Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle
1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom Submitted 1 May 2008 ; accepted in fi...
Saved in:
Published in | American journal of physiology: endocrinology and metabolism Vol. 295; no. 3; pp. E595 - E604 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.09.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
Submitted 1 May 2008
; accepted in final form 21 June 2008
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
muscle protein synthesis; muscle protein breakdown
Address for reprint requests and other correspondence: P. Greenhaff, School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK (e-mail: paul.greenhaff{at}nottingham.ac.uk ) |
---|---|
AbstractList | 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
Submitted 1 May 2008
; accepted in final form 21 June 2008
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
muscle protein synthesis; muscle protein breakdown
Address for reprint requests and other correspondence: P. Greenhaff, School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK (e-mail: paul.greenhaff{at}nottingham.ac.uk ) We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-...]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d...- phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser... and p70... Thr... increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser..., 4E-BP1 Thr..., or GSK3β Ser... and decreased that of eEF2 Thr..., higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. (ProQuest: ... denotes formulae/symbols omitted.) We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1- 13 C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d 5 -phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB ( P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser 473 and p70 S6k Thr 389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser 2448 , 4E-BP1 Thr 37/46 , or GSK3β Ser 9 and decreased that of eEF2 Thr 56 , higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. |
Author | Selby, A Hazell, M Greenhaff, P. L Wackerhage, H Atherton, P Layfield, R Karagounis, L. G Rennie, M. J Peirce, N Smith, K Simpson, E. J |
AuthorAffiliation | 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom |
AuthorAffiliation_xml | – name: 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham; and 4 Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom |
Author_xml | – sequence: 1 fullname: Greenhaff, P. L – sequence: 2 fullname: Karagounis, L. G – sequence: 3 fullname: Peirce, N – sequence: 4 fullname: Simpson, E. J – sequence: 5 fullname: Hazell, M – sequence: 6 fullname: Layfield, R – sequence: 7 fullname: Wackerhage, H – sequence: 8 fullname: Smith, K – sequence: 9 fullname: Atherton, P – sequence: 10 fullname: Selby, A – sequence: 11 fullname: Rennie, M. J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18577697$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1URLeFP8ABWRw4NYsdx_m4IKHSAlIlLuVseZ1x4pVjp7HTsmf-ON6PLlAJ5INHM8_7akYzZ-jEeQcIvaZkSSnP38v1CK71y4YUlC5zQupnaJEKeUY55ydoQWjDMloXzSk6C2FNCKl4kb9Ap7TmVVU21QL9_GSCDMErI6PxDq8gPgA4HHvAoDWoGLDXWA7GeSyVaQOWrsXGhdkah5MimM7JFHcXeF6Zu9nElLemkwHCxQ4eJx8hJeM8OX8PU1Ljfh6kw8MclIWX6LmWNsCrw3-Ovl9f3V5-yW6-ff56-fEmU7ymMdOsaKiqW10zuaJlI1klK8ZWRa0layUtOG9TzFirGii1pBpoqSjTRHFFE3mOPux9x3k1QKvAxUlaMU5mkNNGeGnE3xVnetH5e5FzVlasTAbvDgaTv5shRDGYoMBa6cDPQZQNpxUvt-DbJ-Dap-HTcCJn6eWkzhP05s92jn08LicB9R5Qkw9hAi2Uibs1pe6MFZSI7R2Iwx2I3R2I7R0kaf5EenT_nyjbi3rT9Q9mAjH2m2C89d3myOcNF0xc8YYnvvk3fz1bews_4qPwt06MrWa_AFAw4Ok |
CODEN | AJPMD9 |
CitedBy_id | crossref_primary_10_1016_j_afos_2020_06_001 crossref_primary_10_13070_mm_en_2_201 crossref_primary_10_1371_journal_pone_0220757 crossref_primary_10_3945_an_116_014506 crossref_primary_10_3945_jn_114_199604 crossref_primary_10_1042_CS20100597 crossref_primary_10_1111_j_1753_4887_2011_00420_x crossref_primary_10_3945_ajcn_114_103184 crossref_primary_10_1111_j_1753_4887_2011_00443_x crossref_primary_10_1016_j_nutres_2013_12_007 crossref_primary_10_1017_S0007114521002609 crossref_primary_10_1038_srep17535 crossref_primary_10_1186_s12970_018_0215_1 crossref_primary_10_1152_japplphysiol_00625_2015 crossref_primary_10_1186_1550_2783_11_20 crossref_primary_10_1113_jphysiol_2008_164483 crossref_primary_10_3389_fnut_2020_00025 crossref_primary_10_1152_ajpcell_00209_2019 crossref_primary_10_1097_MCO_0b013e32831cef61 crossref_primary_10_1016_j_arr_2013_07_003 crossref_primary_10_1152_japplphysiol_00244_2017 crossref_primary_10_2337_db22_0079 crossref_primary_10_1007_s00726_014_1866_0 crossref_primary_10_1371_journal_pone_0018090 crossref_primary_10_1139_H09_042 crossref_primary_10_1152_japplphysiol_00608_2019 crossref_primary_10_1113_jphysiol_2008_160333 crossref_primary_10_3390_nu5030852 crossref_primary_10_1111_j_1748_1716_2010_02187_x crossref_primary_10_1097_CCM_0b013e3181b6ec1f crossref_primary_10_1007_s00125_015_3751_0 crossref_primary_10_1152_ajpendo_00378_2018 crossref_primary_10_1002_oby_24022 crossref_primary_10_1007_s00421_017_3792_9 crossref_primary_10_3390_nu12102915 crossref_primary_10_1021_pr900081q crossref_primary_10_1186_1756_0500_4_488 crossref_primary_10_1038_ki_2015_247 crossref_primary_10_3945_jn_109_118372 crossref_primary_10_1007_s12576_016_0506_8 crossref_primary_10_1152_japplphysiol_00411_2014 crossref_primary_10_3945_an_113_003699 crossref_primary_10_1136_thoraxjnl_2012_202764 crossref_primary_10_1016_j_clnu_2016_11_012 crossref_primary_10_1113_JP275766 crossref_primary_10_1016_j_ajcnut_2024_01_004 crossref_primary_10_1016_j_nutos_2021_01_005 crossref_primary_10_1016_j_clnu_2017_09_025 crossref_primary_10_1007_s00421_009_1289_x crossref_primary_10_1093_gerona_glu103 crossref_primary_10_1016_j_clnu_2017_09_024 crossref_primary_10_1016_j_metabol_2019_153996 crossref_primary_10_1016_j_clnu_2015_02_013 crossref_primary_10_1113_jphysiol_2012_228833 crossref_primary_10_3945_jn_110_135038 crossref_primary_10_1017_S0954422423000124 crossref_primary_10_1016_j_clnu_2016_04_025 crossref_primary_10_1186_1550_2783_8_18 crossref_primary_10_1152_japplphysiol_01009_2016 crossref_primary_10_1016_j_arr_2021_101463 crossref_primary_10_1152_ajpcell_00207_2024 crossref_primary_10_3945_jn_110_127647 crossref_primary_10_1002_mnfr_201700287 crossref_primary_10_3390_nu16203428 crossref_primary_10_3945_ajcn_2009_27543 crossref_primary_10_1007_s00421_010_1808_9 crossref_primary_10_1111_j_1748_1716_2012_02404_x crossref_primary_10_14814_phy2_13628 crossref_primary_10_3945_ajcn_117_169615 crossref_primary_10_3390_nu9030184 crossref_primary_10_1113_JP276504 crossref_primary_10_3389_fnut_2019_00144 crossref_primary_10_3389_fphys_2017_01045 crossref_primary_10_3389_fphys_2019_00736 crossref_primary_10_1111_sms_12170 crossref_primary_10_1186_1750_2187_7_7 crossref_primary_10_1038_oby_2010_290 crossref_primary_10_1515_bmc_2019_0002 crossref_primary_10_3390_nu12072023 crossref_primary_10_2337_db15_0021 crossref_primary_10_1038_nrendo_2014_171 crossref_primary_10_1152_ajpendo_90569_2008 crossref_primary_10_3390_nu15184003 crossref_primary_10_3390_nu11112824 crossref_primary_10_1152_japplphysiol_00395_2012 crossref_primary_10_1002_jcsm_13030 crossref_primary_10_2519_jospt_2018_0615 crossref_primary_10_1152_japplphysiol_00452_2009 crossref_primary_10_1007_s00223_014_9925_9 crossref_primary_10_1152_japplphysiol_00962_2010 crossref_primary_10_1139_H09_137 crossref_primary_10_1152_ajpendo_00227_2015 crossref_primary_10_1016_j_ajcnut_2024_05_009 crossref_primary_10_1113_JP270774 crossref_primary_10_1139_H09_012 crossref_primary_10_3389_fendo_2018_00443 crossref_primary_10_1017_S0007114517001829 crossref_primary_10_1080_15502783_2024_2434734 crossref_primary_10_1016_j_ajcnut_2024_04_032 crossref_primary_10_1016_j_bbrc_2017_10_085 crossref_primary_10_1179_1743288X11Y_0000000002 crossref_primary_10_1152_ajpregu_00348_2010 crossref_primary_10_1111_bcp_15877 crossref_primary_10_1186_s12970_017_0184_9 crossref_primary_10_1152_ajpendo_00257_2016 crossref_primary_10_1007_s13668_020_00338_w crossref_primary_10_1017_S0029665110003927 crossref_primary_10_14814_phy2_12433 crossref_primary_10_1007_s13668_016_0161_y crossref_primary_10_1002_oby_22213 crossref_primary_10_1097_MCO_0b013e32831fd97a crossref_primary_10_1017_S0954422411000084 crossref_primary_10_1164_rccm_201205_0954SO crossref_primary_10_1007_s00421_016_3417_8 crossref_primary_10_1093_bmb_ldq008 crossref_primary_10_1016_j_metabol_2016_12_010 crossref_primary_10_1152_ajpregu_00077_2010 crossref_primary_10_1371_journal_pgen_1003389 crossref_primary_10_1096_fj_15_273474 crossref_primary_10_1016_j_phanu_2018_01_003 crossref_primary_10_1007_s12011_018_1539_z crossref_primary_10_1113_jphysiol_2011_206193 crossref_primary_10_1249_MSS_0000000000003541 crossref_primary_10_3389_fphys_2015_00245 crossref_primary_10_1002_oby_20943 crossref_primary_10_1186_s12970_017_0202_y crossref_primary_10_3390_ijms23105431 crossref_primary_10_3390_nu8040181 crossref_primary_10_1186_s13063_023_07329_6 crossref_primary_10_1113_jphysiol_2011_225003 crossref_primary_10_1007_s11357_021_00386_2 crossref_primary_10_1017_S0007114524000163 crossref_primary_10_3389_fphys_2017_00541 crossref_primary_10_1186_1550_2783_10_5 crossref_primary_10_1016_j_clnu_2017_05_029 crossref_primary_10_1016_j_isci_2023_108634 crossref_primary_10_1097_WCO_0b013e32832f15e1 crossref_primary_10_1249_JES_0000000000000173 crossref_primary_10_1111_apha_12086 crossref_primary_10_17338_trainology_1_2_28 crossref_primary_10_1152_ajpendo_00276_2011 crossref_primary_10_1210_jc_2017_00360 crossref_primary_10_1530_EJE_14_0902 crossref_primary_10_3390_nu11050989 crossref_primary_10_3390_nu4070740 crossref_primary_10_1007_s00421_022_04896_5 crossref_primary_10_1152_japplphysiol_00632_2016 crossref_primary_10_1210_jc_2008_2686 crossref_primary_10_1097_MCO_0b013e32834d19bc crossref_primary_10_1093_nutrit_nuz077 crossref_primary_10_1002_jcsm_13005 crossref_primary_10_1177_0884533617693592 crossref_primary_10_1519_JSC_0000000000004909 crossref_primary_10_1017_S0029665115000130 crossref_primary_10_1038_s41598_017_05483_x crossref_primary_10_3390_nu17010132 crossref_primary_10_1016_j_arr_2011_11_001 crossref_primary_10_3389_fphys_2017_00310 crossref_primary_10_1007_s40279_015_0450_4 crossref_primary_10_1096_fj_201800049RR crossref_primary_10_1152_ajpendo_00481_2014 crossref_primary_10_1093_advances_nmaa015 crossref_primary_10_1210_jc_2013_3970 crossref_primary_10_1016_j_biocel_2013_05_039 crossref_primary_10_1097_SPC_0b013e328359e6dd crossref_primary_10_1186_gm122 crossref_primary_10_3390_nu13020647 crossref_primary_10_3945_jn_112_168203 crossref_primary_10_1152_japplphysiol_00170_2012 crossref_primary_10_3945_an_115_011650 crossref_primary_10_1016_j_clnu_2017_09_008 crossref_primary_10_1134_S0362119716060104 crossref_primary_10_1016_j_clnu_2020_03_017 crossref_primary_10_1113_jphysiol_2009_184416 crossref_primary_10_1007_s00424_014_1579_y crossref_primary_10_1152_ajpcell_00225_2018 crossref_primary_10_1016_j_clnu_2021_01_002 crossref_primary_10_1186_1743_7075_9_40 crossref_primary_10_1016_j_cnd_2019_01_003 crossref_primary_10_1186_s40064_016_2736_x crossref_primary_10_1016_j_bbadis_2008_10_011 crossref_primary_10_1016_j_tifs_2023_104178 crossref_primary_10_1038_s41387_022_00213_3 crossref_primary_10_1038_s41538_017_0002_4 crossref_primary_10_1016_j_clnu_2018_06_963 crossref_primary_10_1111_apha_12532 crossref_primary_10_1113_JP281907 crossref_primary_10_4236_fns_2023_145026 crossref_primary_10_1007_s00394_021_02782_y crossref_primary_10_1113_JP270343 crossref_primary_10_1080_17461391_2014_936325 crossref_primary_10_1016_j_clnu_2014_09_016 crossref_primary_10_1093_jn_nxab353 crossref_primary_10_1017_S0007114516003949 crossref_primary_10_1016_j_biocel_2013_06_011 crossref_primary_10_3390_nu14030563 crossref_primary_10_1016_j_cger_2015_04_011 crossref_primary_10_1113_jphysiol_2010_201525 crossref_primary_10_3389_fnut_2019_00087 crossref_primary_10_3945_ajcn_117_157818 crossref_primary_10_14814_phy2_12466 crossref_primary_10_1371_journal_pone_0012033 crossref_primary_10_3945_ajcn_111_017061 crossref_primary_10_1007_s40279_014_0258_7 crossref_primary_10_1016_j_nut_2012_04_012 crossref_primary_10_1002_jcsm_12005 crossref_primary_10_1080_10408398_2021_1890689 crossref_primary_10_1093_nutrit_nuab083 crossref_primary_10_1093_jn_nxaa251 crossref_primary_10_1111_acel_13202 crossref_primary_10_1016_j_clnu_2012_09_002 crossref_primary_10_3803_EnM_2020_406 crossref_primary_10_1139_H09_093 crossref_primary_10_1152_japplphysiol_00354_2012 crossref_primary_10_1210_jendso_bvad178 crossref_primary_10_3390_nu14071524 crossref_primary_10_1016_j_meatsci_2015_05_009 crossref_primary_10_1093_jas_skaa268 crossref_primary_10_3390_nu11051084 crossref_primary_10_3390_nu4111664 crossref_primary_10_3945_ajcn_111_020800 crossref_primary_10_3945_ajcn_112_045708 crossref_primary_10_1038_s41574_019_0274_7 crossref_primary_10_1152_ajpcell_00374_2015 crossref_primary_10_1152_japplphysiol_01343_2011 crossref_primary_10_1096_fj_201700158RR crossref_primary_10_3945_ajcn_2008_26401 crossref_primary_10_1016_j_nutres_2015_09_006 crossref_primary_10_1152_japplphysiol_91481_2008 crossref_primary_10_1007_s00421_017_3775_x crossref_primary_10_1016_j_mad_2013_11_003 crossref_primary_10_1113_EP085647 crossref_primary_10_1080_17461391_2015_1073362 crossref_primary_10_3389_fphys_2016_00361 crossref_primary_10_2337_db11_0799 crossref_primary_10_1097_CCM_0b013e3181cc4b53 crossref_primary_10_1152_ajpendo_00110_2022 crossref_primary_10_1007_s00394_021_02590_4 crossref_primary_10_1016_j_arr_2018_07_005 crossref_primary_10_1016_j_freeradbiomed_2016_01_016 crossref_primary_10_1136_bjsports_2012_091100 crossref_primary_10_3945_ajcn_2010_29819 crossref_primary_10_1152_japplphysiol_91351_2008 crossref_primary_10_1186_1743_7075_10_15 crossref_primary_10_1017_S0954422423000197 crossref_primary_10_1017_S0029665120007879 crossref_primary_10_1017_S0007114522003087 crossref_primary_10_3945_jn_113_175984 crossref_primary_10_1113_jphysiol_2010_197632 crossref_primary_10_2460_ajvr_72_2_248 crossref_primary_10_1016_j_domaniend_2025_106940 crossref_primary_10_3389_fnut_2021_797004 crossref_primary_10_1007_s00421_015_3121_0 crossref_primary_10_1007_s40279_019_01053_5 crossref_primary_10_1139_apnm_2016_0564 crossref_primary_10_1016_j_expneurol_2013_06_003 crossref_primary_10_3389_fnut_2021_640621 crossref_primary_10_1097_MCO_0b013e3283516850 crossref_primary_10_1152_ajpendo_00517_2011 crossref_primary_10_1249_MSS_0b013e3182364162 crossref_primary_10_1113_jphysiol_2010_192856 crossref_primary_10_1093_jn_nxy026 crossref_primary_10_1152_ajpendo_00174_2018 crossref_primary_10_1113_JP275430 crossref_primary_10_1210_jc_2013_1502 crossref_primary_10_1042_CS20140447 crossref_primary_10_1152_ajpendo_00112_2015 crossref_primary_10_3390_nu9020094 crossref_primary_10_3390_nu12092496 crossref_primary_10_1007_s13361_015_1262_3 crossref_primary_10_1016_j_ijnurstu_2020_103783 crossref_primary_10_1152_ajpendo_00230_2016 crossref_primary_10_14814_phy2_12715 crossref_primary_10_1017_S002966511000399X crossref_primary_10_1134_S0022093021040104 crossref_primary_10_1113_JP278828 crossref_primary_10_1113_jphysiol_2014_285577 crossref_primary_10_1113_jphysiol_2009_170738 crossref_primary_10_1089_rej_2009_1015 crossref_primary_10_1249_MSS_0b013e31820751cb crossref_primary_10_1186_s12970_017_0177_8 crossref_primary_10_1007_s12020_012_9676_1 crossref_primary_10_1016_j_nutos_2021_02_005 crossref_primary_10_1113_EP087492 crossref_primary_10_1113_JP275443 crossref_primary_10_1152_ajpendo_00157_2020 crossref_primary_10_1017_S0007114517002409 crossref_primary_10_1152_japplphysiol_00901_2010 crossref_primary_10_1042_CS20231198 crossref_primary_10_1530_JOE_17_0186 crossref_primary_10_1042_CS20231197 crossref_primary_10_1016_j_nut_2009_10_013 crossref_primary_10_1152_japplphysiol_91234_2008 crossref_primary_10_31744_einstein_journal_2019RB4898 crossref_primary_10_3390_nu10020180 crossref_primary_10_1007_s00125_009_1430_8 crossref_primary_10_1152_ajpendo_00609_2009 crossref_primary_10_1152_japplphysiol_00934_2010 crossref_primary_10_1002_iub_1291 crossref_primary_10_1097_CCM_0b013e3182257410 crossref_primary_10_1113_JP275444 crossref_primary_10_3390_ijerph192114579 crossref_primary_10_1096_fj_13_230227 crossref_primary_10_3390_nu14132767 crossref_primary_10_3390_nu8070405 crossref_primary_10_1111_j_1600_0838_2009_00967_x crossref_primary_10_1113_jphysiol_2009_177220 crossref_primary_10_1007_s00726_022_03221_w crossref_primary_10_1519_JSC_0b013e3181cb6fd3 crossref_primary_10_1002_mas_21507 crossref_primary_10_1186_1475_2891_13_9 crossref_primary_10_3390_nu13030729 crossref_primary_10_1371_journal_pone_0015606 crossref_primary_10_1007_s12603_018_1105_6 crossref_primary_10_1007_s00018_017_2481_5 crossref_primary_10_1080_15502783_2023_2263409 crossref_primary_10_1186_s12970_017_0189_4 crossref_primary_10_3390_ijerph19148718 crossref_primary_10_1016_j_clnu_2023_08_010 crossref_primary_10_1152_ajpendo_00446_2010 crossref_primary_10_1139_apnm_2013_0591 crossref_primary_10_1152_japplphysiol_00295_2021 crossref_primary_10_1371_journal_pone_0032391 crossref_primary_10_1097_MCC_0b013e328357cb5e crossref_primary_10_1152_japplphysiol_00076_2009 crossref_primary_10_3390_nu12041177 crossref_primary_10_1097_WCO_0b013e3283313b14 crossref_primary_10_3390_nu16101493 crossref_primary_10_1016_j_exger_2018_04_025 crossref_primary_10_1152_japplphysiol_00610_2017 crossref_primary_10_1007_s12603_013_0374_3 crossref_primary_10_1017_S0029665120008009 crossref_primary_10_1097_MCO_0b013e3283318a25 crossref_primary_10_1186_s12986_021_00574_z crossref_primary_10_3945_ajcn_117_159855 crossref_primary_10_1113_jphysiol_2013_253203 crossref_primary_10_3389_fnut_2019_00181 crossref_primary_10_1113_jphysiol_2011_222802 crossref_primary_10_1016_j_mad_2014_03_002 crossref_primary_10_1210_clinem_dgac613 crossref_primary_10_1139_apnm_2013_0244 crossref_primary_10_1186_1550_2783_10_42 crossref_primary_10_1139_apnm_2015_0543 crossref_primary_10_14814_phy2_13931 crossref_primary_10_1093_gerona_gls141 crossref_primary_10_1177_1941738120944256 crossref_primary_10_1016_j_nutres_2014_09_011 crossref_primary_10_1186_1465_9921_14_117 crossref_primary_10_3389_fnut_2023_1177897 |
Cites_doi | 10.1172/JCI115287 10.1210/jc.85.12.4900 10.1007/s10522-007-9114-6 10.1074/jbc.274.24.16741 10.1016/j.cmet.2007.11.004 10.1016/j.cmet.2007.11.001 10.1113/jphysiol.2003.050674 10.1042/cs0760447 10.1113/jphysiol.2007.134593 10.1152/ajpendo.00271.2005 10.1007/s12020-007-0007-x 10.1111/j.1365-2362.1990.tb01789.x 10.1172/JCI116124 10.1016/0026-0495(95)90047-0 10.1152/ajpendo.00301.2007 10.1152/ajpendo.1991.261.6.E809 10.1172/JCI113033 10.1096/fj.05-4607fje 10.1042/cs0630519 10.1096/fj.04-2640fje 10.1152/ajpendo.1990.259.2.E185 10.1172/JCI117731 10.1123/ijsnem.11.s1.s143 10.1210/jc.2002-020424 10.1152/ajpendo.1998.274.6.E1067 10.1152/ajpendo.1992.262.3.E372 10.1172/JCI118217 10.1074/jbc.M300293200 10.1126/science.1065874 10.2337/db06-1016 10.1097/00075197-200201000-00012 10.1113/jphysiol.2007.135459 10.1016/S0092-8674(04)00400-3 10.1152/ajpendo.1989.257.6.E839 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Sep 2008 Copyright © 2008, American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Sep 2008 – notice: Copyright © 2008, American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U7 C1K 7X8 5PM |
DOI | 10.1152/ajpendo.90411.2008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Calcium & Calcified Tissue Abstracts Physical Education Index Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1555 |
EndPage | E604 |
ExternalDocumentID | PMC2536736 1555453221 18577697 10_1152_ajpendo_90411_2008 ajpendo_295_3_E595 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 056885/Z/99 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/X5106971 – fundername: Medical Research Council grantid: G 99000163 – fundername: Medical Research Council grantid: G0401644 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C516779/1 |
GroupedDBID | - 23M 2WC 39C 4.4 53G 5GY 5VS 8M5 ABPTK ACPRK ADACO ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P GX1 H13 KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL WH7 WOQ --- 6J9 AAYXX ABJNI BKKCC BTFSW CITATION EMOBN ITBOX P6G RPRKH TR2 W8F XSW YSK CGR CUY CVF ECM EIF NPM 7QP 7TS 7U7 C1K 7X8 5PM |
ID | FETCH-LOGICAL-c581t-f3491c8df83ab169a37a733b48fa3da1455d48f33dc9e6fa1fe16c13f0c5c1733 |
ISSN | 0193-1849 |
IngestDate | Thu Aug 21 18:13:31 EDT 2025 Fri Jul 11 01:29:39 EDT 2025 Mon Jun 30 08:42:16 EDT 2025 Mon Jul 21 05:36:16 EDT 2025 Thu Apr 24 22:52:56 EDT 2025 Tue Jul 01 03:18:11 EDT 2025 Mon May 06 11:43:08 EDT 2019 Tue Jan 05 17:54:16 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This document may be redistributed and reused, subject to www.the-aps.org/publications/journals/funding_addendum_policy.htm. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c581t-f3491c8df83ab169a37a733b48fa3da1455d48f33dc9e6fa1fe16c13f0c5c1733 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Address for reprint requests and other correspondence: P. Greenhaff, School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK (e-mail: paul.greenhaff@nottingham.ac.uk), or M. J. Rennie, School of Graduate Entry Medicine and Health, Centre for Integrated Systems Biology and Medicine, City Hospital, Uttoxeter Rd., Derby DE22 3DT, UK (e-mail: michael.rennie@nottingham.ac.uk) The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2536736 |
PMID | 18577697 |
PQID | 232322082 |
PQPubID | 48583 |
ParticipantIDs | highwire_physiology_ajpendo_295_3_E595 crossref_primary_10_1152_ajpendo_90411_2008 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2536736 crossref_citationtrail_10_1152_ajpendo_90411_2008 pubmed_primary_18577697 proquest_miscellaneous_69517566 proquest_journals_232322082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-01 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | American journal of physiology: endocrinology and metabolism |
PublicationTitleAlternate | Am J Physiol Endocrinol Metab |
PublicationYear | 2008 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R10 R32 R31 R12 R34 R11 R33 R14 R13 R35 R16 R15 R18 R17 R19 18628353 - Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E731. doi: 10.1152/ajpendo.90569.2008. |
References_xml | – ident: R33 doi: 10.1172/JCI115287 – ident: R15 doi: 10.1210/jc.85.12.4900 – ident: R18 doi: 10.1007/s10522-007-9114-6 – ident: R32 doi: 10.1074/jbc.274.24.16741 – ident: R35 doi: 10.1016/j.cmet.2007.11.004 – ident: R24 doi: 10.1016/j.cmet.2007.11.001 – ident: R6 doi: 10.1113/jphysiol.2003.050674 – ident: R3 doi: 10.1042/cs0760447 – ident: R12 doi: 10.1113/jphysiol.2007.134593 – ident: R13 doi: 10.1152/ajpendo.00271.2005 – ident: R34 doi: 10.1007/s12020-007-0007-x – ident: R2 doi: 10.1111/j.1365-2362.1990.tb01789.x – ident: R22 doi: 10.1172/JCI116124 – ident: R23 doi: 10.1016/0026-0495(95)90047-0 – ident: R25 doi: 10.1152/ajpendo.00301.2007 – ident: R31 – ident: R9 doi: 10.1152/ajpendo.1991.261.6.E809 – ident: R14 doi: 10.1172/JCI113033 – ident: R26 doi: 10.1096/fj.05-4607fje – ident: R27 doi: 10.1042/cs0630519 – ident: R8 doi: 10.1096/fj.04-2640fje – ident: R1 doi: 10.1152/ajpendo.1990.259.2.E185 – ident: R4 doi: 10.1172/JCI117731 – ident: R17 doi: 10.1123/ijsnem.11.s1.s143 – ident: R21 doi: 10.1210/jc.2002-020424 – ident: R16 doi: 10.1152/ajpendo.1998.274.6.E1067 – ident: R30 doi: 10.1152/ajpendo.1992.262.3.E372 – ident: R11 doi: 10.1172/JCI118217 – ident: R28 doi: 10.1074/jbc.M300293200 – ident: R5 doi: 10.1126/science.1065874 – ident: R20 doi: 10.2337/db06-1016 – ident: R19 doi: 10.1097/00075197-200201000-00012 – ident: R7 doi: 10.1113/jphysiol.2007.135459 – ident: R29 doi: 10.1016/S0092-8674(04)00400-3 – ident: R10 doi: 10.1152/ajpendo.1989.257.6.E839 – reference: 18628353 - Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E731. doi: 10.1152/ajpendo.90569.2008. |
SSID | ssj0007542 |
Score | 2.4562485 |
Snippet | 1 Centre for Integrated Systems Biology and Medicine, 2 School of Biomedical Sciences, and 3 School of Graduate Entry Medicine and Health, University of... We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E595 |
SubjectTerms | Adult Amino acids Amino Acids - pharmacology Biochemistry Blood Glucose - metabolism Blotting, Western Dose-Response Relationship, Drug Enzymes Gene Expression - drug effects Human subjects Humans Hypoglycemic Agents - pharmacology Insulin Insulin - blood Insulin - pharmacology Male Muscle Proteins - metabolism Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Muscles Muscular system Phosphorylation Proteasome Endopeptidase Complex - metabolism Protein Kinases - metabolism Protein synthesis Proteins Regional Blood Flow - physiology Reverse Transcriptase Polymerase Chain Reaction Ribosomal Protein S6 Kinases, 70-kDa - metabolism RNA - biosynthesis RNA, Messenger - biosynthesis RNA, Messenger - genetics Signal Transduction - drug effects TOR Serine-Threonine Kinases Ubiquitin-Protein Ligase Complexes - metabolism |
Title | Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle |
URI | http://ajpendo.physiology.org/cgi/content/abstract/295/3/E595 https://www.ncbi.nlm.nih.gov/pubmed/18577697 https://www.proquest.com/docview/232322082 https://www.proquest.com/docview/69517566 https://pubmed.ncbi.nlm.nih.gov/PMC2536736 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFqgpjz2gHpJbWJv_DpWEKgKrYpIpd6s9a7dGiV2SZwDXPmv_A5mn07SgCiXyPI-svZ8ntnZ_XYGodeMpTA-MnA5jQsXZsQpfHOcugUIn8U-z_1CLOifnEZH58Pji_Ci1_u1xFpatLnHfmw8V_I_UoV7IFdxSvYWkrWdwg24BvnCL0gYfv9Jxu-qOe1er-VcrfE06LSqmz5lFZ_rWEuKfg4tBHuDTnRak0VefVtULZRMqkswbnPD7JSxHAQfEoYkGJ9ijUTl9psu5mZIJpKt2QFaCkkhV0_UqRiRB6jmDaiqugv-NC1agOLEBDM0bKArqiJGnnn9T541DHRGLxuxBy9XFLz-B6_T7tVMbQmc2ntfKk13AY3v9Y-9lUWOxLK47LpnSlxwRpV2LbSuBj8apkPhsjIPVMpOjVqypJpHoS5SZn4UqbTHN01IKELS0q8iBXHjpYOhL5cRks5gGpLAmh217EbpV4VBpvvIZB8y3-cddDcAd0Zk2vj4uYtqL7IQq2P96iHN4a4weHNzHKsTKBPUepODtM7zXZo4jR-iB9rjwYcKvo9Qr6i30c5hTdtm-h3v4zOLjm1070RTPXbQz1VwYw1uDODGGty4KbEEN5bgxoAlrMGNoYUF9wG20MYa2geysgY2NsCG1lgCGytgP0bn70fjt0euzhjisjDxW7ckw9RnCS8TQnM_SimJaUxIPkxKSjgVQfk5XBPCQUVFJfXLwo-YT8oBC5kPNZ-grbqpi12Ei4D5OU8Gac7BY-BpzqKEgEnOSZDCn4UO8o0YMqbD6YusLpPsz-J3UN-2uVbBZP5aOzDSzboPNRNLU2MAnGkBiM9IJtCdXfPSQfubGpneu8oO2jOAybRGmGfgXoGBB6_AQa9sKdgbsYlI66JZzLMIXLIYfEAHPVXg6p4kCeM4SmMHxSuwsxVEJPvVkrq6khHtg5AIfumzW72fPXS_UxXP0VY7WxQvwENo85fy8_oNfNgahg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disassociation+between+the+effects+of+amino+acids+and+insulin+on+signaling%2C+ubiquitin+ligases%2C+and+protein+turnover+in+human+muscle&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Greenhaff%2C+P.+L.&rft.au=Karagounis%2C+L.+G.&rft.au=Peirce%2C+N.&rft.au=Simpson%2C+E.+J.&rft.date=2008-09-01&rft.issn=0193-1849&rft.eissn=1522-1555&rft.volume=295&rft.issue=3&rft.spage=E595&rft.epage=E604&rft_id=info:doi/10.1152%2Fajpendo.90411.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpendo_90411_2008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1849&client=summon |