Optimal transport analysis reveals trajectories in steady-state systems

Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed fo...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 12; p. e1009466
Main Authors Zhang, Stephen, Afanassiev, Anton, Greenstreet, Laura, Matsumoto, Tetsuya, Schiebinger, Geoffrey
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.12.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington’s epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.
AbstractList Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington's epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.
Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington's epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington's epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.
Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington’s epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development. Many important biological phenomena involve populations of cells that undergo changes in behaviour over time to achieve a desired state or function. Modern experimental technologies are able to measure aspects of cell state but cannot observe a cell at more than a single instant in time, since the cell is necessarily destroyed in the measurement process. Therefore, the relationship between the present and future states of a cell, which we call its trajectory , must be inferred from observable data. Since biological processes are naturally noisy, we model cells as evolving following a stochastic dynamical system with growth. We show that for datasets drawn from a population of cells in equilibrium and when estimates of cell growth rates are available, cellular trajectories can be estimated by solving an optimal transport problem. We validate our method using simulated data and demonstrate an application to transcriptomic data from Arabidopsis thaliana root development.
Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington’s epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.
Audience Academic
Author Afanassiev, Anton
Zhang, Stephen
Matsumoto, Tetsuya
Schiebinger, Geoffrey
Greenstreet, Laura
AuthorAffiliation Charite Universitatsmedizin Berlin, GERMANY
Department of Mathematics, University of British Columbia, Vancouver, Canada
AuthorAffiliation_xml – name: Charite Universitatsmedizin Berlin, GERMANY
– name: Department of Mathematics, University of British Columbia, Vancouver, Canada
Author_xml – sequence: 1
  givenname: Stephen
  orcidid: 0000-0001-6775-0744
  surname: Zhang
  fullname: Zhang, Stephen
– sequence: 2
  givenname: Anton
  orcidid: 0000-0003-2387-8783
  surname: Afanassiev
  fullname: Afanassiev, Anton
– sequence: 3
  givenname: Laura
  surname: Greenstreet
  fullname: Greenstreet, Laura
– sequence: 4
  givenname: Tetsuya
  surname: Matsumoto
  fullname: Matsumoto, Tetsuya
– sequence: 5
  givenname: Geoffrey
  orcidid: 0000-0002-8290-7997
  surname: Schiebinger
  fullname: Schiebinger, Geoffrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34860824$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxDKki5m8Ds2C6SqgjJSRSUea8uxbwaPkjjYTsX8ezzMFHVYICEv4tjnfLrX95xXJ2MYoapeYrTEtMFvNmGOo-mXk239EiOkmBBPqjPMOV00lMuTR_vT6jylDUJlq8Sz6pQyKZAk7Ky6uZuyH0xf52jGNIWYa1Oo2-RTHeEeTJ92VxuwOUQPqfZjnTIYt12kbDLUaVt-h_S8etoVLbw4fC-qbx_ef73-uLi9u1ldX90uLJc4LxrTEUmkBIqokw111kjeMaca3rbSoEZAR1te6lOoddiRlgBRqGMAgAQgelGt9lwXzEZPsdQetzoYr38fhLjWJmZve9CYttiQDhvOBHOOK8NbZjED7ghVnBTWuz1rmtsBnIWxdNofQY9vRv9dr8O9lkJhwVQBvD4AYvgxQ8p68MlC35sRwpw0EUgowlHDi3S5l65NKc2PXShEW5aDwdsy2c6X8yshpaKqjLcYLo8MRZPhZ16bOSW9-vL5P7SfjrWvHjf9p9uHSBTB273AxpBShE5bXybtw-4NfK8x0rv86UP-9C5_-pC_YmZ_mR_4_7T9AvD54xs
CitedBy_id crossref_primary_10_1016_j_pbi_2023_102444
crossref_primary_10_1038_s43586_024_00334_2
crossref_primary_10_1038_s41587_024_02186_3
crossref_primary_10_1371_journal_pcbi_1012015
crossref_primary_10_1016_j_devcel_2022_01_008
crossref_primary_10_1093_bioinformatics_btae483
crossref_primary_10_1371_journal_pcbi_1010492
crossref_primary_10_1038_s41592_023_01969_x
crossref_primary_10_1038_s41592_024_02495_0
crossref_primary_10_1038_s42256_023_00763_w
crossref_primary_10_1126_science_adf4721
Cites_doi 10.1038/nbt.3569
10.1109/LCSYS.2018.2827001
10.1016/j.cels.2017.08.009
10.1371/journal.pcbi.1006405
10.1038/s41467-021-25133-1
10.1561/2200000073
10.1016/j.cell.2019.01.006
10.1038/s41587-019-0071-9
10.1073/pnas.1207544109
10.1186/s12864-018-4772-0
10.1038/s41587-019-0088-0
10.1038/nbt.2859
10.1016/j.celrep.2017.12.017
10.1242/dev.170506
10.1371/journal.pcbi.1008205
10.1073/pnas.1714723115
10.1016/j.cell.2015.05.002
10.1038/nature14590
10.3934/dcds.2014.34.1533
10.1038/nmeth.3971
10.1109/CDC40024.2019.9029787
10.1016/j.cell.2015.04.044
10.1371/journal.pcbi.1007828
10.4171/078
10.1093/bioinformatics/btz296
10.1016/j.celrep.2018.08.056
10.1016/j.celrep.2018.02.046
10.1038/s41586-018-0414-6
10.3389/fimmu.2019.01515
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Zhang et al 2021 Zhang et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Zhang et al 2021 Zhang et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009466
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Optimal transport analysis reveals trajectories in steady-state systems
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_13b1a2f1a5464dd59a5b4c14e5d23952
PMC8691649
A688939371
34860824
10_1371_journal_pcbi_1009466
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c581t-7af28288e303d873dca85f4d975bb8a076ef3b534890bd1d2b2e290f4eee06e03
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Wed Aug 27 01:30:39 EDT 2025
Thu Aug 21 17:50:44 EDT 2025
Fri Jul 11 08:00:05 EDT 2025
Tue Jun 10 20:33:53 EDT 2025
Fri Jun 27 04:42:37 EDT 2025
Fri Jun 27 03:39:47 EDT 2025
Wed Feb 19 02:28:16 EST 2025
Tue Jul 01 04:07:01 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-7af28288e303d873dca85f4d975bb8a076ef3b534890bd1d2b2e290f4eee06e03
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-6775-0744
0000-0003-2387-8783
0000-0002-8290-7997
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009466
PMID 34860824
PQID 2606925075
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_13b1a2f1a5464dd59a5b4c14e5d23952
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8691649
proquest_miscellaneous_2606925075
gale_infotracacademiconefile_A688939371
gale_incontextgauss_ISR_A688939371
gale_incontextgauss_ISN_A688939371
pubmed_primary_34860824
crossref_citationtrail_10_1371_journal_pcbi_1009466
crossref_primary_10_1371_journal_pcbi_1009466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211203
PublicationDateYYYYMMDD 2021-12-03
PublicationDate_xml – month: 12
  year: 2021
  text: 20211203
  day: 3
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References C. H Waddington (pcbi.1009466.ref001) 1957
G Peyré (pcbi.1009466.ref031) 2019; 11
DS Fischer (pcbi.1009466.ref025) 2019; 37
K Dai Yang (pcbi.1009466.ref036) 2020; 16
pcbi.1009466.ref039
SA Yuzwa (pcbi.1009466.ref014) 2017; 21
DS Lin (pcbi.1009466.ref016) 2018; 22
DA Lorenz (pcbi.1009466.ref041) 2019
L Haghverdi (pcbi.1009466.ref017) 2016; 13
pcbi.1009466.ref035
AM Klein (pcbi.1009466.ref004) 2015; 161
JD Buenrostro (pcbi.1009466.ref006) 2015; 523
TN Tran (pcbi.1009466.ref012) 2020; 15
pcbi.1009466.ref032
S Tritschler (pcbi.1009466.ref002) 2019; 146
H Holden (pcbi.1009466.ref037) 2010
C Weinreb (pcbi.1009466.ref018) 2018; 115
M Lange (pcbi.1009466.ref022) 2020
G Schiebinger (pcbi.1009466.ref003) 2019; 176
B Charlier (pcbi.1009466.ref045) 2021; 22
S Palit (pcbi.1009466.ref007) 2019; 10
C Lin (pcbi.1009466.ref008) 2019; 35
P Wang (pcbi.1009466.ref015) 2018; 24
C Trapnell (pcbi.1009466.ref010) 2014; 32
G La Manno (pcbi.1009466.ref019) 2018; 560
C Léonard (pcbi.1009466.ref038) 2014; 34
A Forrow (pcbi.1009466.ref034) 2021; 12
pcbi.1009466.ref027
pcbi.1009466.ref023
M Setty (pcbi.1009466.ref029) 2016; 34
FA Wolf (pcbi.1009466.ref009) 2019; 20
pcbi.1009466.ref026
X Qiu (pcbi.1009466.ref021) 2021
DR Sisan (pcbi.1009466.ref028) 2012; 109
pcbi.1009466.ref044
PS Stumpf (pcbi.1009466.ref013) 2017; 5
W Saelens (pcbi.1009466.ref030) 2019; 37
pcbi.1009466.ref040
R Shahan (pcbi.1009466.ref042) 2020
V Bergen (pcbi.1009466.ref020) 2020
EZ Macosko (pcbi.1009466.ref005) 2015; 161
R Rahni (pcbi.1009466.ref043) 2019; 15
K Street (pcbi.1009466.ref011) 2018; 19
RD Brackston (pcbi.1009466.ref024) 2018; 14
Y Chen (pcbi.1009466.ref033) 2018; 2
References_xml – year: 1957
  ident: pcbi.1009466.ref001
  publication-title: The Strategy of the Genes
– volume: 34
  start-page: 637
  issue: 6
  year: 2016
  ident: pcbi.1009466.ref029
  article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.3569
– volume: 2
  start-page: 260
  issue: 2
  year: 2018
  ident: pcbi.1009466.ref033
  article-title: State tracking of linear ensembles via optimal mass transport
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2018.2827001
– ident: pcbi.1009466.ref026
– volume: 5
  start-page: 268
  issue: 3
  year: 2017
  ident: pcbi.1009466.ref013
  article-title: Stem cell differentiation as a non-Markov stochastic process
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2017.08.009
– volume: 14
  start-page: e1006405
  issue: 9
  year: 2018
  ident: pcbi.1009466.ref024
  article-title: Transition state characteristics during cell differentiation
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1006405
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: pcbi.1009466.ref034
  article-title: LineageOT is a unified framework for lineage tracing and trajectory inference
  publication-title: Nature communications
  doi: 10.1038/s41467-021-25133-1
– volume: 11
  start-page: 355
  issue: 5-6
  year: 2019
  ident: pcbi.1009466.ref031
  article-title: Computational Optimal Transport: With Applications to Data Science
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000073
– volume: 176
  start-page: 928
  issue: 4
  year: 2019
  ident: pcbi.1009466.ref003
  article-title: Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.006
– volume: 37
  start-page: 547
  issue: 5
  year: 2019
  ident: pcbi.1009466.ref030
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nature biotechnology
  doi: 10.1038/s41587-019-0071-9
– ident: pcbi.1009466.ref039
– ident: pcbi.1009466.ref040
– volume: 109
  start-page: 19262
  issue: 47
  year: 2012
  ident: pcbi.1009466.ref028
  article-title: Predicting rates of cell state change caused by stochastic fluctuations using a data-driven landscape model
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1207544109
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: pcbi.1009466.ref011
  article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
  publication-title: BMC genomics
  doi: 10.1186/s12864-018-4772-0
– start-page: 696724
  year: 2021
  ident: pcbi.1009466.ref021
  article-title: Mapping transcriptomic vector fields of single cells
  publication-title: Biorxiv
– volume: 37
  start-page: 461
  issue: 4
  year: 2019
  ident: pcbi.1009466.ref025
  article-title: Inferring population dynamics from single-cell RNA-sequencing time series data
  publication-title: Nature biotechnology
  doi: 10.1038/s41587-019-0088-0
– year: 2020
  ident: pcbi.1009466.ref022
  article-title: CellRank for directed single-cell fate mapping
  publication-title: bioRxiv
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: pcbi.1009466.ref009
  article-title: PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
  publication-title: Genome biology
– volume: 32
  start-page: 381
  issue: 4
  year: 2014
  ident: pcbi.1009466.ref010
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.2859
– ident: pcbi.1009466.ref023
– ident: pcbi.1009466.ref044
– volume: 21
  start-page: 3970
  issue: 13
  year: 2017
  ident: pcbi.1009466.ref014
  article-title: Developmental emergence of adult neural stem cells as revealed by single-cell transcriptional profiling
  publication-title: Cell reports
  doi: 10.1016/j.celrep.2017.12.017
– volume: 146
  start-page: dev170506
  issue: 12
  year: 2019
  ident: pcbi.1009466.ref002
  article-title: Concepts and limitations for learning developmental trajectories from single cell genomics
  publication-title: Development
  doi: 10.1242/dev.170506
– volume: 15
  start-page: e1008205
  issue: 30
  year: 2020
  ident: pcbi.1009466.ref012
  article-title: Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1008205
– volume: 115
  start-page: E2467
  issue: 10
  year: 2018
  ident: pcbi.1009466.ref018
  article-title: Fundamental limits on dynamic inference from single-cell snapshots
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1714723115
– volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  ident: pcbi.1009466.ref005
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– ident: pcbi.1009466.ref027
– volume: 523
  start-page: 486
  issue: 7561
  year: 2015
  ident: pcbi.1009466.ref006
  article-title: Single-cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
  doi: 10.1038/nature14590
– start-page: 1
  year: 2019
  ident: pcbi.1009466.ref041
  article-title: Quadratically regularized optimal transport
  publication-title: Applied Mathematics & Optimization
– volume: 34
  start-page: 1533
  issue: 4
  year: 2014
  ident: pcbi.1009466.ref038
  article-title: A survey of the Schrödinger problem and some of its connections with optimal transport
  publication-title: Discrete & Continuous Dynamical Systems
  doi: 10.3934/dcds.2014.34.1533
– volume: 13
  start-page: 845
  issue: 10
  year: 2016
  ident: pcbi.1009466.ref017
  article-title: Diffusion pseudotime robustly reconstructs lineage branching
  publication-title: Nature methods
  doi: 10.1038/nmeth.3971
– ident: pcbi.1009466.ref032
  doi: 10.1109/CDC40024.2019.9029787
– ident: pcbi.1009466.ref035
– volume: 161
  start-page: 1187
  issue: 5
  year: 2015
  ident: pcbi.1009466.ref004
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 16
  start-page: e1007828
  issue: 4
  year: 2020
  ident: pcbi.1009466.ref036
  article-title: Predicting cell lineages using autoencoders and optimal transport
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1007828
– start-page: 1
  year: 2020
  ident: pcbi.1009466.ref020
  article-title: Generalizing RNA velocity to transient cell states through dynamical modeling
  publication-title: Nature Biotechnology
– volume: 15
  issue: 30
  year: 2019
  ident: pcbi.1009466.ref043
  article-title: Week-long imaging of cell divisions in the Arabidopsis root meristem
  publication-title: Plant Methods
– volume-title: Splitting methods for partial differential equations with rough solutions: Analysis and MATLAB programs
  year: 2010
  ident: pcbi.1009466.ref037
  doi: 10.4171/078
– volume: 35
  start-page: 4707
  issue: 22
  year: 2019
  ident: pcbi.1009466.ref008
  article-title: Continuous-state HMMs for modeling time-series single-cell RNA-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz296
– year: 2020
  ident: pcbi.1009466.ref042
  article-title: A single cell Arabidopsis root atlas reveals developmental trajectories in wild type and cell identity mutants
  publication-title: bioRxiv
– volume: 22
  start-page: 1
  issue: 74
  year: 2021
  ident: pcbi.1009466.ref045
  article-title: Kernel operations on the gpu, with autodiff, without memory overflows
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 3554
  issue: 13
  year: 2018
  ident: pcbi.1009466.ref015
  article-title: Dissecting the global dynamic molecular profiles of human fetal kidney development by single-cell RNA sequencing
  publication-title: Cell reports
  doi: 10.1016/j.celrep.2018.08.056
– volume: 22
  start-page: 2557
  issue: 10
  year: 2018
  ident: pcbi.1009466.ref016
  article-title: DiSNE movie visualization and assessment of clonal kinetics reveal multiple trajectories of dendritic cell development
  publication-title: Cell reports
  doi: 10.1016/j.celrep.2018.02.046
– volume: 560
  start-page: 494
  issue: 7719
  year: 2018
  ident: pcbi.1009466.ref019
  article-title: RNA velocity of single cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 10
  start-page: 1515
  year: 2019
  ident: pcbi.1009466.ref007
  article-title: Meeting the challenges of high-dimensional single-cell data analysis in immunology
  publication-title: Frontiers in immunology
  doi: 10.3389/fimmu.2019.01515
SSID ssj0035896
Score 2.4250379
Snippet Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009466
SubjectTerms Arabidopsis - cytology
Arabidopsis thaliana
Biology and Life Sciences
Cell Physiological Phenomena - physiology
Computational Biology - methods
Development
Electronic data processing
Epigenesis, Genetic
Methods
Models, Biological
Physical Sciences
Physiological aspects
Plant Cells - metabolism
Plant Cells - physiology
Plant Roots - cytology
Plants
Research and Analysis Methods
Roots (Botany)
Single-Cell Analysis - methods
Time Factors
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEG15BAoKCIlTaBLbsX0siLZwKBJQaW-Wn7AIshW7e-i_Z8b2rjZCqBeu8fjgmfE84plvCHllmYfsPxqQgIwNi4410mGVxeC62JlexpDQPi-Hiyv2ccZnO6O-sCYswwNnxp101MIW2MbZwLznynDLXMcC9z1VPFlf8HmbZCrbYMplmsyFQ3EaQdmsNM1R0Z0UGb25dnaONQIIsD5xSgm7_28LveOipuWTO_7o7D65VwLJ-jQf4IDcCeMh2c-jJW-OyPknsAW_gGC1QS-vTcEfqRG1CbQOl36kn_aQLdfzsU4Cv2lSj1GdIZ6XD8jV2fuv7y6aMjShcVx2q0aYiFmUDOCbvBTUOyN5ZF4Jbq00rRhCpJZTJlVrfed724cepMVCCO0QWvqQ7I2LMTzGdm6wPsrJ1BzbtdRS4H_rnIqhi8GoitAN17QriOI42OKnTs9kAjKLzAuNvNaF1xVptruuM6LGLfRvUSBbWsTDTh9AS3TREn2bllTkJYpTI-LFiCU138x6udQfvlzq00FCzIawgP8k-jwhel2I4gIO60xpYwCWIZLWhPLFRnc03Fl8iDFjWKyXGnLIQUHsKXhFHmVd2h6P4lQw2bOKiImWTc4_XRnn3xMuuBwg1mfqyf9g2FNyt8fqHSzcocdkb_V7HZ5B-LWyz9NN-wNIUi8C
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimal transport analysis reveals trajectories in steady-state systems
URI https://www.ncbi.nlm.nih.gov/pubmed/34860824
https://www.proquest.com/docview/2606925075
https://pubmed.ncbi.nlm.nih.gov/PMC8691649
https://doaj.org/article/13b1a2f1a5464dd59a5b4c14e5d23952
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiDfhUQWExCmrJLZj54BQC9tdkChooVJvke3YS9GSLk0r0X_PjONWG8EKLo3UjKN4PPZ44pnvI-SlZjVE_07BCEiXMGdYIg1mWRQmc5nKpbMe7XNSnE7Zhxmf7ZEtZ2tQYPvX0A75pKbLi6NfPzdvYMK_9qwNIts2Oro0eo6n_giZvk8OwTcJ5DT4yHbnCpRLz9iFZDmJoGwWiumue0rPWXlM_z9X7iuuq59WecVPjW-TW2GDGQ87i7hD9mxzl9zoKCc398jJJ1gjfoDAaotqHquASxIjmhNoBW999x_zIYqO503sDWGT-NqjuIN-bu-T6fj469vTJJApJIbLbJUI5TC6khZ8Vi0FrY2S3LG6FFxrqVJRWEc1p0yWqa6zOte5zWEUmbU2LWxKH5CDZtHYR1jmDatSaaQvms1Sqmld89SY0tnMWVVGhG61VpmANI6EFxeVPz4TEHF0uqhQ11XQdUSSXavLDmnjH_IjHJCdLOJk-z8Wy_MqTDtorcHgwOg4Kxi8Zam4ZiZjltc5LXkekRc4nBUiYTSYanOu1m1bvf8yqYaFhL0cwgVeK3TWE3oVhNwCOmtUKG8AlSHCVk_y-dZ2KpjLeECjGrtYtxXElkUJe1LBI_Kws6Vd9yiyhcmcRUT0rKzX__6dZv7N44XLAmIAVj7-7zd8Qm7mmLqDWTv0KTlYLdf2Gey9VnpA9sVMwK8cnwzI4XD0bjSG6-h48vls4L9nDPyE-w2CpTao
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+transport+analysis+reveals+trajectories+in+steady-state+systems&rft.jtitle=PLoS+computational+biology&rft.au=Zhang%2C+Stephen&rft.au=Afanassiev%2C+Anton&rft.au=Greenstreet%2C+Laura&rft.au=Matsumoto%2C+Tetsuya&rft.date=2021-12-03&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009466&rft.externalDocID=A688939371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon