Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics
Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to con...
Saved in:
Published in | Journal of Photopolymer Science and Technology Vol. 22; no. 5; pp. 565 - 569 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Society of Photopolymer Science and Technology(SPST)
01.01.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0914-9244 1349-6336 1349-6336 |
DOI | 10.2494/photopolymer.22.565 |
Cover
Loading…
Abstract | Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to construct device components still remains one of the major hurdles to be overcome due to problems with chemical processing. Fundamentally this challenge originates from the limited number of options regarding orthogonal solvents. Recently, we have identified supercritical carbon dioxide (scCO2) and segregated hydrofluoroethers (HFEs) as universal, non-damaging solvents for most non-fluorinated polymeric materials. These unconventional solvents expand processing options from the two-dimensional plane to three-dimensional space by drawing another orthogonal axis. Taking advantage of those noble solvents and fluorinated photoresists, we were able to make patterns of functional organic materials photolithographically. Furthermore, our orthogonal processing method has been applied to the fabrication of a patterned polymer light-emitting device in scCO2 and an organic thin-film transisotor in HFEs. |
---|---|
AbstractList | Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to construct device components still remains one of the major hurdles to be overcome due to problems with chemical processing. Fundamentally this challenge originates from the limited number of options regarding orthogonal solvents. Recently, we have identified supercritical carbon dioxide (scCO sub(2)) and segregated hydrofluoroethers (HFEs) as universal, non-damaging solvents for most non-fluorinated polymeric materials. These unconventional solvents expand processing options from the two-dimensional plane to three-dimensional space by drawing another orthogonal axis. Taking advantage of those noble solvents and fluorinated photoresists, we were able to make patterns of functional organic materials photolithographically. Furthermore, our orthogonal processing method has been applied to the fabrication of a patterned polymer light-emitting device in scCO sub(2) and an organic thin-film transisotor in HFEs. Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to construct device components still remains one of the major hurdles to be overcome due to problems with chemical processing. Fundamentally this challenge originates from the limited number of options regarding orthogonal solvents. Recently, we have identified supercritical carbon dioxide (scCO2) and segregated hydrofluoroethers (HFEs) as universal, non-damaging solvents for most non-fluorinated polymeric materials. These unconventional solvents expand processing options from the two-dimensional plane to three-dimensional space by drawing another orthogonal axis. Taking advantage of those noble solvents and fluorinated photoresists, we were able to make patterns of functional organic materials photolithographically. Furthermore, our orthogonal processing method has been applied to the fabrication of a patterned polymer light-emitting device in scCO2 and an organic thin-film transisotor in HFEs. |
Author | Hwang, Ha Soo Zakhidov, Alexander A. Ober, Christopher K. Chatzichristidi, Margarita Lee, Jin-Kyun Taylor, Priscillia G. Fong, Hon Hang Malliaras, George G. |
Author_xml | – sequence: 1 fullname: Fong, Hon Hang organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Lee, Jin-Kyun organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Malliaras, George G. organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Hwang, Ha Soo organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Zakhidov, Alexander A. organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Taylor, Priscillia G. organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Ober, Christopher K. organization: Department of Materials Science & Engineering, Cornell University – sequence: 1 fullname: Chatzichristidi, Margarita organization: Department of Materials Science & Engineering, Cornell University |
BookMark | eNqFkD1PAzEMhiNUJErhF7DcxnTlLsl9hK2qCkUCygALSxRyTpsqTY4kReq_J1URQjCw2Jb9PB7eUzSwzgJCF2UxxpTRq37louud2W3AjzEeV3V1hIYloSyvCakHaFiwkuYMU3qCTkNYFwUhVcWG6HXh48otnRUme_JOQgjaLq-zSfboPiDt9p-N3jNe9CstsycRI3ibqOwB0r7LlPPZwi-FTdeZARm9S2M4Q8dKmADnX32EXm5mz9N5fr-4vZtO7nNZtWXMFW4aRVpWQCdbVpP2DVqBy5q-4a5WBQjaUixog1nNRNdgopqmSzxpsGJYFWSELg9_e-_etxAi3-ggwRhhwW0Db2tKSVtWTSLZgZTeheBBcamjiNrZ6IU2vCz4Pk7-M06OMU9xJpf8cnuvN8Lv_rHmB2sdoljCtyN81NLAX-dQkvqNyJXwHCz5BDJMnQU |
CitedBy_id | crossref_primary_10_3390_coatings11010031 crossref_primary_10_1088_2058_8585_1_2_023001 crossref_primary_10_1002_adma_201901400 crossref_primary_10_1039_C4TC02503B crossref_primary_10_1039_C7TA05004F crossref_primary_10_1016_j_colsurfb_2019_03_006 crossref_primary_10_1021_acs_langmuir_6b03920 crossref_primary_10_1007_s13233_013_1129_z crossref_primary_10_1039_C6TC04111F crossref_primary_10_1016_j_orgel_2011_12_004 crossref_primary_10_1116_1_3628635 crossref_primary_10_1021_acsami_8b12346 crossref_primary_10_1002_smtd_202101509 crossref_primary_10_1039_C4NR06502F crossref_primary_10_1116_1_4757956 crossref_primary_10_1002_adma_201002986 crossref_primary_10_1016_j_fluid_2014_03_017 crossref_primary_10_1039_b923375j crossref_primary_10_1557_s43579_023_00498_0 crossref_primary_10_1155_2015_603148 crossref_primary_10_1002_app_45184 crossref_primary_10_1016_j_matt_2021_09_002 crossref_primary_10_1116_1_3386590 crossref_primary_10_1038_pj_2017_64 |
Cites_doi | 10.1116/1.1313582 10.1016/j.orgel.2005.10.002 10.1021/cm9902467 10.1039/b817286b 10.1002/adma.200800557 10.1002/aic.11151 10.1126/science.274.5284.85 10.1557/JMR.2004.0275 10.1002/adma.200803291 10.1039/b614171d 10.1039/b514065j 10.1039/b417803n 10.1126/science.290.5499.2123 10.1021/ja803493m 10.1039/b802713g 10.1021/cr050139y 10.1016/S0167-9317(99)00033-7 10.1063/1.1995748 |
ContentType | Journal Article |
Copyright | 2009 The Society of Photopolymer Science and Technology (SPST) |
Copyright_xml | – notice: 2009 The Society of Photopolymer Science and Technology (SPST) |
DBID | AAYXX CITATION 7SP 7SR 7U5 8FD JG9 L7M |
DOI | 10.2494/photopolymer.22.565 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1349-6336 |
EndPage | 569 |
ExternalDocumentID | 10_2494_photopolymer_22_565 article_photopolymer_22_5_22_5_565_article_char_en |
GroupedDBID | 2WC 5GY ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 HH5 JSF JSH KQ8 OK1 RJT RNS RZJ ZE2 AAYXX CITATION TKC 7SP 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c581t-f277f3890edc89638be8a2164b2d6f0ea4842a472969ad723f77d389372f92f03 |
ISSN | 0914-9244 1349-6336 |
IngestDate | Fri Jul 11 02:16:48 EDT 2025 Tue Jul 01 00:20:54 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Wed Sep 03 06:30:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c581t-f277f3890edc89638be8a2164b2d6f0ea4842a472969ad723f77d389372f92f03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/photopolymer/22/5/22_5_565/_article/-char/en |
PQID | 864438157 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_864438157 crossref_citationtrail_10_2494_photopolymer_22_565 crossref_primary_10_2494_photopolymer_22_565 jstage_primary_article_photopolymer_22_5_22_5_565_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Photopolymer Science and Technology |
PublicationTitleAlternate | J. Photopol. Sci. Technol. |
PublicationYear | 2009 |
Publisher | The Society of Photopolymer Science and Technology(SPST) |
Publisher_xml | – name: The Society of Photopolymer Science and Technology(SPST) |
References | 2. E. Menard, M. A. Meitl, Y. G. Sun, J. U. Park, D. J. L. Shir, Y. S. Nam, S. Jeon, J. A. Rogers, Chem. Rev. 107 (2007) 1117. 7. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 290 (2000) 2123. 9. S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science 272 (1996) 85. 12. D. Flowers, E. Hoggan, J. DeSimone, R. Carbonell, Mater. Res. Soc. Symp. Proc. 705 (2001) 81. 8. C. Clavijo Cedeno, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, Microelectron. Eng. 61 (2002) 25. 19. S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15 (2005) 2077. 11. N. Sundararajan, S. Yang, K. Ogino, S. Valiyaveettil, J. G. Wang, X. Y. Zhou, C. K. Ober, S. K. Obendorf, R. D. Allen, Chem. Mater. 12 (2000) 41. 15. H. S. Hwang, A. A. Zakhidov, J. K. Lee, X. Andre, J. A. DeFranco, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 18 (2008) 3087. 16. A. A. Zakhidov, J.-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober, G. G. Malliaras, Adv. Mater. 20 (2008) 3481. 20. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, H.-S. Hwang, E. L. Schwartz, J. Sha, P. G. Taylor, H.-H. Fong, J. A. DeFranco, E. Murotani, W. W. H. Wong, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 19 (2009) DOI: 10.1039/b817286b. 4. J. R. Sheats, J. Mater. Res. 19 (2004) 1974. 18. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, P. G. Taylor, J. A. DeFranco, H. S. Hwang, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Am. Chem. Soc. 130 (2008) 11564. 1. G. Malliaras, R. Friend, Phys. Today 58 (2005) 53. 5. J. Huang, R. Xia, Y. Kim, X. Wang, J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello, D. D. C. Bradley, J. Mater. Chem. 17 (2007) 1043. 21. P. G. Taylor, J.-K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong, J. A. DeFranco, G. G. Malliaras, C. K. Ober, Adv. Mater. 21 (2009) DOI: 10.1002/adma.200803291. 6. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC (2002). 3. Yueh-Lin (Lynn) Loo, AIChE Journal 53 (2007) 1066. 14. D. L. Goldfarb, J. J. de Pablo, P. F. Nealey, J. P. Simons, W. M. Moreau, M. Angelopoulos, J. Vac. Sci. Technol., B 18 (2000) 3313. 17. S. W. Chang, R. Ayothi, D. Bratton, D. Yang, N. Felix, H. B. Cao, H. Deng, C. K. Ober, J. Mater. Chem. 16 (2006) 1470. 10. J. A. DeFranco, B. S. Schmidt, M. Lipson, G. G. Malliaras, Org. Electron. 7 (2006) 22. 13. H. Namatsu, K. Yamazaki, K. Kurihara, Microelectron. Eng. 46 (1999) 129. 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: 17. S. W. Chang, R. Ayothi, D. Bratton, D. Yang, N. Felix, H. B. Cao, H. Deng, C. K. Ober, J. Mater. Chem. 16 (2006) 1470. – reference: 11. N. Sundararajan, S. Yang, K. Ogino, S. Valiyaveettil, J. G. Wang, X. Y. Zhou, C. K. Ober, S. K. Obendorf, R. D. Allen, Chem. Mater. 12 (2000) 41. – reference: 9. S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science 272 (1996) 85. – reference: 5. J. Huang, R. Xia, Y. Kim, X. Wang, J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello, D. D. C. Bradley, J. Mater. Chem. 17 (2007) 1043. – reference: 14. D. L. Goldfarb, J. J. de Pablo, P. F. Nealey, J. P. Simons, W. M. Moreau, M. Angelopoulos, J. Vac. Sci. Technol., B 18 (2000) 3313. – reference: 7. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 290 (2000) 2123. – reference: 2. E. Menard, M. A. Meitl, Y. G. Sun, J. U. Park, D. J. L. Shir, Y. S. Nam, S. Jeon, J. A. Rogers, Chem. Rev. 107 (2007) 1117. – reference: 13. H. Namatsu, K. Yamazaki, K. Kurihara, Microelectron. Eng. 46 (1999) 129. – reference: 16. A. A. Zakhidov, J.-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober, G. G. Malliaras, Adv. Mater. 20 (2008) 3481. – reference: 8. C. Clavijo Cedeno, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, Microelectron. Eng. 61 (2002) 25. – reference: 10. J. A. DeFranco, B. S. Schmidt, M. Lipson, G. G. Malliaras, Org. Electron. 7 (2006) 22. – reference: 20. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, H.-S. Hwang, E. L. Schwartz, J. Sha, P. G. Taylor, H.-H. Fong, J. A. DeFranco, E. Murotani, W. W. H. Wong, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 19 (2009) DOI: 10.1039/b817286b. – reference: 12. D. Flowers, E. Hoggan, J. DeSimone, R. Carbonell, Mater. Res. Soc. Symp. Proc. 705 (2001) 81. – reference: 1. G. Malliaras, R. Friend, Phys. Today 58 (2005) 53. – reference: 15. H. S. Hwang, A. A. Zakhidov, J. K. Lee, X. Andre, J. A. DeFranco, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 18 (2008) 3087. – reference: 19. S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15 (2005) 2077. – reference: 21. P. G. Taylor, J.-K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong, J. A. DeFranco, G. G. Malliaras, C. K. Ober, Adv. Mater. 21 (2009) DOI: 10.1002/adma.200803291. – reference: 4. J. R. Sheats, J. Mater. Res. 19 (2004) 1974. – reference: 6. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC (2002). – reference: 18. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, P. G. Taylor, J. A. DeFranco, H. S. Hwang, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Am. Chem. Soc. 130 (2008) 11564. – reference: 3. Yueh-Lin (Lynn) Loo, AIChE Journal 53 (2007) 1066. – ident: 14 doi: 10.1116/1.1313582 – ident: 10 doi: 10.1016/j.orgel.2005.10.002 – ident: 11 doi: 10.1021/cm9902467 – ident: 20 doi: 10.1039/b817286b – ident: 16 doi: 10.1002/adma.200800557 – ident: 3 doi: 10.1002/aic.11151 – ident: 12 – ident: 9 doi: 10.1126/science.274.5284.85 – ident: 4 doi: 10.1557/JMR.2004.0275 – ident: 21 doi: 10.1002/adma.200803291 – ident: 5 doi: 10.1039/b614171d – ident: 17 doi: 10.1039/b514065j – ident: 19 doi: 10.1039/b417803n – ident: 7 doi: 10.1126/science.290.5499.2123 – ident: 18 doi: 10.1021/ja803493m – ident: 15 doi: 10.1039/b802713g – ident: 2 doi: 10.1021/cr050139y – ident: 13 doi: 10.1016/S0167-9317(99)00033-7 – ident: 6 – ident: 8 – ident: 1 doi: 10.1063/1.1995748 |
SSID | ssj0033559 |
Score | 1.9366895 |
Snippet | Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 565 |
SubjectTerms | Carbon dioxide Devices Electronics Hafnium hydrofluoroethers lift-off patterning organic electronics Organic materials Patterning Photolithography Solvents supercritical carbon dioxide |
Title | Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics |
URI | https://www.jstage.jst.go.jp/article/photopolymer/22/5/22_5_565/_article/-char/en https://www.proquest.com/docview/864438157 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Photopolymer Science and Technology, 2009/06/30, Vol.22(5), pp.565-569 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWggQXxFNdXvKB25IlcZw44RZVLSuqFpBaqeISOYndLZRktc1WKn-Mv8f4ESftlopysVZe20o8X8Yz43kg9DZmAWGE-55IqsijknEPhFjfKyIWxlQGnBUqwHlvP54d0k9H0dFo9HvgtbRqi2n569q4kv-hKvQBXVWU7C0o6xaFDvgN9IUWKAztP9H487KdN8falmcd_m34cjbZb84F9M6bVjm4zU1iauUGr_NpamPIni4erf0MTURmOdl2RXHO_iK1LtSKi-b04qdKA20Zg_bCXLPRdz4-J7W3e7HqHX6djeDLUoUEK3vP5OPUWbD5j_lJ1Zxfir6ZZO7_HetDPAPYzrg9dzuzRTowW1j7Y0A9UP6MNUEY7hvS1ItDkxGlY8-EDGAYDXhtZIpM2GM7MhVfrp4IoF1SVcZ4sDlTQqZu7jD_9pVz0Xkrgp6klsmHi-SE5LDIHXSXgH6iaobsfnXXVyEIcSbJo31Hk-5KLfL-mie5JBLd-w5awfG6aKDlnYNH6KElOc4M6h6jkaifoPtbXX3Ap-hbjz7co-8DzrDGHl7DHu6xhw32MGAPW-zhAfaeocOd7YOtmWcrdXhllAStJ2ETJIi-vqjKRLH0QiScgCZekCqWvuA0oYRTUOTilFeMhJKxSovKRKZE-uFztFE3tdhEOEx9GVQVDRio-qm6tqWFTAOuyhTwJC3HiHSblZc2jb2qpnKa30CmMXrnJi1MFpebh2eGCm6w_cTXB5sG5rghKloSmNMY4Y6AORBGXcPxWjSrszwBFQTk5Ii9uN1TvUQP-g_pFdpolyvxGiTitnij0fcH_XLCPA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+Processing%3A+A+Novel+Photolithographic+Patterning+Method+for+Organic+Electronics&rft.jtitle=Journal+of+photopolymer+science+and+technology&rft.au=Lee%2C+Jin-Kyun&rft.au=Taylor%2C+Priscillia+G.&rft.au=Zakhidov%2C+Alexander+A.&rft.au=Fong%2C+Hon+Hang&rft.date=2009-01-01&rft.issn=0914-9244&rft.eissn=1349-6336&rft.volume=22&rft.issue=5&rft.spage=565&rft.epage=569&rft_id=info:doi/10.2494%2Fphotopolymer.22.565&rft.externalDBID=n%2Fa&rft.externalDocID=10_2494_photopolymer_22_565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-9244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-9244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-9244&client=summon |