Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-doma...
Saved in:
Published in | Cell Vol. 181; no. 5; pp. 1004 - 1015.e15 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.
[Display omitted]
•VHHs isolated from a llama immunized with prefusion-stabilized coronavirus spikes•Structural characterization of VHHs reveals conserved mechanism of neutralization•SARS-CoV-1 S-directed VHH cross-reacts with SARS-CoV-2 S•Bivalent VHH neutralizes SARS-CoV-2 pseudoviruses
Using llamas immunized with prefusion-stabilized betacoronavirus spike proteins, Wrapp et al. identify neutralizing cross-reactive single-domain camelid antibodies, which may serve not only as useful reagents for researchers studying the viruses causing MERS, SARS, and COVID-19, but also potential therapeutic candidates. Crystal structures further reveal how these antibodies bind spike proteins to prevent virus entry into cells. |
---|---|
AbstractList | Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. • VHHs isolated from a llama immunized with prefusion-stabilized coronavirus spikes • Structural characterization of VHHs reveals conserved mechanism of neutralization • SARS-CoV-1 S-directed VHH cross-reacts with SARS-CoV-2 S • Bivalent VHH neutralizes SARS-CoV-2 pseudoviruses Using llamas immunized with prefusion-stabilized betacoronavirus spike proteins, Wrapp et al. identify neutralizing cross-reactive single-domain camelid antibodies, which may serve not only as useful reagents for researchers studying the viruses causing MERS, SARS, and COVID-19, but also potential therapeutic candidates. Crystal structures further reveal how these antibodies bind spike proteins to prevent virus entry into cells. Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. [Display omitted] •VHHs isolated from a llama immunized with prefusion-stabilized coronavirus spikes•Structural characterization of VHHs reveals conserved mechanism of neutralization•SARS-CoV-1 S-directed VHH cross-reacts with SARS-CoV-2 S•Bivalent VHH neutralizes SARS-CoV-2 pseudoviruses Using llamas immunized with prefusion-stabilized betacoronavirus spike proteins, Wrapp et al. identify neutralizing cross-reactive single-domain camelid antibodies, which may serve not only as useful reagents for researchers studying the viruses causing MERS, SARS, and COVID-19, but also potential therapeutic candidates. Crystal structures further reveal how these antibodies bind spike proteins to prevent virus entry into cells. Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. |
Author | Schepens, Bert Corbett, Kizzmekia S. Van Breedam, Wander Callewaert, Nico van Schie, Loes De Vlieger, Dorien Wang, Nianshuang Hoffmann, Markus Wrapp, Daniel Graham, Barney S. Saelens, Xavier Torres, Gretel M. McLellan, Jason S. Roose, Kenny Pöhlmann, Stefan |
Author_xml | – sequence: 1 givenname: Daniel surname: Wrapp fullname: Wrapp, Daniel organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 2 givenname: Dorien surname: De Vlieger fullname: De Vlieger, Dorien organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 3 givenname: Kizzmekia S. surname: Corbett fullname: Corbett, Kizzmekia S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 4 givenname: Gretel M. surname: Torres fullname: Torres, Gretel M. organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA – sequence: 5 givenname: Nianshuang surname: Wang fullname: Wang, Nianshuang organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 6 givenname: Wander surname: Van Breedam fullname: Van Breedam, Wander organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 7 givenname: Kenny surname: Roose fullname: Roose, Kenny organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 8 givenname: Loes surname: van Schie fullname: van Schie, Loes organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 9 givenname: Markus surname: Hoffmann fullname: Hoffmann, Markus organization: Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, 37077 Göttingen, Germany – sequence: 10 givenname: Stefan surname: Pöhlmann fullname: Pöhlmann, Stefan organization: Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, 37077 Göttingen, Germany – sequence: 11 givenname: Barney S. surname: Graham fullname: Graham, Barney S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 12 givenname: Nico surname: Callewaert fullname: Callewaert, Nico organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 13 givenname: Bert surname: Schepens fullname: Schepens, Bert email: bert.schepens@vib-ugent.be organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 14 givenname: Xavier surname: Saelens fullname: Saelens, Xavier email: xavier.saelens@vib-ugent.be organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium – sequence: 15 givenname: Jason S. orcidid: 0000-0003-3991-542X surname: McLellan fullname: McLellan, Jason S. email: jmclellan@austin.utexas.edu organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32375025$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFL8AB-cglYWzHSSwhpHb5K1WAVDhbjjMpXmXtYjsrlU-Pl20RcCgnH-a95zfzOyFHPngk5CmDmgFrX2xqi_Ncc-BQQ1ODYA_IioHqqoZ1_IisABSv-rZrjslJShsA6KWUj8ix4KKTwOWK2MscF5uXaGZ6bpJLdAqRfg4ZfaYfccll4H6Y7IKnYaLnmI0NMXizc3FJmOhwQy-dv5qxeh22xnm6Nluc3UjPfHZDGB2mx-ThZOaET27fU_L17Zsv6_fVxad3H9ZnF5WVPcuVwY6NfFCykdBORtipb5WdAKHlUrKJq8mCkm3LGiP7kXUWRjMKZs2AoGAQp-TVIfd6GbY42rJCaa-vo9uaeKODcfrviXff9FXY6Y4p1QlRAp7fBsTwfcGU9dal_Y2Nx7AkzRuhhOqhk_-XCqV60ZcNivTZn7V-97mDUAT9QWBjSCnipK3Lv05eWrpZM9B73nqj9x_oPW8NjS68i5X_Y71Lv9f08mDCAmPnMOpkHXqLo4tosx6Du8_-ExC9xc8 |
CitedBy_id | crossref_primary_10_1038_s41598_020_74761_y crossref_primary_10_1371_journal_ppat_1009352 crossref_primary_10_1080_19420862_2020_1778435 crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_1002_rmv_2143 crossref_primary_10_1016_j_jcyt_2020_08_009 crossref_primary_10_1016_j_snb_2024_135286 crossref_primary_10_1016_j_celrep_2021_109771 crossref_primary_10_1016_j_progpolymsci_2021_101410 crossref_primary_10_1016_j_cell_2020_08_012 crossref_primary_10_1126_scitranslmed_abi7826 crossref_primary_10_2174_1566524023666230417112543 crossref_primary_10_1073_pnas_2300258120 crossref_primary_10_1016_j_pep_2022_106210 crossref_primary_10_1038_s42003_022_03630_3 crossref_primary_10_1073_pnas_2216612120 crossref_primary_10_1016_j_compbiomed_2021_104570 crossref_primary_10_1371_journal_pcbi_1009675 crossref_primary_10_1021_acsabm_2c00123 crossref_primary_10_1371_journal_ppat_1011789 crossref_primary_10_1016_j_celrep_2022_110368 crossref_primary_10_1016_j_intimp_2020_106760 crossref_primary_10_1080_17460441_2021_1909566 crossref_primary_10_1016_j_ebiom_2023_104960 crossref_primary_10_3390_v14112346 crossref_primary_10_7554_eLife_83710 crossref_primary_10_1016_j_bios_2024_116598 crossref_primary_10_1016_j_chom_2021_03_005 crossref_primary_10_1016_j_ab_2022_114546 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_3389_fmicb_2022_875840 crossref_primary_10_1080_22221751_2020_1787108 crossref_primary_10_1089_vim_2021_0160 crossref_primary_10_1007_s00705_022_05609_1 crossref_primary_10_1016_j_eas_2023_100034 crossref_primary_10_1093_bib_bbab241 crossref_primary_10_1128_mmbr_00026_21 crossref_primary_10_1089_cmb_2020_0193 crossref_primary_10_1002_adtp_202100099 crossref_primary_10_1021_acs_jproteome_3c00569 crossref_primary_10_1126_science_abe3255 crossref_primary_10_1038_s41598_021_84840_3 crossref_primary_10_1371_journal_ppat_1012625 crossref_primary_10_1038_s41598_022_15993_y crossref_primary_10_1038_s42003_021_02702_0 crossref_primary_10_1016_j_stemcr_2020_12_010 crossref_primary_10_1038_s42003_021_02766_y crossref_primary_10_1002_jat_4548 crossref_primary_10_1039_D2SD00087C crossref_primary_10_1038_s41467_023_37290_6 crossref_primary_10_1021_acsnano_4c07066 crossref_primary_10_1002_pro_3943 crossref_primary_10_1007_s12250_020_00327_x crossref_primary_10_1128_jvi_01622_21 crossref_primary_10_1093_abt_tbaa020 crossref_primary_10_1038_s41598_022_13819_5 crossref_primary_10_1016_j_cell_2021_06_021 crossref_primary_10_2174_0126667975269506231108053010 crossref_primary_10_1038_s41598_023_40919_7 crossref_primary_10_1128_JVI_00496_21 crossref_primary_10_1021_acsomega_1c00166 crossref_primary_10_1038_s41598_020_79036_0 crossref_primary_10_3389_fimmu_2023_1111385 crossref_primary_10_3390_bioengineering10030389 crossref_primary_10_2174_0126673878260516231017165459 crossref_primary_10_1111_febs_16239 crossref_primary_10_1002_advs_202002148 crossref_primary_10_1146_annurev_biophys_062920_063711 crossref_primary_10_3389_fimmu_2020_02130 crossref_primary_10_1039_d0mt00191k crossref_primary_10_1002_ange_202100225 crossref_primary_10_1038_s41598_021_99275_z crossref_primary_10_1177_2472555220979579 crossref_primary_10_1016_j_intimp_2020_106980 crossref_primary_10_1038_s41598_021_97423_z crossref_primary_10_1080_25729861_2020_1780721 crossref_primary_10_1083_jcb_202006159 crossref_primary_10_3390_app132011520 crossref_primary_10_1016_j_idairyj_2023_105765 crossref_primary_10_1002_aic_17440 crossref_primary_10_1016_j_immuni_2020_05_002 crossref_primary_10_1038_s41598_021_81895_0 crossref_primary_10_1080_19420862_2020_1804241 crossref_primary_10_3390_v16020185 crossref_primary_10_1371_journal_ppat_1009328 crossref_primary_10_3390_cells11213355 crossref_primary_10_1016_j_vaccine_2022_01_021 crossref_primary_10_1038_s41598_021_89887_w crossref_primary_10_1016_j_cll_2020_08_014 crossref_primary_10_1021_acs_analchem_2c00062 crossref_primary_10_1016_j_bbrc_2020_10_012 crossref_primary_10_1016_j_isci_2021_103006 crossref_primary_10_1002_marc_202000752 crossref_primary_10_1080_07391102_2023_2236718 crossref_primary_10_1128_JCM_02489_20 crossref_primary_10_1371_journal_ppat_1011514 crossref_primary_10_1021_acs_langmuir_2c01699 crossref_primary_10_1016_j_bbrc_2021_09_053 crossref_primary_10_1021_acscentsci_0c01056 crossref_primary_10_1016_j_isci_2023_107085 crossref_primary_10_1021_jacs_2c02764 crossref_primary_10_2147_IJN_S296383 crossref_primary_10_1016_j_jtauto_2021_100108 crossref_primary_10_1016_j_micpath_2024_107107 crossref_primary_10_1016_j_colcom_2020_100356 crossref_primary_10_1016_j_csbj_2020_12_039 crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_1038_s41579_021_00630_8 crossref_primary_10_1016_j_cell_2021_04_033 crossref_primary_10_1080_19420862_2021_1958663 crossref_primary_10_1002_rmv_2183 crossref_primary_10_1016_j_jbc_2021_101202 crossref_primary_10_1016_j_cell_2024_12_031 crossref_primary_10_1111_all_14449 crossref_primary_10_1038_s41598_021_99401_x crossref_primary_10_1172_jci_insight_142362 crossref_primary_10_1021_acs_jafc_4c02257 crossref_primary_10_21931_RB_2021_06_04_31 crossref_primary_10_3390_biomedicines12030642 crossref_primary_10_3389_fimmu_2020_581076 crossref_primary_10_1002_prot_26422 crossref_primary_10_1038_s41422_020_00444_y crossref_primary_10_1186_s12951_024_02573_7 crossref_primary_10_1042_BCJ20200514 crossref_primary_10_3390_ijms21134662 crossref_primary_10_1016_j_immuni_2020_10_023 crossref_primary_10_1021_acs_jcim_1c01523 crossref_primary_10_1016_j_bcp_2021_114724 crossref_primary_10_1038_s41467_020_18174_5 crossref_primary_10_1093_abt_tbaa009 crossref_primary_10_1016_j_ijbiomac_2020_10_031 crossref_primary_10_1038_s41594_020_0480_y crossref_primary_10_1371_journal_ppat_1009542 crossref_primary_10_1038_s41422_021_00487_9 crossref_primary_10_3389_fimmu_2022_863831 crossref_primary_10_1007_s11274_024_03990_4 crossref_primary_10_1038_s41429_024_00748_w crossref_primary_10_1016_j_bj_2020_11_011 crossref_primary_10_1128_spectrum_01814_21 crossref_primary_10_1073_pnas_2212658119 crossref_primary_10_1016_j_ijbiomac_2024_134850 crossref_primary_10_1177_09636897221090259 crossref_primary_10_1002_jmv_26926 crossref_primary_10_1016_j_csbj_2021_05_002 crossref_primary_10_1128_spectrum_04199_22 crossref_primary_10_3389_fmolb_2021_670815 crossref_primary_10_1073_pnas_2101918118 crossref_primary_10_1098_rsob_230252 crossref_primary_10_1080_19420862_2022_2076775 crossref_primary_10_1093_oxfimm_iqab003 crossref_primary_10_3389_fimmu_2022_958584 crossref_primary_10_1007_s10719_021_10021_z crossref_primary_10_1038_s41467_020_20501_9 crossref_primary_10_1056_NEJMoa2022483 crossref_primary_10_1098_rsob_230376 crossref_primary_10_1002_anie_202100225 crossref_primary_10_3390_bios14030146 crossref_primary_10_3389_fimmu_2021_690742 crossref_primary_10_1016_j_apsb_2021_05_007 crossref_primary_10_3389_fpls_2020_612781 crossref_primary_10_1016_j_micinf_2022_105078 crossref_primary_10_2139_ssrn_3754549 crossref_primary_10_1021_acscentsci_0c01309 crossref_primary_10_1016_j_jbc_2022_102709 crossref_primary_10_1016_j_jgg_2021_02_006 crossref_primary_10_1016_j_aquaculture_2021_737654 crossref_primary_10_1016_j_colsurfa_2022_128967 crossref_primary_10_32607_actanaturae_27374 crossref_primary_10_1016_j_isci_2022_104549 crossref_primary_10_1126_sciadv_abm6909 crossref_primary_10_3390_biom10121661 crossref_primary_10_1080_21645515_2021_1935172 crossref_primary_10_3389_fimmu_2021_637651 crossref_primary_10_1016_j_virs_2023_07_003 crossref_primary_10_3390_molecules28176358 crossref_primary_10_2139_ssrn_4001946 crossref_primary_10_1016_j_tips_2020_07_004 crossref_primary_10_1186_s12951_025_03243_y crossref_primary_10_3390_cells11010008 crossref_primary_10_1016_j_scr_2020_102125 crossref_primary_10_1038_s41467_020_19204_y crossref_primary_10_1038_s41586_022_05513_3 crossref_primary_10_1128_mBio_03372_20 crossref_primary_10_15252_embr_202153865 crossref_primary_10_1038_s41419_024_06802_7 crossref_primary_10_1126_science_abg2294 crossref_primary_10_1016_j_jviromet_2023_114787 crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_1073_pnas_2109744118 crossref_primary_10_3389_fmolb_2021_671923 crossref_primary_10_1111_bph_15359 crossref_primary_10_15252_embr_202052325 crossref_primary_10_1002_advs_202306716 crossref_primary_10_1016_j_fmre_2021_02_001 crossref_primary_10_1038_s41392_020_00352_y crossref_primary_10_1002_jmv_28572 crossref_primary_10_1007_s10389_020_01435_4 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_1021_acs_bioconjchem_1c00463 crossref_primary_10_1016_j_medntd_2020_100043 crossref_primary_10_1126_sciimmunol_abd4758 crossref_primary_10_1016_j_jbi_2021_103821 crossref_primary_10_1007_s00216_020_03137_y crossref_primary_10_1038_s41467_021_27610_z crossref_primary_10_1099_jgv_0_001731 crossref_primary_10_1016_j_bpj_2021_01_012 crossref_primary_10_1016_j_fsi_2022_01_027 crossref_primary_10_1038_s41598_021_01363_7 crossref_primary_10_1093_nsr_nwad161 crossref_primary_10_1016_j_celrep_2020_108322 crossref_primary_10_1016_j_ijbiomac_2024_138751 crossref_primary_10_31083_j_fbl2804067 crossref_primary_10_1007_s40588_023_00212_7 crossref_primary_10_1371_journal_pone_0272364 crossref_primary_10_1002_advs_202001474 crossref_primary_10_1021_acs_jctc_1c00372 crossref_primary_10_3390_v13081498 crossref_primary_10_1038_s41467_021_24905_z crossref_primary_10_1016_j_cell_2021_01_037 crossref_primary_10_3390_ijms252413649 crossref_primary_10_1016_j_colsurfa_2021_126275 crossref_primary_10_1128_mSystems_00030_21 crossref_primary_10_1038_s41467_021_25777_z crossref_primary_10_1096_fj_202100986RR crossref_primary_10_15252_embj_2021107985 crossref_primary_10_1016_j_bbrc_2021_06_001 crossref_primary_10_1016_j_tim_2020_12_006 crossref_primary_10_1038_s41578_020_00247_y crossref_primary_10_1186_s12951_021_00768_w crossref_primary_10_1016_j_csbj_2020_11_011 crossref_primary_10_1007_s40291_021_00533_7 crossref_primary_10_1016_j_isci_2022_103960 crossref_primary_10_3390_pr10061053 crossref_primary_10_1016_j_virol_2021_07_001 crossref_primary_10_1016_j_celrep_2021_109928 crossref_primary_10_1073_pnas_2205412119 crossref_primary_10_3390_ijms23073721 crossref_primary_10_1038_s41598_021_82833_w crossref_primary_10_1002_2211_5463_13454 crossref_primary_10_2174_1872210516666220819104853 crossref_primary_10_1016_j_celrep_2021_110143 crossref_primary_10_1016_j_jbc_2023_105343 crossref_primary_10_1073_pnas_2024102118 crossref_primary_10_3390_ijms24054511 crossref_primary_10_1016_j_intimp_2023_109934 crossref_primary_10_1038_s41392_024_01876_3 crossref_primary_10_1016_j_ijbiomac_2021_10_126 crossref_primary_10_1371_journal_pone_0266250 crossref_primary_10_1002_VIW_20200181 crossref_primary_10_1016_j_jbiotec_2021_07_010 crossref_primary_10_1016_j_medidd_2020_100077 crossref_primary_10_1016_j_omtm_2022_01_015 crossref_primary_10_1016_j_str_2021_07_002 crossref_primary_10_1038_s41467_021_27799_z crossref_primary_10_4049_jimmunol_2100727 crossref_primary_10_1016_j_celrep_2023_113292 crossref_primary_10_1111_cbdd_13847 crossref_primary_10_3389_fnins_2023_1169740 crossref_primary_10_1016_j_scr_2021_102219 crossref_primary_10_1073_pnas_2114397119 crossref_primary_10_1038_s41598_023_41092_7 crossref_primary_10_1016_j_pep_2021_105928 crossref_primary_10_47183_mes_2022_049 crossref_primary_10_1038_s42003_022_03866_z crossref_primary_10_1093_bib_bbac190 crossref_primary_10_5812_tms_114888 crossref_primary_10_1126_science_abe6230 crossref_primary_10_1007_s00604_023_05671_9 crossref_primary_10_1016_j_str_2022_02_011 crossref_primary_10_1016_j_it_2020_09_004 crossref_primary_10_1002_jcb_30017 crossref_primary_10_3390_cells10061291 crossref_primary_10_1016_j_celrep_2021_108737 crossref_primary_10_1016_j_fmre_2021_01_009 crossref_primary_10_1016_j_rvsc_2022_02_003 crossref_primary_10_1126_sciadv_abf2467 crossref_primary_10_3390_v14061162 crossref_primary_10_1016_j_bbrc_2024_150746 crossref_primary_10_3390_computation10060095 crossref_primary_10_1002_iid3_446 crossref_primary_10_1038_s41598_022_26709_7 crossref_primary_10_1002_mco2_60 crossref_primary_10_1126_sciadv_abq8276 crossref_primary_10_1038_s41586_021_03676_z crossref_primary_10_3390_pharmaceutics15020451 crossref_primary_10_3390_v13061055 crossref_primary_10_1007_s11033_021_06819_7 crossref_primary_10_1038_s41564_022_01261_2 crossref_primary_10_1038_s41421_021_00370_2 crossref_primary_10_3390_ph13070155 crossref_primary_10_1016_j_jconrel_2021_11_023 crossref_primary_10_48130_fmr_0024_0020 crossref_primary_10_1007_s11596_021_2453_8 crossref_primary_10_1016_j_cell_2020_06_044 crossref_primary_10_1073_pnas_2414583121 crossref_primary_10_1021_acs_biochem_1c00139 crossref_primary_10_1016_j_isci_2022_105259 crossref_primary_10_2147_IJN_S387160 crossref_primary_10_3389_fmolb_2021_671633 crossref_primary_10_3389_fcell_2021_578825 crossref_primary_10_1016_j_bea_2022_100054 crossref_primary_10_1136_gutjnl_2020_324000 crossref_primary_10_3390_microorganisms8060850 crossref_primary_10_1016_j_cell_2020_09_007 crossref_primary_10_1002_cpt_2207 crossref_primary_10_3390_vaccines12020129 crossref_primary_10_1016_j_jhazmat_2022_129435 crossref_primary_10_4252_wjsc_v12_i8_731 crossref_primary_10_1002_14651858_CD014945 crossref_primary_10_3390_bios12070548 crossref_primary_10_1038_s41541_021_00324_5 crossref_primary_10_1371_journal_ppat_1009704 crossref_primary_10_1002_biot_202200633 crossref_primary_10_1016_j_jbc_2021_101290 crossref_primary_10_3390_ijms24044068 crossref_primary_10_1021_jacs_3c11760 crossref_primary_10_1039_D0MD00385A crossref_primary_10_1126_sciadv_abf1591 crossref_primary_10_1002_biot_202300532 crossref_primary_10_1038_s41551_021_00734_9 crossref_primary_10_1002_prot_26279 crossref_primary_10_1016_j_bcp_2022_115401 crossref_primary_10_1016_j_nantod_2021_101350 crossref_primary_10_1146_annurev_med_042420_113838 crossref_primary_10_3390_cells11020302 crossref_primary_10_1038_s41392_020_00318_0 crossref_primary_10_1002_ctm2_1636 crossref_primary_10_1002_advs_202304818 crossref_primary_10_1007_s11030_024_11086_2 crossref_primary_10_3389_fddsv_2022_927164 crossref_primary_10_3389_fimmu_2021_658519 crossref_primary_10_1016_j_celrep_2021_109353 crossref_primary_10_1039_D2NR00306F crossref_primary_10_3390_v13040566 crossref_primary_10_1186_s12934_024_02311_6 crossref_primary_10_1038_s41467_024_50956_z crossref_primary_10_1146_annurev_pharmtox_061220_093932 crossref_primary_10_1088_0256_307X_38_1_018701 crossref_primary_10_1016_j_jbiotec_2023_03_005 crossref_primary_10_1073_pnas_2303292120 crossref_primary_10_1126_scitranslmed_abn6859 crossref_primary_10_1073_pnas_2201433119 crossref_primary_10_1002_14651858_CD014945_pub2 crossref_primary_10_1016_j_compbiomed_2024_108091 crossref_primary_10_1007_s13205_021_02647_5 crossref_primary_10_1021_acs_nanolett_1c00118 crossref_primary_10_1016_j_molimm_2021_03_001 crossref_primary_10_1016_j_drup_2020_100733 crossref_primary_10_1038_s41467_021_25480_z crossref_primary_10_1002_jmv_29252 crossref_primary_10_1016_j_chembiol_2021_05_019 crossref_primary_10_1016_j_coviro_2021_12_015 crossref_primary_10_1016_j_ijbiomac_2022_12_284 crossref_primary_10_1021_acsinfecdis_0c00646 crossref_primary_10_1007_s40291_022_00634_x crossref_primary_10_1016_j_omtn_2024_102304 crossref_primary_10_1073_pnas_2100425118 crossref_primary_10_1016_j_lfs_2020_118056 crossref_primary_10_3389_fimmu_2021_697074 crossref_primary_10_1038_s41467_021_23825_2 crossref_primary_10_1016_j_phymed_2020_153364 crossref_primary_10_1002_bit_27724 crossref_primary_10_1038_s41598_021_88315_3 crossref_primary_10_3390_ijms22041705 crossref_primary_10_3390_antib12010007 crossref_primary_10_1016_j_immuni_2021_10_019 crossref_primary_10_1126_science_abb8664 crossref_primary_10_1016_j_ejmcr_2021_100003 crossref_primary_10_1016_j_bioorg_2020_104027 crossref_primary_10_1038_s43856_022_00113_8 crossref_primary_10_34172_ddj_2022_23 crossref_primary_10_1021_acsestwater_1c00208 crossref_primary_10_1126_science_abc6952 crossref_primary_10_1038_s41467_023_36106_x |
Cites_doi | 10.1038/srep13133 10.1186/1472-6750-9-70 10.1038/ncomms9223 10.1038/s41598-018-34171-7 10.1107/S0907444904019158 10.2144/05381BM04 10.1074/jbc.M603275200 10.1128/JVI.00127-20 10.1128/JVI.02002-17 10.1517/17425247.2015.999039 10.1074/jbc.M600697200 10.1128/JVI.77.16.8801-8811.2003 10.1110/ps.34602 10.1186/1471-2105-7-123 10.3181/0903-MR-94 10.3390/antib8010001 10.1107/S2059798318006551 10.1038/s41586-020-2012-7 10.1107/S0907444913000061 10.1038/cr.2013.92 10.1126/science.abb2507 10.7554/eLife.01456 10.1073/pnas.1707304114 10.1126/sciadv.aas9667 10.1016/S0140-6736(20)30154-9 10.1128/JVI.00837-18 10.1038/ncomms8712 10.1126/science.abb2762 10.1002/pro.3235 10.1128/JCM.00636-10 10.1056/NEJMoa030781 10.1016/j.nucmedbio.2015.03.003 10.1093/infdis/jix209 10.1093/infdis/jiq168 10.1016/S0167-4838(99)00030-8 10.1107/S0907444902016657 10.1056/NEJMoa1211721 10.1107/S2059798318002425 10.1016/j.cell.2020.02.058 10.1038/cr.2015.113 10.1038/nature02145 10.1128/AAC.01802-15 10.1038/ncomms14158 10.1080/22221751.2020.1729069 10.1080/19420862.2018.1470727 10.1016/j.chom.2014.08.009 10.1038/s41598-017-08273-7 10.1126/science.1243283 10.1038/ncomms15092 10.1074/jbc.M111.242818 10.1371/journal.pone.0025858 10.1016/S0140-6736(20)30183-5 10.1038/nature12711 10.1128/JVI.01379-08 10.1107/S0907444906045975 10.1038/nature12005 10.1126/science.1116480 10.1128/JVI.00923-19 10.1016/S0140-6736(20)30251-8 10.1038/nature17200 10.1107/S0907444910048675 10.1016/j.jmb.2009.03.042 10.1038/nature16988 10.1126/science.aaq0620 10.1038/363446a0 10.1126/science.abb7269 10.1038/cr.2016.152 10.1016/j.cell.2018.12.028 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
CorporateAuthor | VIB-CMB COVID-19 Response Team |
CorporateAuthor_xml | – name: VIB-CMB COVID-19 Response Team |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2020.04.031 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1015.e15 |
ExternalDocumentID | PMC7199733 32375025 10_1016_j_cell_2020_04_031 S0092867420304943 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI127521 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c581t-ae71d2b954506fa3cf869cf0e062551f29fc0956614a58d17c0dad31cabe090b3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:35:36 EDT 2025 Mon Jul 21 11:08:46 EDT 2025 Fri Jul 11 05:17:31 EDT 2025 Wed Feb 19 02:30:23 EST 2025 Tue Jul 01 02:17:06 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Fri Feb 23 02:48:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | COVID-19 SARS SARS-CoV-2 nanobody MERS |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-ae71d2b954506fa3cf869cf0e062551f29fc0956614a58d17c0dad31cabe090b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0003-3991-542X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867420304943 |
PMID | 32375025 |
PQID | 2399838869 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199733 proquest_miscellaneous_2439398075 proquest_miscellaneous_2399838869 pubmed_primary_32375025 crossref_citationtrail_10_1016_j_cell_2020_04_031 crossref_primary_10_1016_j_cell_2020_04_031 elsevier_sciencedirect_doi_10_1016_j_cell_2020_04_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-28 |
PublicationDateYYYYMMDD | 2020-05-28 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ge, Li, Yang, Chmura, Zhu, Epstein, Mazet, Hu, Zhang, Peng (bib15) 2013; 503 Croll (bib7) 2018; 74 Schoonooghe, Kaigorodov, Zawisza, Dumolyn, Haustraete, Grooten, Mertens (bib45) 2009; 9 Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib30) 2003; 426 Morin, Eisenbraun, Key, Sanschagrin, Timony, Ottaviano, Sliz (bib37) 2013; 2 Pak, Sharon, Satkunarajah, Auperin, Cameron, Kelvin, Seetharaman, Cochrane, Plummer, Berry, Rini (bib38) 2009; 388 Stalin Raj, Okba, Gutierrez-Alvarez, Drabek, van Dieren, Widagdo, Lamers, Widjaja, Fernandez-Delgado, Sola (bib46) 2018; 4 Larios Mora, Detalle, Gallup, Van Geelen, Stohr, Duprez, Ackermann (bib28) 2018; 10 Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib1) 2002; 58 Wang, Shi, Joyce, Modjarrad, Zhang, Leung, Lees, Zhou, Yassine, Kanekiyo (bib55) 2015; 6 Chen, Bao, Chen, Zou, Xue, Li, Lv, Gu, Gao, Cui (bib6) 2017; 215 Lin-Cereghino, Wong, Xiong, Giang, Luong, Vu, Johnson, Lin-Cereghino (bib33) 2005; 38 Rotman, Welling, van den Boogaard, Moursel, van der Graaf, van Buchem, van der Maarel, van der Weerd (bib44) 2015; 42 Ksiazek, Erdman, Goldsmith, Zaki, Peret, Emery, Tong, Urbani, Comer, Lim (bib26) 2003; 348 Prabakaran, Gan, Feng, Zhu, Choudhry, Xiao, Ji, Dimitrov (bib40) 2006; 281 Wang, Qi, Yuan, Xuan, Han, Wan, Ji, Li, Wu, Wang (bib54) 2014; 16 Woo, Lau, Huang, Yuen (bib57) 2009; 234 Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib70) 2018; 27 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib39) 2017; 114 Gaunt, Hardie, Claas, Simmonds, Templeton (bib14) 2010; 48 McCoy (bib35) 2007; 63 Wan, Shang, Graham, Baric, Li (bib52) 2020; 94 Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu (bib34) 2020; 395 Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib63) 2017; 8 Dumoulin, Conrath, Van Meirhaeghe, Meersman, Heremans, Frenken, Muyldermans, Wyns, Matagne (bib10) 2002; 11 Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib20) 2020; 395 Govaert, Pellis, Deschacht, Vincke, Conrath, Muyldermans, Saerens (bib16) 2012; 287 Respaud, Vecellio, Diot, Heuzé-Vourc’h (bib42) 2015; 12 Tian, Li, Huang, Xia, Lu, Shi, Lu, Jiang, Yang, Wu, Ying (bib47) 2020; 9 Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib24) 2018; 8 Yu, Zhang, Jiang, Cui, Li, Wang, Wang, Fu, Shi, Li (bib62) 2015; 5 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib65) 2012; 367 Hwang, Lin, Santelli, Sui, Jaroszewski, Stec, Farzan, Marasco, Liddington (bib21) 2006; 281 Hoffmann, Kleine-Weber, Krüger, Müller, Drosten, Pöhlmann (bib19) 2020 Laursen, Friesen, Zhu, Jongeneelen, Blokland, Vermond, van Eijgen, Tang, van Diepen, Obmolova (bib29) 2018; 362 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib27) 2020 Li, Wan, Liu, Zhao, Lu, Qi, Wang, Lu, Wu, Liu (bib32) 2015; 25 Li, Li, Farzan, Harrison (bib31) 2005; 309 Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib49) 2016; 531 Battye, Kontogiannis, Johnson, Powell, Leslie (bib2) 2011; 67 Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib64) 2020 Gui, Song, Zhou, Xu, Chen, Xiang, Wang (bib17) 2017; 27 Ying, Prabakaran, Du, Shi, Feng, Wang, Wang, Li, Jiang, Dimitrov, Zhou (bib61) 2015; 6 Ibañez, De Filette, Hultberg, Verrips, Temperton, Weiss, Vandevelde, Schepens, Vanlandschoot, Saelens (bib22) 2011; 203 Motulsky, Brown (bib68) 2006; 7 Berger Rentsch, Zimmer (bib3) 2011; 6 Rossey, Gilman, Kabeche, Sedeyn, Wrapp, Kanekiyo, Chen, Mas, Spitaels, Melero (bib43) 2017; 8 Zhao, He, Sun, Qiu, Tai, Chen, Li, Chen, Guo, Wang (bib66) 2018; 92 Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (bib69) 2018; 74 Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib23) 2016; 531 Emsley, Cowtan (bib11) 2004; 60 Evans, Murshudov (bib12) 2013; 69 Yan, Zhang, Li, Xia, Guo, Zhou (bib60) 2020; 367 McLellan, Chen, Joyce, Sastry, Stewart-Jones, Yang, Zhang, Chen, Srivatsan, Zheng (bib36) 2013; 342 van der Linden, Frenken, de Geus, Harmsen, Ruuls, Stok, de Ron, Wilson, Davis, Verrips (bib48) 1999; 1431 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib50) 2019; 176 Wrapp, McLellan (bib58) 2019 Chan, Yuan, Kok, To, Chu, Yang, Xing, Liu, Yip, Poon (bib5) 2020; 395 Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib41) 2013; 495 De Vlieger, Ballegeer, Rossey, Schepens, Saelens (bib8) 2018; 8 Forsman, Beirnaert, Aasa-Chapman, Hoorelbeke, Hijazi, Koh, Tack, Szynol, Kelly, McKnight (bib13) 2008; 82 Wang, Shi, Chappell, Joyce, Zhang, Kanekiyo, Becker, van Doremalen, Fischer, Wang (bib56) 2018; 92 Detalle, Stohr, Palomo, Piedra, Gilbert, Mas, Millar, Power, Stortelers, Allosery (bib9) 2015; 60 Wang, Shi, Jiang, Zhang, Wang, Tong, Guo, Fu, Cui, Liu (bib53) 2013; 23 Bosch, van der Zee, de Haan, Rottier (bib4) 2003; 77 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib67) 2020; 579 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib59) 2020; 367 Hamers-Casterman, Atarhouch, Muyldermans, Robinson, Hamers, Songa, Bendahman, Hamers (bib18) 1993; 363 Koch, Kalusche, Torres, Stanfield, Danquah, Khazanehdari, von Briesen, Geertsma, Wilson, Wernery (bib25) 2017; 7 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib51) 2020; 181 Prabakaran (10.1016/j.cell.2020.04.031_bib40) 2006; 281 Evans (10.1016/j.cell.2020.04.031_bib12) 2013; 69 Dumoulin (10.1016/j.cell.2020.04.031_bib10) 2002; 11 Croll (10.1016/j.cell.2020.04.031_bib7) 2018; 74 Pak (10.1016/j.cell.2020.04.031_bib38) 2009; 388 Yuan (10.1016/j.cell.2020.04.031_bib64) 2020 Schoonooghe (10.1016/j.cell.2020.04.031_bib45) 2009; 9 Huang (10.1016/j.cell.2020.04.031_bib20) 2020; 395 Morin (10.1016/j.cell.2020.04.031_bib37) 2013; 2 Yuan (10.1016/j.cell.2020.04.031_bib63) 2017; 8 Yan (10.1016/j.cell.2020.04.031_bib60) 2020; 367 Raj (10.1016/j.cell.2020.04.031_bib41) 2013; 495 Hwang (10.1016/j.cell.2020.04.031_bib21) 2006; 281 Zhao (10.1016/j.cell.2020.04.031_bib66) 2018; 92 Ibañez (10.1016/j.cell.2020.04.031_bib22) 2011; 203 Zaki (10.1016/j.cell.2020.04.031_bib65) 2012; 367 McLellan (10.1016/j.cell.2020.04.031_bib36) 2013; 342 Rossey (10.1016/j.cell.2020.04.031_bib43) 2017; 8 Wan (10.1016/j.cell.2020.04.031_bib52) 2020; 94 Woo (10.1016/j.cell.2020.04.031_bib57) 2009; 234 Ying (10.1016/j.cell.2020.04.031_bib61) 2015; 6 Li (10.1016/j.cell.2020.04.031_bib31) 2005; 309 Emsley (10.1016/j.cell.2020.04.031_bib11) 2004; 60 Lin-Cereghino (10.1016/j.cell.2020.04.031_bib33) 2005; 38 McCoy (10.1016/j.cell.2020.04.031_bib35) 2007; 63 Pallesen (10.1016/j.cell.2020.04.031_bib39) 2017; 114 Wang (10.1016/j.cell.2020.04.031_bib55) 2015; 6 Koch (10.1016/j.cell.2020.04.031_bib25) 2017; 7 Gaunt (10.1016/j.cell.2020.04.031_bib14) 2010; 48 Goddard (10.1016/j.cell.2020.04.031_bib70) 2018; 27 Hamers-Casterman (10.1016/j.cell.2020.04.031_bib18) 1993; 363 Lu (10.1016/j.cell.2020.04.031_bib34) 2020; 395 Gui (10.1016/j.cell.2020.04.031_bib17) 2017; 27 Kirchdoerfer (10.1016/j.cell.2020.04.031_bib23) 2016; 531 Wrapp (10.1016/j.cell.2020.04.031_bib58) 2019 Battye (10.1016/j.cell.2020.04.031_bib2) 2011; 67 De Vlieger (10.1016/j.cell.2020.04.031_bib8) 2018; 8 Chen (10.1016/j.cell.2020.04.031_bib6) 2017; 215 Hoffmann (10.1016/j.cell.2020.04.031_bib19) 2020 Larios Mora (10.1016/j.cell.2020.04.031_bib28) 2018; 10 Respaud (10.1016/j.cell.2020.04.031_bib42) 2015; 12 Bosch (10.1016/j.cell.2020.04.031_bib4) 2003; 77 Walls (10.1016/j.cell.2020.04.031_bib51) 2020; 181 Adams (10.1016/j.cell.2020.04.031_bib1) 2002; 58 Walls (10.1016/j.cell.2020.04.031_bib49) 2016; 531 Laursen (10.1016/j.cell.2020.04.031_bib29) 2018; 362 Kirchdoerfer (10.1016/j.cell.2020.04.031_bib24) 2018; 8 Yu (10.1016/j.cell.2020.04.031_bib62) 2015; 5 van der Linden (10.1016/j.cell.2020.04.031_bib48) 1999; 1431 Lan (10.1016/j.cell.2020.04.031_bib27) 2020 Wrapp (10.1016/j.cell.2020.04.031_bib59) 2020; 367 Chan (10.1016/j.cell.2020.04.031_bib5) 2020; 395 Afonine (10.1016/j.cell.2020.04.031_bib69) 2018; 74 Walls (10.1016/j.cell.2020.04.031_bib50) 2019; 176 Wang (10.1016/j.cell.2020.04.031_bib54) 2014; 16 Motulsky (10.1016/j.cell.2020.04.031_bib68) 2006; 7 Li (10.1016/j.cell.2020.04.031_bib30) 2003; 426 Berger Rentsch (10.1016/j.cell.2020.04.031_bib3) 2011; 6 Tian (10.1016/j.cell.2020.04.031_bib47) 2020; 9 Wang (10.1016/j.cell.2020.04.031_bib53) 2013; 23 Govaert (10.1016/j.cell.2020.04.031_bib16) 2012; 287 Ksiazek (10.1016/j.cell.2020.04.031_bib26) 2003; 348 Stalin Raj (10.1016/j.cell.2020.04.031_bib46) 2018; 4 Zhou (10.1016/j.cell.2020.04.031_bib67) 2020; 579 Rotman (10.1016/j.cell.2020.04.031_bib44) 2015; 42 Detalle (10.1016/j.cell.2020.04.031_bib9) 2015; 60 Li (10.1016/j.cell.2020.04.031_bib32) 2015; 25 Wang (10.1016/j.cell.2020.04.031_bib56) 2018; 92 Ge (10.1016/j.cell.2020.04.031_bib15) 2013; 503 Forsman (10.1016/j.cell.2020.04.031_bib13) 2008; 82 32620562 - Sci Immunol. 2020 Jul 3;5(49) 32531248 - Cell. 2020 Jun 11;181(6):1436-1441 |
References_xml | – volume: 495 start-page: 251 year: 2013 end-page: 254 ident: bib41 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature – year: 2020 ident: bib19 article-title: The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells publication-title: bioRxiv – volume: 176 start-page: 1026 year: 2019 end-page: 1039.15 ident: bib50 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell – volume: 58 start-page: 1948 year: 2002 end-page: 1954 ident: bib1 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib39 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib11 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: bib49 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature – volume: 8 start-page: 1 year: 2018 ident: bib8 article-title: Single-Domain Antibodies and Their Formatting to Combat Viral Infections publication-title: Antibodies (Basel) – volume: 342 start-page: 592 year: 2013 end-page: 598 ident: bib36 article-title: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus publication-title: Science – volume: 8 start-page: 15092 year: 2017 ident: bib63 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. – volume: 363 start-page: 446 year: 1993 end-page: 448 ident: bib18 article-title: Naturally occurring antibodies devoid of light chains publication-title: Nature – year: 2019 ident: bib58 article-title: The 3.1 A cryo-EM structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation publication-title: J Virol. – volume: 503 start-page: 535 year: 2013 end-page: 538 ident: bib15 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib67 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 74 start-page: 531 year: 2018 end-page: 544 ident: bib69 article-title: Real-space refinement in PHENIX for cryo-EM and crystallography publication-title: Acta Crystallogr D. Struct. Biol. – volume: 281 start-page: 15829 year: 2006 end-page: 15836 ident: bib40 article-title: Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody publication-title: J. Biol. Chem. – volume: 94 start-page: e00127-20 year: 2020 ident: bib52 article-title: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus publication-title: J. Virol. – volume: 23 start-page: 986 year: 2013 end-page: 993 ident: bib53 article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 publication-title: Cell Res. – volume: 215 start-page: 1807 year: 2017 end-page: 1815 ident: bib6 article-title: Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset publication-title: J. Infect. Dis. – volume: 348 start-page: 1953 year: 2003 end-page: 1966 ident: bib26 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. – volume: 77 start-page: 8801 year: 2003 end-page: 8811 ident: bib4 article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex publication-title: J. Virol. – volume: 388 start-page: 815 year: 2009 end-page: 823 ident: bib38 article-title: Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain publication-title: J. Mol. Biol. – volume: 395 start-page: 514 year: 2020 end-page: 523 ident: bib5 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster publication-title: Lancet – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: bib65 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. – volume: 12 start-page: 1027 year: 2015 end-page: 1039 ident: bib42 article-title: Nebulization as a delivery method for mAbs in respiratory diseases publication-title: Expert Opin. Drug Deliv. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: bib70 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 287 start-page: 1970 year: 2012 end-page: 1979 ident: bib16 article-title: Dual beneficial effect of interloop disulfide bond for single domain antibody fragments publication-title: J. Biol. Chem. – volume: 92 year: 2018 ident: bib66 article-title: A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV publication-title: J. Virol. – volume: 60 start-page: 6 year: 2015 end-page: 13 ident: bib9 article-title: Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection publication-title: Antimicrob. Agents Chemother. – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: bib12 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 74 start-page: 519 year: 2018 end-page: 530 ident: bib7 article-title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps publication-title: Acta Crystallogr. D Struct. Biol. – year: 2020 ident: bib27 article-title: Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor publication-title: bioRxiv – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: bib60 article-title: Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 5 start-page: 13133 year: 2015 ident: bib62 article-title: Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 publication-title: Sci. Rep. – volume: 67 start-page: 271 year: 2011 end-page: 281 ident: bib2 article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 7 start-page: 123 year: 2006 ident: bib68 article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate publication-title: BMC Bioinformatics – volume: 10 start-page: 778 year: 2018 end-page: 795 ident: bib28 article-title: Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs publication-title: MAbs – volume: 234 start-page: 1117 year: 2009 end-page: 1127 ident: bib57 article-title: Coronavirus diversity, phylogeny and interspecies jumping publication-title: Exp. Biol. Med. (Maywood) – volume: 92 start-page: e02002 year: 2018 end-page: e02017 ident: bib56 article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape publication-title: J. Virol. – year: 2020 ident: bib64 article-title: A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: bib30 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature – volume: 48 start-page: 2940 year: 2010 end-page: 2947 ident: bib14 article-title: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method publication-title: J. Clin. Microbiol. – volume: 7 start-page: 8390 year: 2017 ident: bib25 article-title: Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers publication-title: Sci. Rep. – volume: 63 start-page: 32 year: 2007 end-page: 41 ident: bib35 article-title: Solving structures of protein complexes by molecular replacement with Phaser publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 2 start-page: e01456 year: 2013 ident: bib37 article-title: Collaboration gets the most out of software publication-title: eLife – volume: 8 start-page: 14158 year: 2017 ident: bib43 article-title: Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state publication-title: Nat. Commun. – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: bib31 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science – volume: 25 start-page: 1237 year: 2015 end-page: 1249 ident: bib32 article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein publication-title: Cell Res. – volume: 531 start-page: 118 year: 2016 end-page: 121 ident: bib23 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature – volume: 82 start-page: 12069 year: 2008 end-page: 12081 ident: bib13 article-title: Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120 publication-title: J. Virol. – volume: 9 start-page: 70 year: 2009 ident: bib45 article-title: Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris publication-title: BMC Biotechnol. – volume: 16 start-page: 328 year: 2014 end-page: 337 ident: bib54 article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 publication-title: Cell Host Microbe – volume: 6 start-page: e25858 year: 2011 ident: bib3 article-title: A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon publication-title: PLoS ONE – volume: 27 start-page: 119 year: 2017 end-page: 129 ident: bib17 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib51 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: bib20 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 203 start-page: 1063 year: 2011 end-page: 1072 ident: bib22 article-title: Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection publication-title: J. Infect. Dis. – volume: 6 start-page: 7712 year: 2015 ident: bib55 article-title: Evaluation of candidate vaccine approaches for MERS-CoV publication-title: Nat. Commun. – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bib34 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 281 start-page: 34610 year: 2006 end-page: 34616 ident: bib21 article-title: Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R publication-title: J. Biol. Chem. – volume: 362 start-page: 598 year: 2018 end-page: 602 ident: bib29 article-title: Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin publication-title: Science – volume: 38 year: 2005 ident: bib33 article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris publication-title: Biotechniques – volume: 42 start-page: 695 year: 2015 end-page: 702 ident: bib44 article-title: Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake publication-title: Nucl. Med. Biol. – volume: 1431 start-page: 37 year: 1999 end-page: 46 ident: bib48 article-title: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies publication-title: Biochim. Biophys. Acta – volume: 11 start-page: 500 year: 2002 end-page: 515 ident: bib10 article-title: Single-domain antibody fragments with high conformational stability publication-title: Protein Sci. – volume: 8 start-page: 15701 year: 2018 ident: bib24 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. – volume: 6 start-page: 8223 year: 2015 ident: bib61 article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody publication-title: Nat. Commun. – volume: 9 start-page: 382 year: 2020 end-page: 385 ident: bib47 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microbes Infect. – volume: 4 start-page: eaas9667 year: 2018 ident: bib46 article-title: Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection publication-title: Sci Adv – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib59 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 5 start-page: 13133 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib62 article-title: Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 publication-title: Sci. Rep. doi: 10.1038/srep13133 – volume: 9 start-page: 70 year: 2009 ident: 10.1016/j.cell.2020.04.031_bib45 article-title: Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-9-70 – volume: 6 start-page: 8223 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib61 article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody publication-title: Nat. Commun. doi: 10.1038/ncomms9223 – volume: 8 start-page: 15701 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib24 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.cell.2020.04.031_bib11 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 38 year: 2005 ident: 10.1016/j.cell.2020.04.031_bib33 article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris publication-title: Biotechniques doi: 10.2144/05381BM04 – volume: 281 start-page: 34610 year: 2006 ident: 10.1016/j.cell.2020.04.031_bib21 article-title: Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603275200 – volume: 94 start-page: e00127-20 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib52 article-title: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus publication-title: J. Virol. doi: 10.1128/JVI.00127-20 – volume: 92 start-page: e02002 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib56 article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape publication-title: J. Virol. doi: 10.1128/JVI.02002-17 – volume: 12 start-page: 1027 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib42 article-title: Nebulization as a delivery method for mAbs in respiratory diseases publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2015.999039 – volume: 281 start-page: 15829 year: 2006 ident: 10.1016/j.cell.2020.04.031_bib40 article-title: Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600697200 – volume: 77 start-page: 8801 year: 2003 ident: 10.1016/j.cell.2020.04.031_bib4 article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex publication-title: J. Virol. doi: 10.1128/JVI.77.16.8801-8811.2003 – volume: 11 start-page: 500 year: 2002 ident: 10.1016/j.cell.2020.04.031_bib10 article-title: Single-domain antibody fragments with high conformational stability publication-title: Protein Sci. doi: 10.1110/ps.34602 – volume: 7 start-page: 123 year: 2006 ident: 10.1016/j.cell.2020.04.031_bib68 article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-123 – volume: 234 start-page: 1117 year: 2009 ident: 10.1016/j.cell.2020.04.031_bib57 article-title: Coronavirus diversity, phylogeny and interspecies jumping publication-title: Exp. Biol. Med. (Maywood) doi: 10.3181/0903-MR-94 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib8 article-title: Single-Domain Antibodies and Their Formatting to Combat Viral Infections publication-title: Antibodies (Basel) doi: 10.3390/antib8010001 – year: 2020 ident: 10.1016/j.cell.2020.04.031_bib19 article-title: The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells publication-title: bioRxiv – volume: 74 start-page: 531 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib69 article-title: Real-space refinement in PHENIX for cryo-EM and crystallography publication-title: Acta Crystallogr D. Struct. Biol. doi: 10.1107/S2059798318006551 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib67 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 69 start-page: 1204 year: 2013 ident: 10.1016/j.cell.2020.04.031_bib12 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913000061 – volume: 23 start-page: 986 year: 2013 ident: 10.1016/j.cell.2020.04.031_bib53 article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 publication-title: Cell Res. doi: 10.1038/cr.2013.92 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib59 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 2 start-page: e01456 year: 2013 ident: 10.1016/j.cell.2020.04.031_bib37 article-title: Collaboration gets the most out of software publication-title: eLife doi: 10.7554/eLife.01456 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.cell.2020.04.031_bib39 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 4 start-page: eaas9667 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib46 article-title: Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection publication-title: Sci Adv doi: 10.1126/sciadv.aas9667 – volume: 395 start-page: 514 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib5 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster publication-title: Lancet doi: 10.1016/S0140-6736(20)30154-9 – volume: 92 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib66 article-title: A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV publication-title: J. Virol. doi: 10.1128/JVI.00837-18 – volume: 6 start-page: 7712 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib55 article-title: Evaluation of candidate vaccine approaches for MERS-CoV publication-title: Nat. Commun. doi: 10.1038/ncomms8712 – volume: 367 start-page: 1444 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib60 article-title: Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 27 start-page: 14 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib70 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 48 start-page: 2940 year: 2010 ident: 10.1016/j.cell.2020.04.031_bib14 article-title: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00636-10 – volume: 348 start-page: 1953 year: 2003 ident: 10.1016/j.cell.2020.04.031_bib26 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030781 – volume: 42 start-page: 695 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib44 article-title: Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2015.03.003 – volume: 215 start-page: 1807 year: 2017 ident: 10.1016/j.cell.2020.04.031_bib6 article-title: Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix209 – volume: 203 start-page: 1063 year: 2011 ident: 10.1016/j.cell.2020.04.031_bib22 article-title: Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiq168 – volume: 1431 start-page: 37 year: 1999 ident: 10.1016/j.cell.2020.04.031_bib48 article-title: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(99)00030-8 – volume: 58 start-page: 1948 year: 2002 ident: 10.1016/j.cell.2020.04.031_bib1 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444902016657 – volume: 367 start-page: 1814 year: 2012 ident: 10.1016/j.cell.2020.04.031_bib65 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 74 start-page: 519 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib7 article-title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318002425 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib51 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 25 start-page: 1237 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib32 article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein publication-title: Cell Res. doi: 10.1038/cr.2015.113 – volume: 426 start-page: 450 year: 2003 ident: 10.1016/j.cell.2020.04.031_bib30 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 60 start-page: 6 year: 2015 ident: 10.1016/j.cell.2020.04.031_bib9 article-title: Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01802-15 – volume: 8 start-page: 14158 year: 2017 ident: 10.1016/j.cell.2020.04.031_bib43 article-title: Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state publication-title: Nat. Commun. doi: 10.1038/ncomms14158 – volume: 9 start-page: 382 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib47 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1729069 – volume: 10 start-page: 778 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib28 article-title: Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs publication-title: MAbs doi: 10.1080/19420862.2018.1470727 – volume: 16 start-page: 328 year: 2014 ident: 10.1016/j.cell.2020.04.031_bib54 article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.08.009 – volume: 7 start-page: 8390 year: 2017 ident: 10.1016/j.cell.2020.04.031_bib25 article-title: Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers publication-title: Sci. Rep. doi: 10.1038/s41598-017-08273-7 – volume: 342 start-page: 592 year: 2013 ident: 10.1016/j.cell.2020.04.031_bib36 article-title: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus publication-title: Science doi: 10.1126/science.1243283 – year: 2020 ident: 10.1016/j.cell.2020.04.031_bib27 article-title: Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor publication-title: bioRxiv – volume: 8 start-page: 15092 year: 2017 ident: 10.1016/j.cell.2020.04.031_bib63 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 287 start-page: 1970 year: 2012 ident: 10.1016/j.cell.2020.04.031_bib16 article-title: Dual beneficial effect of interloop disulfide bond for single domain antibody fragments publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.242818 – volume: 6 start-page: e25858 year: 2011 ident: 10.1016/j.cell.2020.04.031_bib3 article-title: A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon publication-title: PLoS ONE doi: 10.1371/journal.pone.0025858 – volume: 395 start-page: 497 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib20 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 503 start-page: 535 year: 2013 ident: 10.1016/j.cell.2020.04.031_bib15 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature doi: 10.1038/nature12711 – volume: 82 start-page: 12069 year: 2008 ident: 10.1016/j.cell.2020.04.031_bib13 article-title: Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120 publication-title: J. Virol. doi: 10.1128/JVI.01379-08 – volume: 63 start-page: 32 year: 2007 ident: 10.1016/j.cell.2020.04.031_bib35 article-title: Solving structures of protein complexes by molecular replacement with Phaser publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444906045975 – volume: 495 start-page: 251 year: 2013 ident: 10.1016/j.cell.2020.04.031_bib41 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature doi: 10.1038/nature12005 – volume: 309 start-page: 1864 year: 2005 ident: 10.1016/j.cell.2020.04.031_bib31 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science doi: 10.1126/science.1116480 – year: 2019 ident: 10.1016/j.cell.2020.04.031_bib58 article-title: The 3.1 A cryo-EM structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation publication-title: J Virol. doi: 10.1128/JVI.00923-19 – volume: 395 start-page: 565 year: 2020 ident: 10.1016/j.cell.2020.04.031_bib34 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 531 start-page: 118 year: 2016 ident: 10.1016/j.cell.2020.04.031_bib23 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature doi: 10.1038/nature17200 – volume: 67 start-page: 271 year: 2011 ident: 10.1016/j.cell.2020.04.031_bib2 article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910048675 – volume: 388 start-page: 815 year: 2009 ident: 10.1016/j.cell.2020.04.031_bib38 article-title: Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.03.042 – volume: 531 start-page: 114 year: 2016 ident: 10.1016/j.cell.2020.04.031_bib49 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 362 start-page: 598 year: 2018 ident: 10.1016/j.cell.2020.04.031_bib29 article-title: Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin publication-title: Science doi: 10.1126/science.aaq0620 – volume: 363 start-page: 446 year: 1993 ident: 10.1016/j.cell.2020.04.031_bib18 article-title: Naturally occurring antibodies devoid of light chains publication-title: Nature doi: 10.1038/363446a0 – year: 2020 ident: 10.1016/j.cell.2020.04.031_bib64 article-title: A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 27 start-page: 119 year: 2017 ident: 10.1016/j.cell.2020.04.031_bib17 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 176 start-page: 1026 year: 2019 ident: 10.1016/j.cell.2020.04.031_bib50 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – reference: 32531248 - Cell. 2020 Jun 11;181(6):1436-1441 – reference: 32620562 - Sci Immunol. 2020 Jul 3;5(49): |
SSID | ssj0008555 |
Score | 2.7023876 |
Snippet | Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1004 |
SubjectTerms | Animals antibodies Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - immunology Antibodies, Neutralizing - isolation & purification Betacoronavirus - immunology Camelidae Camelids, New World - immunology Coronavirus infections Coronavirus Infections - therapy COVID-19 cross reaction Cross Reactions crystal structure epitopes humans immunoglobulin G Immunoglobulin G - chemistry Immunoglobulin G - immunology llamas membrane fusion MERS Middle East respiratory syndrome coronavirus Models, Molecular nanobody neutralization Pandemics Pneumonia, Viral - therapy Protein Domains receptors Receptors, Virus - chemistry SARS SARS-CoV-2 Single-Domain Antibodies - chemistry Single-Domain Antibodies - immunology Single-Domain Antibodies - isolation & purification Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology therapeutics viruses |
Title | Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies |
URI | https://dx.doi.org/10.1016/j.cell.2020.04.031 https://www.ncbi.nlm.nih.gov/pubmed/32375025 https://www.proquest.com/docview/2399838869 https://www.proquest.com/docview/2439398075 https://pubmed.ncbi.nlm.nih.gov/PMC7199733 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9JE2m7RBhd6KiW1ZtnTMbhtCD6GQBvYmZGlEXDZ2iL2B_PvO-LFkW7KHHm1JIGs0M5_kmW8Y-2KlLQupIVI-91FmfR4p6YuogJCj8mkvoY_yvcwvrrMfS7ncY4spF4bCKkfbP9j03lqPb07H1Ty9qyrK8dWpyvFoR3_3dEaMnyJTfRLfcr6xxkrKoYqBRs3H3mPizBDjRZfjeEZM457uVCTPOad_weffMZRPnNL5a_ZqRJP8bJjwG7YH9Vv2Yqgv-fiOuaueHZaYNfjctlXLEaLynw3i5I5fwrq_5RjyMHkT-Bw6tI_3iM0fqvt1Cy0vH_kV-rYVRN-aW1vVfGFvYVV5flZ3VdlQBOIBuz7__mtxEY1VFSInVdJFForEp6VG6BTnwQoXVK5diCHGo5BMQqqDI3ZC9NtWKp8ULvbWi8TZEmIdl-I926-bGg4Zz5VyEJz2REGjgiqFtYgAXeLACZ35GUum5TRupBynyhcrM8WW_TYkAkMiMHFmUAQz9nUz5m4g3NjZW05SMlvbxqBH2Dnu8yRSg_pEzbaGZt0ayvVVQuGa7OiDKE5oonGesQ_DNtjMVaQCQViKLcXWBtl0ID7v7Za6uul5vQsK-hHi6D-_6Zi9pCcKbUjVR7aPOww-IWLqypNeJf4Af2gWlg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoVVUuqO8utOBKvVURSRwn9pHdFi2UrioB0t4sxw811ZIgkkXi3zOTx6rbqnvgGo8lx-OZ-ZzMfEPIZ811nnHpAmFTGyTapoHgNgsy51MwPmm5a7N8Z-n0Kjmb8_kWmQy1MJhW2fv-zqe33rp_ctTv5tFNUWCNr4xFClc7_LsnE_aEPAU0kKF1ns7HK3csOO_aGEgwfRDvK2e6JC_8Og6XxDhs-U5Z9L_o9C_6_DuJ8o-odPKC7PZwkh53K35Jtlz5ijzrGkzevybmoqWHRWoNOtZ1UVPAqPRnBUC5oTO3bD9zdIWYtPJ07BpwkLcAzu-K22Xtaprf0wsIbgsXfK2udVHSib52i8LS47Ip8gpTEN-Qq5Nvl5Np0LdVCAwXURNol0U2ziVgpzD1mhkvUml86EK4C_HIx9IbpCeEwK25sFFmQqsti4zOXSjDnL0l22VVuveEpkIY5420yEEjvMiZ1gABTWScYTKxIxIN26lMzzmOrS8Wakgu-61QBQpVoMJEgQpG5Mtqzk3HuLFRmg9aUmvnRkFI2Djv06BSBQaFw7p01bJWWOwrmIA92SADMI5J5HEekXfdMVitlcUMUFgMI9naAVkJIKH3-khZ_GqJvTPM-mFs75HvdEieTy9_nKvz09n3fbKDI5jnEIsPZBtOm_sI8KnJD1rzeAB9UBm2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+for+Potent+Neutralization+of+Betacoronaviruses+by+Single-Domain+Camelid+Antibodies&rft.jtitle=Cell&rft.au=Wrapp%2C+Daniel&rft.au=De+Vlieger%2C+Dorien&rft.au=Corbett%2C+Kizzmekia+S&rft.au=Torres%2C+Gretel+M&rft.date=2020-05-28&rft.eissn=1097-4172&rft.volume=181&rft.issue=5&rft.spage=1004&rft_id=info:doi/10.1016%2Fj.cell.2020.04.031&rft_id=info%3Apmid%2F32375025&rft.externalDocID=32375025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |