ajpendo.1991.261.6.E809
10.1172/JCI113033
10.1096/fj.05-4607fje
10.1042/cs0630519
10.1096/fj.04-2640fje
10.1152/ajpendo.1990.259.2.E185
10.1172/JCI117731
10.1123/ijsnem.11.s1.s143
10.1210/jc.2002-020424
10.1152/ajpendo.1998.274.6.E1067
10.1152/ajpendo.1992.262.3.E372
10.1172/JCI118217
10.1074/jbc.M300293200
10.1126/science.1065874
10.2337/db06-1016
10.1097/00075197-200201000-00012
10.1113/jphysiol.2007.135459
10.1016/S0092-8674(04)00400-3
10.1152/ajpendo.1989.257.6.E839
ContentType Journal Article
Copyright Copyright American Physiological Society Sep 2008
Copyright © 2008, American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Sep 2008
– notice: Copyright © 2008, American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
DOI 10.1152/ajpendo.90411.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Toxicology Abstracts
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1555
EndPage E604
ExternalDocumentID PMC2536736
1555453221
18577697
10_1152_ajpendo_90411_2008
ajpendo_295_3_E595
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 056885/Z/99
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/X5106971
– fundername: Medical Research Council
  grantid: G 99000163
– fundername: Medical Research Council
  grantid: G0401644
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C516779/1
GroupedDBID -
23M
2WC
39C
4.4
53G
5GY
5VS
8M5
ABPTK
ACPRK
ADACO
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
EJD
F5P
GX1
H13
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
WH7
WOQ
---
6J9
AAYXX
ABJNI
BKKCC
BTFSW
CITATION
EMOBN
ITBOX
P6G
RPRKH
TR2
W8F
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
ID FETCH-LOGICAL-c581t-f3491c8df83ab169a37a733b48fa3da1455d48f33dc9e6fa1fe16c13f0c5c1733
ISSN 0193-1849
IngestDate Thu Aug 21 18:13:31 EDT 2025
Fri Jul 11 01:29:39 EDT 2025
Mon Jun 30 08:42:16 EDT 2025
Mon Jul 21 05:36:16 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
Tue Jul 01 03:18:11 EDT 2025
Mon May 06 11:43:08 EDT 2019
Tue Jan 05 17:54:16 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This document may be redistributed and reused, subject to www.the-aps.org/publications/journals/funding_addendum_policy.htm.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581t-f3491c8df83ab169a37a733b48fa3da1455d48f33dc9e6fa1fe16c13f0c5c1733
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Address for reprint requests and other correspondence: P. Greenhaff, School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK (e-mail: paul.greenhaff@nottingham.ac.uk), or M. J. Rennie, School of Graduate Entry Medicine and Health, Centre for Integrated Systems Biology and Medicine, City Hospital, Uttoxeter Rd., Derby DE22 3DT, UK (e-mail: michael.rennie@nottingham.ac.uk)
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2536736
PMID 18577697
PQID 232322082
PQPubID 48583
ParticipantIDs highwire_physiology_ajpendo_295_3_E595
crossref_primary_10_1152_ajpendo_90411_2008
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2536736
crossref_citationtrail_10_1152_ajpendo_90411_2008
pubmed_primary_18577697
proquest_miscellaneous_69517566
proquest_journals_232322082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology: endocrinology and metabolism
PublicationTitleAlternate Am J Physiol Endocrinol Metab
PublicationYear 2008
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R10
R32
R31
R12
R34
R11
R33
R14
R13
R35
R16
R15
R18
R17
R19
18628353 - Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E731. doi: 10.1152/ajpendo.90569.2008.
References_xml – ident: R33
  doi: 10.1172/JCI115287
– ident: R15
  doi: 10.1210/jc.85.12.4900
– ident: R18
  doi: 10.1007/s10522-007-9114-6
– ident: R32
  doi: 10.1074/jbc.274.24.16741
– ident: R35
  doi: 10.1016/j.cmet.2007.11.004
– ident: R24
  doi: 10.1016/j.cmet.2007.11.001
– ident: R6
  doi: 10.1113/jphysiol.2003.050674
– ident: R3
  doi: 10.1042/cs0760447
– ident: R12
  doi: 10.1113/jphysiol.2007.134593
– ident: R13
  doi: 10.1152/ajpendo.00271.2005
– ident: R34
  doi: 10.1007/s12020-007-0007-x
– ident: R2
  doi: 10.1111/j.1365-2362.1990.tb01789.x
– ident: R22
  doi: 10.1172/JCI116124
– ident: R23
  doi: 10.1016/0026-0495(95)90047-0
– ident: R25
  doi: 10.1152/ajpendo.00301.2007
– ident: R31
– ident: R9
  doi: 10.1152/ajpendo.1991.261.6.E809
– ident: R14
  doi: 10.1172/JCI113033
– ident: R26
  doi: 10.1096/fj.05-4607fje
– ident: R27
  doi: 10.1042/cs0630519
– ident: R8
  doi: 10.1096/fj.04-2640fje
– ident: R1
  doi: 10.1152/ajpendo.1990.259.2.E185
– ident: R4
  doi: 10.1172/JCI117731
– ident: R17
  doi: 10.1123/ijsnem.11.s1.s143
– ident: R21
  doi: 10.1210/jc.2002-020424
– ident: R16
  doi: 10.1152/ajpendo.1998.274.6.E1067
– ident: R30
  doi: 10.1152/ajpendo.1992.262.3.E372
– ident: R11
  doi: 10.1172/JCI118217
– ident: R28
  doi: 10.1074/jbc.M300293200
– ident: R5
  doi: 10.1126/science.1065874
– ident: R20
  doi: 10.2337/db06-1016
– ident: R19
  doi: 10.1097/00075197-200201000-00012
– ident: R7
  doi: 10.1113/jphysiol.2007.135459
– ident: R29
  doi: 10.1016/S0092-8674(04)00400-3
– ident: R10
  doi: 10.1152/ajpendo.1989.257.6.E839
– reference: 18628353 - Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E731. doi: 10.1152/ajpendo.90569.2008.
SSID ssj0007542
Score 2.4562485
Snippet 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of...
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E595
SubjectTerms Adult
Amino acids
Amino Acids - pharmacology
Biochemistry
Blood Glucose - metabolism
Blotting, Western
Dose-Response Relationship, Drug
Enzymes
Gene Expression - drug effects
Human subjects
Humans
Hypoglycemic Agents - pharmacology
Insulin
Insulin - blood
Insulin - pharmacology
Male
Muscle Proteins - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscles
Muscular system
Phosphorylation
Proteasome Endopeptidase Complex - metabolism
Protein Kinases - metabolism
Protein synthesis
Proteins
Regional Blood Flow - physiology
Reverse Transcriptase Polymerase Chain Reaction
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
RNA - biosynthesis
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
Signal Transduction - drug effects
TOR Serine-Threonine Kinases
Ubiquitin-Protein Ligase Complexes - metabolism
Title Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle
URI http://ajpendo.physiology.org/cgi/content/abstract/295/3/E595
https://www.ncbi.nlm.nih.gov/pubmed/18577697
https://www.proquest.com/docview/232322082
https://www.proquest.com/docview/69517566
https://pubmed.ncbi.nlm.nih.gov/PMC2536736
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFqgpjz2gHpJbWJv_DpWEKgKrYpIpd6s9a7dGiV2SZwDXPmv_A5mn07SgCiXyPI-svZ8ntnZ_XYGodeMpTA-MnA5jQsXZsQpfHOcugUIn8U-z_1CLOifnEZH58Pji_Ci1_u1xFpatLnHfmw8V_I_UoV7IFdxSvYWkrWdwg24BvnCL0gYfv9Jxu-qOe1er-VcrfE06LSqmz5lFZ_rWEuKfg4tBHuDTnRak0VefVtULZRMqkswbnPD7JSxHAQfEoYkGJ9ijUTl9psu5mZIJpKt2QFaCkkhV0_UqRiRB6jmDaiqugv-NC1agOLEBDM0bKArqiJGnnn9T541DHRGLxuxBy9XFLz-B6_T7tVMbQmc2ntfKk13AY3v9Y-9lUWOxLK47LpnSlxwRpV2LbSuBj8apkPhsjIPVMpOjVqypJpHoS5SZn4UqbTHN01IKELS0q8iBXHjpYOhL5cRks5gGpLAmh217EbpV4VBpvvIZB8y3-cddDcAd0Zk2vj4uYtqL7IQq2P96iHN4a4weHNzHKsTKBPUepODtM7zXZo4jR-iB9rjwYcKvo9Qr6i30c5hTdtm-h3v4zOLjm1070RTPXbQz1VwYw1uDODGGty4KbEEN5bgxoAlrMGNoYUF9wG20MYa2geysgY2NsCG1lgCGytgP0bn70fjt0euzhjisjDxW7ckw9RnCS8TQnM_SimJaUxIPkxKSjgVQfk5XBPCQUVFJfXLwo-YT8oBC5kPNZ-grbqpi12Ei4D5OU8Gac7BY-BpzqKEgEnOSZDCn4UO8o0YMqbD6YusLpPsz-J3UN-2uVbBZP5aOzDSzboPNRNLU2MAnGkBiM9IJtCdXfPSQfubGpneu8oO2jOAybRGmGfgXoGBB6_AQa9sKdgbsYlI66JZzLMIXLIYfEAHPVXg6p4kCeM4SmMHxSuwsxVEJPvVkrq6khHtg5AIfumzW72fPXS_UxXP0VY7WxQvwENo85fy8_oNfNgahg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disassociation+between+the+effects+of+amino+acids+and+insulin+on+signaling%2C+ubiquitin+ligases%2C+and+protein+turnover+in+human+muscle&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Greenhaff%2C+P.+L.&rft.au=Karagounis%2C+L.+G.&rft.au=Peirce%2C+N.&rft.au=Simpson%2C+E.+J.&rft.date=2008-09-01&rft.issn=0193-1849&rft.eissn=1522-1555&rft.volume=295&rft.issue=3&rft.spage=E595&rft.epage=E604&rft_id=info:doi/10.1152%2Fajpendo.90411.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpendo_90411_2008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1849&client=summon