Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics

Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to con...

Full description

Saved in:
Bibliographic Details
Published inJournal of Photopolymer Science and Technology Vol. 22; no. 5; pp. 565 - 569
Main Authors Fong, Hon Hang, Lee, Jin-Kyun, Malliaras, George G., Hwang, Ha Soo, Zakhidov, Alexander A., Taylor, Priscillia G., Ober, Christopher K., Chatzichristidi, Margarita
Format Journal Article
LanguageEnglish
Published The Society of Photopolymer Science and Technology(SPST) 01.01.2009
Subjects
Online AccessGet full text
ISSN0914-9244
1349-6336
1349-6336
DOI10.2494/photopolymer.22.565

Cover

Loading…
Abstract Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to construct device components still remains one of the major hurdles to be overcome due to problems with chemical processing. Fundamentally this challenge originates from the limited number of options regarding orthogonal solvents. Recently, we have identified supercritical carbon dioxide (scCO2) and segregated hydrofluoroethers (HFEs) as universal, non-damaging solvents for most non-fluorinated polymeric materials. These unconventional solvents expand processing options from the two-dimensional plane to three-dimensional space by drawing another orthogonal axis. Taking advantage of those noble solvents and fluorinated photoresists, we were able to make patterns of functional organic materials photolithographically. Furthermore, our orthogonal processing method has been applied to the fabrication of a patterned polymer light-emitting device in scCO2 and an organic thin-film transisotor in HFEs.
AbstractList Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to construct device components still remains one of the major hurdles to be overcome due to problems with chemical processing. Fundamentally this challenge originates from the limited number of options regarding orthogonal solvents. Recently, we have identified supercritical carbon dioxide (scCO sub(2)) and segregated hydrofluoroethers (HFEs) as universal, non-damaging solvents for most non-fluorinated polymeric materials. These unconventional solvents expand processing options from the two-dimensional plane to three-dimensional space by drawing another orthogonal axis. Taking advantage of those noble solvents and fluorinated photoresists, we were able to make patterns of functional organic materials photolithographically. Furthermore, our orthogonal processing method has been applied to the fabrication of a patterned polymer light-emitting device in scCO sub(2) and an organic thin-film transisotor in HFEs.
Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to enable flexible electronic devices through solution processing of organic and polymeric materials. However, patterning of organic materials to construct device components still remains one of the major hurdles to be overcome due to problems with chemical processing. Fundamentally this challenge originates from the limited number of options regarding orthogonal solvents. Recently, we have identified supercritical carbon dioxide (scCO2) and segregated hydrofluoroethers (HFEs) as universal, non-damaging solvents for most non-fluorinated polymeric materials. These unconventional solvents expand processing options from the two-dimensional plane to three-dimensional space by drawing another orthogonal axis. Taking advantage of those noble solvents and fluorinated photoresists, we were able to make patterns of functional organic materials photolithographically. Furthermore, our orthogonal processing method has been applied to the fabrication of a patterned polymer light-emitting device in scCO2 and an organic thin-film transisotor in HFEs.
Author Hwang, Ha Soo
Zakhidov, Alexander A.
Ober, Christopher K.
Chatzichristidi, Margarita
Lee, Jin-Kyun
Taylor, Priscillia G.
Fong, Hon Hang
Malliaras, George G.
Author_xml – sequence: 1
  fullname: Fong, Hon Hang
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Lee, Jin-Kyun
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Malliaras, George G.
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Hwang, Ha Soo
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Zakhidov, Alexander A.
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Taylor, Priscillia G.
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Ober, Christopher K.
  organization: Department of Materials Science & Engineering, Cornell University
– sequence: 1
  fullname: Chatzichristidi, Margarita
  organization: Department of Materials Science & Engineering, Cornell University
BookMark eNqFkD1PAzEMhiNUJErhF7DcxnTlLsl9hK2qCkUCygALSxRyTpsqTY4kReq_J1URQjCw2Jb9PB7eUzSwzgJCF2UxxpTRq37louud2W3AjzEeV3V1hIYloSyvCakHaFiwkuYMU3qCTkNYFwUhVcWG6HXh48otnRUme_JOQgjaLq-zSfboPiDt9p-N3jNe9CstsycRI3ibqOwB0r7LlPPZwi-FTdeZARm9S2M4Q8dKmADnX32EXm5mz9N5fr-4vZtO7nNZtWXMFW4aRVpWQCdbVpP2DVqBy5q-4a5WBQjaUixog1nNRNdgopqmSzxpsGJYFWSELg9_e-_etxAi3-ggwRhhwW0Db2tKSVtWTSLZgZTeheBBcamjiNrZ6IU2vCz4Pk7-M06OMU9xJpf8cnuvN8Lv_rHmB2sdoljCtyN81NLAX-dQkvqNyJXwHCz5BDJMnQU
CitedBy_id crossref_primary_10_3390_coatings11010031
crossref_primary_10_1088_2058_8585_1_2_023001
crossref_primary_10_1002_adma_201901400
crossref_primary_10_1039_C4TC02503B
crossref_primary_10_1039_C7TA05004F
crossref_primary_10_1016_j_colsurfb_2019_03_006
crossref_primary_10_1021_acs_langmuir_6b03920
crossref_primary_10_1007_s13233_013_1129_z
crossref_primary_10_1039_C6TC04111F
crossref_primary_10_1016_j_orgel_2011_12_004
crossref_primary_10_1116_1_3628635
crossref_primary_10_1021_acsami_8b12346
crossref_primary_10_1002_smtd_202101509
crossref_primary_10_1039_C4NR06502F
crossref_primary_10_1116_1_4757956
crossref_primary_10_1002_adma_201002986
crossref_primary_10_1016_j_fluid_2014_03_017
crossref_primary_10_1039_b923375j
crossref_primary_10_1557_s43579_023_00498_0
crossref_primary_10_1155_2015_603148
crossref_primary_10_1002_app_45184
crossref_primary_10_1016_j_matt_2021_09_002
crossref_primary_10_1116_1_3386590
crossref_primary_10_1038_pj_2017_64
Cites_doi 10.1116/1.1313582
10.1016/j.orgel.2005.10.002
10.1021/cm9902467
10.1039/b817286b
10.1002/adma.200800557
10.1002/aic.11151
10.1126/science.274.5284.85
10.1557/JMR.2004.0275
10.1002/adma.200803291
10.1039/b614171d
10.1039/b514065j
10.1039/b417803n
10.1126/science.290.5499.2123
10.1021/ja803493m
10.1039/b802713g
10.1021/cr050139y
10.1016/S0167-9317(99)00033-7
10.1063/1.1995748
ContentType Journal Article
Copyright 2009 The Society of Photopolymer Science and Technology (SPST)
Copyright_xml – notice: 2009 The Society of Photopolymer Science and Technology (SPST)
DBID AAYXX
CITATION
7SP
7SR
7U5
8FD
JG9
L7M
DOI 10.2494/photopolymer.22.565
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1349-6336
EndPage 569
ExternalDocumentID 10_2494_photopolymer_22_565
article_photopolymer_22_5_22_5_565_article_char_en
GroupedDBID 2WC
5GY
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
HH5
JSF
JSH
KQ8
OK1
RJT
RNS
RZJ
ZE2
AAYXX
CITATION
TKC
7SP
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c581t-f277f3890edc89638be8a2164b2d6f0ea4842a472969ad723f77d389372f92f03
ISSN 0914-9244
1349-6336
IngestDate Fri Jul 11 02:16:48 EDT 2025
Tue Jul 01 00:20:54 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Wed Sep 03 06:30:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581t-f277f3890edc89638be8a2164b2d6f0ea4842a472969ad723f77d389372f92f03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/photopolymer/22/5/22_5_565/_article/-char/en
PQID 864438157
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_864438157
crossref_citationtrail_10_2494_photopolymer_22_565
crossref_primary_10_2494_photopolymer_22_565
jstage_primary_article_photopolymer_22_5_22_5_565_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of Photopolymer Science and Technology
PublicationTitleAlternate J. Photopol. Sci. Technol.
PublicationYear 2009
Publisher The Society of Photopolymer Science and Technology(SPST)
Publisher_xml – name: The Society of Photopolymer Science and Technology(SPST)
References 2. E. Menard, M. A. Meitl, Y. G. Sun, J. U. Park, D. J. L. Shir, Y. S. Nam, S. Jeon, J. A. Rogers, Chem. Rev. 107 (2007) 1117.
7. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 290 (2000) 2123.
9. S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science 272 (1996) 85.
12. D. Flowers, E. Hoggan, J. DeSimone, R. Carbonell, Mater. Res. Soc. Symp. Proc. 705 (2001) 81.
8. C. Clavijo Cedeno, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, Microelectron. Eng. 61 (2002) 25.
19. S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15 (2005) 2077.
11. N. Sundararajan, S. Yang, K. Ogino, S. Valiyaveettil, J. G. Wang, X. Y. Zhou, C. K. Ober, S. K. Obendorf, R. D. Allen, Chem. Mater. 12 (2000) 41.
15. H. S. Hwang, A. A. Zakhidov, J. K. Lee, X. Andre, J. A. DeFranco, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 18 (2008) 3087.
16. A. A. Zakhidov, J.-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober, G. G. Malliaras, Adv. Mater. 20 (2008) 3481.
20. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, H.-S. Hwang, E. L. Schwartz, J. Sha, P. G. Taylor, H.-H. Fong, J. A. DeFranco, E. Murotani, W. W. H. Wong, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 19 (2009) DOI: 10.1039/b817286b.
4. J. R. Sheats, J. Mater. Res. 19 (2004) 1974.
18. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, P. G. Taylor, J. A. DeFranco, H. S. Hwang, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Am. Chem. Soc. 130 (2008) 11564.
1. G. Malliaras, R. Friend, Phys. Today 58 (2005) 53.
5. J. Huang, R. Xia, Y. Kim, X. Wang, J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello, D. D. C. Bradley, J. Mater. Chem. 17 (2007) 1043.
21. P. G. Taylor, J.-K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong, J. A. DeFranco, G. G. Malliaras, C. K. Ober, Adv. Mater. 21 (2009) DOI: 10.1002/adma.200803291.
6. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC (2002).
3. Yueh-Lin (Lynn) Loo, AIChE Journal 53 (2007) 1066.
14. D. L. Goldfarb, J. J. de Pablo, P. F. Nealey, J. P. Simons, W. M. Moreau, M. Angelopoulos, J. Vac. Sci. Technol., B 18 (2000) 3313.
17. S. W. Chang, R. Ayothi, D. Bratton, D. Yang, N. Felix, H. B. Cao, H. Deng, C. K. Ober, J. Mater. Chem. 16 (2006) 1470.
10. J. A. DeFranco, B. S. Schmidt, M. Lipson, G. G. Malliaras, Org. Electron. 7 (2006) 22.
13. H. Namatsu, K. Yamazaki, K. Kurihara, Microelectron. Eng. 46 (1999) 129.
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 17. S. W. Chang, R. Ayothi, D. Bratton, D. Yang, N. Felix, H. B. Cao, H. Deng, C. K. Ober, J. Mater. Chem. 16 (2006) 1470.
– reference: 11. N. Sundararajan, S. Yang, K. Ogino, S. Valiyaveettil, J. G. Wang, X. Y. Zhou, C. K. Ober, S. K. Obendorf, R. D. Allen, Chem. Mater. 12 (2000) 41.
– reference: 9. S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science 272 (1996) 85.
– reference: 5. J. Huang, R. Xia, Y. Kim, X. Wang, J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello, D. D. C. Bradley, J. Mater. Chem. 17 (2007) 1043.
– reference: 14. D. L. Goldfarb, J. J. de Pablo, P. F. Nealey, J. P. Simons, W. M. Moreau, M. Angelopoulos, J. Vac. Sci. Technol., B 18 (2000) 3313.
– reference: 7. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 290 (2000) 2123.
– reference: 2. E. Menard, M. A. Meitl, Y. G. Sun, J. U. Park, D. J. L. Shir, Y. S. Nam, S. Jeon, J. A. Rogers, Chem. Rev. 107 (2007) 1117.
– reference: 13. H. Namatsu, K. Yamazaki, K. Kurihara, Microelectron. Eng. 46 (1999) 129.
– reference: 16. A. A. Zakhidov, J.-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober, G. G. Malliaras, Adv. Mater. 20 (2008) 3481.
– reference: 8. C. Clavijo Cedeno, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, Microelectron. Eng. 61 (2002) 25.
– reference: 10. J. A. DeFranco, B. S. Schmidt, M. Lipson, G. G. Malliaras, Org. Electron. 7 (2006) 22.
– reference: 20. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, H.-S. Hwang, E. L. Schwartz, J. Sha, P. G. Taylor, H.-H. Fong, J. A. DeFranco, E. Murotani, W. W. H. Wong, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 19 (2009) DOI: 10.1039/b817286b.
– reference: 12. D. Flowers, E. Hoggan, J. DeSimone, R. Carbonell, Mater. Res. Soc. Symp. Proc. 705 (2001) 81.
– reference: 1. G. Malliaras, R. Friend, Phys. Today 58 (2005) 53.
– reference: 15. H. S. Hwang, A. A. Zakhidov, J. K. Lee, X. Andre, J. A. DeFranco, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Mater. Chem. 18 (2008) 3087.
– reference: 19. S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15 (2005) 2077.
– reference: 21. P. G. Taylor, J.-K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong, J. A. DeFranco, G. G. Malliaras, C. K. Ober, Adv. Mater. 21 (2009) DOI: 10.1002/adma.200803291.
– reference: 4. J. R. Sheats, J. Mater. Res. 19 (2004) 1974.
– reference: 6. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC (2002).
– reference: 18. J.-K. Lee, M. Chatzichristidi, A. A. Zakhidov, P. G. Taylor, J. A. DeFranco, H. S. Hwang, H. H. Fong, A. B. Holmes, G. G. Malliaras, C. K. Ober, J. Am. Chem. Soc. 130 (2008) 11564.
– reference: 3. Yueh-Lin (Lynn) Loo, AIChE Journal 53 (2007) 1066.
– ident: 14
  doi: 10.1116/1.1313582
– ident: 10
  doi: 10.1016/j.orgel.2005.10.002
– ident: 11
  doi: 10.1021/cm9902467
– ident: 20
  doi: 10.1039/b817286b
– ident: 16
  doi: 10.1002/adma.200800557
– ident: 3
  doi: 10.1002/aic.11151
– ident: 12
– ident: 9
  doi: 10.1126/science.274.5284.85
– ident: 4
  doi: 10.1557/JMR.2004.0275
– ident: 21
  doi: 10.1002/adma.200803291
– ident: 5
  doi: 10.1039/b614171d
– ident: 17
  doi: 10.1039/b514065j
– ident: 19
  doi: 10.1039/b417803n
– ident: 7
  doi: 10.1126/science.290.5499.2123
– ident: 18
  doi: 10.1021/ja803493m
– ident: 15
  doi: 10.1039/b802713g
– ident: 2
  doi: 10.1021/cr050139y
– ident: 13
  doi: 10.1016/S0167-9317(99)00033-7
– ident: 6
– ident: 8
– ident: 1
  doi: 10.1063/1.1995748
SSID ssj0033559
Score 1.9366895
Snippet Organic electronics is an extensively studied subject opening new horizons in electronics technology. It has attracted great attention as a technology to...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 565
SubjectTerms Carbon dioxide
Devices
Electronics
Hafnium
hydrofluoroethers
lift-off patterning
organic electronics
Organic materials
Patterning
Photolithography
Solvents
supercritical carbon dioxide
Title Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics
URI https://www.jstage.jst.go.jp/article/photopolymer/22/5/22_5_565/_article/-char/en
https://www.proquest.com/docview/864438157
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Photopolymer Science and Technology, 2009/06/30, Vol.22(5), pp.565-569
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWggQXxFNdXvKB25IlcZw44RZVLSuqFpBaqeISOYndLZRktc1WKn-Mv8f4ESftlopysVZe20o8X8Yz43kg9DZmAWGE-55IqsijknEPhFjfKyIWxlQGnBUqwHlvP54d0k9H0dFo9HvgtbRqi2n569q4kv-hKvQBXVWU7C0o6xaFDvgN9IUWKAztP9H487KdN8falmcd_m34cjbZb84F9M6bVjm4zU1iauUGr_NpamPIni4erf0MTURmOdl2RXHO_iK1LtSKi-b04qdKA20Zg_bCXLPRdz4-J7W3e7HqHX6djeDLUoUEK3vP5OPUWbD5j_lJ1Zxfir6ZZO7_HetDPAPYzrg9dzuzRTowW1j7Y0A9UP6MNUEY7hvS1ItDkxGlY8-EDGAYDXhtZIpM2GM7MhVfrp4IoF1SVcZ4sDlTQqZu7jD_9pVz0Xkrgp6klsmHi-SE5LDIHXSXgH6iaobsfnXXVyEIcSbJo31Hk-5KLfL-mie5JBLd-w5awfG6aKDlnYNH6KElOc4M6h6jkaifoPtbXX3Ap-hbjz7co-8DzrDGHl7DHu6xhw32MGAPW-zhAfaeocOd7YOtmWcrdXhllAStJ2ETJIi-vqjKRLH0QiScgCZekCqWvuA0oYRTUOTilFeMhJKxSovKRKZE-uFztFE3tdhEOEx9GVQVDRio-qm6tqWFTAOuyhTwJC3HiHSblZc2jb2qpnKa30CmMXrnJi1MFpebh2eGCm6w_cTXB5sG5rghKloSmNMY4Y6AORBGXcPxWjSrszwBFQTk5Ii9uN1TvUQP-g_pFdpolyvxGiTitnij0fcH_XLCPA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+Processing%3A+A+Novel+Photolithographic+Patterning+Method+for+Organic+Electronics&rft.jtitle=Journal+of+photopolymer+science+and+technology&rft.au=Lee%2C+Jin-Kyun&rft.au=Taylor%2C+Priscillia+G.&rft.au=Zakhidov%2C+Alexander+A.&rft.au=Fong%2C+Hon+Hang&rft.date=2009-01-01&rft.issn=0914-9244&rft.eissn=1349-6336&rft.volume=22&rft.issue=5&rft.spage=565&rft.epage=569&rft_id=info:doi/10.2494%2Fphotopolymer.22.565&rft.externalDBID=n%2Fa&rft.externalDocID=10_2494_photopolymer_22_565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-9244&client=summon