Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently...
Saved in:
Published in | International journal of molecular sciences Vol. 17; no. 10; p. 1603 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.10.2016
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms17101603 |
Cover
Loading…
Abstract | Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs. |
---|---|
AbstractList | Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs. Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs. |
Author | Shen, Wei Zhang, Xi-Feng Gurunathan, Sangiliyandi |
AuthorAffiliation | 3 Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea 2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; shenwei427@163.com 1 College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; zhangxf9465@163.com |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; shenwei427@163.com – name: 1 College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; zhangxf9465@163.com – name: 3 Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea |
Author_xml | – sequence: 1 givenname: Xi-Feng surname: Zhang fullname: Zhang, Xi-Feng – sequence: 2 givenname: Wei surname: Shen fullname: Shen, Wei – sequence: 3 givenname: Sangiliyandi surname: Gurunathan fullname: Gurunathan, Sangiliyandi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27669221$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1rVDEUxYNU7OfOtTxw46JP8_FekudCKIO2wlSh2tJdyCQ3miGTjMl7hf73ZtpaxuLCVQLndw_33LOPdmKKgNBLgt8yNuB3frkqRBBMOGbP0B7pKG0x5mJn67-L9ktZYkwZ7YcXaJcKzgdKyR66_ubDDeTmi45prfPoTYD2HKzXI9hmBiFMQefmAso6xQKl8bG50tmnqdypzdxHKO-bk3in-DGn5jxZCIfoudOhwNHDe4AuP338Pjtr519PP89O5q3pJRlbMAKkM0RagQ2IbjBMUM0FY0wMjrrF4Go4DdjhzlLeaWw6bhnQYeEsOMsO0Id73_W0WIE1EMesg1pnv9L5ViXt1d9K9D_Vj3Sjeix7zng1ePNgkNOvCcqoVr6YGk1HqCkVkT0WQg49-Q-U1ot3HacVff0EXaYpx3qJSjEihcRyY_hqe_nHrf_0U4Hje8DkVEoG94gQrDb1q-36K06f4MaPevRpE92Hfw_9Blz4sx0 |
CitedBy_id | crossref_primary_10_1002_cbf_70012 crossref_primary_10_1016_j_scitotenv_2018_08_064 crossref_primary_10_1016_j_jtemb_2020_126630 crossref_primary_10_1038_s41598_021_92081_7 crossref_primary_10_1080_17435390_2017_1382600 crossref_primary_10_1007_s00253_018_9488_1 crossref_primary_10_11603_mcch_2410_681X_2023_i3_14126 crossref_primary_10_3390_pharmaceutics15071797 crossref_primary_10_1007_s12668_018_0552_1 crossref_primary_10_1038_s41598_021_96426_0 crossref_primary_10_1080_21691401_2018_1457037 crossref_primary_10_2217_nnm_2017_0329 crossref_primary_10_3390_ijms18030569 crossref_primary_10_1016_j_mtcomm_2025_111876 crossref_primary_10_1038_s41598_020_72249_3 crossref_primary_10_1155_2019_3754018 crossref_primary_10_3390_coatings11101213 crossref_primary_10_1166_mex_2022_2300 crossref_primary_10_1021_acsabm_2c00014 crossref_primary_10_15407_ubj93_05_102 crossref_primary_10_1155_2018_8251961 crossref_primary_10_1016_j_jddst_2024_105532 crossref_primary_10_5812_ircmj_79183 crossref_primary_10_1016_j_surfin_2025_105920 crossref_primary_10_1515_ntrev_2024_0023 crossref_primary_10_1002_jemt_24540 crossref_primary_10_1088_1742_6596_1323_1_012020 crossref_primary_10_17352_2455_3492_000046 crossref_primary_10_1039_D3NR04362B crossref_primary_10_1016_j_tiv_2019_03_006 crossref_primary_10_3390_ijms19041210 crossref_primary_10_1016_j_envpol_2018_11_019 crossref_primary_10_1007_s13204_019_01151_w crossref_primary_10_3390_nano7060124 crossref_primary_10_3389_fmicb_2018_01218 crossref_primary_10_3390_antibiotics7030067 crossref_primary_10_1002_cbf_70006 crossref_primary_10_1021_acsomega_4c04961 crossref_primary_10_3389_fmicb_2017_02698 crossref_primary_10_3390_ijms19051470 crossref_primary_10_1039_C8JA00310F crossref_primary_10_1016_j_tiv_2021_105161 crossref_primary_10_1016_j_msec_2018_07_037 crossref_primary_10_29252_rap_10_24_103 crossref_primary_10_3390_ijms20184439 crossref_primary_10_1016_j_msec_2019_110262 crossref_primary_10_1007_s13205_024_04118_z crossref_primary_10_3390_nano10061127 crossref_primary_10_1007_s10876_020_01775_x crossref_primary_10_3390_ijms22158037 crossref_primary_10_1007_s13273_019_00061_w crossref_primary_10_3390_polym16010024 crossref_primary_10_1016_j_biopha_2023_116090 crossref_primary_10_1021_acs_chemrestox_8b00234 crossref_primary_10_1002_slct_202400441 crossref_primary_10_1186_s12964_024_01511_2 crossref_primary_10_3390_ma13092159 crossref_primary_10_1016_j_surfin_2023_102631 crossref_primary_10_1016_j_biotno_2024_05_002 crossref_primary_10_2174_1574885515999200425234517 crossref_primary_10_2217_nnm_2019_0095 crossref_primary_10_1016_j_jbiosc_2019_04_017 crossref_primary_10_1016_j_bioflm_2024_100228 crossref_primary_10_1016_j_colcom_2020_100244 crossref_primary_10_1016_j_cbi_2022_110023 crossref_primary_10_3390_polym9050176 crossref_primary_10_1016_j_procbio_2017_11_003 crossref_primary_10_1680_jbibn_21_00061 crossref_primary_10_1002_jmr_2723 crossref_primary_10_1016_j_heliyon_2022_e12326 crossref_primary_10_1096_fj_202100065R crossref_primary_10_1007_s10876_018_01491_7 crossref_primary_10_1155_2018_9689131 crossref_primary_10_3390_coatings11060677 crossref_primary_10_1016_j_bcab_2020_101592 crossref_primary_10_3390_ijms19051305 crossref_primary_10_1016_j_msec_2020_110925 crossref_primary_10_33073_pjm_2019_051 crossref_primary_10_1039_C8RA04502J crossref_primary_10_1007_s12010_022_03963_z crossref_primary_10_1021_acsabm_1c00613 crossref_primary_10_1007_s12015_022_10500_2 crossref_primary_10_1007_s10616_018_0257_x crossref_primary_10_1080_20550324_2024_2442270 crossref_primary_10_3390_ma14123383 crossref_primary_10_1002_mame_202200060 crossref_primary_10_3390_gels9110878 crossref_primary_10_3390_ijms19103264 crossref_primary_10_1016_j_msec_2020_110934 crossref_primary_10_3389_fonc_2024_1465987 crossref_primary_10_1007_s00210_024_03516_7 crossref_primary_10_1007_s13273_020_00100_x crossref_primary_10_1002_advs_202205093 crossref_primary_10_1007_s13204_024_03076_5 crossref_primary_10_3390_antibiotics11060800 crossref_primary_10_3390_ijms21124412 crossref_primary_10_1021_acsbiomaterials_3c00625 crossref_primary_10_3390_app8091643 crossref_primary_10_3390_ijms19082269 crossref_primary_10_1007_s10895_022_02909_2 crossref_primary_10_3390_ma15175802 crossref_primary_10_1007_s12668_022_01015_8 crossref_primary_10_1016_j_surfin_2021_101617 crossref_primary_10_1007_s12011_019_1653_6 crossref_primary_10_1007_s12034_022_02665_w crossref_primary_10_1007_s12668_023_01297_6 crossref_primary_10_3390_cancers12030664 crossref_primary_10_1016_j_flm_2018_06_001 crossref_primary_10_1016_j_chemosphere_2024_142988 crossref_primary_10_1007_s12668_020_00738_w crossref_primary_10_1088_1748_605X_ab7763 crossref_primary_10_1016_j_neuroscience_2023_09_004 crossref_primary_10_18633_biotecnia_v26_2257 crossref_primary_10_1021_acsabm_0c00915 crossref_primary_10_3390_pharmaceutics15030715 crossref_primary_10_1039_D1RA03876A crossref_primary_10_3390_pharmaceutics13040575 crossref_primary_10_1007_s10856_023_06753_z crossref_primary_10_18632_oncotarget_22563 crossref_primary_10_2147_IJN_S260375 crossref_primary_10_1016_j_ijpharm_2022_122339 crossref_primary_10_3390_jfb11030058 crossref_primary_10_2217_nnm_2019_0290 crossref_primary_10_2174_0113816128304460240408085736 crossref_primary_10_3390_polym11040733 crossref_primary_10_1016_j_sajb_2023_07_001 crossref_primary_10_3389_fimmu_2017_00973 crossref_primary_10_1016_j_lfs_2019_05_072 crossref_primary_10_3390_nano12132316 crossref_primary_10_1016_j_jgeb_2017_12_001 crossref_primary_10_3762_bjnano_12_23 crossref_primary_10_1016_j_mtbio_2021_100127 crossref_primary_10_1021_acsomega_2c07840 crossref_primary_10_3390_molecules25102375 crossref_primary_10_1016_j_chemosphere_2021_132527 crossref_primary_10_3390_pharmaceutics14081523 crossref_primary_10_3390_molecules25051137 crossref_primary_10_1166_mex_2023_2543 crossref_primary_10_3390_molecules25225336 crossref_primary_10_1007_s11356_022_20235_9 crossref_primary_10_1007_s12010_022_04156_4 crossref_primary_10_3390_biomedicines10112792 crossref_primary_10_3389_fcell_2022_901661 crossref_primary_10_1016_j_arabjc_2022_104217 crossref_primary_10_1080_21691401_2024_2407617 crossref_primary_10_1186_s12903_024_05127_3 crossref_primary_10_1016_j_nano_2019_102070 crossref_primary_10_3390_poultry2010002 crossref_primary_10_1080_21691401_2018_1449118 crossref_primary_10_3390_app12073554 crossref_primary_10_1515_zpch_2021_3084 crossref_primary_10_3390_ijms20020449 crossref_primary_10_1021_acsomega_8b00608 crossref_primary_10_1016_j_cbpc_2022_109266 crossref_primary_10_3390_jfb14010047 crossref_primary_10_1007_s11095_021_03038_4 crossref_primary_10_1088_2632_959X_ad106f crossref_primary_10_1007_s42600_025_00404_8 crossref_primary_10_1080_17435390_2022_2030823 crossref_primary_10_1016_j_enmm_2021_100460 crossref_primary_10_1016_j_actbio_2016_12_014 crossref_primary_10_3390_plants12061261 crossref_primary_10_3390_coatings14060681 crossref_primary_10_1016_j_msec_2019_01_134 crossref_primary_10_3390_chemistry4030064 crossref_primary_10_1080_17435390_2018_1425497 crossref_primary_10_1016_j_chemosphere_2018_05_019 crossref_primary_10_1186_s11671_018_2775_z crossref_primary_10_1016_j_envpol_2025_125891 crossref_primary_10_1007_s10853_022_07259_9 crossref_primary_10_1002_ppsc_201900419 crossref_primary_10_1016_j_jddst_2018_01_009 crossref_primary_10_1080_17435390_2018_1529835 crossref_primary_10_3390_molecules29061250 crossref_primary_10_1007_s13399_024_05784_y crossref_primary_10_1007_s12272_019_01152_x crossref_primary_10_1016_j_addr_2023_114992 crossref_primary_10_1590_1980_5373_mr_2020_0115 crossref_primary_10_3762_bjnano_12_62 crossref_primary_10_1016_j_msec_2019_03_095 crossref_primary_10_3390_met12010051 crossref_primary_10_3390_molecules28073240 crossref_primary_10_1002_jat_4103 crossref_primary_10_1016_j_taap_2022_116009 crossref_primary_10_1016_j_jddst_2025_106791 crossref_primary_10_1080_21691401_2018_1548469 crossref_primary_10_1007_s12011_022_03399_w crossref_primary_10_1007_s40496_017_0119_1 crossref_primary_10_18231_j_ijmr_2023_001 crossref_primary_10_1007_s13562_019_00542_y crossref_primary_10_1142_S2810922824300010 crossref_primary_10_1089_photob_2022_0016 crossref_primary_10_3390_ijms22031128 crossref_primary_10_1007_s10856_018_6169_7 crossref_primary_10_1016_j_colsurfb_2018_11_037 crossref_primary_10_1016_j_arabjc_2020_10_038 crossref_primary_10_1080_21691401_2018_1528983 crossref_primary_10_1155_2018_6121328 crossref_primary_10_1080_24701556_2021_1956952 crossref_primary_10_3390_app14167309 crossref_primary_10_1016_j_tiv_2018_03_015 crossref_primary_10_1016_j_ejpb_2018_11_006 crossref_primary_10_3389_fnano_2024_1496230 crossref_primary_10_1038_s41598_018_20728_z crossref_primary_10_1007_s13205_018_1436_3 crossref_primary_10_1007_s13762_018_2175_z crossref_primary_10_1039_C8RA00044A crossref_primary_10_3390_nano12040618 crossref_primary_10_1002_EXP_20210083 |
Cites_doi | 10.1208/s12248-008-9027-6 10.1186/1743-8977-9-28 10.1186/1477-3155-7-8 10.1086/321850 10.1088/0957-4484/21/31/315103 10.1038/nri3561 10.1016/j.chemosphere.2016.01.045 10.2217/17435889.3.5.627 10.1016/j.biocel.2011.10.019 10.1016/j.envres.2014.11.006 10.1016/j.neuro.2009.09.005 10.1016/j.toxlet.2012.04.016 10.1002/jat.3081 10.1016/j.tiv.2011.04.005 10.1016/j.jfda.2014.01.010 10.4331/wjbc.v5.i4.457 10.1007/s12030-008-9007-z 10.1016/j.tiv.2013.07.005 10.1016/j.biomaterials.2007.03.006 10.1007/s00401-009-0619-8 10.1016/j.colsurfb.2009.04.025 10.1186/1556-276X-9-459 10.1016/j.tiv.2016.03.004 10.1016/j.toxlet.2010.12.010 10.1371/annotation/9ecbe311-b637-4bdf-826d-48b4dd778bfa 10.1088/0957-4484/22/37/375101 10.1016/j.burns.2014.02.009 10.1007/s00423-009-0472-1 10.1166/jnn.2010.2625 10.1016/j.toxlet.2011.05.1033 10.3109/17435390.2011.626539 10.1016/j.matchemphys.2005.04.023 10.1186/1743-8977-11-11 10.1016/j.fct.2012.08.044 10.1016/j.carbpol.2013.11.040 10.1016/j.neuro.2012.04.008 10.1016/j.etap.2013.06.012 10.1186/s12951-014-0059-z 10.1186/2041-9414-3-2 10.1021/nn700256c 10.1016/j.toxlet.2010.12.001 10.1111/j.1600-065X.2012.01099.x 10.1016/j.neuro.2015.04.008 10.2147/IJN.S59753 10.1016/j.mrgentox.2011.08.008 10.1146/annurev.publhealth.031308.100155 10.1007/s00204-011-0714-1 10.1021/nn800596w 10.1016/j.cis.2004.02.003 10.1002/jbm.a.34854 10.1007/s00420-006-0106-7 10.1186/1756-6606-6-29 10.1080/17458080.2010.547878 10.1016/j.biomaterials.2014.04.093 10.1007/s00216-010-3977-0 10.1002/em.21844 10.1186/1743-8977-8-36 10.1007/s11051-013-1898-5 10.1038/sj.cr.7290105 10.1093/toxsci/kfq244 10.1166/jbn.2014.1824 10.1074/jbc.M114.610899 10.7150/ijbs.12059 10.1186/s12951-014-0062-4 10.1016/j.tiv.2012.08.021 10.32725/jab.2008.015 10.1016/j.colsurfb.2010.03.026 10.1002/jat.3315 10.1007/s11051-016-3493-z 10.1007/s00204-012-0840-4 10.1093/toxsci/kfi256 10.1038/nrmicro2070 10.1021/nn204671v 10.1002/mc.20218 10.1186/s12951-015-0114-4 10.1016/j.actbio.2013.09.037 10.1016/j.biomaterials.2013.02.001 10.1016/j.toxlet.2011.11.006 10.7150/thno.7819 10.1186/1743-8977-10-11 10.1016/j.tiv.2012.08.024 10.1515/REVEH.2011.033 10.3390/molecules21030365 10.1021/nn203785a 10.1016/j.toxlet.2013.03.006 10.1093/toxsci/kfs003 10.1186/s12951-016-0214-9 10.1016/j.canlet.2009.01.010 10.1016/j.ijdevneu.2011.09.004 10.1371/journal.pone.0102564 10.1002/tox.21880 10.1038/srep21688 10.1002/cmdc.200900502 10.1016/j.neuro.2014.08.010 10.1016/j.tiv.2009.12.001 10.1159/000178869 10.1016/j.colsurfb.2011.04.019 10.1016/j.biomaterials.2015.05.029 10.1016/j.toxlet.2012.07.009 10.1021/la2042058 10.3109/08923973.2010.487489 10.1002/smll.201202732 10.1126/science.1114397 10.2147/IJN.S83953 10.1002/biot.201300555 10.1038/sj.cdd.4402038 10.1016/j.neuint.2012.08.017 10.1007/s12035-016-9688-6 10.1155/2013/535796 10.1186/1477-3155-10-16 10.1021/es903684r 10.1158/0008-5472.CAN-07-0846 10.1166/jnn.2009.1269 10.1039/c1cc10357a 10.1515/hsz-2012-0202 10.1021/jp712087m 10.3109/17435390.2010.541604 10.1016/j.biomaterials.2009.08.008 10.1002/jat.2994 10.1016/j.saa.2014.10.043 10.3390/ijms15046815 10.3389/fnins.2015.00115 10.2337/diabetes.47.12.1953 10.1021/es1020668 10.1002/smll.201202120 10.1002/jat.1475 10.1016/j.envint.2006.06.014 10.1016/j.toxlet.2009.09.014 10.1016/j.toxlet.2008.04.015 10.1016/j.jiec.2013.01.029 10.1093/mutage/geu057 10.3762/bjnano.5.205 10.1186/s11671-015-0747-0 10.1021/nn406184r |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 – notice: 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 7TK 5PM |
DOI | 10.3390/ijms17101603 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
EndPage | 1603 |
ExternalDocumentID | PMC5085636 4226716381 27669221 10_3390_ijms17101603 |
Genre | Journal Article Review Feature |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c581t-ec7e8fc18d70ce749c372a6733379f2fb9f171ae0f04d264a0c46d3e29bfdefd3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:14:38 EDT 2025 Fri Jul 11 10:56:09 EDT 2025 Thu Jul 10 23:25:36 EDT 2025 Fri Jul 25 07:26:20 EDT 2025 Thu Apr 03 07:07:21 EDT 2025 Tue Jul 01 03:29:49 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | cellular effect stem cells endothelial cells fibroblasts silver nanoparticles epithelial cells macrophage neuronal cells keratinocytes |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-ec7e8fc18d70ce749c372a6733379f2fb9f171ae0f04d264a0c46d3e29bfdefd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms17101603 |
PMID | 27669221 |
PQID | 1831878081 |
PQPubID | 2032341 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5085636 proquest_miscellaneous_1850778951 proquest_miscellaneous_1824224462 proquest_journals_1831878081 pubmed_primary_27669221 crossref_primary_10_3390_ijms17101603 crossref_citationtrail_10_3390_ijms17101603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2016 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Manikandan (ref_61) 2015; 138 Dziedzic (ref_142) 2016; 21 Karlsson (ref_125) 2010; 398 Santoro (ref_141) 2007; 3 Chung (ref_27) 2007; 28 Hadrup (ref_85) 2012; 33 Hashimoto (ref_59) 2014; 102 Jaiswal (ref_119) 2000; 60 Sriram (ref_113) 2012; 1 Zhang (ref_129) 2002; 12 Chen (ref_134) 2014; 8 Wallach (ref_116) 2014; 14 Hondroulis (ref_76) 2010; 21 Tang (ref_23) 2010; 10 Piao (ref_33) 2011; 201 Fouda (ref_79) 2014; 102 Tang (ref_21) 2009; 9 Liu (ref_105) 2015; 9 Mahmood (ref_28) 2010; 30 George (ref_83) 2012; 6 Eom (ref_130) 2010; 44 Mytych (ref_91) 2016; 148 Bohmert (ref_39) 2012; 86 Austin (ref_20) 2012; 6 Gibbs (ref_73) 2009; 22 Yin (ref_86) 2013; 9 Han (ref_7) 2014; 9 Huang (ref_146) 2015; 136 Jang (ref_68) 2012; 7 Qin (ref_102) 2014; 9 Gurunathan (ref_14) 2013; 19 Xu (ref_127) 2012; 10 Comfort (ref_36) 2011; 5 Castiglioni (ref_72) 2014; 5 Zhang (ref_133) 2012; 44 Hamilton (ref_45) 2014; 15 Park (ref_52) 2011; 47 Wang (ref_82) 2013; 36 AshaRani (ref_13) 2009; 3 Liu (ref_75) 2010; 5 Katherine (ref_139) 2016; 14 Liu (ref_101) 2014; 10 Lee (ref_34) 2011; 85 Jena (ref_55) 2012; 7 Kermanizadeh (ref_41) 2012; 9 Boonkaew (ref_80) 2014; 40 Sriram (ref_144) 2010; 5 Xia (ref_5) 2008; 2 Ma (ref_90) 2015; 11 Chorley (ref_88) 2014; 45 Schlinkert (ref_32) 2015; 13 Deepak (ref_54) 2011; 86 Pauksch (ref_100) 2014; 10 Asharani (ref_6) 2012; 3 Antonetti (ref_18) 1998; 47 ref_148 ref_147 McShan (ref_81) 2014; 22 Bergsbaken (ref_122) 2009; 7 Terrones (ref_63) 2009; 191 ref_145 Sofroniew (ref_93) 2010; 119 Carlson (ref_15) 2008; 112 Chun (ref_77) 2010; 78 Panyala (ref_22) 2008; 6 Suresh (ref_56) 2010; 44 Zanette (ref_74) 2011; 25 Suliman (ref_48) 2015; 30 Alon (ref_87) 2014; 9 Scheiber (ref_92) 2013; 62 Simard (ref_136) 2015; 290 Kim (ref_35) 2011; 726 Kalishwaralal (ref_64) 2009; 73 Szmyd (ref_78) 2013; 394 Leitinger (ref_140) 2015; 35 Castillo (ref_50) 2008; 3 Nguyen (ref_62) 2016; 33 Greulich (ref_97) 2009; 394 Chatterjee (ref_124) 2014; 55 Singh (ref_42) 2012; 213 Stoehr (ref_38) 2011; 8 Gurunathan (ref_12) 2013; 2013 Suresh (ref_29) 2012; 28 Kennedy (ref_89) 2014; 12 Orlowski (ref_121) 2012; 37 Grosse (ref_66) 2013; 27 Herzog (ref_138) 2013; 10 Houle (ref_17) 2006; 45 Cooper (ref_106) 2015; 48 Dayem (ref_26) 2014; 9 Kruszewski (ref_107) 2013; 219 Park (ref_115) 2010; 24 Chairuangkitti (ref_110) 2013; 27 Hussain (ref_96) 2005; 88 Prasad (ref_43) 2013; 27 DiDonato (ref_117) 2012; 246 Trickler (ref_19) 2010; 118 Nishanth (ref_53) 2011; 5 Gurunathan (ref_10) 2015; 10 Jeong (ref_49) 2016; 6 Rinna (ref_131) 2015; 30 Duran (ref_71) 2015; 13 MacGowan (ref_30) 2001; 33 Sano (ref_132) 2013; 1833 Shavandi (ref_51) 2011; 33 Hong (ref_94) 2011; 29 Yilma (ref_60) 2013; 8 Lankoff (ref_37) 2012; 208 Awasthi (ref_111) 2013; 15 Kettler (ref_137) 2016; 18 Polli (ref_31) 2008; 10 Gurunathan (ref_65) 2009; 30 Gurunathan (ref_11) 2015; 10 Frattini (ref_3) 2005; 94 Chirino (ref_8) 2009; 278 Haase (ref_24) 2012; 126 Capek (ref_4) 2004; 110 Sahu (ref_46) 2014; 34 Pratsinis (ref_58) 2013; 9 Hsin (ref_114) 2008; 179 Hackenberg (ref_98) 2011; 201 Gliga (ref_44) 2014; 11 Shi (ref_70) 2014; 35 Sheikpranbabu (ref_16) 2009; 7 Pilger (ref_128) 2006; 80 ref_103 Xia (ref_109) 2009; 30 Kang (ref_67) 2011; 205 Wang (ref_84) 2009; 30 Xu (ref_25) 2013; 6 Ye (ref_9) 2009; 30 ref_47 Kang (ref_40) 2012; 211 Huo (ref_135) 2015; 61 Kaur (ref_57) 2013; 51 Mukherjee (ref_69) 2014; 4 Nel (ref_1) 2006; 311 Samberg (ref_99) 2012; 7 Murphy (ref_118) 2016; 36 Li (ref_112) 2013; 34 Zhang (ref_104) 2015; 10 Feng (ref_108) 2015; 10 Valinluck (ref_120) 2007; 67 Ahlberg (ref_143) 2014; 5 Moore (ref_2) 2006; 32 Xie (ref_126) 2011; 26 Luther (ref_95) 2011; 22 Martinon (ref_123) 2007; 14 23850759 - Biochim Biophys Acta. 2013 Dec;1833(12):3460-70 19217710 - Cancer Lett. 2009 Jun 18;278(2):192-200 21042421 - Int J Nanomedicine. 2010 Oct 05;5:753-62 25592092 - J Nanobiotechnology. 2015 Jan 16;13:1 23557437 - Part Fibre Toxicol. 2013 Apr 04;10 :11 20932003 - Environ Sci Technol. 2010 Nov 1;44(21):8337-42 25460644 - Environ Res. 2015 Jan;136:253-63 25242904 - Nanoscale Res Lett. 2014 Sep 02;9(1):459 22820426 - Toxicol Lett. 2012 Sep 3;213(2):249-59 23804405 - Environ Toxicol. 2015 Feb;30(2):149-60 16977329 - Cell Death Differ. 2007 Jan;14(1):10-22 23091270 - Biol Chem. 2013 Jan;394(1):113-23 24095782 - Acta Biomater. 2014 Jan;10(1):439-49 24804548 - J Biomed Nanotechnol. 2014 Jul;10(7):1277-85 25593314 - J Biol Chem. 2015 Feb 27;290(9):5926-39 23896225 - Environ Toxicol Pharmacol. 2013 Sep;36(2):724-31 21852719 - Nanotechnology. 2011 Sep 16;22(37):375101 24818879 - Biomaterials. 2014 Aug;35(24):6657-66 24336099 - Nat Rev Immunol. 2014 Jan;14 (1):51-9 22216981 - Langmuir. 2012 Feb 7;28(5):2727-35 22418598 - Arch Toxicol. 2012 Jul;86(7):1107-15 23782671 - Mol Brain. 2013 Jun 19;6:29 21137724 - J Nanosci Nanotechnol. 2010 Oct;10(10):6313-7 16685565 - Int Arch Occup Environ Health. 2006 Oct;80(1):1-15 23872425 - Toxicol In Vitro. 2013 Sep;27(6):2013-21 19760634 - J Appl Toxicol. 2010 Jan;30(1):74-83 22070748 - ACS Nano. 2011 Dec 27;5(12):10000-8 21501681 - Toxicol In Vitro. 2011 Aug;25(5):1053-60 19280220 - Langenbecks Arch Surg. 2009 May;394(3):495-502 25481491 - Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:120-9 22531227 - Neurotoxicology. 2012 Jun;33(3):416-23 24522958 - J Appl Toxicol. 2014 Nov;34(11):1155-66 24767717 - Burns. 2014 Dec;40(8):1562-9 27433139 - J Nanopart Res. 2016;18:182 20622302 - Nanotechnology. 2010 Aug 6;21(31):315103 26867977 - Sci Rep. 2016 Feb 12;6:21688 26814705 - Chemosphere. 2016 Apr;148:307-15 22435567 - Immunol Rev. 2012 Mar;246(1):379-400 22482460 - ACS Nano. 2012 May 22;6(5):3745-59 19800954 - Toxicol Lett. 2009 Dec 15;191(2-3):305-13 19865601 - Nanobiotechnology. 2007 May 1;3(2):55-65 19206551 - ACS Nano. 2008 Jan;2(1):85-96 24490819 - ACS Nano. 2014 Mar 25;8(3):2562-74 22457593 - Int J Nanomedicine. 2012;7:1329-43 19781568 - Neurotoxicology. 2009 Nov;30(6):926-33 23505470 - PLoS One. 2013;8(3):e58211 23518319 - Toxicol Lett. 2013 May 23;219(2):151-9 16014736 - Toxicol Sci. 2005 Dec;88(2):412-9 19698986 - Biomaterials. 2009 Oct;30(31):6341-50 18831567 - J Phys Chem B. 2008 Oct 30;112(43):13608-19 18547751 - Toxicol Lett. 2008 Jul 10;179(3):130-9 24505239 - Theranostics. 2014 Jan 29;4(3):316-35 22940466 - Toxicol In Vitro. 2013 Feb;27(1):330-8 9836530 - Diabetes. 1998 Dec;47(12):1953-9 23427069 - Small. 2013 May 27;9(9-10):1831-41 20507217 - Immunopharmacol Immunotoxicol. 2011 Mar;33(1):135-40 23936814 - Biomed Res Int. 2013;2013:535796 26157341 - Int J Biol Sci. 2015 Jun 01;11(8):860-7 25352480 - J Appl Toxicol. 2015 Jun;35(6):581-92 17397919 - Biomaterials. 2007 Jul;28(19):2959-66 22583572 - Nanomedicine (Lond). 2012 Aug;7(8):1197-209 22954533 - Toxicol In Vitro. 2013 Feb;27(1):305-13 20112331 - ChemMedChem. 2010 Mar 1;5(3):468-75 25426268 - World J Biol Chem. 2014 Nov 26;5(4):457-64 23882139 - Int J Nanomedicine. 2013;8:2421-32 26170659 - Int J Nanomedicine. 2015 Jun 29;10:4203-22 24872701 - Int J Nanomedicine. 2014 May 08;9 Suppl 1:23-31 22812506 - Part Fibre Toxicol. 2012 Jul 19;9:28 19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109 25383306 - Beilstein J Nanotechnol. 2014 Nov 03;5:1944-65 22064246 - Int J Biochem Cell Biol. 2012 Jan;44(1):224-32 22619529 - Int J Nanomedicine. 2012;7:1805-18 25033410 - PLoS One. 2014 Jul 17;9(7):e102564 21390403 - Chem Commun (Camb). 2011 Apr 21;47(15):4382-4 23418027 - Small. 2013 Aug 12;9(15):2576-84 11524721 - Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S214-20 20012068 - Acta Neuropathol. 2010 Jan;119(1):7-35 23784947 - J Biomed Mater Res A. 2014 Jun;102(6):1838-49 24758926 - Int J Mol Sci. 2014 Apr 22;15(4):6815-30 26975774 - Toxicol In Vitro. 2016 Jun;33:163-73 21592748 - Colloids Surf B Biointerfaces. 2011 Sep 1;86(2):353-8 25527729 - Mutagenesis. 2015 Jan;30(1):59-66 16637066 - Mol Carcinog. 2006 Jun;45(6):362-7 20640410 - Anal Bioanal Chem. 2010 Sep;398(2):651-66 22982300 - Neurochem Int. 2013 Apr;62(5):556-65 22023110 - Nanotoxicology. 2012 Dec;6:912-22 19705557 - Annu Rev Public Health. 2009;30:137-50 21729742 - Toxicol Lett. 2011 Sep 10;205(3):227-34 24899804 - Int J Nanomedicine. 2014 May 20;9:2469-78 26024651 - Biomaterials. 2015 Aug;61:307-15 21611810 - Arch Toxicol. 2011 Dec;85(12):1529-40 21968186 - Int J Dev Neurosci. 2011 Dec;29(8):811-8 24529161 - Part Fibre Toxicol. 2014 Feb 17;11:11 22975145 - Food Chem Toxicol. 2013 Jan;51:1-14 19236062 - ACS Nano. 2009 Feb 24;3(2):279-90 25999717 - Int J Nanomedicine. 2015 May 14;10:3547-65 23465487 - Biomaterials. 2013 May;34(15):3882-90 19969064 - Toxicol In Vitro. 2010 Apr;24(3):872-8 22321936 - Genome Integr. 2012 Feb 10;3(1):2 20509652 - Environ Sci Technol. 2010 Jul 1;44(13):5210-5 22240980 - Toxicol Sci. 2012 Apr;126(2):457-68 22108609 - Toxicol Lett. 2012 Feb 5;208(3):197-213 21945414 - Mutat Res. 2011 Dec 24;726(2):129-35 16859745 - Environ Int. 2006 Dec;32(8):967-76 21145381 - Toxicol Lett. 2011 Feb 25;201(1):27-33 22208550 - Part Fibre Toxicol. 2011 Dec 30;8:36 16456071 - Science. 2006 Feb 3;311(5761):622-7 22548743 - J Nanobiotechnology. 2012 May 01;10:16 24673909 - J Food Drug Anal. 2014 Mar;22(1):116-27 26999092 - Molecules. 2016 Mar 17;21(3):365 25952507 - Neurotoxicology. 2015 May;48:231-8 17575120 - Cancer Res. 2007 Jun 15;67(12):5583-6 26337542 - J Nanobiotechnology. 2015 Sep 04;13:55 15142823 - Adv Colloid Interface Sci. 2004 Jun 30;110(1-2):49-74 19878566 - J Nanobiotechnology. 2009 Oct 30;7:8 21182908 - Toxicol Lett. 2011 Feb 25;201(1):92-100 25852332 - Nanoscale Res Lett. 2015 Feb 05;10:35 11942415 - Cell Res. 2002 Mar;12(1):9-18 18834270 - Nanomedicine (Lond). 2008 Oct;3(5):627-35 26843106 - Mol Neurobiol. 2017 Mar;54(2):1285-1300 22546375 - Toxicol Lett. 2012 Jun 20;211(3):334-41 25904840 - Front Neurosci. 2015 Apr 08;9:115 19481908 - Colloids Surf B Biointerfaces. 2009 Oct 1;73(1):51-7 22435324 - Rev Environ Health. 2011;26(4):251-68 25194297 - Neurotoxicology. 2014 Dec;45:12-21 25524171 - J Nanobiotechnology. 2014 Dec 19;12:59 24507278 - Carbohydr Polym. 2014 Feb 15;102:238-45 24827677 - Biotechnol J. 2014 Jul;9(7):934-43 20713472 - Toxicol Sci. 2010 Nov;118(1):160-70 19188758 - Skin Pharmacol Physiol. 2009;22(2):103-13 19928170 - J Nanosci Nanotechnol. 2009 Aug;9(8):4924-32 27465730 - J Nanobiotechnology. 2016 Jul 28;14 (1):62 24347047 - Environ Mol Mutagen. 2014 Mar;55(2):122-33 10646872 - Cancer Res. 2000 Jan 1;60(1):184-90 21417802 - Nanotoxicology. 2011 Dec;5(4):502-16 20399628 - Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):334-42 26968431 - J Appl Toxicol. 2016 Oct;36(10):1311-20 25733828 - Int J Nanomedicine. 2015 Feb 16;10:1335-57 18500564 - AAPS J. 2008 Jun;10(2):289-99 |
References_xml | – volume: 10 start-page: 289 year: 2008 ident: ref_31 article-title: In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms publication-title: AAPS J. doi: 10.1208/s12248-008-9027-6 – volume: 9 start-page: 1 year: 2012 ident: ref_41 article-title: An in vitro liver model-assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-9-28 – volume: 7 start-page: 1 year: 2009 ident: ref_16 article-title: Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-7-8 – volume: 33 start-page: S214 year: 2001 ident: ref_30 article-title: In vitro models, in vivo models, and pharmacokinetics: What can we learn from in vitro models? publication-title: Clin. Infect. Dis. doi: 10.1086/321850 – volume: 21 start-page: 315103 year: 2010 ident: ref_76 article-title: Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay publication-title: Nanotechnology doi: 10.1088/0957-4484/21/31/315103 – volume: 14 start-page: 51 year: 2014 ident: ref_116 article-title: Concepts of tissue injury and cell death in inflammation: A historical perspective publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3561 – volume: 148 start-page: 307 year: 2016 ident: ref_91 article-title: Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.045 – volume: 3 start-page: 627 year: 2008 ident: ref_50 article-title: Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands publication-title: Nanomedicine doi: 10.2217/17435889.3.5.627 – volume: 44 start-page: 224 year: 2012 ident: ref_133 article-title: Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis publication-title: Int. J. Biochem. Cell B doi: 10.1016/j.biocel.2011.10.019 – volume: 8 start-page: 2421 year: 2013 ident: ref_60 article-title: Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis publication-title: Int. J. Nanomed. – volume: 136 start-page: 253 year: 2015 ident: ref_146 article-title: Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells publication-title: Environ. Res. doi: 10.1016/j.envres.2014.11.006 – volume: 30 start-page: 926 year: 2009 ident: ref_84 article-title: Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles publication-title: Neurotoxicology doi: 10.1016/j.neuro.2009.09.005 – volume: 211 start-page: 334 year: 2012 ident: ref_40 article-title: Silver nanoparticles-mediated G2/M cycle arrest of renal epithelial cells is associated with NRF2-GSH signaling publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2012.04.016 – volume: 35 start-page: 581 year: 2015 ident: ref_140 article-title: Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3081 – volume: 25 start-page: 1053 year: 2011 ident: ref_74 article-title: Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2011.04.005 – volume: 22 start-page: 116 year: 2014 ident: ref_81 article-title: Molecular toxicity mechanism of nanosilver publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2014.01.010 – volume: 5 start-page: 457 year: 2014 ident: ref_72 article-title: Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells publication-title: World J. Biol. Chem. doi: 10.4331/wjbc.v5.i4.457 – volume: 3 start-page: 55 year: 2007 ident: ref_141 article-title: Minimal in vitro antimicrobial efficacy and ocular cell toxicity from silver nanoparticles publication-title: Nanobiotechnology doi: 10.1007/s12030-008-9007-z – volume: 27 start-page: 2013 year: 2013 ident: ref_43 article-title: Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: Effect of size, surface coating, and intracellular uptake publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2013.07.005 – volume: 28 start-page: 2959 year: 2007 ident: ref_27 article-title: The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles 3T3-L1 cells and human mesenchymal stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.03.006 – volume: 119 start-page: 7 year: 2010 ident: ref_93 article-title: Astrocytes: Biology and pathology publication-title: Acta Neuropathol. doi: 10.1007/s00401-009-0619-8 – volume: 73 start-page: 51 year: 2009 ident: ref_64 article-title: Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells publication-title: Colloid Surf. B doi: 10.1016/j.colsurfb.2009.04.025 – volume: 9 start-page: 459 year: 2014 ident: ref_7 article-title: Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-459 – volume: 33 start-page: 163 year: 2016 ident: ref_62 article-title: Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2016.03.004 – volume: 201 start-page: 92 year: 2011 ident: ref_33 article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.12.010 – ident: ref_103 doi: 10.1371/annotation/9ecbe311-b637-4bdf-826d-48b4dd778bfa – volume: 22 start-page: 375101 year: 2011 ident: ref_95 article-title: Accumulation of silver nanoparticles by cultured primary brain astrocytes publication-title: Nanotechnology doi: 10.1088/0957-4484/22/37/375101 – volume: 40 start-page: 1562 year: 2014 ident: ref_80 article-title: Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells publication-title: Burns doi: 10.1016/j.burns.2014.02.009 – volume: 394 start-page: 495 year: 2009 ident: ref_97 article-title: Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs) publication-title: Langenbeck Arch. Surg. doi: 10.1007/s00423-009-0472-1 – volume: 10 start-page: 6313 year: 2010 ident: ref_23 article-title: Silver Nanoparticles Crossing Through and Distribution in the Blood-Brain Barrier In Vitro publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2625 – volume: 205 start-page: 227 year: 2011 ident: ref_67 article-title: Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2011.05.1033 – volume: 6 start-page: 912 year: 2012 ident: ref_20 article-title: Distribution of silver nanoparticles in pregnant mice and developing embryos publication-title: Nanotoxicology doi: 10.3109/17435390.2011.626539 – volume: 94 start-page: 148 year: 2005 ident: ref_3 article-title: Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.04.023 – volume: 11 start-page: 1 year: 2014 ident: ref_44 article-title: Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-11-11 – volume: 51 start-page: 1 year: 2013 ident: ref_57 article-title: Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2012.08.044 – volume: 102 start-page: 238 year: 2014 ident: ref_79 article-title: Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.11.040 – volume: 33 start-page: 416 year: 2012 ident: ref_85 article-title: The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro publication-title: Neurotoxicology doi: 10.1016/j.neuro.2012.04.008 – volume: 36 start-page: 724 year: 2013 ident: ref_82 article-title: ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2013.06.012 – volume: 12 start-page: 59 year: 2014 ident: ref_89 article-title: Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-014-0059-z – volume: 3 start-page: 2 year: 2012 ident: ref_6 article-title: Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells publication-title: Genome Integr. doi: 10.1186/2041-9414-3-2 – volume: 2 start-page: 85 year: 2008 ident: ref_5 article-title: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways publication-title: ACS Nano doi: 10.1021/nn700256c – volume: 201 start-page: 27 year: 2011 ident: ref_98 article-title: Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.12.001 – volume: 246 start-page: 379 year: 2012 ident: ref_117 article-title: NF-κB and the link between inflammation and cancer publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2012.01099.x – volume: 48 start-page: 231 year: 2015 ident: ref_106 article-title: Silver nanoparticles at sublethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult neural stem cells publication-title: Neurotoxicology doi: 10.1016/j.neuro.2015.04.008 – volume: 9 start-page: 2469 year: 2014 ident: ref_102 article-title: Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S59753 – volume: 726 start-page: 129 year: 2011 ident: ref_35 article-title: Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells publication-title: Mutat. Res./Genet. Toxicol. Environ. doi: 10.1016/j.mrgentox.2011.08.008 – volume: 30 start-page: 137 year: 2009 ident: ref_109 article-title: Potential Health Impact of Nanoparticles publication-title: Annu. Rev. Publ. Health doi: 10.1146/annurev.publhealth.031308.100155 – volume: 85 start-page: 1529 year: 2011 ident: ref_34 article-title: Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells publication-title: Arch. Toxicol. doi: 10.1007/s00204-011-0714-1 – volume: 3 start-page: 279 year: 2009 ident: ref_13 article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells publication-title: ACS Nano doi: 10.1021/nn800596w – volume: 110 start-page: 49 year: 2004 ident: ref_4 article-title: Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2004.02.003 – volume: 102 start-page: 1838 year: 2014 ident: ref_59 article-title: Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon sigma-bonds publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34854 – volume: 80 start-page: 1 year: 2006 ident: ref_128 article-title: 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures publication-title: Int. Arch. Occup. Environ. Health doi: 10.1007/s00420-006-0106-7 – volume: 6 start-page: 1 year: 2013 ident: ref_25 article-title: Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons publication-title: Mol. Brain doi: 10.1186/1756-6606-6-29 – volume: 1 start-page: 56 year: 2012 ident: ref_113 article-title: Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells publication-title: Nanosci. Methods doi: 10.1080/17458080.2010.547878 – volume: 35 start-page: 6657 year: 2014 ident: ref_70 article-title: Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.093 – volume: 7 start-page: 1805 year: 2012 ident: ref_55 article-title: Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells publication-title: Int. J. Nanomed. – volume: 398 start-page: 651 year: 2010 ident: ref_125 article-title: The comet assay in nanotoxicology research publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-3977-0 – volume: 55 start-page: 122 year: 2014 ident: ref_124 article-title: Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.21844 – volume: 8 start-page: 425 year: 2011 ident: ref_38 article-title: Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-8-36 – volume: 15 start-page: 1898 year: 2013 ident: ref_111 article-title: Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells publication-title: J. Nanopart. Res. doi: 10.1007/s11051-013-1898-5 – volume: 12 start-page: 9 year: 2002 ident: ref_129 article-title: MAPK signal pathways in the regulation of cell proliferation in mammalian cells publication-title: Cell Res. doi: 10.1038/sj.cr.7290105 – volume: 10 start-page: 1335 year: 2015 ident: ref_104 article-title: Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells publication-title: Int. J. Nanomed. – volume: 118 start-page: 160 year: 2010 ident: ref_19 article-title: Silver Nanoparticle Induced Blood-Brain Barrier Inflammation and Increased Permeability in Primary Rat Brain Microvessel Endothelial Cells publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfq244 – volume: 10 start-page: 1277 year: 2014 ident: ref_101 article-title: Influence of Silver Nanoparticles on Osteogenic Differentiation of Human Mesenchymal Stem Cells publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2014.1824 – volume: 290 start-page: 5926 year: 2015 ident: ref_136 article-title: Silver Nanoparticles Induce Degradation of the Endoplasmic Reticulum Stress Sensor Activating Transcription Factor-6 Leading to Activation of the NLRP-3 Inflammasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.610899 – volume: 10 start-page: 3547 year: 2015 ident: ref_108 article-title: Application of dental nanomaterials: Potential toxicity to the central nervous system publication-title: Int. J. Nanomed. – volume: 11 start-page: 860 year: 2015 ident: ref_90 article-title: Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: Amelioration by sodium selenite publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.12059 – volume: 7 start-page: 1329 year: 2012 ident: ref_68 article-title: Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation publication-title: Int. J. Nanomed. – volume: 13 start-page: 1 year: 2015 ident: ref_32 article-title: The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-014-0062-4 – volume: 27 start-page: 330 year: 2013 ident: ref_110 article-title: Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2012.08.021 – volume: 6 start-page: 117 year: 2008 ident: ref_22 article-title: Silver or silver nanoparticles: A hazardous threat to the environment and human health? publication-title: J. Appl. Biomed. doi: 10.32725/jab.2008.015 – volume: 78 start-page: 334 year: 2010 ident: ref_77 article-title: Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles publication-title: Colloid Surf. B doi: 10.1016/j.colsurfb.2010.03.026 – volume: 36 start-page: 1311 year: 2016 ident: ref_118 article-title: Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3315 – volume: 18 start-page: 1 year: 2016 ident: ref_137 article-title: Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells publication-title: J. Nanopart. Res. doi: 10.1007/s11051-016-3493-z – volume: 86 start-page: 1107 year: 2012 ident: ref_39 article-title: Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2 publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0840-4 – volume: 88 start-page: 412 year: 2005 ident: ref_96 article-title: In vitro cytotoxicity of nanoparticles in mammalian germline stem cells publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfi256 – volume: 60 start-page: 184 year: 2000 ident: ref_119 article-title: Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism publication-title: Cancer Res. – volume: 7 start-page: 99 year: 2009 ident: ref_122 article-title: Pyroptosis: Host cell death and inflammation publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2070 – volume: 6 start-page: 3745 year: 2012 ident: ref_83 article-title: Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos publication-title: ACS Nano doi: 10.1021/nn204671v – volume: 45 start-page: 362 year: 2006 ident: ref_17 article-title: Dysregulation of the endothelial cellular response to oxidative stress in cancer publication-title: Mol. Carcinog. doi: 10.1002/mc.20218 – volume: 13 start-page: 55 year: 2015 ident: ref_71 article-title: Silver nanoparticle protein corona and toxicity: A mini-review publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-015-0114-4 – volume: 10 start-page: 439 year: 2014 ident: ref_100 article-title: Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.09.037 – volume: 34 start-page: 3882 year: 2013 ident: ref_112 article-title: The antifungal activity of graphene oxide-silver nanocomposites publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.02.001 – volume: 208 start-page: 197 year: 2012 ident: ref_37 article-title: The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2011.11.006 – volume: 4 start-page: 316 year: 2014 ident: ref_69 article-title: Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System) publication-title: Theranostics doi: 10.7150/thno.7819 – volume: 10 start-page: 11 year: 2013 ident: ref_138 article-title: Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-10-11 – volume: 27 start-page: 305 year: 2013 ident: ref_66 article-title: Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2012.08.024 – volume: 26 start-page: 251 year: 2011 ident: ref_126 article-title: Genotoxicity of metal nanoparticles publication-title: Rev. Environ. Health doi: 10.1515/REVEH.2011.033 – volume: 21 start-page: 365 year: 2016 ident: ref_142 article-title: Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine publication-title: Molecules doi: 10.3390/molecules21030365 – volume: 1833 start-page: 3460 year: 2013 ident: ref_132 article-title: ER stress-induced cell death mechanisms publication-title: BBA-Mol. Cell Res. – volume: 5 start-page: 10000 year: 2011 ident: ref_36 article-title: Interference of Silver, Gold, and Iron Oxide Nanoparticles on Epidermal Growth Factor Signal Transduction in Epithelial Cells publication-title: ACS Nano doi: 10.1021/nn203785a – volume: 219 start-page: 151 year: 2013 ident: ref_107 article-title: Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.03.006 – volume: 126 start-page: 457 year: 2012 ident: ref_24 article-title: Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfs003 – volume: 14 start-page: 62 year: 2016 ident: ref_139 article-title: Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-016-0214-9 – volume: 278 start-page: 192 year: 2009 ident: ref_8 article-title: DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants publication-title: Cancer Lett. doi: 10.1016/j.canlet.2009.01.010 – volume: 29 start-page: 811 year: 2011 ident: ref_94 article-title: Copper handling by astrocytes: Insights into neurodegenerative diseases publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2011.09.004 – ident: ref_47 doi: 10.1371/journal.pone.0102564 – volume: 30 start-page: 149 year: 2015 ident: ref_48 article-title: Evaluation of Cytotoxic, Oxidative Stress, Proinflammatory and Genotoxic Effect of Silver Nanoparticles in Human Lung Epithelial Cells publication-title: Environ. Toxicol. doi: 10.1002/tox.21880 – volume: 6 start-page: 21688 year: 2016 ident: ref_49 article-title: Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells publication-title: Sci. Rep. doi: 10.1038/srep21688 – volume: 5 start-page: 468 year: 2010 ident: ref_75 article-title: Silver Nanoparticles Mediate Differential Responses in Keratinocytes and Fibroblasts during Skin Wound Healing publication-title: ChemMedChem doi: 10.1002/cmdc.200900502 – volume: 45 start-page: 12 year: 2014 ident: ref_88 article-title: The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver publication-title: Neurotoxicology doi: 10.1016/j.neuro.2014.08.010 – volume: 24 start-page: 872 year: 2010 ident: ref_115 article-title: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2009.12.001 – volume: 22 start-page: 103 year: 2009 ident: ref_73 article-title: In vitro irritation models and immune reactions publication-title: Skin Pharmacol. Physiol. doi: 10.1159/000178869 – volume: 86 start-page: 353 year: 2011 ident: ref_54 article-title: Synthesis of gold and silver nanoparticles using purified URAK publication-title: Colloid Surf. B doi: 10.1016/j.colsurfb.2011.04.019 – volume: 37 start-page: 123 year: 2012 ident: ref_121 article-title: Toxicity of silver nanoparticles in monocytes and keratinocytes: Potential to induce inflammatory reactions publication-title: Cent. Eur. J. Immunol. – volume: 61 start-page: 307 year: 2015 ident: ref_135 article-title: Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.05.029 – volume: 213 start-page: 249 year: 2012 ident: ref_42 article-title: Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2012.07.009 – volume: 28 start-page: 2727 year: 2012 ident: ref_29 article-title: Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types publication-title: Langmuir doi: 10.1021/la2042058 – volume: 33 start-page: 135 year: 2011 ident: ref_51 article-title: In vitro toxicity of silver nanoparticles on murine peritoneal macrophages publication-title: Immunopharmacol. Immunotoxicol. doi: 10.3109/08923973.2010.487489 – volume: 9 start-page: 1831 year: 2013 ident: ref_86 article-title: Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress publication-title: Small doi: 10.1002/smll.201202732 – volume: 311 start-page: 622 year: 2006 ident: ref_1 article-title: Toxic potential of materials at the nanolevel publication-title: Science doi: 10.1126/science.1114397 – volume: 10 start-page: 4203 year: 2015 ident: ref_11 article-title: Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S83953 – volume: 9 start-page: 934 year: 2014 ident: ref_26 article-title: Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways publication-title: Biotechnol. J. doi: 10.1002/biot.201300555 – volume: 14 start-page: 10 year: 2007 ident: ref_123 article-title: Inflammatory caspases and inflammasomes: Master switches of inflammation publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402038 – ident: ref_145 – volume: 62 start-page: 556 year: 2013 ident: ref_92 article-title: Astrocyte functions in the copper homeostasis of the brain publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2012.08.017 – ident: ref_148 doi: 10.1007/s12035-016-9688-6 – volume: 2013 start-page: 10 year: 2013 ident: ref_12 article-title: Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells publication-title: BioMed Res. Int. doi: 10.1155/2013/535796 – volume: 5 start-page: 753 year: 2010 ident: ref_144 article-title: Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model publication-title: Int. J. Nanomed. – volume: 9 start-page: 23 year: 2014 ident: ref_87 article-title: Substrates coated with silver nanoparticles as a neuronal regenerative material publication-title: Int. J. Nanomed. – volume: 10 start-page: 16 year: 2012 ident: ref_127 article-title: Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-10-16 – volume: 44 start-page: 5210 year: 2010 ident: ref_56 article-title: Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es903684r – volume: 67 start-page: 5583 year: 2007 ident: ref_120 article-title: Inflammation-mediated cytosine damage: A mechanistic link between inflammation and the epigenetic alterations in human cancers publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0846 – volume: 9 start-page: 4924 year: 2009 ident: ref_21 article-title: Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2009.1269 – volume: 47 start-page: 4382 year: 2011 ident: ref_52 article-title: Size dependent macrophage responses and toxicological effects of Ag nanoparticles publication-title: Chem. Commun. doi: 10.1039/c1cc10357a – volume: 394 start-page: 113 year: 2013 ident: ref_78 article-title: Effect of silver nanoparticles on human primary keratinocytes publication-title: Biol. Chem. doi: 10.1515/hsz-2012-0202 – volume: 112 start-page: 13608 year: 2008 ident: ref_15 article-title: Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species publication-title: J. Phys. Chem. B doi: 10.1021/jp712087m – volume: 5 start-page: 502 year: 2011 ident: ref_53 article-title: Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway publication-title: Nanotoxicology doi: 10.3109/17435390.2010.541604 – volume: 30 start-page: 6341 year: 2009 ident: ref_65 article-title: Antiangiogenic properties of silver nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.008 – volume: 34 start-page: 1155 year: 2014 ident: ref_46 article-title: Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture publication-title: J. Appl. Toxicol. doi: 10.1002/jat.2994 – volume: 138 start-page: 120 year: 2015 ident: ref_61 article-title: Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2014.10.043 – volume: 15 start-page: 6815 year: 2014 ident: ref_45 article-title: The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15046815 – volume: 9 start-page: 115 year: 2015 ident: ref_105 article-title: Effects of silver nanoparticles on human and rat embryonic neural stem cells publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00115 – volume: 47 start-page: 1953 year: 1998 ident: ref_18 article-title: Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: Vascular endothelial growth factor decreases occludin in retinal endothelial cells publication-title: Diabetes doi: 10.2337/diabetes.47.12.1953 – volume: 44 start-page: 8337 year: 2010 ident: ref_130 article-title: p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells publication-title: Environ. Sci. Technol. doi: 10.1021/es1020668 – volume: 9 start-page: 2576 year: 2013 ident: ref_58 article-title: Toxicity of Silver Nanoparticles in Macrophages publication-title: Small doi: 10.1002/smll.201202120 – volume: 30 start-page: 74 year: 2010 ident: ref_28 article-title: Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1475 – volume: 32 start-page: 967 year: 2006 ident: ref_2 article-title: Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? publication-title: Environ. Int. doi: 10.1016/j.envint.2006.06.014 – volume: 191 start-page: 305 year: 2009 ident: ref_63 article-title: Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2009.09.014 – volume: 179 start-page: 130 year: 2008 ident: ref_114 article-title: The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2008.04.015 – volume: 19 start-page: 1600 year: 2013 ident: ref_14 article-title: Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7) publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.01.029 – ident: ref_147 doi: 10.1371/annotation/9ecbe311-b637-4bdf-826d-48b4dd778bfa – volume: 30 start-page: 59 year: 2015 ident: ref_131 article-title: Effect of silver nanoparticles on mitogen-activated protein kinases activation: Role of reactive oxygen species and implication in DNA damage publication-title: Mutagenesis doi: 10.1093/mutage/geu057 – volume: 5 start-page: 1944 year: 2014 ident: ref_143 article-title: PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.205 – volume: 30 start-page: 497 year: 2009 ident: ref_9 article-title: Multi-walled carbon nanotubes exposure induces oxidative stress and depolarizes mitochondrial membrane potential in cultured A549 cells publication-title: Chem. J. Chin. Univ. – volume: 7 start-page: 1197 year: 2012 ident: ref_99 article-title: Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 10 start-page: 1 year: 2015 ident: ref_10 article-title: Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-015-0747-0 – volume: 8 start-page: 2562 year: 2014 ident: ref_134 article-title: Endoplasmic Reticulum Stress Induced by Zinc Oxide Nanoparticles Is an Earlier Biomarker for Nanotoxicological Evaluation publication-title: ACS Nano doi: 10.1021/nn406184r – reference: 26999092 - Molecules. 2016 Mar 17;21(3):365 – reference: 16977329 - Cell Death Differ. 2007 Jan;14(1):10-22 – reference: 17575120 - Cancer Res. 2007 Jun 15;67(12):5583-6 – reference: 19800954 - Toxicol Lett. 2009 Dec 15;191(2-3):305-13 – reference: 16014736 - Toxicol Sci. 2005 Dec;88(2):412-9 – reference: 22482460 - ACS Nano. 2012 May 22;6(5):3745-59 – reference: 22064246 - Int J Biochem Cell Biol. 2012 Jan;44(1):224-32 – reference: 18547751 - Toxicol Lett. 2008 Jul 10;179(3):130-9 – reference: 19188758 - Skin Pharmacol Physiol. 2009;22(2):103-13 – reference: 22108609 - Toxicol Lett. 2012 Feb 5;208(3):197-213 – reference: 26968431 - J Appl Toxicol. 2016 Oct;36(10):1311-20 – reference: 24095782 - Acta Biomater. 2014 Jan;10(1):439-49 – reference: 21042421 - Int J Nanomedicine. 2010 Oct 05;5:753-62 – reference: 19781568 - Neurotoxicology. 2009 Nov;30(6):926-33 – reference: 22982300 - Neurochem Int. 2013 Apr;62(5):556-65 – reference: 25592092 - J Nanobiotechnology. 2015 Jan 16;13:1 – reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7 – reference: 23804405 - Environ Toxicol. 2015 Feb;30(2):149-60 – reference: 19865601 - Nanobiotechnology. 2007 May 1;3(2):55-65 – reference: 25904840 - Front Neurosci. 2015 Apr 08;9:115 – reference: 21592748 - Colloids Surf B Biointerfaces. 2011 Sep 1;86(2):353-8 – reference: 24804548 - J Biomed Nanotechnol. 2014 Jul;10(7):1277-85 – reference: 21729742 - Toxicol Lett. 2011 Sep 10;205(3):227-34 – reference: 24336099 - Nat Rev Immunol. 2014 Jan;14 (1):51-9 – reference: 20399628 - Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):334-42 – reference: 19705557 - Annu Rev Public Health. 2009;30:137-50 – reference: 24507278 - Carbohydr Polym. 2014 Feb 15;102:238-45 – reference: 24347047 - Environ Mol Mutagen. 2014 Mar;55(2):122-33 – reference: 21137724 - J Nanosci Nanotechnol. 2010 Oct;10(10):6313-7 – reference: 23091270 - Biol Chem. 2013 Jan;394(1):113-23 – reference: 25352480 - J Appl Toxicol. 2015 Jun;35(6):581-92 – reference: 23505470 - PLoS One. 2013;8(3):e58211 – reference: 16637066 - Mol Carcinog. 2006 Jun;45(6):362-7 – reference: 21417802 - Nanotoxicology. 2011 Dec;5(4):502-16 – reference: 19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109 – reference: 22619529 - Int J Nanomedicine. 2012;7:1805-18 – reference: 25852332 - Nanoscale Res Lett. 2015 Feb 05;10:35 – reference: 21611810 - Arch Toxicol. 2011 Dec;85(12):1529-40 – reference: 22435567 - Immunol Rev. 2012 Mar;246(1):379-400 – reference: 18834270 - Nanomedicine (Lond). 2008 Oct;3(5):627-35 – reference: 19481908 - Colloids Surf B Biointerfaces. 2009 Oct 1;73(1):51-7 – reference: 25999717 - Int J Nanomedicine. 2015 May 14;10:3547-65 – reference: 24818879 - Biomaterials. 2014 Aug;35(24):6657-66 – reference: 20509652 - Environ Sci Technol. 2010 Jul 1;44(13):5210-5 – reference: 25952507 - Neurotoxicology. 2015 May;48:231-8 – reference: 19698986 - Biomaterials. 2009 Oct;30(31):6341-50 – reference: 19236062 - ACS Nano. 2009 Feb 24;3(2):279-90 – reference: 25527729 - Mutagenesis. 2015 Jan;30(1):59-66 – reference: 26975774 - Toxicol In Vitro. 2016 Jun;33:163-73 – reference: 21968186 - Int J Dev Neurosci. 2011 Dec;29(8):811-8 – reference: 24827677 - Biotechnol J. 2014 Jul;9(7):934-43 – reference: 26867977 - Sci Rep. 2016 Feb 12;6:21688 – reference: 25194297 - Neurotoxicology. 2014 Dec;45:12-21 – reference: 21145381 - Toxicol Lett. 2011 Feb 25;201(1):27-33 – reference: 25460644 - Environ Res. 2015 Jan;136:253-63 – reference: 17397919 - Biomaterials. 2007 Jul;28(19):2959-66 – reference: 22548743 - J Nanobiotechnology. 2012 May 01;10:16 – reference: 21501681 - Toxicol In Vitro. 2011 Aug;25(5):1053-60 – reference: 23936814 - Biomed Res Int. 2013;2013:535796 – reference: 21945414 - Mutat Res. 2011 Dec 24;726(2):129-35 – reference: 25242904 - Nanoscale Res Lett. 2014 Sep 02;9(1):459 – reference: 26337542 - J Nanobiotechnology. 2015 Sep 04;13:55 – reference: 24899804 - Int J Nanomedicine. 2014 May 20;9:2469-78 – reference: 22321936 - Genome Integr. 2012 Feb 10;3(1):2 – reference: 23427069 - Small. 2013 May 27;9(9-10):1831-41 – reference: 11524721 - Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S214-20 – reference: 27465730 - J Nanobiotechnology. 2016 Jul 28;14 (1):62 – reference: 19206551 - ACS Nano. 2008 Jan;2(1):85-96 – reference: 24767717 - Burns. 2014 Dec;40(8):1562-9 – reference: 20932003 - Environ Sci Technol. 2010 Nov 1;44(21):8337-42 – reference: 24529161 - Part Fibre Toxicol. 2014 Feb 17;11:11 – reference: 22531227 - Neurotoxicology. 2012 Jun;33(3):416-23 – reference: 23557437 - Part Fibre Toxicol. 2013 Apr 04;10 :11 – reference: 21390403 - Chem Commun (Camb). 2011 Apr 21;47(15):4382-4 – reference: 22023110 - Nanotoxicology. 2012 Dec;6:912-22 – reference: 9836530 - Diabetes. 1998 Dec;47(12):1953-9 – reference: 19928170 - J Nanosci Nanotechnol. 2009 Aug;9(8):4924-32 – reference: 26157341 - Int J Biol Sci. 2015 Jun 01;11(8):860-7 – reference: 16685565 - Int Arch Occup Environ Health. 2006 Oct;80(1):1-15 – reference: 18831567 - J Phys Chem B. 2008 Oct 30;112(43):13608-19 – reference: 21852719 - Nanotechnology. 2011 Sep 16;22(37):375101 – reference: 24505239 - Theranostics. 2014 Jan 29;4(3):316-35 – reference: 22457593 - Int J Nanomedicine. 2012;7:1329-43 – reference: 22546375 - Toxicol Lett. 2012 Jun 20;211(3):334-41 – reference: 24673909 - J Food Drug Anal. 2014 Mar;22(1):116-27 – reference: 26843106 - Mol Neurobiol. 2017 Mar;54(2):1285-1300 – reference: 22070748 - ACS Nano. 2011 Dec 27;5(12):10000-8 – reference: 25033410 - PLoS One. 2014 Jul 17;9(7):e102564 – reference: 20622302 - Nanotechnology. 2010 Aug 6;21(31):315103 – reference: 24522958 - J Appl Toxicol. 2014 Nov;34(11):1155-66 – reference: 25426268 - World J Biol Chem. 2014 Nov 26;5(4):457-64 – reference: 19280220 - Langenbecks Arch Surg. 2009 May;394(3):495-502 – reference: 19969064 - Toxicol In Vitro. 2010 Apr;24(3):872-8 – reference: 22583572 - Nanomedicine (Lond). 2012 Aug;7(8):1197-209 – reference: 22208550 - Part Fibre Toxicol. 2011 Dec 30;8:36 – reference: 22240980 - Toxicol Sci. 2012 Apr;126(2):457-68 – reference: 25593314 - J Biol Chem. 2015 Feb 27;290(9):5926-39 – reference: 23418027 - Small. 2013 Aug 12;9(15):2576-84 – reference: 23896225 - Environ Toxicol Pharmacol. 2013 Sep;36(2):724-31 – reference: 20012068 - Acta Neuropathol. 2010 Jan;119(1):7-35 – reference: 23784947 - J Biomed Mater Res A. 2014 Jun;102(6):1838-49 – reference: 11942415 - Cell Res. 2002 Mar;12(1):9-18 – reference: 19760634 - J Appl Toxicol. 2010 Jan;30(1):74-83 – reference: 27433139 - J Nanopart Res. 2016;18:182 – reference: 24758926 - Int J Mol Sci. 2014 Apr 22;15(4):6815-30 – reference: 21182908 - Toxicol Lett. 2011 Feb 25;201(1):92-100 – reference: 22940466 - Toxicol In Vitro. 2013 Feb;27(1):330-8 – reference: 24490819 - ACS Nano. 2014 Mar 25;8(3):2562-74 – reference: 23782671 - Mol Brain. 2013 Jun 19;6:29 – reference: 25481491 - Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:120-9 – reference: 25524171 - J Nanobiotechnology. 2014 Dec 19;12:59 – reference: 20112331 - ChemMedChem. 2010 Mar 1;5(3):468-75 – reference: 15142823 - Adv Colloid Interface Sci. 2004 Jun 30;110(1-2):49-74 – reference: 22975145 - Food Chem Toxicol. 2013 Jan;51:1-14 – reference: 24872701 - Int J Nanomedicine. 2014 May 08;9 Suppl 1:23-31 – reference: 23872425 - Toxicol In Vitro. 2013 Sep;27(6):2013-21 – reference: 20507217 - Immunopharmacol Immunotoxicol. 2011 Mar;33(1):135-40 – reference: 22216981 - Langmuir. 2012 Feb 7;28(5):2727-35 – reference: 25733828 - Int J Nanomedicine. 2015 Feb 16;10:1335-57 – reference: 22954533 - Toxicol In Vitro. 2013 Feb;27(1):305-13 – reference: 26814705 - Chemosphere. 2016 Apr;148:307-15 – reference: 16859745 - Environ Int. 2006 Dec;32(8):967-76 – reference: 26024651 - Biomaterials. 2015 Aug;61:307-15 – reference: 23518319 - Toxicol Lett. 2013 May 23;219(2):151-9 – reference: 18500564 - AAPS J. 2008 Jun;10(2):289-99 – reference: 23465487 - Biomaterials. 2013 May;34(15):3882-90 – reference: 20640410 - Anal Bioanal Chem. 2010 Sep;398(2):651-66 – reference: 25383306 - Beilstein J Nanotechnol. 2014 Nov 03;5:1944-65 – reference: 22435324 - Rev Environ Health. 2011;26(4):251-68 – reference: 22812506 - Part Fibre Toxicol. 2012 Jul 19;9:28 – reference: 19217710 - Cancer Lett. 2009 Jun 18;278(2):192-200 – reference: 22418598 - Arch Toxicol. 2012 Jul;86(7):1107-15 – reference: 22820426 - Toxicol Lett. 2012 Sep 3;213(2):249-59 – reference: 10646872 - Cancer Res. 2000 Jan 1;60(1):184-90 – reference: 23850759 - Biochim Biophys Acta. 2013 Dec;1833(12):3460-70 – reference: 23882139 - Int J Nanomedicine. 2013;8:2421-32 – reference: 26170659 - Int J Nanomedicine. 2015 Jun 29;10:4203-22 – reference: 19878566 - J Nanobiotechnology. 2009 Oct 30;7:8 – reference: 20713472 - Toxicol Sci. 2010 Nov;118(1):160-70 |
SSID | ssj0023259 |
Score | 2.559954 |
SecondaryResourceType | review_article |
Snippet | Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1603 |
SubjectTerms | Animals Cell Survival - drug effects DNA Damage - drug effects Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - metabolism Epithelial Cells - cytology Epithelial Cells - drug effects Epithelial Cells - metabolism Humans Keratin Macrophages - cytology Macrophages - drug effects Macrophages - metabolism Metal Nanoparticles - chemistry Metal Nanoparticles - toxicity Molecular chemistry Nanoparticles Neurons - cytology Neurons - drug effects Neurons - metabolism Reactive Oxygen Species - metabolism Review Silver Silver - chemistry Stem cells Stem Cells - cytology Stem Cells - drug effects Stem Cells - metabolism Toxicity |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYhMQFsVM2GQlOyGpiO3bCBVUVFULAASjqLXK8iKCSAi0H_p5xkhYKoueZg-OxPW_sl3kIHWdCaciqGWFcKsLjTBAlmSGGJy4GQKCd8j8n39yKyy6_6kW9-sJtWNMqx2dieVCbgfZ35E1YemEsvU7E-esb8apR_nW1ltCYR4u-dZmndMned8HFaCmWFkIOIiJKREV8Z1DmN_Pnl2Eoy_5qbDol_cGZv-mSP_JPZxWt1MARt6pIr6E5W6yjpUpK8nMD9e5zz3HGcFpCGVw5kZtSh8Ma3Lb9vueb4ruKEmuHOC_wI9TJUPiXVnzt-e9nuFWUlnz0PsBeJ62_ibqdi4f2JalVE4iO4nBErJY2djqMjQy0lTzRTFIlJGNMJo66LHHw4coGLuAG4JAKNBeGWZpkzlhn2BZaKAaF3UGYUh1lPDMAsnwbehlDPRsxSOguMGGgeAOdjicu1XVLca9s0U-htPDTnP6c5gY6mXi_Vq00_vHbH8cgrTfUMP0OfwMdTcywFfz7hioszBb4AN4AuCLoLB8AwDIGXNlA21VYJ4OhUoiEUrDIqYBPHHwr7mlLkT-VLblhVUeCid3ZQ99Dy4C3RMUF3EcLo_cPewCYZpQdlgv3C3679lE priority: 102 providerName: ProQuest |
Title | Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27669221 https://www.proquest.com/docview/1831878081 https://www.proquest.com/docview/1824224462 https://www.proquest.com/docview/1850778951 https://pubmed.ncbi.nlm.nih.gov/PMC5085636 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7XMSojwRMyJLZjO0gIjWllQnRCg6K-RY4_RFBIR9tJ7L_nnLTRygDxkpe7KMmd7fudfbkfwNNSGotRtaRcKEOFLiU1ijvqRB40AgIbTPw5eXwqTybi_TSbbsGabXRlwMUfU7vIJzWZ1y9-_rh8gxP-dcw4MWV_WX37vkhV2yuNb8MuxiQVp-hY9OcJCBta2rS44UHjAt2VwF-7ezM4XUOcvxdOXolEo9twawUhyWHn8zuw5Zu7cKMjlby8B9NPVax2JrhuYkLcKdFxy8jhHTnydR0rT8lZVxzrF6RqyBfMmGcXi1ZKPsRK-FfksGkl1XI-I5Exrb4Pk9Hx56MTuuJPoDbT6ZJ6q7wONtVOJdYrkVuumJGKc67ywEKZB_xw45OQCIfAyCRWSMc9y8vgfHD8Aew0s8bvAWHMZqUoHcKt2JBeacxsM46hPSQuTYwYwPO14Qq7ai4eOS7qApOMaObiqpkH8KzXPu-aavxF72Dtg2I9Mgpcg1KtImHIAJ70YpwU8aTDNB6thTqIPBC4SPYvHYTCSiPCHMDDzq39yzAlZc4YStSGw3uF2JR7U9JUX9vm3Di-M8nl_n889xHcRPglu9LAA9hZzi_8Y4Q4y3II22qq8KpH74aw-_b49OPZMAadbNiO618Zlv85 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuFAkaiJ2Q1sR07QUKoKlRbutsDtGhvwfFDBC3Z0myF-qf4jYzjzbYLoreeZ2RZ4xnPN8l4PoBXldQGs2pFuVCairySVCtuqRWFzxEQGK_D4-TxgRweiY-TbLIGv_u3MKGtsr8Tu4vazkz4Rr6FrpfmKvBEvDv-SQNrVPi72lNoRLfYd2e_sGRr3-69x_PdZGz3w-HOkC5YBajJ8nROnVEu9ybNrUqMU6IwXDEtFedcFZ75qvCpSrVLfCIswgWdGCEtd6yovHXeclz3GlzHxJuEiFKT8wKPs46cLcWcR2VWyNhoz3mRbNXff7S4bMfqvJoC_8G1f7dnXsh3u3fg9gKoku3oWXdhzTX34Eakrjy7D5PPdeipJng7Y9kdlei44_1wluy46TT0t5JPsQXXtaRuyBesy2enbSclo9Bv_4ZsN52knp_MSOBlmz6Aoyux50NYb2aNewyEMZNVorII6sLYe5Vj_ZxxBBA-sWmixQBe94YrzWKEeWDSmJZYygQzlxfNPIDNpfZxHN3xH72N_gzKRQC35bm7DeDlUoyhF_6n6MahtVAH8Q3CI8ku00HArXLEsQN4FI91uRmmpCwYQ4laOfClQhj9vSpp6m_dCHCMokxy-eTyrb-Am8PD8agc7R3sP4VbiPVk7EPcgPX5yal7hnhqXj3vnJjA16uOmj_LazSf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VIhAvFXe2FDASfULWJrZjJ0gVqlpWLb0IAUX7ljq-iKAlW5qtUH-tX8c4l20XRN_6PKMoGs_YZ5LjOQBvCqkNnqoF5UJpKtJCUq24pVZkPkVAYLwOl5MPDuXOkfg4TsZLcNHfhQm0yn5PbDZqOzXhG_kQUy9OVdCJGPqOFvFpe_T-5BcNClLhT2svp9GmyJ47_43tW72xu41rvc7Y6MPXrR3aKQxQk6TxjDqjXOpNnFoVGadEZrhiWirOuco880XmYxVrF_lIWIQOOjJCWu5YVnjrvOX43FtwW_EkDjWmxpfNHmeNUFuM5x-VSSZb0j3nWTQsf_ys8bGNwvPicfgPxv2bqnnl7Bvdh5UOtJLNNssewJKrHsKdVsby_BGMv5SBX01wp8YWvHWiB40GiLNky00mgetKPrd0XFeTsiLfsEefntWNlewH7v07slk1lnJ2OiVBo23yGI5uJJ5PYLmaVu4ZEMZMUojCIsALI_BVir10whFM-MjGkRYDeNsHLjfdOPOgqjHJsa0JYc6vhnkA63Pvk3aMx3_81vo1yLtirvPL1BvA67kZyzD8W9GVw2ihD2IdhEqSXeeD4FuliGkH8LRd1vnLMCVlxhha1MKCzx3CGPBFS1V-b8aBY0UlksvV61_9FdzFesn3dw_3nsM9hH2ypSSuwfLs9My9QGg1K142OUzg-KaL5g_4ajjV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Nanoparticle-Mediated+Cellular+Responses+in+Various+Cell+Lines%3A+An+in+Vitro+Model&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Zhang%2C+Xi-Feng&rft.au=Shen%2C+Wei&rft.au=Gurunathan%2C+Sangiliyandi&rft.date=2016-10-01&rft.issn=1422-0067&rft.volume=17&rft.issue=10&rft.spage=1603&rft.epage=1603&rft_id=info:doi/10.3390%2Fijms17101603&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |