Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies

Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-doma...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 181; no. 5; pp. 1004 - 1015.e15
Main Authors Wrapp, Daniel, De Vlieger, Dorien, Corbett, Kizzmekia S., Torres, Gretel M., Wang, Nianshuang, Van Breedam, Wander, Roose, Kenny, van Schie, Loes, Hoffmann, Markus, Pöhlmann, Stefan, Graham, Barney S., Callewaert, Nico, Schepens, Bert, Saelens, Xavier, McLellan, Jason S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. [Display omitted] •VHHs isolated from a llama immunized with prefusion-stabilized coronavirus spikes•Structural characterization of VHHs reveals conserved mechanism of neutralization•SARS-CoV-1 S-directed VHH cross-reacts with SARS-CoV-2 S•Bivalent VHH neutralizes SARS-CoV-2 pseudoviruses Using llamas immunized with prefusion-stabilized betacoronavirus spike proteins, Wrapp et al. identify neutralizing cross-reactive single-domain camelid antibodies, which may serve not only as useful reagents for researchers studying the viruses causing MERS, SARS, and COVID-19, but also potential therapeutic candidates. Crystal structures further reveal how these antibodies bind spike proteins to prevent virus entry into cells.
AbstractList Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. • VHHs isolated from a llama immunized with prefusion-stabilized coronavirus spikes • Structural characterization of VHHs reveals conserved mechanism of neutralization • SARS-CoV-1 S-directed VHH cross-reacts with SARS-CoV-2 S • Bivalent VHH neutralizes SARS-CoV-2 pseudoviruses Using llamas immunized with prefusion-stabilized betacoronavirus spike proteins, Wrapp et al. identify neutralizing cross-reactive single-domain camelid antibodies, which may serve not only as useful reagents for researchers studying the viruses causing MERS, SARS, and COVID-19, but also potential therapeutic candidates. Crystal structures further reveal how these antibodies bind spike proteins to prevent virus entry into cells.
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks. [Display omitted] •VHHs isolated from a llama immunized with prefusion-stabilized coronavirus spikes•Structural characterization of VHHs reveals conserved mechanism of neutralization•SARS-CoV-1 S-directed VHH cross-reacts with SARS-CoV-2 S•Bivalent VHH neutralizes SARS-CoV-2 pseudoviruses Using llamas immunized with prefusion-stabilized betacoronavirus spike proteins, Wrapp et al. identify neutralizing cross-reactive single-domain camelid antibodies, which may serve not only as useful reagents for researchers studying the viruses causing MERS, SARS, and COVID-19, but also potential therapeutic candidates. Crystal structures further reveal how these antibodies bind spike proteins to prevent virus entry into cells.
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.
Author Schepens, Bert
Corbett, Kizzmekia S.
Van Breedam, Wander
Callewaert, Nico
van Schie, Loes
De Vlieger, Dorien
Wang, Nianshuang
Hoffmann, Markus
Wrapp, Daniel
Graham, Barney S.
Saelens, Xavier
Torres, Gretel M.
McLellan, Jason S.
Roose, Kenny
Pöhlmann, Stefan
Author_xml – sequence: 1
  givenname: Daniel
  surname: Wrapp
  fullname: Wrapp, Daniel
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
– sequence: 2
  givenname: Dorien
  surname: De Vlieger
  fullname: De Vlieger, Dorien
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 3
  givenname: Kizzmekia S.
  surname: Corbett
  fullname: Corbett, Kizzmekia S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Gretel M.
  surname: Torres
  fullname: Torres, Gretel M.
  organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
– sequence: 5
  givenname: Nianshuang
  surname: Wang
  fullname: Wang, Nianshuang
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
– sequence: 6
  givenname: Wander
  surname: Van Breedam
  fullname: Van Breedam, Wander
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 7
  givenname: Kenny
  surname: Roose
  fullname: Roose, Kenny
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 8
  givenname: Loes
  surname: van Schie
  fullname: van Schie, Loes
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 9
  givenname: Markus
  surname: Hoffmann
  fullname: Hoffmann, Markus
  organization: Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, 37077 Göttingen, Germany
– sequence: 10
  givenname: Stefan
  surname: Pöhlmann
  fullname: Pöhlmann, Stefan
  organization: Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, 37077 Göttingen, Germany
– sequence: 11
  givenname: Barney S.
  surname: Graham
  fullname: Graham, Barney S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 12
  givenname: Nico
  surname: Callewaert
  fullname: Callewaert, Nico
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 13
  givenname: Bert
  surname: Schepens
  fullname: Schepens, Bert
  email: bert.schepens@vib-ugent.be
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 14
  givenname: Xavier
  surname: Saelens
  fullname: Saelens, Xavier
  email: xavier.saelens@vib-ugent.be
  organization: VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
– sequence: 15
  givenname: Jason S.
  orcidid: 0000-0003-3991-542X
  surname: McLellan
  fullname: McLellan, Jason S.
  email: jmclellan@austin.utexas.edu
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32375025$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFL8AB-cglYWzHSSwhpHb5K1WAVDhbjjMpXmXtYjsrlU-Pl20RcCgnH-a95zfzOyFHPngk5CmDmgFrX2xqi_Ncc-BQQ1ODYA_IioHqqoZ1_IisABSv-rZrjslJShsA6KWUj8ix4KKTwOWK2MscF5uXaGZ6bpJLdAqRfg4ZfaYfccll4H6Y7IKnYaLnmI0NMXizc3FJmOhwQy-dv5qxeh22xnm6Nluc3UjPfHZDGB2mx-ThZOaET27fU_L17Zsv6_fVxad3H9ZnF5WVPcuVwY6NfFCykdBORtipb5WdAKHlUrKJq8mCkm3LGiP7kXUWRjMKZs2AoGAQp-TVIfd6GbY42rJCaa-vo9uaeKODcfrviXff9FXY6Y4p1QlRAp7fBsTwfcGU9dal_Y2Nx7AkzRuhhOqhk_-XCqV60ZcNivTZn7V-97mDUAT9QWBjSCnipK3Lv05eWrpZM9B73nqj9x_oPW8NjS68i5X_Y71Lv9f08mDCAmPnMOpkHXqLo4tosx6Du8_-ExC9xc8
CitedBy_id crossref_primary_10_1038_s41598_020_74761_y
crossref_primary_10_1371_journal_ppat_1009352
crossref_primary_10_1080_19420862_2020_1778435
crossref_primary_10_1186_s12934_021_01576_5
crossref_primary_10_1002_rmv_2143
crossref_primary_10_1016_j_jcyt_2020_08_009
crossref_primary_10_1016_j_snb_2024_135286
crossref_primary_10_1016_j_celrep_2021_109771
crossref_primary_10_1016_j_progpolymsci_2021_101410
crossref_primary_10_1016_j_cell_2020_08_012
crossref_primary_10_1126_scitranslmed_abi7826
crossref_primary_10_2174_1566524023666230417112543
crossref_primary_10_1073_pnas_2300258120
crossref_primary_10_1016_j_pep_2022_106210
crossref_primary_10_1038_s42003_022_03630_3
crossref_primary_10_1073_pnas_2216612120
crossref_primary_10_1016_j_compbiomed_2021_104570
crossref_primary_10_1371_journal_pcbi_1009675
crossref_primary_10_1021_acsabm_2c00123
crossref_primary_10_1371_journal_ppat_1011789
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_1016_j_intimp_2020_106760
crossref_primary_10_1080_17460441_2021_1909566
crossref_primary_10_1016_j_ebiom_2023_104960
crossref_primary_10_3390_v14112346
crossref_primary_10_7554_eLife_83710
crossref_primary_10_1016_j_bios_2024_116598
crossref_primary_10_1016_j_chom_2021_03_005
crossref_primary_10_1016_j_ab_2022_114546
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_3389_fmicb_2022_875840
crossref_primary_10_1080_22221751_2020_1787108
crossref_primary_10_1089_vim_2021_0160
crossref_primary_10_1007_s00705_022_05609_1
crossref_primary_10_1016_j_eas_2023_100034
crossref_primary_10_1093_bib_bbab241
crossref_primary_10_1128_mmbr_00026_21
crossref_primary_10_1089_cmb_2020_0193
crossref_primary_10_1002_adtp_202100099
crossref_primary_10_1021_acs_jproteome_3c00569
crossref_primary_10_1126_science_abe3255
crossref_primary_10_1038_s41598_021_84840_3
crossref_primary_10_1371_journal_ppat_1012625
crossref_primary_10_1038_s41598_022_15993_y
crossref_primary_10_1038_s42003_021_02702_0
crossref_primary_10_1016_j_stemcr_2020_12_010
crossref_primary_10_1038_s42003_021_02766_y
crossref_primary_10_1002_jat_4548
crossref_primary_10_1039_D2SD00087C
crossref_primary_10_1038_s41467_023_37290_6
crossref_primary_10_1021_acsnano_4c07066
crossref_primary_10_1002_pro_3943
crossref_primary_10_1007_s12250_020_00327_x
crossref_primary_10_1128_jvi_01622_21
crossref_primary_10_1093_abt_tbaa020
crossref_primary_10_1038_s41598_022_13819_5
crossref_primary_10_1016_j_cell_2021_06_021
crossref_primary_10_2174_0126667975269506231108053010
crossref_primary_10_1038_s41598_023_40919_7
crossref_primary_10_1128_JVI_00496_21
crossref_primary_10_1021_acsomega_1c00166
crossref_primary_10_1038_s41598_020_79036_0
crossref_primary_10_3389_fimmu_2023_1111385
crossref_primary_10_3390_bioengineering10030389
crossref_primary_10_2174_0126673878260516231017165459
crossref_primary_10_1111_febs_16239
crossref_primary_10_1002_advs_202002148
crossref_primary_10_1146_annurev_biophys_062920_063711
crossref_primary_10_3389_fimmu_2020_02130
crossref_primary_10_1039_d0mt00191k
crossref_primary_10_1002_ange_202100225
crossref_primary_10_1038_s41598_021_99275_z
crossref_primary_10_1177_2472555220979579
crossref_primary_10_1016_j_intimp_2020_106980
crossref_primary_10_1038_s41598_021_97423_z
crossref_primary_10_1080_25729861_2020_1780721
crossref_primary_10_1083_jcb_202006159
crossref_primary_10_3390_app132011520
crossref_primary_10_1016_j_idairyj_2023_105765
crossref_primary_10_1002_aic_17440
crossref_primary_10_1016_j_immuni_2020_05_002
crossref_primary_10_1038_s41598_021_81895_0
crossref_primary_10_1080_19420862_2020_1804241
crossref_primary_10_3390_v16020185
crossref_primary_10_1371_journal_ppat_1009328
crossref_primary_10_3390_cells11213355
crossref_primary_10_1016_j_vaccine_2022_01_021
crossref_primary_10_1038_s41598_021_89887_w
crossref_primary_10_1016_j_cll_2020_08_014
crossref_primary_10_1021_acs_analchem_2c00062
crossref_primary_10_1016_j_bbrc_2020_10_012
crossref_primary_10_1016_j_isci_2021_103006
crossref_primary_10_1002_marc_202000752
crossref_primary_10_1080_07391102_2023_2236718
crossref_primary_10_1128_JCM_02489_20
crossref_primary_10_1371_journal_ppat_1011514
crossref_primary_10_1021_acs_langmuir_2c01699
crossref_primary_10_1016_j_bbrc_2021_09_053
crossref_primary_10_1021_acscentsci_0c01056
crossref_primary_10_1016_j_isci_2023_107085
crossref_primary_10_1021_jacs_2c02764
crossref_primary_10_2147_IJN_S296383
crossref_primary_10_1016_j_jtauto_2021_100108
crossref_primary_10_1016_j_micpath_2024_107107
crossref_primary_10_1016_j_colcom_2020_100356
crossref_primary_10_1016_j_csbj_2020_12_039
crossref_primary_10_1038_s41392_021_00653_w
crossref_primary_10_1038_s41579_021_00630_8
crossref_primary_10_1016_j_cell_2021_04_033
crossref_primary_10_1080_19420862_2021_1958663
crossref_primary_10_1002_rmv_2183
crossref_primary_10_1016_j_jbc_2021_101202
crossref_primary_10_1016_j_cell_2024_12_031
crossref_primary_10_1111_all_14449
crossref_primary_10_1038_s41598_021_99401_x
crossref_primary_10_1172_jci_insight_142362
crossref_primary_10_1021_acs_jafc_4c02257
crossref_primary_10_21931_RB_2021_06_04_31
crossref_primary_10_3390_biomedicines12030642
crossref_primary_10_3389_fimmu_2020_581076
crossref_primary_10_1002_prot_26422
crossref_primary_10_1038_s41422_020_00444_y
crossref_primary_10_1186_s12951_024_02573_7
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_3390_ijms21134662
crossref_primary_10_1016_j_immuni_2020_10_023
crossref_primary_10_1021_acs_jcim_1c01523
crossref_primary_10_1016_j_bcp_2021_114724
crossref_primary_10_1038_s41467_020_18174_5
crossref_primary_10_1093_abt_tbaa009
crossref_primary_10_1016_j_ijbiomac_2020_10_031
crossref_primary_10_1038_s41594_020_0480_y
crossref_primary_10_1371_journal_ppat_1009542
crossref_primary_10_1038_s41422_021_00487_9
crossref_primary_10_3389_fimmu_2022_863831
crossref_primary_10_1007_s11274_024_03990_4
crossref_primary_10_1038_s41429_024_00748_w
crossref_primary_10_1016_j_bj_2020_11_011
crossref_primary_10_1128_spectrum_01814_21
crossref_primary_10_1073_pnas_2212658119
crossref_primary_10_1016_j_ijbiomac_2024_134850
crossref_primary_10_1177_09636897221090259
crossref_primary_10_1002_jmv_26926
crossref_primary_10_1016_j_csbj_2021_05_002
crossref_primary_10_1128_spectrum_04199_22
crossref_primary_10_3389_fmolb_2021_670815
crossref_primary_10_1073_pnas_2101918118
crossref_primary_10_1098_rsob_230252
crossref_primary_10_1080_19420862_2022_2076775
crossref_primary_10_1093_oxfimm_iqab003
crossref_primary_10_3389_fimmu_2022_958584
crossref_primary_10_1007_s10719_021_10021_z
crossref_primary_10_1038_s41467_020_20501_9
crossref_primary_10_1056_NEJMoa2022483
crossref_primary_10_1098_rsob_230376
crossref_primary_10_1002_anie_202100225
crossref_primary_10_3390_bios14030146
crossref_primary_10_3389_fimmu_2021_690742
crossref_primary_10_1016_j_apsb_2021_05_007
crossref_primary_10_3389_fpls_2020_612781
crossref_primary_10_1016_j_micinf_2022_105078
crossref_primary_10_2139_ssrn_3754549
crossref_primary_10_1021_acscentsci_0c01309
crossref_primary_10_1016_j_jbc_2022_102709
crossref_primary_10_1016_j_jgg_2021_02_006
crossref_primary_10_1016_j_aquaculture_2021_737654
crossref_primary_10_1016_j_colsurfa_2022_128967
crossref_primary_10_32607_actanaturae_27374
crossref_primary_10_1016_j_isci_2022_104549
crossref_primary_10_1126_sciadv_abm6909
crossref_primary_10_3390_biom10121661
crossref_primary_10_1080_21645515_2021_1935172
crossref_primary_10_3389_fimmu_2021_637651
crossref_primary_10_1016_j_virs_2023_07_003
crossref_primary_10_3390_molecules28176358
crossref_primary_10_2139_ssrn_4001946
crossref_primary_10_1016_j_tips_2020_07_004
crossref_primary_10_1186_s12951_025_03243_y
crossref_primary_10_3390_cells11010008
crossref_primary_10_1016_j_scr_2020_102125
crossref_primary_10_1038_s41467_020_19204_y
crossref_primary_10_1038_s41586_022_05513_3
crossref_primary_10_1128_mBio_03372_20
crossref_primary_10_15252_embr_202153865
crossref_primary_10_1038_s41419_024_06802_7
crossref_primary_10_1126_science_abg2294
crossref_primary_10_1016_j_jviromet_2023_114787
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_1073_pnas_2109744118
crossref_primary_10_3389_fmolb_2021_671923
crossref_primary_10_1111_bph_15359
crossref_primary_10_15252_embr_202052325
crossref_primary_10_1002_advs_202306716
crossref_primary_10_1016_j_fmre_2021_02_001
crossref_primary_10_1038_s41392_020_00352_y
crossref_primary_10_1002_jmv_28572
crossref_primary_10_1007_s10389_020_01435_4
crossref_primary_10_1021_acs_chemrev_1c00965
crossref_primary_10_1021_acs_bioconjchem_1c00463
crossref_primary_10_1016_j_medntd_2020_100043
crossref_primary_10_1126_sciimmunol_abd4758
crossref_primary_10_1016_j_jbi_2021_103821
crossref_primary_10_1007_s00216_020_03137_y
crossref_primary_10_1038_s41467_021_27610_z
crossref_primary_10_1099_jgv_0_001731
crossref_primary_10_1016_j_bpj_2021_01_012
crossref_primary_10_1016_j_fsi_2022_01_027
crossref_primary_10_1038_s41598_021_01363_7
crossref_primary_10_1093_nsr_nwad161
crossref_primary_10_1016_j_celrep_2020_108322
crossref_primary_10_1016_j_ijbiomac_2024_138751
crossref_primary_10_31083_j_fbl2804067
crossref_primary_10_1007_s40588_023_00212_7
crossref_primary_10_1371_journal_pone_0272364
crossref_primary_10_1002_advs_202001474
crossref_primary_10_1021_acs_jctc_1c00372
crossref_primary_10_3390_v13081498
crossref_primary_10_1038_s41467_021_24905_z
crossref_primary_10_1016_j_cell_2021_01_037
crossref_primary_10_3390_ijms252413649
crossref_primary_10_1016_j_colsurfa_2021_126275
crossref_primary_10_1128_mSystems_00030_21
crossref_primary_10_1038_s41467_021_25777_z
crossref_primary_10_1096_fj_202100986RR
crossref_primary_10_15252_embj_2021107985
crossref_primary_10_1016_j_bbrc_2021_06_001
crossref_primary_10_1016_j_tim_2020_12_006
crossref_primary_10_1038_s41578_020_00247_y
crossref_primary_10_1186_s12951_021_00768_w
crossref_primary_10_1016_j_csbj_2020_11_011
crossref_primary_10_1007_s40291_021_00533_7
crossref_primary_10_1016_j_isci_2022_103960
crossref_primary_10_3390_pr10061053
crossref_primary_10_1016_j_virol_2021_07_001
crossref_primary_10_1016_j_celrep_2021_109928
crossref_primary_10_1073_pnas_2205412119
crossref_primary_10_3390_ijms23073721
crossref_primary_10_1038_s41598_021_82833_w
crossref_primary_10_1002_2211_5463_13454
crossref_primary_10_2174_1872210516666220819104853
crossref_primary_10_1016_j_celrep_2021_110143
crossref_primary_10_1016_j_jbc_2023_105343
crossref_primary_10_1073_pnas_2024102118
crossref_primary_10_3390_ijms24054511
crossref_primary_10_1016_j_intimp_2023_109934
crossref_primary_10_1038_s41392_024_01876_3
crossref_primary_10_1016_j_ijbiomac_2021_10_126
crossref_primary_10_1371_journal_pone_0266250
crossref_primary_10_1002_VIW_20200181
crossref_primary_10_1016_j_jbiotec_2021_07_010
crossref_primary_10_1016_j_medidd_2020_100077
crossref_primary_10_1016_j_omtm_2022_01_015
crossref_primary_10_1016_j_str_2021_07_002
crossref_primary_10_1038_s41467_021_27799_z
crossref_primary_10_4049_jimmunol_2100727
crossref_primary_10_1016_j_celrep_2023_113292
crossref_primary_10_1111_cbdd_13847
crossref_primary_10_3389_fnins_2023_1169740
crossref_primary_10_1016_j_scr_2021_102219
crossref_primary_10_1073_pnas_2114397119
crossref_primary_10_1038_s41598_023_41092_7
crossref_primary_10_1016_j_pep_2021_105928
crossref_primary_10_47183_mes_2022_049
crossref_primary_10_1038_s42003_022_03866_z
crossref_primary_10_1093_bib_bbac190
crossref_primary_10_5812_tms_114888
crossref_primary_10_1126_science_abe6230
crossref_primary_10_1007_s00604_023_05671_9
crossref_primary_10_1016_j_str_2022_02_011
crossref_primary_10_1016_j_it_2020_09_004
crossref_primary_10_1002_jcb_30017
crossref_primary_10_3390_cells10061291
crossref_primary_10_1016_j_celrep_2021_108737
crossref_primary_10_1016_j_fmre_2021_01_009
crossref_primary_10_1016_j_rvsc_2022_02_003
crossref_primary_10_1126_sciadv_abf2467
crossref_primary_10_3390_v14061162
crossref_primary_10_1016_j_bbrc_2024_150746
crossref_primary_10_3390_computation10060095
crossref_primary_10_1002_iid3_446
crossref_primary_10_1038_s41598_022_26709_7
crossref_primary_10_1002_mco2_60
crossref_primary_10_1126_sciadv_abq8276
crossref_primary_10_1038_s41586_021_03676_z
crossref_primary_10_3390_pharmaceutics15020451
crossref_primary_10_3390_v13061055
crossref_primary_10_1007_s11033_021_06819_7
crossref_primary_10_1038_s41564_022_01261_2
crossref_primary_10_1038_s41421_021_00370_2
crossref_primary_10_3390_ph13070155
crossref_primary_10_1016_j_jconrel_2021_11_023
crossref_primary_10_48130_fmr_0024_0020
crossref_primary_10_1007_s11596_021_2453_8
crossref_primary_10_1016_j_cell_2020_06_044
crossref_primary_10_1073_pnas_2414583121
crossref_primary_10_1021_acs_biochem_1c00139
crossref_primary_10_1016_j_isci_2022_105259
crossref_primary_10_2147_IJN_S387160
crossref_primary_10_3389_fmolb_2021_671633
crossref_primary_10_3389_fcell_2021_578825
crossref_primary_10_1016_j_bea_2022_100054
crossref_primary_10_1136_gutjnl_2020_324000
crossref_primary_10_3390_microorganisms8060850
crossref_primary_10_1016_j_cell_2020_09_007
crossref_primary_10_1002_cpt_2207
crossref_primary_10_3390_vaccines12020129
crossref_primary_10_1016_j_jhazmat_2022_129435
crossref_primary_10_4252_wjsc_v12_i8_731
crossref_primary_10_1002_14651858_CD014945
crossref_primary_10_3390_bios12070548
crossref_primary_10_1038_s41541_021_00324_5
crossref_primary_10_1371_journal_ppat_1009704
crossref_primary_10_1002_biot_202200633
crossref_primary_10_1016_j_jbc_2021_101290
crossref_primary_10_3390_ijms24044068
crossref_primary_10_1021_jacs_3c11760
crossref_primary_10_1039_D0MD00385A
crossref_primary_10_1126_sciadv_abf1591
crossref_primary_10_1002_biot_202300532
crossref_primary_10_1038_s41551_021_00734_9
crossref_primary_10_1002_prot_26279
crossref_primary_10_1016_j_bcp_2022_115401
crossref_primary_10_1016_j_nantod_2021_101350
crossref_primary_10_1146_annurev_med_042420_113838
crossref_primary_10_3390_cells11020302
crossref_primary_10_1038_s41392_020_00318_0
crossref_primary_10_1002_ctm2_1636
crossref_primary_10_1002_advs_202304818
crossref_primary_10_1007_s11030_024_11086_2
crossref_primary_10_3389_fddsv_2022_927164
crossref_primary_10_3389_fimmu_2021_658519
crossref_primary_10_1016_j_celrep_2021_109353
crossref_primary_10_1039_D2NR00306F
crossref_primary_10_3390_v13040566
crossref_primary_10_1186_s12934_024_02311_6
crossref_primary_10_1038_s41467_024_50956_z
crossref_primary_10_1146_annurev_pharmtox_061220_093932
crossref_primary_10_1088_0256_307X_38_1_018701
crossref_primary_10_1016_j_jbiotec_2023_03_005
crossref_primary_10_1073_pnas_2303292120
crossref_primary_10_1126_scitranslmed_abn6859
crossref_primary_10_1073_pnas_2201433119
crossref_primary_10_1002_14651858_CD014945_pub2
crossref_primary_10_1016_j_compbiomed_2024_108091
crossref_primary_10_1007_s13205_021_02647_5
crossref_primary_10_1021_acs_nanolett_1c00118
crossref_primary_10_1016_j_molimm_2021_03_001
crossref_primary_10_1016_j_drup_2020_100733
crossref_primary_10_1038_s41467_021_25480_z
crossref_primary_10_1002_jmv_29252
crossref_primary_10_1016_j_chembiol_2021_05_019
crossref_primary_10_1016_j_coviro_2021_12_015
crossref_primary_10_1016_j_ijbiomac_2022_12_284
crossref_primary_10_1021_acsinfecdis_0c00646
crossref_primary_10_1007_s40291_022_00634_x
crossref_primary_10_1016_j_omtn_2024_102304
crossref_primary_10_1073_pnas_2100425118
crossref_primary_10_1016_j_lfs_2020_118056
crossref_primary_10_3389_fimmu_2021_697074
crossref_primary_10_1038_s41467_021_23825_2
crossref_primary_10_1016_j_phymed_2020_153364
crossref_primary_10_1002_bit_27724
crossref_primary_10_1038_s41598_021_88315_3
crossref_primary_10_3390_ijms22041705
crossref_primary_10_3390_antib12010007
crossref_primary_10_1016_j_immuni_2021_10_019
crossref_primary_10_1126_science_abb8664
crossref_primary_10_1016_j_ejmcr_2021_100003
crossref_primary_10_1016_j_bioorg_2020_104027
crossref_primary_10_1038_s43856_022_00113_8
crossref_primary_10_34172_ddj_2022_23
crossref_primary_10_1021_acsestwater_1c00208
crossref_primary_10_1126_science_abc6952
crossref_primary_10_1038_s41467_023_36106_x
Cites_doi 10.1038/srep13133
10.1186/1472-6750-9-70
10.1038/ncomms9223
10.1038/s41598-018-34171-7
10.1107/S0907444904019158
10.2144/05381BM04
10.1074/jbc.M603275200
10.1128/JVI.00127-20
10.1128/JVI.02002-17
10.1517/17425247.2015.999039
10.1074/jbc.M600697200
10.1128/JVI.77.16.8801-8811.2003
10.1110/ps.34602
10.1186/1471-2105-7-123
10.3181/0903-MR-94
10.3390/antib8010001
10.1107/S2059798318006551
10.1038/s41586-020-2012-7
10.1107/S0907444913000061
10.1038/cr.2013.92
10.1126/science.abb2507
10.7554/eLife.01456
10.1073/pnas.1707304114
10.1126/sciadv.aas9667
10.1016/S0140-6736(20)30154-9
10.1128/JVI.00837-18
10.1038/ncomms8712
10.1126/science.abb2762
10.1002/pro.3235
10.1128/JCM.00636-10
10.1056/NEJMoa030781
10.1016/j.nucmedbio.2015.03.003
10.1093/infdis/jix209
10.1093/infdis/jiq168
10.1016/S0167-4838(99)00030-8
10.1107/S0907444902016657
10.1056/NEJMoa1211721
10.1107/S2059798318002425
10.1016/j.cell.2020.02.058
10.1038/cr.2015.113
10.1038/nature02145
10.1128/AAC.01802-15
10.1038/ncomms14158
10.1080/22221751.2020.1729069
10.1080/19420862.2018.1470727
10.1016/j.chom.2014.08.009
10.1038/s41598-017-08273-7
10.1126/science.1243283
10.1038/ncomms15092
10.1074/jbc.M111.242818
10.1371/journal.pone.0025858
10.1016/S0140-6736(20)30183-5
10.1038/nature12711
10.1128/JVI.01379-08
10.1107/S0907444906045975
10.1038/nature12005
10.1126/science.1116480
10.1128/JVI.00923-19
10.1016/S0140-6736(20)30251-8
10.1038/nature17200
10.1107/S0907444910048675
10.1016/j.jmb.2009.03.042
10.1038/nature16988
10.1126/science.aaq0620
10.1038/363446a0
10.1126/science.abb7269
10.1038/cr.2016.152
10.1016/j.cell.2018.12.028
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020 Elsevier Inc. 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020 Elsevier Inc. 2020 Elsevier Inc.
CorporateAuthor VIB-CMB COVID-19 Response Team
CorporateAuthor_xml – name: VIB-CMB COVID-19 Response Team
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2020.04.031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1015.e15
ExternalDocumentID PMC7199733
32375025
10_1016_j_cell_2020_04_031
S0092867420304943
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI127521
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c581t-ae71d2b954506fa3cf869cf0e062551f29fc0956614a58d17c0dad31cabe090b3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:35:36 EDT 2025
Mon Jul 21 11:08:46 EDT 2025
Fri Jul 11 05:17:31 EDT 2025
Wed Feb 19 02:30:23 EST 2025
Tue Jul 01 02:17:06 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Fri Feb 23 02:48:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
SARS
SARS-CoV-2
nanobody
MERS
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-ae71d2b954506fa3cf869cf0e062551f29fc0956614a58d17c0dad31cabe090b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
ORCID 0000-0003-3991-542X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867420304943
PMID 32375025
PQID 2399838869
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199733
proquest_miscellaneous_2439398075
proquest_miscellaneous_2399838869
pubmed_primary_32375025
crossref_citationtrail_10_1016_j_cell_2020_04_031
crossref_primary_10_1016_j_cell_2020_04_031
elsevier_sciencedirect_doi_10_1016_j_cell_2020_04_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-28
PublicationDateYYYYMMDD 2020-05-28
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ge, Li, Yang, Chmura, Zhu, Epstein, Mazet, Hu, Zhang, Peng (bib15) 2013; 503
Croll (bib7) 2018; 74
Schoonooghe, Kaigorodov, Zawisza, Dumolyn, Haustraete, Grooten, Mertens (bib45) 2009; 9
Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib30) 2003; 426
Morin, Eisenbraun, Key, Sanschagrin, Timony, Ottaviano, Sliz (bib37) 2013; 2
Pak, Sharon, Satkunarajah, Auperin, Cameron, Kelvin, Seetharaman, Cochrane, Plummer, Berry, Rini (bib38) 2009; 388
Stalin Raj, Okba, Gutierrez-Alvarez, Drabek, van Dieren, Widagdo, Lamers, Widjaja, Fernandez-Delgado, Sola (bib46) 2018; 4
Larios Mora, Detalle, Gallup, Van Geelen, Stohr, Duprez, Ackermann (bib28) 2018; 10
Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib1) 2002; 58
Wang, Shi, Joyce, Modjarrad, Zhang, Leung, Lees, Zhou, Yassine, Kanekiyo (bib55) 2015; 6
Chen, Bao, Chen, Zou, Xue, Li, Lv, Gu, Gao, Cui (bib6) 2017; 215
Lin-Cereghino, Wong, Xiong, Giang, Luong, Vu, Johnson, Lin-Cereghino (bib33) 2005; 38
Rotman, Welling, van den Boogaard, Moursel, van der Graaf, van Buchem, van der Maarel, van der Weerd (bib44) 2015; 42
Ksiazek, Erdman, Goldsmith, Zaki, Peret, Emery, Tong, Urbani, Comer, Lim (bib26) 2003; 348
Prabakaran, Gan, Feng, Zhu, Choudhry, Xiao, Ji, Dimitrov (bib40) 2006; 281
Wang, Qi, Yuan, Xuan, Han, Wan, Ji, Li, Wu, Wang (bib54) 2014; 16
Woo, Lau, Huang, Yuen (bib57) 2009; 234
Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib70) 2018; 27
Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib39) 2017; 114
Gaunt, Hardie, Claas, Simmonds, Templeton (bib14) 2010; 48
McCoy (bib35) 2007; 63
Wan, Shang, Graham, Baric, Li (bib52) 2020; 94
Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu (bib34) 2020; 395
Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib63) 2017; 8
Dumoulin, Conrath, Van Meirhaeghe, Meersman, Heremans, Frenken, Muyldermans, Wyns, Matagne (bib10) 2002; 11
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib20) 2020; 395
Govaert, Pellis, Deschacht, Vincke, Conrath, Muyldermans, Saerens (bib16) 2012; 287
Respaud, Vecellio, Diot, Heuzé-Vourc’h (bib42) 2015; 12
Tian, Li, Huang, Xia, Lu, Shi, Lu, Jiang, Yang, Wu, Ying (bib47) 2020; 9
Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib24) 2018; 8
Yu, Zhang, Jiang, Cui, Li, Wang, Wang, Fu, Shi, Li (bib62) 2015; 5
Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib65) 2012; 367
Hwang, Lin, Santelli, Sui, Jaroszewski, Stec, Farzan, Marasco, Liddington (bib21) 2006; 281
Hoffmann, Kleine-Weber, Krüger, Müller, Drosten, Pöhlmann (bib19) 2020
Laursen, Friesen, Zhu, Jongeneelen, Blokland, Vermond, van Eijgen, Tang, van Diepen, Obmolova (bib29) 2018; 362
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib27) 2020
Li, Wan, Liu, Zhao, Lu, Qi, Wang, Lu, Wu, Liu (bib32) 2015; 25
Li, Li, Farzan, Harrison (bib31) 2005; 309
Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib49) 2016; 531
Battye, Kontogiannis, Johnson, Powell, Leslie (bib2) 2011; 67
Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib64) 2020
Gui, Song, Zhou, Xu, Chen, Xiang, Wang (bib17) 2017; 27
Ying, Prabakaran, Du, Shi, Feng, Wang, Wang, Li, Jiang, Dimitrov, Zhou (bib61) 2015; 6
Ibañez, De Filette, Hultberg, Verrips, Temperton, Weiss, Vandevelde, Schepens, Vanlandschoot, Saelens (bib22) 2011; 203
Motulsky, Brown (bib68) 2006; 7
Berger Rentsch, Zimmer (bib3) 2011; 6
Rossey, Gilman, Kabeche, Sedeyn, Wrapp, Kanekiyo, Chen, Mas, Spitaels, Melero (bib43) 2017; 8
Zhao, He, Sun, Qiu, Tai, Chen, Li, Chen, Guo, Wang (bib66) 2018; 92
Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (bib69) 2018; 74
Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib23) 2016; 531
Emsley, Cowtan (bib11) 2004; 60
Evans, Murshudov (bib12) 2013; 69
Yan, Zhang, Li, Xia, Guo, Zhou (bib60) 2020; 367
McLellan, Chen, Joyce, Sastry, Stewart-Jones, Yang, Zhang, Chen, Srivatsan, Zheng (bib36) 2013; 342
van der Linden, Frenken, de Geus, Harmsen, Ruuls, Stok, de Ron, Wilson, Davis, Verrips (bib48) 1999; 1431
Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib50) 2019; 176
Wrapp, McLellan (bib58) 2019
Chan, Yuan, Kok, To, Chu, Yang, Xing, Liu, Yip, Poon (bib5) 2020; 395
Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib41) 2013; 495
De Vlieger, Ballegeer, Rossey, Schepens, Saelens (bib8) 2018; 8
Forsman, Beirnaert, Aasa-Chapman, Hoorelbeke, Hijazi, Koh, Tack, Szynol, Kelly, McKnight (bib13) 2008; 82
Wang, Shi, Chappell, Joyce, Zhang, Kanekiyo, Becker, van Doremalen, Fischer, Wang (bib56) 2018; 92
Detalle, Stohr, Palomo, Piedra, Gilbert, Mas, Millar, Power, Stortelers, Allosery (bib9) 2015; 60
Wang, Shi, Jiang, Zhang, Wang, Tong, Guo, Fu, Cui, Liu (bib53) 2013; 23
Bosch, van der Zee, de Haan, Rottier (bib4) 2003; 77
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib67) 2020; 579
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib59) 2020; 367
Hamers-Casterman, Atarhouch, Muyldermans, Robinson, Hamers, Songa, Bendahman, Hamers (bib18) 1993; 363
Koch, Kalusche, Torres, Stanfield, Danquah, Khazanehdari, von Briesen, Geertsma, Wilson, Wernery (bib25) 2017; 7
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib51) 2020; 181
Prabakaran (10.1016/j.cell.2020.04.031_bib40) 2006; 281
Evans (10.1016/j.cell.2020.04.031_bib12) 2013; 69
Dumoulin (10.1016/j.cell.2020.04.031_bib10) 2002; 11
Croll (10.1016/j.cell.2020.04.031_bib7) 2018; 74
Pak (10.1016/j.cell.2020.04.031_bib38) 2009; 388
Yuan (10.1016/j.cell.2020.04.031_bib64) 2020
Schoonooghe (10.1016/j.cell.2020.04.031_bib45) 2009; 9
Huang (10.1016/j.cell.2020.04.031_bib20) 2020; 395
Morin (10.1016/j.cell.2020.04.031_bib37) 2013; 2
Yuan (10.1016/j.cell.2020.04.031_bib63) 2017; 8
Yan (10.1016/j.cell.2020.04.031_bib60) 2020; 367
Raj (10.1016/j.cell.2020.04.031_bib41) 2013; 495
Hwang (10.1016/j.cell.2020.04.031_bib21) 2006; 281
Zhao (10.1016/j.cell.2020.04.031_bib66) 2018; 92
Ibañez (10.1016/j.cell.2020.04.031_bib22) 2011; 203
Zaki (10.1016/j.cell.2020.04.031_bib65) 2012; 367
McLellan (10.1016/j.cell.2020.04.031_bib36) 2013; 342
Rossey (10.1016/j.cell.2020.04.031_bib43) 2017; 8
Wan (10.1016/j.cell.2020.04.031_bib52) 2020; 94
Woo (10.1016/j.cell.2020.04.031_bib57) 2009; 234
Ying (10.1016/j.cell.2020.04.031_bib61) 2015; 6
Li (10.1016/j.cell.2020.04.031_bib31) 2005; 309
Emsley (10.1016/j.cell.2020.04.031_bib11) 2004; 60
Lin-Cereghino (10.1016/j.cell.2020.04.031_bib33) 2005; 38
McCoy (10.1016/j.cell.2020.04.031_bib35) 2007; 63
Pallesen (10.1016/j.cell.2020.04.031_bib39) 2017; 114
Wang (10.1016/j.cell.2020.04.031_bib55) 2015; 6
Koch (10.1016/j.cell.2020.04.031_bib25) 2017; 7
Gaunt (10.1016/j.cell.2020.04.031_bib14) 2010; 48
Goddard (10.1016/j.cell.2020.04.031_bib70) 2018; 27
Hamers-Casterman (10.1016/j.cell.2020.04.031_bib18) 1993; 363
Lu (10.1016/j.cell.2020.04.031_bib34) 2020; 395
Gui (10.1016/j.cell.2020.04.031_bib17) 2017; 27
Kirchdoerfer (10.1016/j.cell.2020.04.031_bib23) 2016; 531
Wrapp (10.1016/j.cell.2020.04.031_bib58) 2019
Battye (10.1016/j.cell.2020.04.031_bib2) 2011; 67
De Vlieger (10.1016/j.cell.2020.04.031_bib8) 2018; 8
Chen (10.1016/j.cell.2020.04.031_bib6) 2017; 215
Hoffmann (10.1016/j.cell.2020.04.031_bib19) 2020
Larios Mora (10.1016/j.cell.2020.04.031_bib28) 2018; 10
Respaud (10.1016/j.cell.2020.04.031_bib42) 2015; 12
Bosch (10.1016/j.cell.2020.04.031_bib4) 2003; 77
Walls (10.1016/j.cell.2020.04.031_bib51) 2020; 181
Adams (10.1016/j.cell.2020.04.031_bib1) 2002; 58
Walls (10.1016/j.cell.2020.04.031_bib49) 2016; 531
Laursen (10.1016/j.cell.2020.04.031_bib29) 2018; 362
Kirchdoerfer (10.1016/j.cell.2020.04.031_bib24) 2018; 8
Yu (10.1016/j.cell.2020.04.031_bib62) 2015; 5
van der Linden (10.1016/j.cell.2020.04.031_bib48) 1999; 1431
Lan (10.1016/j.cell.2020.04.031_bib27) 2020
Wrapp (10.1016/j.cell.2020.04.031_bib59) 2020; 367
Chan (10.1016/j.cell.2020.04.031_bib5) 2020; 395
Afonine (10.1016/j.cell.2020.04.031_bib69) 2018; 74
Walls (10.1016/j.cell.2020.04.031_bib50) 2019; 176
Wang (10.1016/j.cell.2020.04.031_bib54) 2014; 16
Motulsky (10.1016/j.cell.2020.04.031_bib68) 2006; 7
Li (10.1016/j.cell.2020.04.031_bib30) 2003; 426
Berger Rentsch (10.1016/j.cell.2020.04.031_bib3) 2011; 6
Tian (10.1016/j.cell.2020.04.031_bib47) 2020; 9
Wang (10.1016/j.cell.2020.04.031_bib53) 2013; 23
Govaert (10.1016/j.cell.2020.04.031_bib16) 2012; 287
Ksiazek (10.1016/j.cell.2020.04.031_bib26) 2003; 348
Stalin Raj (10.1016/j.cell.2020.04.031_bib46) 2018; 4
Zhou (10.1016/j.cell.2020.04.031_bib67) 2020; 579
Rotman (10.1016/j.cell.2020.04.031_bib44) 2015; 42
Detalle (10.1016/j.cell.2020.04.031_bib9) 2015; 60
Li (10.1016/j.cell.2020.04.031_bib32) 2015; 25
Wang (10.1016/j.cell.2020.04.031_bib56) 2018; 92
Ge (10.1016/j.cell.2020.04.031_bib15) 2013; 503
Forsman (10.1016/j.cell.2020.04.031_bib13) 2008; 82
32620562 - Sci Immunol. 2020 Jul 3;5(49)
32531248 - Cell. 2020 Jun 11;181(6):1436-1441
References_xml – volume: 495
  start-page: 251
  year: 2013
  end-page: 254
  ident: bib41
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
– year: 2020
  ident: bib19
  article-title: The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells
  publication-title: bioRxiv
– volume: 176
  start-page: 1026
  year: 2019
  end-page: 1039.15
  ident: bib50
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  ident: bib1
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: bib39
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib11
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 531
  start-page: 114
  year: 2016
  end-page: 117
  ident: bib49
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
– volume: 8
  start-page: 1
  year: 2018
  ident: bib8
  article-title: Single-Domain Antibodies and Their Formatting to Combat Viral Infections
  publication-title: Antibodies (Basel)
– volume: 342
  start-page: 592
  year: 2013
  end-page: 598
  ident: bib36
  article-title: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus
  publication-title: Science
– volume: 8
  start-page: 15092
  year: 2017
  ident: bib63
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
– volume: 363
  start-page: 446
  year: 1993
  end-page: 448
  ident: bib18
  article-title: Naturally occurring antibodies devoid of light chains
  publication-title: Nature
– year: 2019
  ident: bib58
  article-title: The 3.1 A cryo-EM structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation
  publication-title: J Virol.
– volume: 503
  start-page: 535
  year: 2013
  end-page: 538
  ident: bib15
  article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
  publication-title: Nature
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib67
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 74
  start-page: 531
  year: 2018
  end-page: 544
  ident: bib69
  article-title: Real-space refinement in PHENIX for cryo-EM and crystallography
  publication-title: Acta Crystallogr D. Struct. Biol.
– volume: 281
  start-page: 15829
  year: 2006
  end-page: 15836
  ident: bib40
  article-title: Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody
  publication-title: J. Biol. Chem.
– volume: 94
  start-page: e00127-20
  year: 2020
  ident: bib52
  article-title: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus
  publication-title: J. Virol.
– volume: 23
  start-page: 986
  year: 2013
  end-page: 993
  ident: bib53
  article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4
  publication-title: Cell Res.
– volume: 215
  start-page: 1807
  year: 2017
  end-page: 1815
  ident: bib6
  article-title: Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset
  publication-title: J. Infect. Dis.
– volume: 348
  start-page: 1953
  year: 2003
  end-page: 1966
  ident: bib26
  article-title: A novel coronavirus associated with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
– volume: 77
  start-page: 8801
  year: 2003
  end-page: 8811
  ident: bib4
  article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex
  publication-title: J. Virol.
– volume: 388
  start-page: 815
  year: 2009
  end-page: 823
  ident: bib38
  article-title: Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain
  publication-title: J. Mol. Biol.
– volume: 395
  start-page: 514
  year: 2020
  end-page: 523
  ident: bib5
  article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
  publication-title: Lancet
– volume: 367
  start-page: 1814
  year: 2012
  end-page: 1820
  ident: bib65
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 1027
  year: 2015
  end-page: 1039
  ident: bib42
  article-title: Nebulization as a delivery method for mAbs in respiratory diseases
  publication-title: Expert Opin. Drug Deliv.
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: bib70
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
– volume: 287
  start-page: 1970
  year: 2012
  end-page: 1979
  ident: bib16
  article-title: Dual beneficial effect of interloop disulfide bond for single domain antibody fragments
  publication-title: J. Biol. Chem.
– volume: 92
  year: 2018
  ident: bib66
  article-title: A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV
  publication-title: J. Virol.
– volume: 60
  start-page: 6
  year: 2015
  end-page: 13
  ident: bib9
  article-title: Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection
  publication-title: Antimicrob. Agents Chemother.
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: bib12
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 74
  start-page: 519
  year: 2018
  end-page: 530
  ident: bib7
  article-title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps
  publication-title: Acta Crystallogr. D Struct. Biol.
– year: 2020
  ident: bib27
  article-title: Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor
  publication-title: bioRxiv
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: bib60
  article-title: Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2
  publication-title: Science
– volume: 5
  start-page: 13133
  year: 2015
  ident: bib62
  article-title: Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27
  publication-title: Sci. Rep.
– volume: 67
  start-page: 271
  year: 2011
  end-page: 281
  ident: bib2
  article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 7
  start-page: 123
  year: 2006
  ident: bib68
  article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 778
  year: 2018
  end-page: 795
  ident: bib28
  article-title: Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs
  publication-title: MAbs
– volume: 234
  start-page: 1117
  year: 2009
  end-page: 1127
  ident: bib57
  article-title: Coronavirus diversity, phylogeny and interspecies jumping
  publication-title: Exp. Biol. Med. (Maywood)
– volume: 92
  start-page: e02002
  year: 2018
  end-page: e02017
  ident: bib56
  article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
  publication-title: J. Virol.
– year: 2020
  ident: bib64
  article-title: A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: bib30
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
– volume: 48
  start-page: 2940
  year: 2010
  end-page: 2947
  ident: bib14
  article-title: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method
  publication-title: J. Clin. Microbiol.
– volume: 7
  start-page: 8390
  year: 2017
  ident: bib25
  article-title: Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers
  publication-title: Sci. Rep.
– volume: 63
  start-page: 32
  year: 2007
  end-page: 41
  ident: bib35
  article-title: Solving structures of protein complexes by molecular replacement with Phaser
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 2
  start-page: e01456
  year: 2013
  ident: bib37
  article-title: Collaboration gets the most out of software
  publication-title: eLife
– volume: 8
  start-page: 14158
  year: 2017
  ident: bib43
  article-title: Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state
  publication-title: Nat. Commun.
– volume: 309
  start-page: 1864
  year: 2005
  end-page: 1868
  ident: bib31
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
– volume: 25
  start-page: 1237
  year: 2015
  end-page: 1249
  ident: bib32
  article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein
  publication-title: Cell Res.
– volume: 531
  start-page: 118
  year: 2016
  end-page: 121
  ident: bib23
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
– volume: 82
  start-page: 12069
  year: 2008
  end-page: 12081
  ident: bib13
  article-title: Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120
  publication-title: J. Virol.
– volume: 9
  start-page: 70
  year: 2009
  ident: bib45
  article-title: Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris
  publication-title: BMC Biotechnol.
– volume: 16
  start-page: 328
  year: 2014
  end-page: 337
  ident: bib54
  article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26
  publication-title: Cell Host Microbe
– volume: 6
  start-page: e25858
  year: 2011
  ident: bib3
  article-title: A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon
  publication-title: PLoS ONE
– volume: 27
  start-page: 119
  year: 2017
  end-page: 129
  ident: bib17
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: bib51
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: bib20
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 203
  start-page: 1063
  year: 2011
  end-page: 1072
  ident: bib22
  article-title: Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection
  publication-title: J. Infect. Dis.
– volume: 6
  start-page: 7712
  year: 2015
  ident: bib55
  article-title: Evaluation of candidate vaccine approaches for MERS-CoV
  publication-title: Nat. Commun.
– volume: 395
  start-page: 565
  year: 2020
  end-page: 574
  ident: bib34
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
– volume: 281
  start-page: 34610
  year: 2006
  end-page: 34616
  ident: bib21
  article-title: Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R
  publication-title: J. Biol. Chem.
– volume: 362
  start-page: 598
  year: 2018
  end-page: 602
  ident: bib29
  article-title: Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin
  publication-title: Science
– volume: 38
  year: 2005
  ident: bib33
  article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris
  publication-title: Biotechniques
– volume: 42
  start-page: 695
  year: 2015
  end-page: 702
  ident: bib44
  article-title: Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake
  publication-title: Nucl. Med. Biol.
– volume: 1431
  start-page: 37
  year: 1999
  end-page: 46
  ident: bib48
  article-title: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies
  publication-title: Biochim. Biophys. Acta
– volume: 11
  start-page: 500
  year: 2002
  end-page: 515
  ident: bib10
  article-title: Single-domain antibody fragments with high conformational stability
  publication-title: Protein Sci.
– volume: 8
  start-page: 15701
  year: 2018
  ident: bib24
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
– volume: 6
  start-page: 8223
  year: 2015
  ident: bib61
  article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody
  publication-title: Nat. Commun.
– volume: 9
  start-page: 382
  year: 2020
  end-page: 385
  ident: bib47
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
  publication-title: Emerg. Microbes Infect.
– volume: 4
  start-page: eaas9667
  year: 2018
  ident: bib46
  article-title: Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection
  publication-title: Sci Adv
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib59
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 5
  start-page: 13133
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib62
  article-title: Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27
  publication-title: Sci. Rep.
  doi: 10.1038/srep13133
– volume: 9
  start-page: 70
  year: 2009
  ident: 10.1016/j.cell.2020.04.031_bib45
  article-title: Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-9-70
– volume: 6
  start-page: 8223
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib61
  article-title: Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9223
– volume: 8
  start-page: 15701
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib24
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34171-7
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.cell.2020.04.031_bib11
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 38
  year: 2005
  ident: 10.1016/j.cell.2020.04.031_bib33
  article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris
  publication-title: Biotechniques
  doi: 10.2144/05381BM04
– volume: 281
  start-page: 34610
  year: 2006
  ident: 10.1016/j.cell.2020.04.031_bib21
  article-title: Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603275200
– volume: 94
  start-page: e00127-20
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib52
  article-title: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.00127-20
– volume: 92
  start-page: e02002
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib56
  article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
  publication-title: J. Virol.
  doi: 10.1128/JVI.02002-17
– volume: 12
  start-page: 1027
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib42
  article-title: Nebulization as a delivery method for mAbs in respiratory diseases
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2015.999039
– volume: 281
  start-page: 15829
  year: 2006
  ident: 10.1016/j.cell.2020.04.031_bib40
  article-title: Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600697200
– volume: 77
  start-page: 8801
  year: 2003
  ident: 10.1016/j.cell.2020.04.031_bib4
  article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.16.8801-8811.2003
– volume: 11
  start-page: 500
  year: 2002
  ident: 10.1016/j.cell.2020.04.031_bib10
  article-title: Single-domain antibody fragments with high conformational stability
  publication-title: Protein Sci.
  doi: 10.1110/ps.34602
– volume: 7
  start-page: 123
  year: 2006
  ident: 10.1016/j.cell.2020.04.031_bib68
  article-title: Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-123
– volume: 234
  start-page: 1117
  year: 2009
  ident: 10.1016/j.cell.2020.04.031_bib57
  article-title: Coronavirus diversity, phylogeny and interspecies jumping
  publication-title: Exp. Biol. Med. (Maywood)
  doi: 10.3181/0903-MR-94
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib8
  article-title: Single-Domain Antibodies and Their Formatting to Combat Viral Infections
  publication-title: Antibodies (Basel)
  doi: 10.3390/antib8010001
– year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib19
  article-title: The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells
  publication-title: bioRxiv
– volume: 74
  start-page: 531
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib69
  article-title: Real-space refinement in PHENIX for cryo-EM and crystallography
  publication-title: Acta Crystallogr D. Struct. Biol.
  doi: 10.1107/S2059798318006551
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib67
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 69
  start-page: 1204
  year: 2013
  ident: 10.1016/j.cell.2020.04.031_bib12
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913000061
– volume: 23
  start-page: 986
  year: 2013
  ident: 10.1016/j.cell.2020.04.031_bib53
  article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.92
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib59
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 2
  start-page: e01456
  year: 2013
  ident: 10.1016/j.cell.2020.04.031_bib37
  article-title: Collaboration gets the most out of software
  publication-title: eLife
  doi: 10.7554/eLife.01456
– volume: 114
  start-page: E7348
  year: 2017
  ident: 10.1016/j.cell.2020.04.031_bib39
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 4
  start-page: eaas9667
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib46
  article-title: Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aas9667
– volume: 395
  start-page: 514
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib5
  article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30154-9
– volume: 92
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib66
  article-title: A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV
  publication-title: J. Virol.
  doi: 10.1128/JVI.00837-18
– volume: 6
  start-page: 7712
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib55
  article-title: Evaluation of candidate vaccine approaches for MERS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8712
– volume: 367
  start-page: 1444
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib60
  article-title: Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 27
  start-page: 14
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib70
  article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 48
  start-page: 2940
  year: 2010
  ident: 10.1016/j.cell.2020.04.031_bib14
  article-title: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00636-10
– volume: 348
  start-page: 1953
  year: 2003
  ident: 10.1016/j.cell.2020.04.031_bib26
  article-title: A novel coronavirus associated with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030781
– volume: 42
  start-page: 695
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib44
  article-title: Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2015.03.003
– volume: 215
  start-page: 1807
  year: 2017
  ident: 10.1016/j.cell.2020.04.031_bib6
  article-title: Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix209
– volume: 203
  start-page: 1063
  year: 2011
  ident: 10.1016/j.cell.2020.04.031_bib22
  article-title: Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiq168
– volume: 1431
  start-page: 37
  year: 1999
  ident: 10.1016/j.cell.2020.04.031_bib48
  article-title: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(99)00030-8
– volume: 58
  start-page: 1948
  year: 2002
  ident: 10.1016/j.cell.2020.04.031_bib1
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444902016657
– volume: 367
  start-page: 1814
  year: 2012
  ident: 10.1016/j.cell.2020.04.031_bib65
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211721
– volume: 74
  start-page: 519
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib7
  article-title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798318002425
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib51
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 25
  start-page: 1237
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib32
  article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.113
– volume: 426
  start-page: 450
  year: 2003
  ident: 10.1016/j.cell.2020.04.031_bib30
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 60
  start-page: 6
  year: 2015
  ident: 10.1016/j.cell.2020.04.031_bib9
  article-title: Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01802-15
– volume: 8
  start-page: 14158
  year: 2017
  ident: 10.1016/j.cell.2020.04.031_bib43
  article-title: Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14158
– volume: 9
  start-page: 382
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib47
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1729069
– volume: 10
  start-page: 778
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib28
  article-title: Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs
  publication-title: MAbs
  doi: 10.1080/19420862.2018.1470727
– volume: 16
  start-page: 328
  year: 2014
  ident: 10.1016/j.cell.2020.04.031_bib54
  article-title: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.08.009
– volume: 7
  start-page: 8390
  year: 2017
  ident: 10.1016/j.cell.2020.04.031_bib25
  article-title: Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08273-7
– volume: 342
  start-page: 592
  year: 2013
  ident: 10.1016/j.cell.2020.04.031_bib36
  article-title: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus
  publication-title: Science
  doi: 10.1126/science.1243283
– year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib27
  article-title: Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor
  publication-title: bioRxiv
– volume: 8
  start-page: 15092
  year: 2017
  ident: 10.1016/j.cell.2020.04.031_bib63
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 287
  start-page: 1970
  year: 2012
  ident: 10.1016/j.cell.2020.04.031_bib16
  article-title: Dual beneficial effect of interloop disulfide bond for single domain antibody fragments
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.242818
– volume: 6
  start-page: e25858
  year: 2011
  ident: 10.1016/j.cell.2020.04.031_bib3
  article-title: A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025858
– volume: 395
  start-page: 497
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib20
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 503
  start-page: 535
  year: 2013
  ident: 10.1016/j.cell.2020.04.031_bib15
  article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/nature12711
– volume: 82
  start-page: 12069
  year: 2008
  ident: 10.1016/j.cell.2020.04.031_bib13
  article-title: Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120
  publication-title: J. Virol.
  doi: 10.1128/JVI.01379-08
– volume: 63
  start-page: 32
  year: 2007
  ident: 10.1016/j.cell.2020.04.031_bib35
  article-title: Solving structures of protein complexes by molecular replacement with Phaser
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444906045975
– volume: 495
  start-page: 251
  year: 2013
  ident: 10.1016/j.cell.2020.04.031_bib41
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
  doi: 10.1038/nature12005
– volume: 309
  start-page: 1864
  year: 2005
  ident: 10.1016/j.cell.2020.04.031_bib31
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
  doi: 10.1126/science.1116480
– year: 2019
  ident: 10.1016/j.cell.2020.04.031_bib58
  article-title: The 3.1 A cryo-EM structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation
  publication-title: J Virol.
  doi: 10.1128/JVI.00923-19
– volume: 395
  start-page: 565
  year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib34
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 531
  start-page: 118
  year: 2016
  ident: 10.1016/j.cell.2020.04.031_bib23
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
  doi: 10.1038/nature17200
– volume: 67
  start-page: 271
  year: 2011
  ident: 10.1016/j.cell.2020.04.031_bib2
  article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910048675
– volume: 388
  start-page: 815
  year: 2009
  ident: 10.1016/j.cell.2020.04.031_bib38
  article-title: Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.03.042
– volume: 531
  start-page: 114
  year: 2016
  ident: 10.1016/j.cell.2020.04.031_bib49
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 362
  start-page: 598
  year: 2018
  ident: 10.1016/j.cell.2020.04.031_bib29
  article-title: Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin
  publication-title: Science
  doi: 10.1126/science.aaq0620
– volume: 363
  start-page: 446
  year: 1993
  ident: 10.1016/j.cell.2020.04.031_bib18
  article-title: Naturally occurring antibodies devoid of light chains
  publication-title: Nature
  doi: 10.1038/363446a0
– year: 2020
  ident: 10.1016/j.cell.2020.04.031_bib64
  article-title: A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 27
  start-page: 119
  year: 2017
  ident: 10.1016/j.cell.2020.04.031_bib17
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.152
– volume: 176
  start-page: 1026
  year: 2019
  ident: 10.1016/j.cell.2020.04.031_bib50
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– reference: 32531248 - Cell. 2020 Jun 11;181(6):1436-1441
– reference: 32620562 - Sci Immunol. 2020 Jul 3;5(49):
SSID ssj0008555
Score 2.7023876
Snippet Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1004
SubjectTerms Animals
antibodies
Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - immunology
Antibodies, Neutralizing - isolation & purification
Betacoronavirus - immunology
Camelidae
Camelids, New World - immunology
Coronavirus infections
Coronavirus Infections - therapy
COVID-19
cross reaction
Cross Reactions
crystal structure
epitopes
humans
immunoglobulin G
Immunoglobulin G - chemistry
Immunoglobulin G - immunology
llamas
membrane fusion
MERS
Middle East respiratory syndrome coronavirus
Models, Molecular
nanobody
neutralization
Pandemics
Pneumonia, Viral - therapy
Protein Domains
receptors
Receptors, Virus - chemistry
SARS
SARS-CoV-2
Single-Domain Antibodies - chemistry
Single-Domain Antibodies - immunology
Single-Domain Antibodies - isolation & purification
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
therapeutics
viruses
Title Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies
URI https://dx.doi.org/10.1016/j.cell.2020.04.031
https://www.ncbi.nlm.nih.gov/pubmed/32375025
https://www.proquest.com/docview/2399838869
https://www.proquest.com/docview/2439398075
https://pubmed.ncbi.nlm.nih.gov/PMC7199733
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9JE2m7RBhd6KiW1ZtnTMbhtCD6GQBvYmZGlEXDZ2iL2B_PvO-LFkW7KHHm1JIGs0M5_kmW8Y-2KlLQupIVI-91FmfR4p6YuogJCj8mkvoY_yvcwvrrMfS7ncY4spF4bCKkfbP9j03lqPb07H1Ty9qyrK8dWpyvFoR3_3dEaMnyJTfRLfcr6xxkrKoYqBRs3H3mPizBDjRZfjeEZM457uVCTPOad_weffMZRPnNL5a_ZqRJP8bJjwG7YH9Vv2Yqgv-fiOuaueHZaYNfjctlXLEaLynw3i5I5fwrq_5RjyMHkT-Bw6tI_3iM0fqvt1Cy0vH_kV-rYVRN-aW1vVfGFvYVV5flZ3VdlQBOIBuz7__mtxEY1VFSInVdJFForEp6VG6BTnwQoXVK5diCHGo5BMQqqDI3ZC9NtWKp8ULvbWi8TZEmIdl-I926-bGg4Zz5VyEJz2REGjgiqFtYgAXeLACZ35GUum5TRupBynyhcrM8WW_TYkAkMiMHFmUAQz9nUz5m4g3NjZW05SMlvbxqBH2Dnu8yRSg_pEzbaGZt0ayvVVQuGa7OiDKE5oonGesQ_DNtjMVaQCQViKLcXWBtl0ID7v7Za6uul5vQsK-hHi6D-_6Zi9pCcKbUjVR7aPOww-IWLqypNeJf4Af2gWlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoVVUuqO8utOBKvVURSRwn9pHdFi2UrioB0t4sxw811ZIgkkXi3zOTx6rbqnvgGo8lx-OZ-ZzMfEPIZ811nnHpAmFTGyTapoHgNgsy51MwPmm5a7N8Z-n0Kjmb8_kWmQy1MJhW2fv-zqe33rp_ctTv5tFNUWCNr4xFClc7_LsnE_aEPAU0kKF1ns7HK3csOO_aGEgwfRDvK2e6JC_8Og6XxDhs-U5Z9L_o9C_6_DuJ8o-odPKC7PZwkh53K35Jtlz5ijzrGkzevybmoqWHRWoNOtZ1UVPAqPRnBUC5oTO3bD9zdIWYtPJ07BpwkLcAzu-K22Xtaprf0wsIbgsXfK2udVHSib52i8LS47Ip8gpTEN-Qq5Nvl5Np0LdVCAwXURNol0U2ziVgpzD1mhkvUml86EK4C_HIx9IbpCeEwK25sFFmQqsti4zOXSjDnL0l22VVuveEpkIY5420yEEjvMiZ1gABTWScYTKxIxIN26lMzzmOrS8Wakgu-61QBQpVoMJEgQpG5Mtqzk3HuLFRmg9aUmvnRkFI2Djv06BSBQaFw7p01bJWWOwrmIA92SADMI5J5HEekXfdMVitlcUMUFgMI9naAVkJIKH3-khZ_GqJvTPM-mFs75HvdEieTy9_nKvz09n3fbKDI5jnEIsPZBtOm_sI8KnJD1rzeAB9UBm2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+for+Potent+Neutralization+of+Betacoronaviruses+by+Single-Domain+Camelid+Antibodies&rft.jtitle=Cell&rft.au=Wrapp%2C+Daniel&rft.au=De+Vlieger%2C+Dorien&rft.au=Corbett%2C+Kizzmekia+S&rft.au=Torres%2C+Gretel+M&rft.date=2020-05-28&rft.eissn=1097-4172&rft.volume=181&rft.issue=5&rft.spage=1004&rft_id=info:doi/10.1016%2Fj.cell.2020.04.031&rft_id=info%3Apmid%2F32375025&rft.externalDocID=32375025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon