Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 17; no. 10; p. 1603
Main Authors Zhang, Xi-Feng, Shen, Wei, Gurunathan, Sangiliyandi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2016
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms17101603

Cover

Loading…
Abstract Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.
AbstractList Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.
Author Shen, Wei
Zhang, Xi-Feng
Gurunathan, Sangiliyandi
AuthorAffiliation 3 Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; shenwei427@163.com
1 College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; zhangxf9465@163.com
AuthorAffiliation_xml – name: 2 Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; shenwei427@163.com
– name: 1 College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; zhangxf9465@163.com
– name: 3 Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
Author_xml – sequence: 1
  givenname: Xi-Feng
  surname: Zhang
  fullname: Zhang, Xi-Feng
– sequence: 2
  givenname: Wei
  surname: Shen
  fullname: Shen, Wei
– sequence: 3
  givenname: Sangiliyandi
  surname: Gurunathan
  fullname: Gurunathan, Sangiliyandi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27669221$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1rVDEUxYNU7OfOtTxw46JP8_FekudCKIO2wlSh2tJdyCQ3miGTjMl7hf73ZtpaxuLCVQLndw_33LOPdmKKgNBLgt8yNuB3frkqRBBMOGbP0B7pKG0x5mJn67-L9ktZYkwZ7YcXaJcKzgdKyR66_ubDDeTmi45prfPoTYD2HKzXI9hmBiFMQefmAso6xQKl8bG50tmnqdypzdxHKO-bk3in-DGn5jxZCIfoudOhwNHDe4AuP338Pjtr519PP89O5q3pJRlbMAKkM0RagQ2IbjBMUM0FY0wMjrrF4Go4DdjhzlLeaWw6bhnQYeEsOMsO0Id73_W0WIE1EMesg1pnv9L5ViXt1d9K9D_Vj3Sjeix7zng1ePNgkNOvCcqoVr6YGk1HqCkVkT0WQg49-Q-U1ot3HacVff0EXaYpx3qJSjEihcRyY_hqe_nHrf_0U4Hje8DkVEoG94gQrDb1q-36K06f4MaPevRpE92Hfw_9Blz4sx0
CitedBy_id crossref_primary_10_1002_cbf_70012
crossref_primary_10_1016_j_scitotenv_2018_08_064
crossref_primary_10_1016_j_jtemb_2020_126630
crossref_primary_10_1038_s41598_021_92081_7
crossref_primary_10_1080_17435390_2017_1382600
crossref_primary_10_1007_s00253_018_9488_1
crossref_primary_10_11603_mcch_2410_681X_2023_i3_14126
crossref_primary_10_3390_pharmaceutics15071797
crossref_primary_10_1007_s12668_018_0552_1
crossref_primary_10_1038_s41598_021_96426_0
crossref_primary_10_1080_21691401_2018_1457037
crossref_primary_10_2217_nnm_2017_0329
crossref_primary_10_3390_ijms18030569
crossref_primary_10_1016_j_mtcomm_2025_111876
crossref_primary_10_1038_s41598_020_72249_3
crossref_primary_10_1155_2019_3754018
crossref_primary_10_3390_coatings11101213
crossref_primary_10_1166_mex_2022_2300
crossref_primary_10_1021_acsabm_2c00014
crossref_primary_10_15407_ubj93_05_102
crossref_primary_10_1155_2018_8251961
crossref_primary_10_1016_j_jddst_2024_105532
crossref_primary_10_5812_ircmj_79183
crossref_primary_10_1016_j_surfin_2025_105920
crossref_primary_10_1515_ntrev_2024_0023
crossref_primary_10_1002_jemt_24540
crossref_primary_10_1088_1742_6596_1323_1_012020
crossref_primary_10_17352_2455_3492_000046
crossref_primary_10_1039_D3NR04362B
crossref_primary_10_1016_j_tiv_2019_03_006
crossref_primary_10_3390_ijms19041210
crossref_primary_10_1016_j_envpol_2018_11_019
crossref_primary_10_1007_s13204_019_01151_w
crossref_primary_10_3390_nano7060124
crossref_primary_10_3389_fmicb_2018_01218
crossref_primary_10_3390_antibiotics7030067
crossref_primary_10_1002_cbf_70006
crossref_primary_10_1021_acsomega_4c04961
crossref_primary_10_3389_fmicb_2017_02698
crossref_primary_10_3390_ijms19051470
crossref_primary_10_1039_C8JA00310F
crossref_primary_10_1016_j_tiv_2021_105161
crossref_primary_10_1016_j_msec_2018_07_037
crossref_primary_10_29252_rap_10_24_103
crossref_primary_10_3390_ijms20184439
crossref_primary_10_1016_j_msec_2019_110262
crossref_primary_10_1007_s13205_024_04118_z
crossref_primary_10_3390_nano10061127
crossref_primary_10_1007_s10876_020_01775_x
crossref_primary_10_3390_ijms22158037
crossref_primary_10_1007_s13273_019_00061_w
crossref_primary_10_3390_polym16010024
crossref_primary_10_1016_j_biopha_2023_116090
crossref_primary_10_1021_acs_chemrestox_8b00234
crossref_primary_10_1002_slct_202400441
crossref_primary_10_1186_s12964_024_01511_2
crossref_primary_10_3390_ma13092159
crossref_primary_10_1016_j_surfin_2023_102631
crossref_primary_10_1016_j_biotno_2024_05_002
crossref_primary_10_2174_1574885515999200425234517
crossref_primary_10_2217_nnm_2019_0095
crossref_primary_10_1016_j_jbiosc_2019_04_017
crossref_primary_10_1016_j_bioflm_2024_100228
crossref_primary_10_1016_j_colcom_2020_100244
crossref_primary_10_1016_j_cbi_2022_110023
crossref_primary_10_3390_polym9050176
crossref_primary_10_1016_j_procbio_2017_11_003
crossref_primary_10_1680_jbibn_21_00061
crossref_primary_10_1002_jmr_2723
crossref_primary_10_1016_j_heliyon_2022_e12326
crossref_primary_10_1096_fj_202100065R
crossref_primary_10_1007_s10876_018_01491_7
crossref_primary_10_1155_2018_9689131
crossref_primary_10_3390_coatings11060677
crossref_primary_10_1016_j_bcab_2020_101592
crossref_primary_10_3390_ijms19051305
crossref_primary_10_1016_j_msec_2020_110925
crossref_primary_10_33073_pjm_2019_051
crossref_primary_10_1039_C8RA04502J
crossref_primary_10_1007_s12010_022_03963_z
crossref_primary_10_1021_acsabm_1c00613
crossref_primary_10_1007_s12015_022_10500_2
crossref_primary_10_1007_s10616_018_0257_x
crossref_primary_10_1080_20550324_2024_2442270
crossref_primary_10_3390_ma14123383
crossref_primary_10_1002_mame_202200060
crossref_primary_10_3390_gels9110878
crossref_primary_10_3390_ijms19103264
crossref_primary_10_1016_j_msec_2020_110934
crossref_primary_10_3389_fonc_2024_1465987
crossref_primary_10_1007_s00210_024_03516_7
crossref_primary_10_1007_s13273_020_00100_x
crossref_primary_10_1002_advs_202205093
crossref_primary_10_1007_s13204_024_03076_5
crossref_primary_10_3390_antibiotics11060800
crossref_primary_10_3390_ijms21124412
crossref_primary_10_1021_acsbiomaterials_3c00625
crossref_primary_10_3390_app8091643
crossref_primary_10_3390_ijms19082269
crossref_primary_10_1007_s10895_022_02909_2
crossref_primary_10_3390_ma15175802
crossref_primary_10_1007_s12668_022_01015_8
crossref_primary_10_1016_j_surfin_2021_101617
crossref_primary_10_1007_s12011_019_1653_6
crossref_primary_10_1007_s12034_022_02665_w
crossref_primary_10_1007_s12668_023_01297_6
crossref_primary_10_3390_cancers12030664
crossref_primary_10_1016_j_flm_2018_06_001
crossref_primary_10_1016_j_chemosphere_2024_142988
crossref_primary_10_1007_s12668_020_00738_w
crossref_primary_10_1088_1748_605X_ab7763
crossref_primary_10_1016_j_neuroscience_2023_09_004
crossref_primary_10_18633_biotecnia_v26_2257
crossref_primary_10_1021_acsabm_0c00915
crossref_primary_10_3390_pharmaceutics15030715
crossref_primary_10_1039_D1RA03876A
crossref_primary_10_3390_pharmaceutics13040575
crossref_primary_10_1007_s10856_023_06753_z
crossref_primary_10_18632_oncotarget_22563
crossref_primary_10_2147_IJN_S260375
crossref_primary_10_1016_j_ijpharm_2022_122339
crossref_primary_10_3390_jfb11030058
crossref_primary_10_2217_nnm_2019_0290
crossref_primary_10_2174_0113816128304460240408085736
crossref_primary_10_3390_polym11040733
crossref_primary_10_1016_j_sajb_2023_07_001
crossref_primary_10_3389_fimmu_2017_00973
crossref_primary_10_1016_j_lfs_2019_05_072
crossref_primary_10_3390_nano12132316
crossref_primary_10_1016_j_jgeb_2017_12_001
crossref_primary_10_3762_bjnano_12_23
crossref_primary_10_1016_j_mtbio_2021_100127
crossref_primary_10_1021_acsomega_2c07840
crossref_primary_10_3390_molecules25102375
crossref_primary_10_1016_j_chemosphere_2021_132527
crossref_primary_10_3390_pharmaceutics14081523
crossref_primary_10_3390_molecules25051137
crossref_primary_10_1166_mex_2023_2543
crossref_primary_10_3390_molecules25225336
crossref_primary_10_1007_s11356_022_20235_9
crossref_primary_10_1007_s12010_022_04156_4
crossref_primary_10_3390_biomedicines10112792
crossref_primary_10_3389_fcell_2022_901661
crossref_primary_10_1016_j_arabjc_2022_104217
crossref_primary_10_1080_21691401_2024_2407617
crossref_primary_10_1186_s12903_024_05127_3
crossref_primary_10_1016_j_nano_2019_102070
crossref_primary_10_3390_poultry2010002
crossref_primary_10_1080_21691401_2018_1449118
crossref_primary_10_3390_app12073554
crossref_primary_10_1515_zpch_2021_3084
crossref_primary_10_3390_ijms20020449
crossref_primary_10_1021_acsomega_8b00608
crossref_primary_10_1016_j_cbpc_2022_109266
crossref_primary_10_3390_jfb14010047
crossref_primary_10_1007_s11095_021_03038_4
crossref_primary_10_1088_2632_959X_ad106f
crossref_primary_10_1007_s42600_025_00404_8
crossref_primary_10_1080_17435390_2022_2030823
crossref_primary_10_1016_j_enmm_2021_100460
crossref_primary_10_1016_j_actbio_2016_12_014
crossref_primary_10_3390_plants12061261
crossref_primary_10_3390_coatings14060681
crossref_primary_10_1016_j_msec_2019_01_134
crossref_primary_10_3390_chemistry4030064
crossref_primary_10_1080_17435390_2018_1425497
crossref_primary_10_1016_j_chemosphere_2018_05_019
crossref_primary_10_1186_s11671_018_2775_z
crossref_primary_10_1016_j_envpol_2025_125891
crossref_primary_10_1007_s10853_022_07259_9
crossref_primary_10_1002_ppsc_201900419
crossref_primary_10_1016_j_jddst_2018_01_009
crossref_primary_10_1080_17435390_2018_1529835
crossref_primary_10_3390_molecules29061250
crossref_primary_10_1007_s13399_024_05784_y
crossref_primary_10_1007_s12272_019_01152_x
crossref_primary_10_1016_j_addr_2023_114992
crossref_primary_10_1590_1980_5373_mr_2020_0115
crossref_primary_10_3762_bjnano_12_62
crossref_primary_10_1016_j_msec_2019_03_095
crossref_primary_10_3390_met12010051
crossref_primary_10_3390_molecules28073240
crossref_primary_10_1002_jat_4103
crossref_primary_10_1016_j_taap_2022_116009
crossref_primary_10_1016_j_jddst_2025_106791
crossref_primary_10_1080_21691401_2018_1548469
crossref_primary_10_1007_s12011_022_03399_w
crossref_primary_10_1007_s40496_017_0119_1
crossref_primary_10_18231_j_ijmr_2023_001
crossref_primary_10_1007_s13562_019_00542_y
crossref_primary_10_1142_S2810922824300010
crossref_primary_10_1089_photob_2022_0016
crossref_primary_10_3390_ijms22031128
crossref_primary_10_1007_s10856_018_6169_7
crossref_primary_10_1016_j_colsurfb_2018_11_037
crossref_primary_10_1016_j_arabjc_2020_10_038
crossref_primary_10_1080_21691401_2018_1528983
crossref_primary_10_1155_2018_6121328
crossref_primary_10_1080_24701556_2021_1956952
crossref_primary_10_3390_app14167309
crossref_primary_10_1016_j_tiv_2018_03_015
crossref_primary_10_1016_j_ejpb_2018_11_006
crossref_primary_10_3389_fnano_2024_1496230
crossref_primary_10_1038_s41598_018_20728_z
crossref_primary_10_1007_s13205_018_1436_3
crossref_primary_10_1007_s13762_018_2175_z
crossref_primary_10_1039_C8RA00044A
crossref_primary_10_3390_nano12040618
crossref_primary_10_1002_EXP_20210083
Cites_doi 10.1208/s12248-008-9027-6
10.1186/1743-8977-9-28
10.1186/1477-3155-7-8
10.1086/321850
10.1088/0957-4484/21/31/315103
10.1038/nri3561
10.1016/j.chemosphere.2016.01.045
10.2217/17435889.3.5.627
10.1016/j.biocel.2011.10.019
10.1016/j.envres.2014.11.006
10.1016/j.neuro.2009.09.005
10.1016/j.toxlet.2012.04.016
10.1002/jat.3081
10.1016/j.tiv.2011.04.005
10.1016/j.jfda.2014.01.010
10.4331/wjbc.v5.i4.457
10.1007/s12030-008-9007-z
10.1016/j.tiv.2013.07.005
10.1016/j.biomaterials.2007.03.006
10.1007/s00401-009-0619-8
10.1016/j.colsurfb.2009.04.025
10.1186/1556-276X-9-459
10.1016/j.tiv.2016.03.004
10.1016/j.toxlet.2010.12.010
10.1371/annotation/9ecbe311-b637-4bdf-826d-48b4dd778bfa
10.1088/0957-4484/22/37/375101
10.1016/j.burns.2014.02.009
10.1007/s00423-009-0472-1
10.1166/jnn.2010.2625
10.1016/j.toxlet.2011.05.1033
10.3109/17435390.2011.626539
10.1016/j.matchemphys.2005.04.023
10.1186/1743-8977-11-11
10.1016/j.fct.2012.08.044
10.1016/j.carbpol.2013.11.040
10.1016/j.neuro.2012.04.008
10.1016/j.etap.2013.06.012
10.1186/s12951-014-0059-z
10.1186/2041-9414-3-2
10.1021/nn700256c
10.1016/j.toxlet.2010.12.001
10.1111/j.1600-065X.2012.01099.x
10.1016/j.neuro.2015.04.008
10.2147/IJN.S59753
10.1016/j.mrgentox.2011.08.008
10.1146/annurev.publhealth.031308.100155
10.1007/s00204-011-0714-1
10.1021/nn800596w
10.1016/j.cis.2004.02.003
10.1002/jbm.a.34854
10.1007/s00420-006-0106-7
10.1186/1756-6606-6-29
10.1080/17458080.2010.547878
10.1016/j.biomaterials.2014.04.093
10.1007/s00216-010-3977-0
10.1002/em.21844
10.1186/1743-8977-8-36
10.1007/s11051-013-1898-5
10.1038/sj.cr.7290105
10.1093/toxsci/kfq244
10.1166/jbn.2014.1824
10.1074/jbc.M114.610899
10.7150/ijbs.12059
10.1186/s12951-014-0062-4
10.1016/j.tiv.2012.08.021
10.32725/jab.2008.015
10.1016/j.colsurfb.2010.03.026
10.1002/jat.3315
10.1007/s11051-016-3493-z
10.1007/s00204-012-0840-4
10.1093/toxsci/kfi256
10.1038/nrmicro2070
10.1021/nn204671v
10.1002/mc.20218
10.1186/s12951-015-0114-4
10.1016/j.actbio.2013.09.037
10.1016/j.biomaterials.2013.02.001
10.1016/j.toxlet.2011.11.006
10.7150/thno.7819
10.1186/1743-8977-10-11
10.1016/j.tiv.2012.08.024
10.1515/REVEH.2011.033
10.3390/molecules21030365
10.1021/nn203785a
10.1016/j.toxlet.2013.03.006
10.1093/toxsci/kfs003
10.1186/s12951-016-0214-9
10.1016/j.canlet.2009.01.010
10.1016/j.ijdevneu.2011.09.004
10.1371/journal.pone.0102564
10.1002/tox.21880
10.1038/srep21688
10.1002/cmdc.200900502
10.1016/j.neuro.2014.08.010
10.1016/j.tiv.2009.12.001
10.1159/000178869
10.1016/j.colsurfb.2011.04.019
10.1016/j.biomaterials.2015.05.029
10.1016/j.toxlet.2012.07.009
10.1021/la2042058
10.3109/08923973.2010.487489
10.1002/smll.201202732
10.1126/science.1114397
10.2147/IJN.S83953
10.1002/biot.201300555
10.1038/sj.cdd.4402038
10.1016/j.neuint.2012.08.017
10.1007/s12035-016-9688-6
10.1155/2013/535796
10.1186/1477-3155-10-16
10.1021/es903684r
10.1158/0008-5472.CAN-07-0846
10.1166/jnn.2009.1269
10.1039/c1cc10357a
10.1515/hsz-2012-0202
10.1021/jp712087m
10.3109/17435390.2010.541604
10.1016/j.biomaterials.2009.08.008
10.1002/jat.2994
10.1016/j.saa.2014.10.043
10.3390/ijms15046815
10.3389/fnins.2015.00115
10.2337/diabetes.47.12.1953
10.1021/es1020668
10.1002/smll.201202120
10.1002/jat.1475
10.1016/j.envint.2006.06.014
10.1016/j.toxlet.2009.09.014
10.1016/j.toxlet.2008.04.015
10.1016/j.jiec.2013.01.029
10.1093/mutage/geu057
10.3762/bjnano.5.205
10.1186/s11671-015-0747-0
10.1021/nn406184r
ContentType Journal Article
Copyright Copyright MDPI AG 2016
2016 by the authors; licensee MDPI, Basel, Switzerland. 2016
Copyright_xml – notice: Copyright MDPI AG 2016
– notice: 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TK
5PM
DOI 10.3390/ijms17101603
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
Publicly Available Content Database

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
EndPage 1603
ExternalDocumentID PMC5085636
4226716381
27669221
10_3390_ijms17101603
Genre Journal Article
Review
Feature
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
7TK
5PM
ID FETCH-LOGICAL-c581t-ec7e8fc18d70ce749c372a6733379f2fb9f171ae0f04d264a0c46d3e29bfdefd3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:14:38 EDT 2025
Fri Jul 11 10:56:09 EDT 2025
Thu Jul 10 23:25:36 EDT 2025
Fri Jul 25 07:26:20 EDT 2025
Thu Apr 03 07:07:21 EDT 2025
Tue Jul 01 03:29:49 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords cellular effect
stem cells
endothelial cells
fibroblasts
silver nanoparticles
epithelial cells
macrophage
neuronal cells
keratinocytes
Language English
License https://creativecommons.org/licenses/by/4.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-ec7e8fc18d70ce749c372a6733379f2fb9f171ae0f04d264a0c46d3e29bfdefd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms17101603
PMID 27669221
PQID 1831878081
PQPubID 2032341
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5085636
proquest_miscellaneous_1850778951
proquest_miscellaneous_1824224462
proquest_journals_1831878081
pubmed_primary_27669221
crossref_primary_10_3390_ijms17101603
crossref_citationtrail_10_3390_ijms17101603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2016
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Manikandan (ref_61) 2015; 138
Dziedzic (ref_142) 2016; 21
Karlsson (ref_125) 2010; 398
Santoro (ref_141) 2007; 3
Chung (ref_27) 2007; 28
Hadrup (ref_85) 2012; 33
Hashimoto (ref_59) 2014; 102
Jaiswal (ref_119) 2000; 60
Sriram (ref_113) 2012; 1
Zhang (ref_129) 2002; 12
Chen (ref_134) 2014; 8
Wallach (ref_116) 2014; 14
Hondroulis (ref_76) 2010; 21
Tang (ref_23) 2010; 10
Piao (ref_33) 2011; 201
Fouda (ref_79) 2014; 102
Tang (ref_21) 2009; 9
Liu (ref_105) 2015; 9
Mahmood (ref_28) 2010; 30
George (ref_83) 2012; 6
Eom (ref_130) 2010; 44
Mytych (ref_91) 2016; 148
Bohmert (ref_39) 2012; 86
Austin (ref_20) 2012; 6
Gibbs (ref_73) 2009; 22
Yin (ref_86) 2013; 9
Han (ref_7) 2014; 9
Huang (ref_146) 2015; 136
Jang (ref_68) 2012; 7
Qin (ref_102) 2014; 9
Gurunathan (ref_14) 2013; 19
Xu (ref_127) 2012; 10
Comfort (ref_36) 2011; 5
Castiglioni (ref_72) 2014; 5
Zhang (ref_133) 2012; 44
Hamilton (ref_45) 2014; 15
Park (ref_52) 2011; 47
Wang (ref_82) 2013; 36
AshaRani (ref_13) 2009; 3
Liu (ref_75) 2010; 5
Katherine (ref_139) 2016; 14
Liu (ref_101) 2014; 10
Lee (ref_34) 2011; 85
Jena (ref_55) 2012; 7
Kermanizadeh (ref_41) 2012; 9
Boonkaew (ref_80) 2014; 40
Sriram (ref_144) 2010; 5
Xia (ref_5) 2008; 2
Ma (ref_90) 2015; 11
Chorley (ref_88) 2014; 45
Schlinkert (ref_32) 2015; 13
Deepak (ref_54) 2011; 86
Pauksch (ref_100) 2014; 10
Asharani (ref_6) 2012; 3
Antonetti (ref_18) 1998; 47
ref_148
ref_147
McShan (ref_81) 2014; 22
Bergsbaken (ref_122) 2009; 7
Terrones (ref_63) 2009; 191
ref_145
Sofroniew (ref_93) 2010; 119
Carlson (ref_15) 2008; 112
Chun (ref_77) 2010; 78
Panyala (ref_22) 2008; 6
Suresh (ref_56) 2010; 44
Zanette (ref_74) 2011; 25
Suliman (ref_48) 2015; 30
Alon (ref_87) 2014; 9
Scheiber (ref_92) 2013; 62
Simard (ref_136) 2015; 290
Kim (ref_35) 2011; 726
Kalishwaralal (ref_64) 2009; 73
Szmyd (ref_78) 2013; 394
Leitinger (ref_140) 2015; 35
Castillo (ref_50) 2008; 3
Nguyen (ref_62) 2016; 33
Greulich (ref_97) 2009; 394
Chatterjee (ref_124) 2014; 55
Singh (ref_42) 2012; 213
Stoehr (ref_38) 2011; 8
Gurunathan (ref_12) 2013; 2013
Suresh (ref_29) 2012; 28
Kennedy (ref_89) 2014; 12
Orlowski (ref_121) 2012; 37
Grosse (ref_66) 2013; 27
Herzog (ref_138) 2013; 10
Houle (ref_17) 2006; 45
Cooper (ref_106) 2015; 48
Dayem (ref_26) 2014; 9
Kruszewski (ref_107) 2013; 219
Park (ref_115) 2010; 24
Chairuangkitti (ref_110) 2013; 27
Hussain (ref_96) 2005; 88
Prasad (ref_43) 2013; 27
DiDonato (ref_117) 2012; 246
Trickler (ref_19) 2010; 118
Nishanth (ref_53) 2011; 5
Gurunathan (ref_10) 2015; 10
Jeong (ref_49) 2016; 6
Rinna (ref_131) 2015; 30
Duran (ref_71) 2015; 13
MacGowan (ref_30) 2001; 33
Sano (ref_132) 2013; 1833
Shavandi (ref_51) 2011; 33
Hong (ref_94) 2011; 29
Yilma (ref_60) 2013; 8
Lankoff (ref_37) 2012; 208
Awasthi (ref_111) 2013; 15
Kettler (ref_137) 2016; 18
Polli (ref_31) 2008; 10
Gurunathan (ref_65) 2009; 30
Gurunathan (ref_11) 2015; 10
Frattini (ref_3) 2005; 94
Chirino (ref_8) 2009; 278
Haase (ref_24) 2012; 126
Capek (ref_4) 2004; 110
Sahu (ref_46) 2014; 34
Pratsinis (ref_58) 2013; 9
Hsin (ref_114) 2008; 179
Hackenberg (ref_98) 2011; 201
Gliga (ref_44) 2014; 11
Shi (ref_70) 2014; 35
Sheikpranbabu (ref_16) 2009; 7
Pilger (ref_128) 2006; 80
ref_103
Xia (ref_109) 2009; 30
Kang (ref_67) 2011; 205
Wang (ref_84) 2009; 30
Xu (ref_25) 2013; 6
Ye (ref_9) 2009; 30
ref_47
Kang (ref_40) 2012; 211
Huo (ref_135) 2015; 61
Kaur (ref_57) 2013; 51
Mukherjee (ref_69) 2014; 4
Nel (ref_1) 2006; 311
Samberg (ref_99) 2012; 7
Murphy (ref_118) 2016; 36
Li (ref_112) 2013; 34
Zhang (ref_104) 2015; 10
Feng (ref_108) 2015; 10
Valinluck (ref_120) 2007; 67
Ahlberg (ref_143) 2014; 5
Moore (ref_2) 2006; 32
Xie (ref_126) 2011; 26
Luther (ref_95) 2011; 22
Martinon (ref_123) 2007; 14
23850759 - Biochim Biophys Acta. 2013 Dec;1833(12):3460-70
19217710 - Cancer Lett. 2009 Jun 18;278(2):192-200
21042421 - Int J Nanomedicine. 2010 Oct 05;5:753-62
25592092 - J Nanobiotechnology. 2015 Jan 16;13:1
23557437 - Part Fibre Toxicol. 2013 Apr 04;10 :11
20932003 - Environ Sci Technol. 2010 Nov 1;44(21):8337-42
25460644 - Environ Res. 2015 Jan;136:253-63
25242904 - Nanoscale Res Lett. 2014 Sep 02;9(1):459
22820426 - Toxicol Lett. 2012 Sep 3;213(2):249-59
23804405 - Environ Toxicol. 2015 Feb;30(2):149-60
16977329 - Cell Death Differ. 2007 Jan;14(1):10-22
23091270 - Biol Chem. 2013 Jan;394(1):113-23
24095782 - Acta Biomater. 2014 Jan;10(1):439-49
24804548 - J Biomed Nanotechnol. 2014 Jul;10(7):1277-85
25593314 - J Biol Chem. 2015 Feb 27;290(9):5926-39
23896225 - Environ Toxicol Pharmacol. 2013 Sep;36(2):724-31
21852719 - Nanotechnology. 2011 Sep 16;22(37):375101
24818879 - Biomaterials. 2014 Aug;35(24):6657-66
24336099 - Nat Rev Immunol. 2014 Jan;14 (1):51-9
22216981 - Langmuir. 2012 Feb 7;28(5):2727-35
22418598 - Arch Toxicol. 2012 Jul;86(7):1107-15
23782671 - Mol Brain. 2013 Jun 19;6:29
21137724 - J Nanosci Nanotechnol. 2010 Oct;10(10):6313-7
16685565 - Int Arch Occup Environ Health. 2006 Oct;80(1):1-15
23872425 - Toxicol In Vitro. 2013 Sep;27(6):2013-21
19760634 - J Appl Toxicol. 2010 Jan;30(1):74-83
22070748 - ACS Nano. 2011 Dec 27;5(12):10000-8
21501681 - Toxicol In Vitro. 2011 Aug;25(5):1053-60
19280220 - Langenbecks Arch Surg. 2009 May;394(3):495-502
25481491 - Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:120-9
22531227 - Neurotoxicology. 2012 Jun;33(3):416-23
24522958 - J Appl Toxicol. 2014 Nov;34(11):1155-66
24767717 - Burns. 2014 Dec;40(8):1562-9
27433139 - J Nanopart Res. 2016;18:182
20622302 - Nanotechnology. 2010 Aug 6;21(31):315103
26867977 - Sci Rep. 2016 Feb 12;6:21688
26814705 - Chemosphere. 2016 Apr;148:307-15
22435567 - Immunol Rev. 2012 Mar;246(1):379-400
22482460 - ACS Nano. 2012 May 22;6(5):3745-59
19800954 - Toxicol Lett. 2009 Dec 15;191(2-3):305-13
19865601 - Nanobiotechnology. 2007 May 1;3(2):55-65
19206551 - ACS Nano. 2008 Jan;2(1):85-96
24490819 - ACS Nano. 2014 Mar 25;8(3):2562-74
22457593 - Int J Nanomedicine. 2012;7:1329-43
19781568 - Neurotoxicology. 2009 Nov;30(6):926-33
23505470 - PLoS One. 2013;8(3):e58211
23518319 - Toxicol Lett. 2013 May 23;219(2):151-9
16014736 - Toxicol Sci. 2005 Dec;88(2):412-9
19698986 - Biomaterials. 2009 Oct;30(31):6341-50
18831567 - J Phys Chem B. 2008 Oct 30;112(43):13608-19
18547751 - Toxicol Lett. 2008 Jul 10;179(3):130-9
24505239 - Theranostics. 2014 Jan 29;4(3):316-35
22940466 - Toxicol In Vitro. 2013 Feb;27(1):330-8
9836530 - Diabetes. 1998 Dec;47(12):1953-9
23427069 - Small. 2013 May 27;9(9-10):1831-41
20507217 - Immunopharmacol Immunotoxicol. 2011 Mar;33(1):135-40
23936814 - Biomed Res Int. 2013;2013:535796
26157341 - Int J Biol Sci. 2015 Jun 01;11(8):860-7
25352480 - J Appl Toxicol. 2015 Jun;35(6):581-92
17397919 - Biomaterials. 2007 Jul;28(19):2959-66
22583572 - Nanomedicine (Lond). 2012 Aug;7(8):1197-209
22954533 - Toxicol In Vitro. 2013 Feb;27(1):305-13
20112331 - ChemMedChem. 2010 Mar 1;5(3):468-75
25426268 - World J Biol Chem. 2014 Nov 26;5(4):457-64
23882139 - Int J Nanomedicine. 2013;8:2421-32
26170659 - Int J Nanomedicine. 2015 Jun 29;10:4203-22
24872701 - Int J Nanomedicine. 2014 May 08;9 Suppl 1:23-31
22812506 - Part Fibre Toxicol. 2012 Jul 19;9:28
19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109
25383306 - Beilstein J Nanotechnol. 2014 Nov 03;5:1944-65
22064246 - Int J Biochem Cell Biol. 2012 Jan;44(1):224-32
22619529 - Int J Nanomedicine. 2012;7:1805-18
25033410 - PLoS One. 2014 Jul 17;9(7):e102564
21390403 - Chem Commun (Camb). 2011 Apr 21;47(15):4382-4
23418027 - Small. 2013 Aug 12;9(15):2576-84
11524721 - Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S214-20
20012068 - Acta Neuropathol. 2010 Jan;119(1):7-35
23784947 - J Biomed Mater Res A. 2014 Jun;102(6):1838-49
24758926 - Int J Mol Sci. 2014 Apr 22;15(4):6815-30
26975774 - Toxicol In Vitro. 2016 Jun;33:163-73
21592748 - Colloids Surf B Biointerfaces. 2011 Sep 1;86(2):353-8
25527729 - Mutagenesis. 2015 Jan;30(1):59-66
16637066 - Mol Carcinog. 2006 Jun;45(6):362-7
20640410 - Anal Bioanal Chem. 2010 Sep;398(2):651-66
22982300 - Neurochem Int. 2013 Apr;62(5):556-65
22023110 - Nanotoxicology. 2012 Dec;6:912-22
19705557 - Annu Rev Public Health. 2009;30:137-50
21729742 - Toxicol Lett. 2011 Sep 10;205(3):227-34
24899804 - Int J Nanomedicine. 2014 May 20;9:2469-78
26024651 - Biomaterials. 2015 Aug;61:307-15
21611810 - Arch Toxicol. 2011 Dec;85(12):1529-40
21968186 - Int J Dev Neurosci. 2011 Dec;29(8):811-8
24529161 - Part Fibre Toxicol. 2014 Feb 17;11:11
22975145 - Food Chem Toxicol. 2013 Jan;51:1-14
19236062 - ACS Nano. 2009 Feb 24;3(2):279-90
25999717 - Int J Nanomedicine. 2015 May 14;10:3547-65
23465487 - Biomaterials. 2013 May;34(15):3882-90
19969064 - Toxicol In Vitro. 2010 Apr;24(3):872-8
22321936 - Genome Integr. 2012 Feb 10;3(1):2
20509652 - Environ Sci Technol. 2010 Jul 1;44(13):5210-5
22240980 - Toxicol Sci. 2012 Apr;126(2):457-68
22108609 - Toxicol Lett. 2012 Feb 5;208(3):197-213
21945414 - Mutat Res. 2011 Dec 24;726(2):129-35
16859745 - Environ Int. 2006 Dec;32(8):967-76
21145381 - Toxicol Lett. 2011 Feb 25;201(1):27-33
22208550 - Part Fibre Toxicol. 2011 Dec 30;8:36
16456071 - Science. 2006 Feb 3;311(5761):622-7
22548743 - J Nanobiotechnology. 2012 May 01;10:16
24673909 - J Food Drug Anal. 2014 Mar;22(1):116-27
26999092 - Molecules. 2016 Mar 17;21(3):365
25952507 - Neurotoxicology. 2015 May;48:231-8
17575120 - Cancer Res. 2007 Jun 15;67(12):5583-6
26337542 - J Nanobiotechnology. 2015 Sep 04;13:55
15142823 - Adv Colloid Interface Sci. 2004 Jun 30;110(1-2):49-74
19878566 - J Nanobiotechnology. 2009 Oct 30;7:8
21182908 - Toxicol Lett. 2011 Feb 25;201(1):92-100
25852332 - Nanoscale Res Lett. 2015 Feb 05;10:35
11942415 - Cell Res. 2002 Mar;12(1):9-18
18834270 - Nanomedicine (Lond). 2008 Oct;3(5):627-35
26843106 - Mol Neurobiol. 2017 Mar;54(2):1285-1300
22546375 - Toxicol Lett. 2012 Jun 20;211(3):334-41
25904840 - Front Neurosci. 2015 Apr 08;9:115
19481908 - Colloids Surf B Biointerfaces. 2009 Oct 1;73(1):51-7
22435324 - Rev Environ Health. 2011;26(4):251-68
25194297 - Neurotoxicology. 2014 Dec;45:12-21
25524171 - J Nanobiotechnology. 2014 Dec 19;12:59
24507278 - Carbohydr Polym. 2014 Feb 15;102:238-45
24827677 - Biotechnol J. 2014 Jul;9(7):934-43
20713472 - Toxicol Sci. 2010 Nov;118(1):160-70
19188758 - Skin Pharmacol Physiol. 2009;22(2):103-13
19928170 - J Nanosci Nanotechnol. 2009 Aug;9(8):4924-32
27465730 - J Nanobiotechnology. 2016 Jul 28;14 (1):62
24347047 - Environ Mol Mutagen. 2014 Mar;55(2):122-33
10646872 - Cancer Res. 2000 Jan 1;60(1):184-90
21417802 - Nanotoxicology. 2011 Dec;5(4):502-16
20399628 - Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):334-42
26968431 - J Appl Toxicol. 2016 Oct;36(10):1311-20
25733828 - Int J Nanomedicine. 2015 Feb 16;10:1335-57
18500564 - AAPS J. 2008 Jun;10(2):289-99
References_xml – volume: 10
  start-page: 289
  year: 2008
  ident: ref_31
  article-title: In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms
  publication-title: AAPS J.
  doi: 10.1208/s12248-008-9027-6
– volume: 9
  start-page: 1
  year: 2012
  ident: ref_41
  article-title: An in vitro liver model-assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-9-28
– volume: 7
  start-page: 1
  year: 2009
  ident: ref_16
  article-title: Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-7-8
– volume: 33
  start-page: S214
  year: 2001
  ident: ref_30
  article-title: In vitro models, in vivo models, and pharmacokinetics: What can we learn from in vitro models?
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/321850
– volume: 21
  start-page: 315103
  year: 2010
  ident: ref_76
  article-title: Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/31/315103
– volume: 14
  start-page: 51
  year: 2014
  ident: ref_116
  article-title: Concepts of tissue injury and cell death in inflammation: A historical perspective
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3561
– volume: 148
  start-page: 307
  year: 2016
  ident: ref_91
  article-title: Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.045
– volume: 3
  start-page: 627
  year: 2008
  ident: ref_50
  article-title: Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands
  publication-title: Nanomedicine
  doi: 10.2217/17435889.3.5.627
– volume: 44
  start-page: 224
  year: 2012
  ident: ref_133
  article-title: Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis
  publication-title: Int. J. Biochem. Cell B
  doi: 10.1016/j.biocel.2011.10.019
– volume: 8
  start-page: 2421
  year: 2013
  ident: ref_60
  article-title: Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis
  publication-title: Int. J. Nanomed.
– volume: 136
  start-page: 253
  year: 2015
  ident: ref_146
  article-title: Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.11.006
– volume: 30
  start-page: 926
  year: 2009
  ident: ref_84
  article-title: Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2009.09.005
– volume: 211
  start-page: 334
  year: 2012
  ident: ref_40
  article-title: Silver nanoparticles-mediated G2/M cycle arrest of renal epithelial cells is associated with NRF2-GSH signaling
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2012.04.016
– volume: 35
  start-page: 581
  year: 2015
  ident: ref_140
  article-title: Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.3081
– volume: 25
  start-page: 1053
  year: 2011
  ident: ref_74
  article-title: Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2011.04.005
– volume: 22
  start-page: 116
  year: 2014
  ident: ref_81
  article-title: Molecular toxicity mechanism of nanosilver
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2014.01.010
– volume: 5
  start-page: 457
  year: 2014
  ident: ref_72
  article-title: Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells
  publication-title: World J. Biol. Chem.
  doi: 10.4331/wjbc.v5.i4.457
– volume: 3
  start-page: 55
  year: 2007
  ident: ref_141
  article-title: Minimal in vitro antimicrobial efficacy and ocular cell toxicity from silver nanoparticles
  publication-title: Nanobiotechnology
  doi: 10.1007/s12030-008-9007-z
– volume: 27
  start-page: 2013
  year: 2013
  ident: ref_43
  article-title: Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: Effect of size, surface coating, and intracellular uptake
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2013.07.005
– volume: 28
  start-page: 2959
  year: 2007
  ident: ref_27
  article-title: The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles 3T3-L1 cells and human mesenchymal stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.03.006
– volume: 119
  start-page: 7
  year: 2010
  ident: ref_93
  article-title: Astrocytes: Biology and pathology
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-009-0619-8
– volume: 73
  start-page: 51
  year: 2009
  ident: ref_64
  article-title: Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells
  publication-title: Colloid Surf. B
  doi: 10.1016/j.colsurfb.2009.04.025
– volume: 9
  start-page: 459
  year: 2014
  ident: ref_7
  article-title: Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-459
– volume: 33
  start-page: 163
  year: 2016
  ident: ref_62
  article-title: Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2016.03.004
– volume: 201
  start-page: 92
  year: 2011
  ident: ref_33
  article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.12.010
– ident: ref_103
  doi: 10.1371/annotation/9ecbe311-b637-4bdf-826d-48b4dd778bfa
– volume: 22
  start-page: 375101
  year: 2011
  ident: ref_95
  article-title: Accumulation of silver nanoparticles by cultured primary brain astrocytes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/37/375101
– volume: 40
  start-page: 1562
  year: 2014
  ident: ref_80
  article-title: Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells
  publication-title: Burns
  doi: 10.1016/j.burns.2014.02.009
– volume: 394
  start-page: 495
  year: 2009
  ident: ref_97
  article-title: Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs)
  publication-title: Langenbeck Arch. Surg.
  doi: 10.1007/s00423-009-0472-1
– volume: 10
  start-page: 6313
  year: 2010
  ident: ref_23
  article-title: Silver Nanoparticles Crossing Through and Distribution in the Blood-Brain Barrier In Vitro
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2625
– volume: 205
  start-page: 227
  year: 2011
  ident: ref_67
  article-title: Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2011.05.1033
– volume: 6
  start-page: 912
  year: 2012
  ident: ref_20
  article-title: Distribution of silver nanoparticles in pregnant mice and developing embryos
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2011.626539
– volume: 94
  start-page: 148
  year: 2005
  ident: ref_3
  article-title: Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.04.023
– volume: 11
  start-page: 1
  year: 2014
  ident: ref_44
  article-title: Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-11-11
– volume: 51
  start-page: 1
  year: 2013
  ident: ref_57
  article-title: Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2012.08.044
– volume: 102
  start-page: 238
  year: 2014
  ident: ref_79
  article-title: Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.11.040
– volume: 33
  start-page: 416
  year: 2012
  ident: ref_85
  article-title: The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2012.04.008
– volume: 36
  start-page: 724
  year: 2013
  ident: ref_82
  article-title: ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/j.etap.2013.06.012
– volume: 12
  start-page: 59
  year: 2014
  ident: ref_89
  article-title: Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-014-0059-z
– volume: 3
  start-page: 2
  year: 2012
  ident: ref_6
  article-title: Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells
  publication-title: Genome Integr.
  doi: 10.1186/2041-9414-3-2
– volume: 2
  start-page: 85
  year: 2008
  ident: ref_5
  article-title: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways
  publication-title: ACS Nano
  doi: 10.1021/nn700256c
– volume: 201
  start-page: 27
  year: 2011
  ident: ref_98
  article-title: Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.12.001
– volume: 246
  start-page: 379
  year: 2012
  ident: ref_117
  article-title: NF-κB and the link between inflammation and cancer
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2012.01099.x
– volume: 48
  start-page: 231
  year: 2015
  ident: ref_106
  article-title: Silver nanoparticles at sublethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult neural stem cells
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2015.04.008
– volume: 9
  start-page: 2469
  year: 2014
  ident: ref_102
  article-title: Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S59753
– volume: 726
  start-page: 129
  year: 2011
  ident: ref_35
  article-title: Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells
  publication-title: Mutat. Res./Genet. Toxicol. Environ.
  doi: 10.1016/j.mrgentox.2011.08.008
– volume: 30
  start-page: 137
  year: 2009
  ident: ref_109
  article-title: Potential Health Impact of Nanoparticles
  publication-title: Annu. Rev. Publ. Health
  doi: 10.1146/annurev.publhealth.031308.100155
– volume: 85
  start-page: 1529
  year: 2011
  ident: ref_34
  article-title: Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-011-0714-1
– volume: 3
  start-page: 279
  year: 2009
  ident: ref_13
  article-title: Cytotoxicity and genotoxicity of silver nanoparticles in human cells
  publication-title: ACS Nano
  doi: 10.1021/nn800596w
– volume: 110
  start-page: 49
  year: 2004
  ident: ref_4
  article-title: Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2004.02.003
– volume: 102
  start-page: 1838
  year: 2014
  ident: ref_59
  article-title: Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon sigma-bonds
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34854
– volume: 80
  start-page: 1
  year: 2006
  ident: ref_128
  article-title: 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures
  publication-title: Int. Arch. Occup. Environ. Health
  doi: 10.1007/s00420-006-0106-7
– volume: 6
  start-page: 1
  year: 2013
  ident: ref_25
  article-title: Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons
  publication-title: Mol. Brain
  doi: 10.1186/1756-6606-6-29
– volume: 1
  start-page: 56
  year: 2012
  ident: ref_113
  article-title: Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells
  publication-title: Nanosci. Methods
  doi: 10.1080/17458080.2010.547878
– volume: 35
  start-page: 6657
  year: 2014
  ident: ref_70
  article-title: Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.093
– volume: 7
  start-page: 1805
  year: 2012
  ident: ref_55
  article-title: Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells
  publication-title: Int. J. Nanomed.
– volume: 398
  start-page: 651
  year: 2010
  ident: ref_125
  article-title: The comet assay in nanotoxicology research
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3977-0
– volume: 55
  start-page: 122
  year: 2014
  ident: ref_124
  article-title: Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans
  publication-title: Environ. Mol. Mutagen.
  doi: 10.1002/em.21844
– volume: 8
  start-page: 425
  year: 2011
  ident: ref_38
  article-title: Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-8-36
– volume: 15
  start-page: 1898
  year: 2013
  ident: ref_111
  article-title: Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-013-1898-5
– volume: 12
  start-page: 9
  year: 2002
  ident: ref_129
  article-title: MAPK signal pathways in the regulation of cell proliferation in mammalian cells
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290105
– volume: 10
  start-page: 1335
  year: 2015
  ident: ref_104
  article-title: Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells
  publication-title: Int. J. Nanomed.
– volume: 118
  start-page: 160
  year: 2010
  ident: ref_19
  article-title: Silver Nanoparticle Induced Blood-Brain Barrier Inflammation and Increased Permeability in Primary Rat Brain Microvessel Endothelial Cells
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfq244
– volume: 10
  start-page: 1277
  year: 2014
  ident: ref_101
  article-title: Influence of Silver Nanoparticles on Osteogenic Differentiation of Human Mesenchymal Stem Cells
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2014.1824
– volume: 290
  start-page: 5926
  year: 2015
  ident: ref_136
  article-title: Silver Nanoparticles Induce Degradation of the Endoplasmic Reticulum Stress Sensor Activating Transcription Factor-6 Leading to Activation of the NLRP-3 Inflammasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.610899
– volume: 10
  start-page: 3547
  year: 2015
  ident: ref_108
  article-title: Application of dental nanomaterials: Potential toxicity to the central nervous system
  publication-title: Int. J. Nanomed.
– volume: 11
  start-page: 860
  year: 2015
  ident: ref_90
  article-title: Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: Amelioration by sodium selenite
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.12059
– volume: 7
  start-page: 1329
  year: 2012
  ident: ref_68
  article-title: Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation
  publication-title: Int. J. Nanomed.
– volume: 13
  start-page: 1
  year: 2015
  ident: ref_32
  article-title: The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-014-0062-4
– volume: 27
  start-page: 330
  year: 2013
  ident: ref_110
  article-title: Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2012.08.021
– volume: 6
  start-page: 117
  year: 2008
  ident: ref_22
  article-title: Silver or silver nanoparticles: A hazardous threat to the environment and human health?
  publication-title: J. Appl. Biomed.
  doi: 10.32725/jab.2008.015
– volume: 78
  start-page: 334
  year: 2010
  ident: ref_77
  article-title: Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles
  publication-title: Colloid Surf. B
  doi: 10.1016/j.colsurfb.2010.03.026
– volume: 36
  start-page: 1311
  year: 2016
  ident: ref_118
  article-title: Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.3315
– volume: 18
  start-page: 1
  year: 2016
  ident: ref_137
  article-title: Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-016-3493-z
– volume: 86
  start-page: 1107
  year: 2012
  ident: ref_39
  article-title: Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-012-0840-4
– volume: 88
  start-page: 412
  year: 2005
  ident: ref_96
  article-title: In vitro cytotoxicity of nanoparticles in mammalian germline stem cells
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfi256
– volume: 60
  start-page: 184
  year: 2000
  ident: ref_119
  article-title: Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism
  publication-title: Cancer Res.
– volume: 7
  start-page: 99
  year: 2009
  ident: ref_122
  article-title: Pyroptosis: Host cell death and inflammation
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2070
– volume: 6
  start-page: 3745
  year: 2012
  ident: ref_83
  article-title: Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos
  publication-title: ACS Nano
  doi: 10.1021/nn204671v
– volume: 45
  start-page: 362
  year: 2006
  ident: ref_17
  article-title: Dysregulation of the endothelial cellular response to oxidative stress in cancer
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.20218
– volume: 13
  start-page: 55
  year: 2015
  ident: ref_71
  article-title: Silver nanoparticle protein corona and toxicity: A mini-review
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-015-0114-4
– volume: 10
  start-page: 439
  year: 2014
  ident: ref_100
  article-title: Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.09.037
– volume: 34
  start-page: 3882
  year: 2013
  ident: ref_112
  article-title: The antifungal activity of graphene oxide-silver nanocomposites
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.02.001
– volume: 208
  start-page: 197
  year: 2012
  ident: ref_37
  article-title: The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2011.11.006
– volume: 4
  start-page: 316
  year: 2014
  ident: ref_69
  article-title: Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)
  publication-title: Theranostics
  doi: 10.7150/thno.7819
– volume: 10
  start-page: 11
  year: 2013
  ident: ref_138
  article-title: Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-10-11
– volume: 27
  start-page: 305
  year: 2013
  ident: ref_66
  article-title: Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2012.08.024
– volume: 26
  start-page: 251
  year: 2011
  ident: ref_126
  article-title: Genotoxicity of metal nanoparticles
  publication-title: Rev. Environ. Health
  doi: 10.1515/REVEH.2011.033
– volume: 21
  start-page: 365
  year: 2016
  ident: ref_142
  article-title: Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine
  publication-title: Molecules
  doi: 10.3390/molecules21030365
– volume: 1833
  start-page: 3460
  year: 2013
  ident: ref_132
  article-title: ER stress-induced cell death mechanisms
  publication-title: BBA-Mol. Cell Res.
– volume: 5
  start-page: 10000
  year: 2011
  ident: ref_36
  article-title: Interference of Silver, Gold, and Iron Oxide Nanoparticles on Epidermal Growth Factor Signal Transduction in Epithelial Cells
  publication-title: ACS Nano
  doi: 10.1021/nn203785a
– volume: 219
  start-page: 151
  year: 2013
  ident: ref_107
  article-title: Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.03.006
– volume: 126
  start-page: 457
  year: 2012
  ident: ref_24
  article-title: Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfs003
– volume: 14
  start-page: 62
  year: 2016
  ident: ref_139
  article-title: Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-016-0214-9
– volume: 278
  start-page: 192
  year: 2009
  ident: ref_8
  article-title: DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2009.01.010
– volume: 29
  start-page: 811
  year: 2011
  ident: ref_94
  article-title: Copper handling by astrocytes: Insights into neurodegenerative diseases
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2011.09.004
– ident: ref_47
  doi: 10.1371/journal.pone.0102564
– volume: 30
  start-page: 149
  year: 2015
  ident: ref_48
  article-title: Evaluation of Cytotoxic, Oxidative Stress, Proinflammatory and Genotoxic Effect of Silver Nanoparticles in Human Lung Epithelial Cells
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.21880
– volume: 6
  start-page: 21688
  year: 2016
  ident: ref_49
  article-title: Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep21688
– volume: 5
  start-page: 468
  year: 2010
  ident: ref_75
  article-title: Silver Nanoparticles Mediate Differential Responses in Keratinocytes and Fibroblasts during Skin Wound Healing
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200900502
– volume: 45
  start-page: 12
  year: 2014
  ident: ref_88
  article-title: The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2014.08.010
– volume: 24
  start-page: 872
  year: 2010
  ident: ref_115
  article-title: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2009.12.001
– volume: 22
  start-page: 103
  year: 2009
  ident: ref_73
  article-title: In vitro irritation models and immune reactions
  publication-title: Skin Pharmacol. Physiol.
  doi: 10.1159/000178869
– volume: 86
  start-page: 353
  year: 2011
  ident: ref_54
  article-title: Synthesis of gold and silver nanoparticles using purified URAK
  publication-title: Colloid Surf. B
  doi: 10.1016/j.colsurfb.2011.04.019
– volume: 37
  start-page: 123
  year: 2012
  ident: ref_121
  article-title: Toxicity of silver nanoparticles in monocytes and keratinocytes: Potential to induce inflammatory reactions
  publication-title: Cent. Eur. J. Immunol.
– volume: 61
  start-page: 307
  year: 2015
  ident: ref_135
  article-title: Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.05.029
– volume: 213
  start-page: 249
  year: 2012
  ident: ref_42
  article-title: Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2012.07.009
– volume: 28
  start-page: 2727
  year: 2012
  ident: ref_29
  article-title: Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types
  publication-title: Langmuir
  doi: 10.1021/la2042058
– volume: 33
  start-page: 135
  year: 2011
  ident: ref_51
  article-title: In vitro toxicity of silver nanoparticles on murine peritoneal macrophages
  publication-title: Immunopharmacol. Immunotoxicol.
  doi: 10.3109/08923973.2010.487489
– volume: 9
  start-page: 1831
  year: 2013
  ident: ref_86
  article-title: Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress
  publication-title: Small
  doi: 10.1002/smll.201202732
– volume: 311
  start-page: 622
  year: 2006
  ident: ref_1
  article-title: Toxic potential of materials at the nanolevel
  publication-title: Science
  doi: 10.1126/science.1114397
– volume: 10
  start-page: 4203
  year: 2015
  ident: ref_11
  article-title: Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S83953
– volume: 9
  start-page: 934
  year: 2014
  ident: ref_26
  article-title: Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201300555
– volume: 14
  start-page: 10
  year: 2007
  ident: ref_123
  article-title: Inflammatory caspases and inflammasomes: Master switches of inflammation
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402038
– ident: ref_145
– volume: 62
  start-page: 556
  year: 2013
  ident: ref_92
  article-title: Astrocyte functions in the copper homeostasis of the brain
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2012.08.017
– ident: ref_148
  doi: 10.1007/s12035-016-9688-6
– volume: 2013
  start-page: 10
  year: 2013
  ident: ref_12
  article-title: Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells
  publication-title: BioMed Res. Int.
  doi: 10.1155/2013/535796
– volume: 5
  start-page: 753
  year: 2010
  ident: ref_144
  article-title: Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 23
  year: 2014
  ident: ref_87
  article-title: Substrates coated with silver nanoparticles as a neuronal regenerative material
  publication-title: Int. J. Nanomed.
– volume: 10
  start-page: 16
  year: 2012
  ident: ref_127
  article-title: Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-10-16
– volume: 44
  start-page: 5210
  year: 2010
  ident: ref_56
  article-title: Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903684r
– volume: 67
  start-page: 5583
  year: 2007
  ident: ref_120
  article-title: Inflammation-mediated cytosine damage: A mechanistic link between inflammation and the epigenetic alterations in human cancers
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0846
– volume: 9
  start-page: 4924
  year: 2009
  ident: ref_21
  article-title: Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2009.1269
– volume: 47
  start-page: 4382
  year: 2011
  ident: ref_52
  article-title: Size dependent macrophage responses and toxicological effects of Ag nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10357a
– volume: 394
  start-page: 113
  year: 2013
  ident: ref_78
  article-title: Effect of silver nanoparticles on human primary keratinocytes
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2012-0202
– volume: 112
  start-page: 13608
  year: 2008
  ident: ref_15
  article-title: Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp712087m
– volume: 5
  start-page: 502
  year: 2011
  ident: ref_53
  article-title: Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2010.541604
– volume: 30
  start-page: 6341
  year: 2009
  ident: ref_65
  article-title: Antiangiogenic properties of silver nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.008
– volume: 34
  start-page: 1155
  year: 2014
  ident: ref_46
  article-title: Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.2994
– volume: 138
  start-page: 120
  year: 2015
  ident: ref_61
  article-title: Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2014.10.043
– volume: 15
  start-page: 6815
  year: 2014
  ident: ref_45
  article-title: The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15046815
– volume: 9
  start-page: 115
  year: 2015
  ident: ref_105
  article-title: Effects of silver nanoparticles on human and rat embryonic neural stem cells
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00115
– volume: 47
  start-page: 1953
  year: 1998
  ident: ref_18
  article-title: Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: Vascular endothelial growth factor decreases occludin in retinal endothelial cells
  publication-title: Diabetes
  doi: 10.2337/diabetes.47.12.1953
– volume: 44
  start-page: 8337
  year: 2010
  ident: ref_130
  article-title: p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1020668
– volume: 9
  start-page: 2576
  year: 2013
  ident: ref_58
  article-title: Toxicity of Silver Nanoparticles in Macrophages
  publication-title: Small
  doi: 10.1002/smll.201202120
– volume: 30
  start-page: 74
  year: 2010
  ident: ref_28
  article-title: Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1475
– volume: 32
  start-page: 967
  year: 2006
  ident: ref_2
  article-title: Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2006.06.014
– volume: 191
  start-page: 305
  year: 2009
  ident: ref_63
  article-title: Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2009.09.014
– volume: 179
  start-page: 130
  year: 2008
  ident: ref_114
  article-title: The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2008.04.015
– volume: 19
  start-page: 1600
  year: 2013
  ident: ref_14
  article-title: Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7)
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.01.029
– ident: ref_147
  doi: 10.1371/annotation/9ecbe311-b637-4bdf-826d-48b4dd778bfa
– volume: 30
  start-page: 59
  year: 2015
  ident: ref_131
  article-title: Effect of silver nanoparticles on mitogen-activated protein kinases activation: Role of reactive oxygen species and implication in DNA damage
  publication-title: Mutagenesis
  doi: 10.1093/mutage/geu057
– volume: 5
  start-page: 1944
  year: 2014
  ident: ref_143
  article-title: PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.205
– volume: 30
  start-page: 497
  year: 2009
  ident: ref_9
  article-title: Multi-walled carbon nanotubes exposure induces oxidative stress and depolarizes mitochondrial membrane potential in cultured A549 cells
  publication-title: Chem. J. Chin. Univ.
– volume: 7
  start-page: 1197
  year: 2012
  ident: ref_99
  article-title: Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 10
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-0747-0
– volume: 8
  start-page: 2562
  year: 2014
  ident: ref_134
  article-title: Endoplasmic Reticulum Stress Induced by Zinc Oxide Nanoparticles Is an Earlier Biomarker for Nanotoxicological Evaluation
  publication-title: ACS Nano
  doi: 10.1021/nn406184r
– reference: 26999092 - Molecules. 2016 Mar 17;21(3):365
– reference: 16977329 - Cell Death Differ. 2007 Jan;14(1):10-22
– reference: 17575120 - Cancer Res. 2007 Jun 15;67(12):5583-6
– reference: 19800954 - Toxicol Lett. 2009 Dec 15;191(2-3):305-13
– reference: 16014736 - Toxicol Sci. 2005 Dec;88(2):412-9
– reference: 22482460 - ACS Nano. 2012 May 22;6(5):3745-59
– reference: 22064246 - Int J Biochem Cell Biol. 2012 Jan;44(1):224-32
– reference: 18547751 - Toxicol Lett. 2008 Jul 10;179(3):130-9
– reference: 19188758 - Skin Pharmacol Physiol. 2009;22(2):103-13
– reference: 22108609 - Toxicol Lett. 2012 Feb 5;208(3):197-213
– reference: 26968431 - J Appl Toxicol. 2016 Oct;36(10):1311-20
– reference: 24095782 - Acta Biomater. 2014 Jan;10(1):439-49
– reference: 21042421 - Int J Nanomedicine. 2010 Oct 05;5:753-62
– reference: 19781568 - Neurotoxicology. 2009 Nov;30(6):926-33
– reference: 22982300 - Neurochem Int. 2013 Apr;62(5):556-65
– reference: 25592092 - J Nanobiotechnology. 2015 Jan 16;13:1
– reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7
– reference: 23804405 - Environ Toxicol. 2015 Feb;30(2):149-60
– reference: 19865601 - Nanobiotechnology. 2007 May 1;3(2):55-65
– reference: 25904840 - Front Neurosci. 2015 Apr 08;9:115
– reference: 21592748 - Colloids Surf B Biointerfaces. 2011 Sep 1;86(2):353-8
– reference: 24804548 - J Biomed Nanotechnol. 2014 Jul;10(7):1277-85
– reference: 21729742 - Toxicol Lett. 2011 Sep 10;205(3):227-34
– reference: 24336099 - Nat Rev Immunol. 2014 Jan;14 (1):51-9
– reference: 20399628 - Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):334-42
– reference: 19705557 - Annu Rev Public Health. 2009;30:137-50
– reference: 24507278 - Carbohydr Polym. 2014 Feb 15;102:238-45
– reference: 24347047 - Environ Mol Mutagen. 2014 Mar;55(2):122-33
– reference: 21137724 - J Nanosci Nanotechnol. 2010 Oct;10(10):6313-7
– reference: 23091270 - Biol Chem. 2013 Jan;394(1):113-23
– reference: 25352480 - J Appl Toxicol. 2015 Jun;35(6):581-92
– reference: 23505470 - PLoS One. 2013;8(3):e58211
– reference: 16637066 - Mol Carcinog. 2006 Jun;45(6):362-7
– reference: 21417802 - Nanotoxicology. 2011 Dec;5(4):502-16
– reference: 19148178 - Nat Rev Microbiol. 2009 Feb;7(2):99-109
– reference: 22619529 - Int J Nanomedicine. 2012;7:1805-18
– reference: 25852332 - Nanoscale Res Lett. 2015 Feb 05;10:35
– reference: 21611810 - Arch Toxicol. 2011 Dec;85(12):1529-40
– reference: 22435567 - Immunol Rev. 2012 Mar;246(1):379-400
– reference: 18834270 - Nanomedicine (Lond). 2008 Oct;3(5):627-35
– reference: 19481908 - Colloids Surf B Biointerfaces. 2009 Oct 1;73(1):51-7
– reference: 25999717 - Int J Nanomedicine. 2015 May 14;10:3547-65
– reference: 24818879 - Biomaterials. 2014 Aug;35(24):6657-66
– reference: 20509652 - Environ Sci Technol. 2010 Jul 1;44(13):5210-5
– reference: 25952507 - Neurotoxicology. 2015 May;48:231-8
– reference: 19698986 - Biomaterials. 2009 Oct;30(31):6341-50
– reference: 19236062 - ACS Nano. 2009 Feb 24;3(2):279-90
– reference: 25527729 - Mutagenesis. 2015 Jan;30(1):59-66
– reference: 26975774 - Toxicol In Vitro. 2016 Jun;33:163-73
– reference: 21968186 - Int J Dev Neurosci. 2011 Dec;29(8):811-8
– reference: 24827677 - Biotechnol J. 2014 Jul;9(7):934-43
– reference: 26867977 - Sci Rep. 2016 Feb 12;6:21688
– reference: 25194297 - Neurotoxicology. 2014 Dec;45:12-21
– reference: 21145381 - Toxicol Lett. 2011 Feb 25;201(1):27-33
– reference: 25460644 - Environ Res. 2015 Jan;136:253-63
– reference: 17397919 - Biomaterials. 2007 Jul;28(19):2959-66
– reference: 22548743 - J Nanobiotechnology. 2012 May 01;10:16
– reference: 21501681 - Toxicol In Vitro. 2011 Aug;25(5):1053-60
– reference: 23936814 - Biomed Res Int. 2013;2013:535796
– reference: 21945414 - Mutat Res. 2011 Dec 24;726(2):129-35
– reference: 25242904 - Nanoscale Res Lett. 2014 Sep 02;9(1):459
– reference: 26337542 - J Nanobiotechnology. 2015 Sep 04;13:55
– reference: 24899804 - Int J Nanomedicine. 2014 May 20;9:2469-78
– reference: 22321936 - Genome Integr. 2012 Feb 10;3(1):2
– reference: 23427069 - Small. 2013 May 27;9(9-10):1831-41
– reference: 11524721 - Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S214-20
– reference: 27465730 - J Nanobiotechnology. 2016 Jul 28;14 (1):62
– reference: 19206551 - ACS Nano. 2008 Jan;2(1):85-96
– reference: 24767717 - Burns. 2014 Dec;40(8):1562-9
– reference: 20932003 - Environ Sci Technol. 2010 Nov 1;44(21):8337-42
– reference: 24529161 - Part Fibre Toxicol. 2014 Feb 17;11:11
– reference: 22531227 - Neurotoxicology. 2012 Jun;33(3):416-23
– reference: 23557437 - Part Fibre Toxicol. 2013 Apr 04;10 :11
– reference: 21390403 - Chem Commun (Camb). 2011 Apr 21;47(15):4382-4
– reference: 22023110 - Nanotoxicology. 2012 Dec;6:912-22
– reference: 9836530 - Diabetes. 1998 Dec;47(12):1953-9
– reference: 19928170 - J Nanosci Nanotechnol. 2009 Aug;9(8):4924-32
– reference: 26157341 - Int J Biol Sci. 2015 Jun 01;11(8):860-7
– reference: 16685565 - Int Arch Occup Environ Health. 2006 Oct;80(1):1-15
– reference: 18831567 - J Phys Chem B. 2008 Oct 30;112(43):13608-19
– reference: 21852719 - Nanotechnology. 2011 Sep 16;22(37):375101
– reference: 24505239 - Theranostics. 2014 Jan 29;4(3):316-35
– reference: 22457593 - Int J Nanomedicine. 2012;7:1329-43
– reference: 22546375 - Toxicol Lett. 2012 Jun 20;211(3):334-41
– reference: 24673909 - J Food Drug Anal. 2014 Mar;22(1):116-27
– reference: 26843106 - Mol Neurobiol. 2017 Mar;54(2):1285-1300
– reference: 22070748 - ACS Nano. 2011 Dec 27;5(12):10000-8
– reference: 25033410 - PLoS One. 2014 Jul 17;9(7):e102564
– reference: 20622302 - Nanotechnology. 2010 Aug 6;21(31):315103
– reference: 24522958 - J Appl Toxicol. 2014 Nov;34(11):1155-66
– reference: 25426268 - World J Biol Chem. 2014 Nov 26;5(4):457-64
– reference: 19280220 - Langenbecks Arch Surg. 2009 May;394(3):495-502
– reference: 19969064 - Toxicol In Vitro. 2010 Apr;24(3):872-8
– reference: 22583572 - Nanomedicine (Lond). 2012 Aug;7(8):1197-209
– reference: 22208550 - Part Fibre Toxicol. 2011 Dec 30;8:36
– reference: 22240980 - Toxicol Sci. 2012 Apr;126(2):457-68
– reference: 25593314 - J Biol Chem. 2015 Feb 27;290(9):5926-39
– reference: 23418027 - Small. 2013 Aug 12;9(15):2576-84
– reference: 23896225 - Environ Toxicol Pharmacol. 2013 Sep;36(2):724-31
– reference: 20012068 - Acta Neuropathol. 2010 Jan;119(1):7-35
– reference: 23784947 - J Biomed Mater Res A. 2014 Jun;102(6):1838-49
– reference: 11942415 - Cell Res. 2002 Mar;12(1):9-18
– reference: 19760634 - J Appl Toxicol. 2010 Jan;30(1):74-83
– reference: 27433139 - J Nanopart Res. 2016;18:182
– reference: 24758926 - Int J Mol Sci. 2014 Apr 22;15(4):6815-30
– reference: 21182908 - Toxicol Lett. 2011 Feb 25;201(1):92-100
– reference: 22940466 - Toxicol In Vitro. 2013 Feb;27(1):330-8
– reference: 24490819 - ACS Nano. 2014 Mar 25;8(3):2562-74
– reference: 23782671 - Mol Brain. 2013 Jun 19;6:29
– reference: 25481491 - Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:120-9
– reference: 25524171 - J Nanobiotechnology. 2014 Dec 19;12:59
– reference: 20112331 - ChemMedChem. 2010 Mar 1;5(3):468-75
– reference: 15142823 - Adv Colloid Interface Sci. 2004 Jun 30;110(1-2):49-74
– reference: 22975145 - Food Chem Toxicol. 2013 Jan;51:1-14
– reference: 24872701 - Int J Nanomedicine. 2014 May 08;9 Suppl 1:23-31
– reference: 23872425 - Toxicol In Vitro. 2013 Sep;27(6):2013-21
– reference: 20507217 - Immunopharmacol Immunotoxicol. 2011 Mar;33(1):135-40
– reference: 22216981 - Langmuir. 2012 Feb 7;28(5):2727-35
– reference: 25733828 - Int J Nanomedicine. 2015 Feb 16;10:1335-57
– reference: 22954533 - Toxicol In Vitro. 2013 Feb;27(1):305-13
– reference: 26814705 - Chemosphere. 2016 Apr;148:307-15
– reference: 16859745 - Environ Int. 2006 Dec;32(8):967-76
– reference: 26024651 - Biomaterials. 2015 Aug;61:307-15
– reference: 23518319 - Toxicol Lett. 2013 May 23;219(2):151-9
– reference: 18500564 - AAPS J. 2008 Jun;10(2):289-99
– reference: 23465487 - Biomaterials. 2013 May;34(15):3882-90
– reference: 20640410 - Anal Bioanal Chem. 2010 Sep;398(2):651-66
– reference: 25383306 - Beilstein J Nanotechnol. 2014 Nov 03;5:1944-65
– reference: 22435324 - Rev Environ Health. 2011;26(4):251-68
– reference: 22812506 - Part Fibre Toxicol. 2012 Jul 19;9:28
– reference: 19217710 - Cancer Lett. 2009 Jun 18;278(2):192-200
– reference: 22418598 - Arch Toxicol. 2012 Jul;86(7):1107-15
– reference: 22820426 - Toxicol Lett. 2012 Sep 3;213(2):249-59
– reference: 10646872 - Cancer Res. 2000 Jan 1;60(1):184-90
– reference: 23850759 - Biochim Biophys Acta. 2013 Dec;1833(12):3460-70
– reference: 23882139 - Int J Nanomedicine. 2013;8:2421-32
– reference: 26170659 - Int J Nanomedicine. 2015 Jun 29;10:4203-22
– reference: 19878566 - J Nanobiotechnology. 2009 Oct 30;7:8
– reference: 20713472 - Toxicol Sci. 2010 Nov;118(1):160-70
SSID ssj0023259
Score 2.559954
SecondaryResourceType review_article
Snippet Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1603
SubjectTerms Animals
Cell Survival - drug effects
DNA Damage - drug effects
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Humans
Keratin
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
Metal Nanoparticles - chemistry
Metal Nanoparticles - toxicity
Molecular chemistry
Nanoparticles
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Reactive Oxygen Species - metabolism
Review
Silver
Silver - chemistry
Stem cells
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - metabolism
Toxicity
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYhMQFsVM2GQlOyGpiO3bCBVUVFULAASjqLXK8iKCSAi0H_p5xkhYKoueZg-OxPW_sl3kIHWdCaciqGWFcKsLjTBAlmSGGJy4GQKCd8j8n39yKyy6_6kW9-sJtWNMqx2dieVCbgfZ35E1YemEsvU7E-esb8apR_nW1ltCYR4u-dZmndMned8HFaCmWFkIOIiJKREV8Z1DmN_Pnl2Eoy_5qbDol_cGZv-mSP_JPZxWt1MARt6pIr6E5W6yjpUpK8nMD9e5zz3HGcFpCGVw5kZtSh8Ma3Lb9vueb4ruKEmuHOC_wI9TJUPiXVnzt-e9nuFWUlnz0PsBeJ62_ibqdi4f2JalVE4iO4nBErJY2djqMjQy0lTzRTFIlJGNMJo66LHHw4coGLuAG4JAKNBeGWZpkzlhn2BZaKAaF3UGYUh1lPDMAsnwbehlDPRsxSOguMGGgeAOdjicu1XVLca9s0U-htPDTnP6c5gY6mXi_Vq00_vHbH8cgrTfUMP0OfwMdTcywFfz7hioszBb4AN4AuCLoLB8AwDIGXNlA21VYJ4OhUoiEUrDIqYBPHHwr7mlLkT-VLblhVUeCid3ZQ99Dy4C3RMUF3EcLo_cPewCYZpQdlgv3C3679lE
  priority: 102
  providerName: ProQuest
Title Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
URI https://www.ncbi.nlm.nih.gov/pubmed/27669221
https://www.proquest.com/docview/1831878081
https://www.proquest.com/docview/1824224462
https://www.proquest.com/docview/1850778951
https://pubmed.ncbi.nlm.nih.gov/PMC5085636
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7XMSojwRMyJLZjO0gIjWllQnRCg6K-RY4_RFBIR9tJ7L_nnLTRygDxkpe7KMmd7fudfbkfwNNSGotRtaRcKEOFLiU1ijvqRB40AgIbTPw5eXwqTybi_TSbbsGabXRlwMUfU7vIJzWZ1y9-_rh8gxP-dcw4MWV_WX37vkhV2yuNb8MuxiQVp-hY9OcJCBta2rS44UHjAt2VwF-7ezM4XUOcvxdOXolEo9twawUhyWHn8zuw5Zu7cKMjlby8B9NPVax2JrhuYkLcKdFxy8jhHTnydR0rT8lZVxzrF6RqyBfMmGcXi1ZKPsRK-FfksGkl1XI-I5Exrb4Pk9Hx56MTuuJPoDbT6ZJ6q7wONtVOJdYrkVuumJGKc67ywEKZB_xw45OQCIfAyCRWSMc9y8vgfHD8Aew0s8bvAWHMZqUoHcKt2JBeacxsM46hPSQuTYwYwPO14Qq7ai4eOS7qApOMaObiqpkH8KzXPu-aavxF72Dtg2I9Mgpcg1KtImHIAJ70YpwU8aTDNB6thTqIPBC4SPYvHYTCSiPCHMDDzq39yzAlZc4YStSGw3uF2JR7U9JUX9vm3Di-M8nl_n889xHcRPglu9LAA9hZzi_8Y4Q4y3II22qq8KpH74aw-_b49OPZMAadbNiO618Zlv85
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuFAkaiJ2Q1sR07QUKoKlRbutsDtGhvwfFDBC3Z0myF-qf4jYzjzbYLoreeZ2RZ4xnPN8l4PoBXldQGs2pFuVCairySVCtuqRWFzxEQGK_D4-TxgRweiY-TbLIGv_u3MKGtsr8Tu4vazkz4Rr6FrpfmKvBEvDv-SQNrVPi72lNoRLfYd2e_sGRr3-69x_PdZGz3w-HOkC5YBajJ8nROnVEu9ybNrUqMU6IwXDEtFedcFZ75qvCpSrVLfCIswgWdGCEtd6yovHXeclz3GlzHxJuEiFKT8wKPs46cLcWcR2VWyNhoz3mRbNXff7S4bMfqvJoC_8G1f7dnXsh3u3fg9gKoku3oWXdhzTX34Eakrjy7D5PPdeipJng7Y9kdlei44_1wluy46TT0t5JPsQXXtaRuyBesy2enbSclo9Bv_4ZsN52knp_MSOBlmz6Aoyux50NYb2aNewyEMZNVorII6sLYe5Vj_ZxxBBA-sWmixQBe94YrzWKEeWDSmJZYygQzlxfNPIDNpfZxHN3xH72N_gzKRQC35bm7DeDlUoyhF_6n6MahtVAH8Q3CI8ku00HArXLEsQN4FI91uRmmpCwYQ4laOfClQhj9vSpp6m_dCHCMokxy-eTyrb-Am8PD8agc7R3sP4VbiPVk7EPcgPX5yal7hnhqXj3vnJjA16uOmj_LazSf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VIhAvFXe2FDASfULWJrZjJ0gVqlpWLb0IAUX7ljq-iKAlW5qtUH-tX8c4l20XRN_6PKMoGs_YZ5LjOQBvCqkNnqoF5UJpKtJCUq24pVZkPkVAYLwOl5MPDuXOkfg4TsZLcNHfhQm0yn5PbDZqOzXhG_kQUy9OVdCJGPqOFvFpe_T-5BcNClLhT2svp9GmyJ47_43tW72xu41rvc7Y6MPXrR3aKQxQk6TxjDqjXOpNnFoVGadEZrhiWirOuco880XmYxVrF_lIWIQOOjJCWu5YVnjrvOX43FtwW_EkDjWmxpfNHmeNUFuM5x-VSSZb0j3nWTQsf_ys8bGNwvPicfgPxv2bqnnl7Bvdh5UOtJLNNssewJKrHsKdVsby_BGMv5SBX01wp8YWvHWiB40GiLNky00mgetKPrd0XFeTsiLfsEefntWNlewH7v07slk1lnJ2OiVBo23yGI5uJJ5PYLmaVu4ZEMZMUojCIsALI_BVir10whFM-MjGkRYDeNsHLjfdOPOgqjHJsa0JYc6vhnkA63Pvk3aMx3_81vo1yLtirvPL1BvA67kZyzD8W9GVw2ihD2IdhEqSXeeD4FuliGkH8LRd1vnLMCVlxhha1MKCzx3CGPBFS1V-b8aBY0UlksvV61_9FdzFesn3dw_3nsM9hH2ypSSuwfLs9My9QGg1K142OUzg-KaL5g_4ajjV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Nanoparticle-Mediated+Cellular+Responses+in+Various+Cell+Lines%3A+An+in+Vitro+Model&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Zhang%2C+Xi-Feng&rft.au=Shen%2C+Wei&rft.au=Gurunathan%2C+Sangiliyandi&rft.date=2016-10-01&rft.issn=1422-0067&rft.volume=17&rft.issue=10&rft.spage=1603&rft.epage=1603&rft_id=info:doi/10.3390%2Fijms17101603&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon