The Protease Thrombin Is an Endogenous Mediator of Hippocampal Neuroprotection against Ischemia at Low Concentrations but Causes Degeneration at High Concentrations

We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 97; no. 5; pp. 2264 - 2269
Main Authors Striggow, Frank, Riek, Monika, Breder, Jorg, Henrich-Noack, Petra, Reymann, Klaus G., Reiser, Georg
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 29.02.2000
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10μ M) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+elevation. Thus, distinct Ca2+signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
AbstractList We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons.
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 microM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca(2+) spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca(2+) elevation. Thus, distinct Ca(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo , because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca 2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca 2+ elevation. Thus, distinct Ca 2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 mu M) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca super(2+) spikes in fura-2- loaded CA1 neurons whereas higher concentrations caused a sustained Ca super(2+) elevation. Thus, distinct Ca super(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo , because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca 2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca 2+ elevation. Thus, distinct Ca 2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10μ M) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+elevation. Thus, distinct Ca2+signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
Author Striggow, Frank
Breder, Jorg
Riek, Monika
Reymann, Klaus G.
Reiser, Georg
Henrich-Noack, Petra
AuthorAffiliation Institute of Neurobiochemistry, Otto-von-Guericke-University Magdeburg, Medical School, Leipziger Strasse 44, D-39120 Magdeburg, Germany; and † Project Group Neuropharmacology, Leibniz Institute for Neurobiology, POB 1860, D-39118 Magdeburg, Germany
AuthorAffiliation_xml – name: Institute of Neurobiochemistry, Otto-von-Guericke-University Magdeburg, Medical School, Leipziger Strasse 44, D-39120 Magdeburg, Germany; and † Project Group Neuropharmacology, Leibniz Institute for Neurobiology, POB 1860, D-39118 Magdeburg, Germany
Author_xml – sequence: 1
  givenname: Frank
  surname: Striggow
  fullname: Striggow, Frank
– sequence: 2
  givenname: Monika
  surname: Riek
  fullname: Riek, Monika
– sequence: 3
  givenname: Jorg
  surname: Breder
  fullname: Breder, Jorg
– sequence: 4
  givenname: Petra
  surname: Henrich-Noack
  fullname: Henrich-Noack, Petra
– sequence: 5
  givenname: Klaus G.
  surname: Reymann
  fullname: Reymann, Klaus G.
– sequence: 6
  givenname: Georg
  surname: Reiser
  fullname: Reiser, Georg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10681455$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuP0zAUhS00iOkMbNkgkMWCXYsfcRJLs0FloCOVx6J7y3FuWleJHeyEx__hh-Iow1BmASsvznfuy-cCnTnvAKGnlKwoKfjr3um4IhkRgpWyeIAWlEi6zDNJztCCEFYsy4xl5-gixiMhRIqSPELnlOQlzYRYoJ-7A-DPwQ-gI-DdIfiusg7fRKwdvna134PzY8QfoLZ68AH7Bm9s33uju163-COMwfeT3wzWO6z32ro4pALmAJ3VWA9467_htXcG3BD0REVcjQNe6zFCxG8htYBZmOiN3R_u4Y_Rw0a3EZ7cvpdo9-56t94st5_e36zfbJdGlHRYFsyQWupSc6h5oSGvKDGGQGWENAUvKGheVlnW1NzkHKRhFHJCmixvcilLfomu5rL9WHVQzwO0qg-20-GH8tqqvxVnD2rvvyoqilIm-6tbe_BfRoiD6mw00LbaQTqhKojkQnD-X5AWIn1cPlV8eQ88-jG4dALFCOWCC8YStJohE3yMAZq7gSlRU0bUlBF1l5FkeHG65gk-h-Jkvsn4W5aFEoqxPFPN2LYDfB8S-PxfYNKfzfoxpuj8acQY4ZT_AmXD3r4
CitedBy_id crossref_primary_10_1016_S0006_8993_01_02354_X
crossref_primary_10_1046_j_1471_4159_2003_02268_x
crossref_primary_10_1161_STROKEAHA_110_584920
crossref_primary_10_1046_j_0022_3042_2001_00761_x
crossref_primary_10_1227_01_NEU_0000197333_55473_AD
crossref_primary_10_1007_s12035_021_02639_9
crossref_primary_10_1046_j_1471_4159_2003_01637_x
crossref_primary_10_1016_j_brainres_2005_10_100
crossref_primary_10_1007_s11936_013_0277_y
crossref_primary_10_1016_S0006_8993_01_02064_9
crossref_primary_10_3390_ijms17101770
crossref_primary_10_1016_j_neuropharm_2015_04_028
crossref_primary_10_1016_j_neulet_2016_07_023
crossref_primary_10_1371_journal_pone_0241565
crossref_primary_10_1007_s10517_005_0468_y
crossref_primary_10_1002_glia_20150
crossref_primary_10_1016_j_lfs_2014_12_002
crossref_primary_10_1016_j_mvr_2012_08_004
crossref_primary_10_4049_jimmunol_0803392
crossref_primary_10_1097_01_WCB_0000090621_86921_D5
crossref_primary_10_1007_s12031_018_1228_6
crossref_primary_10_1016_j_brainres_2015_04_003
crossref_primary_10_1177_1073858404269955
crossref_primary_10_1016_j_bios_2016_10_089
crossref_primary_10_1186_1742_2094_9_96
crossref_primary_10_1074_jbc_M104212200
crossref_primary_10_1016_j_nbd_2016_04_010
crossref_primary_10_1038_s41598_022_15592_x
crossref_primary_10_1021_acsami_1c03784
crossref_primary_10_1016_j_brainres_2011_01_016
crossref_primary_10_1016_j_expneurol_2013_02_011
crossref_primary_10_1055_s_0041_1741569
crossref_primary_10_1016_j_bbrc_2006_05_174
crossref_primary_10_1210_er_2003_0025
crossref_primary_10_1046_j_0953_816x_2001_01676_x
crossref_primary_10_1177_1934578X221081367
crossref_primary_10_1038_nm826
crossref_primary_10_3389_fnmol_2020_00114
crossref_primary_10_1111_febs_15149
crossref_primary_10_1186_s12974_016_0670_z
crossref_primary_10_1016_S0166_2236_00_01617_9
crossref_primary_10_1523_JNEUROSCI_4306_04_2005
crossref_primary_10_1002_neu_1044
crossref_primary_10_1186_s12868_018_0481_5
crossref_primary_10_1007_s00210_014_1026_9
crossref_primary_10_1007_s10517_007_0396_0
crossref_primary_10_1089_neu_2020_7297
crossref_primary_10_1097_00004647_200204000_00004
crossref_primary_10_1179_174313209X385680
crossref_primary_10_3390_ijms17010084
crossref_primary_10_1182_blood_2004_10_3985
crossref_primary_10_1046_j_1538_7933_2003_00573_x
crossref_primary_10_1002_jnr_1119
crossref_primary_10_1021_acsami_6b00777
crossref_primary_10_1016_j_brainres_2005_04_040
crossref_primary_10_1002_jnr_21571
crossref_primary_10_1016_j_neuroscience_2004_03_024
crossref_primary_10_1111_jnc_12293
crossref_primary_10_1111_neup_12897
crossref_primary_10_1016_j_ccr_2018_09_010
crossref_primary_10_1089_ars_2010_3359
crossref_primary_10_1038_sj_bjp_0706410
crossref_primary_10_1155_2017_5135429
crossref_primary_10_1002_chem_201304800
crossref_primary_10_1016_j_neuroscience_2005_04_038
crossref_primary_10_1007_s10753_011_9414_5
crossref_primary_10_1007_s12975_024_01233_0
crossref_primary_10_1007_s00011_013_0613_4
crossref_primary_10_1016_j_nbd_2015_03_026
crossref_primary_10_1111_j_1471_4159_2010_06790_x
crossref_primary_10_1160_TH15_08_0631
crossref_primary_10_1021_la901703p
crossref_primary_10_1046_j_1471_4159_2002_01052_x
crossref_primary_10_1016_j_brainres_2007_02_025
crossref_primary_10_1111_bdi_12447
crossref_primary_10_1248_yakushi_121_1
crossref_primary_10_1016_j_biomaterials_2018_08_046
crossref_primary_10_1002_glia_22534
crossref_primary_10_1002_ddr_10320
crossref_primary_10_1002_ddr_10321
crossref_primary_10_1097_00004647_200201000_00007
crossref_primary_10_1002_ddr_10319
crossref_primary_10_1016_j_neuroscience_2014_09_038
crossref_primary_10_1038_srep07912
crossref_primary_10_1111_j_1471_4159_2008_05658_x
crossref_primary_10_1016_j_neulet_2006_12_050
crossref_primary_10_1007_s12035_015_9362_4
crossref_primary_10_1039_c2an35340g
crossref_primary_10_1523_JNEUROSCI_5200_04_2005
crossref_primary_10_1016_S0896_6273_04_00019_4
crossref_primary_10_1007_s11481_018_9793_6
crossref_primary_10_1152_physrev_00011_2010
crossref_primary_10_1016_j_mito_2012_07_110
crossref_primary_10_2217_14796708_3_2_199
crossref_primary_10_1134_S000629790610004X
crossref_primary_10_1016_S0304_3940_02_00645_6
crossref_primary_10_1007_s10517_005_0196_3
crossref_primary_10_1016_j_jcyt_2014_05_007
crossref_primary_10_1111_jnc_15807
crossref_primary_10_1134_S1819712410010010
crossref_primary_10_1161_01_STR_0000080941_73934_30
crossref_primary_10_1016_j_brainres_2005_02_018
crossref_primary_10_1016_j_expneurol_2006_03_020
crossref_primary_10_1161_STROKEAHA_112_661819
crossref_primary_10_1523_JNEUROSCI_0369_12_2012
crossref_primary_10_1038_srep29246
crossref_primary_10_3389_fneur_2022_1032343
crossref_primary_10_1002_jnr_10847
crossref_primary_10_1016_j_jns_2008_03_010
crossref_primary_10_1016_j_nbd_2012_09_004
crossref_primary_10_1038_sj_bjp_0704152
crossref_primary_10_1016_j_nbd_2012_10_017
crossref_primary_10_1111_j_1471_4159_2009_06418_x
crossref_primary_10_1021_la100397g
crossref_primary_10_1007_s11655_013_1441_7
crossref_primary_10_1111_j_1471_4159_2006_04105_x
crossref_primary_10_3389_fncel_2014_00388
crossref_primary_10_1097_MBC_0b013e3283104093
crossref_primary_10_1111_j_1471_4159_2011_07527_x
crossref_primary_10_1134_S1819712410040069
crossref_primary_10_1152_physrev_00028_2003
crossref_primary_10_1016_j_nbd_2005_10_008
crossref_primary_10_3390_ijms140816719
crossref_primary_10_1046_j_1471_4159_2003_01268_x
crossref_primary_10_1016_j_bbaexp_2004_03_007
crossref_primary_10_1111_cns_14250
crossref_primary_10_1097_WNR_0000000000000363
crossref_primary_10_1016_j_neuint_2013_12_007
crossref_primary_10_1074_jbc_M408318200
crossref_primary_10_1161_hs0901_095408
crossref_primary_10_1016_j_niox_2009_10_008
crossref_primary_10_1161_STROKEAHA_107_488486
crossref_primary_10_1039_c0cc02631j
crossref_primary_10_1515_BC_2003_021
crossref_primary_10_1002_jnr_20746
crossref_primary_10_1111_j_1471_4159_2006_03950_x
crossref_primary_10_1002_hipo_22288
crossref_primary_10_1602_neurorx_1_1_26
crossref_primary_10_1093_brain_awz393
crossref_primary_10_1152_ajplung_00392_2001
crossref_primary_10_1002_jnr_10270
crossref_primary_10_1038_s41598_024_61633_y
crossref_primary_10_1134_S1990747822010044
crossref_primary_10_1016_j_nbd_2009_11_013
crossref_primary_10_1016_S1042_3680_02_00007_4
crossref_primary_10_1007_s12975_013_0288_8
crossref_primary_10_1124_jpet_105_090787
crossref_primary_10_1097_WNR_0000000000000902
crossref_primary_10_1089_neu_2015_4146
crossref_primary_10_1016_S1474_4422_12_70104_7
crossref_primary_10_1002_jnr_22261
crossref_primary_10_1161_STROKEAHA_114_007143
crossref_primary_10_1134_S1990747811060067
crossref_primary_10_1016_S1474_4422_05_70283_0
crossref_primary_10_1016_j_neuroscience_2009_11_027
crossref_primary_10_1038_nrn1255
crossref_primary_10_3233_JAD_200658
crossref_primary_10_1016_j_neuro_2004_03_009
crossref_primary_10_3390_biom11040562
crossref_primary_10_4049_jimmunol_170_5_2638
crossref_primary_10_1016_j_neuroscience_2014_07_023
crossref_primary_10_1142_S0219635209002149
crossref_primary_10_1007_s10895_012_1127_0
crossref_primary_10_1002_jnr_22754
crossref_primary_10_1016_j_brainres_2010_09_025
crossref_primary_10_1111_wrr_12234
crossref_primary_10_1016_j_thromres_2018_04_019
crossref_primary_10_1161_ATVBAHA_120_315061
crossref_primary_10_1016_j_nbd_2022_105948
crossref_primary_10_1152_ajpcell_00001_2002
crossref_primary_10_3389_fphar_2024_1293428
crossref_primary_10_1038_jcbfm_2008_73
crossref_primary_10_1097_01_WCB_0000100062_36077_84
crossref_primary_10_1016_j_neurobiolaging_2003_07_007
crossref_primary_10_1007_s12031_013_0072_y
crossref_primary_10_1111_j_1471_4159_2007_04803_x
crossref_primary_10_1007_s12975_020_00855_4
crossref_primary_10_1016_j_brainres_2005_05_063
crossref_primary_10_1002_glia_20513
crossref_primary_10_1016_S0049_3848_16_30369_3
crossref_primary_10_3389_fnins_2020_00762
crossref_primary_10_1016_j_nbd_2008_01_006
crossref_primary_10_1046_j_1471_4159_2001_00001_x
crossref_primary_10_1523_JNEUROSCI_2806_06_2006
crossref_primary_10_1016_j_bios_2014_05_007
crossref_primary_10_1038_sj_jcbfm_9591524_0009
crossref_primary_10_1002_glia_20190
crossref_primary_10_1155_2020_8884320
crossref_primary_10_1002_jbm_a_34007
crossref_primary_10_1227_01_NEU_0000170435_47739_AE
crossref_primary_10_1016_j_talanta_2022_123456
crossref_primary_10_1002_glia_23215
crossref_primary_10_1002_jnr_22299
crossref_primary_10_1074_jbc_M301406200
crossref_primary_10_1089_neu_2019_6582
crossref_primary_10_1186_1742_2094_3_15
crossref_primary_10_1016_j_jneumeth_2006_11_019
crossref_primary_10_1111_j_1471_4159_2009_06369_x
crossref_primary_10_15407_fz64_02_012
crossref_primary_10_1016_j_pharmthera_2007_04_002
crossref_primary_10_1038_jcbfm_2009_283
crossref_primary_10_1016_j_ejphar_2016_05_035
crossref_primary_10_1523_JNEUROSCI_23_13_05877_2003
crossref_primary_10_1016_j_brainresbull_2008_02_031
crossref_primary_10_1097_01_WCB_0000128266_87474_BF
crossref_primary_10_1016_j_expneurol_2009_01_023
crossref_primary_10_1113_jphysiol_2002_036384
crossref_primary_10_1161_01_STR_0000032302_91894_0F
crossref_primary_10_1016_j_molbrainres_2003_12_001
crossref_primary_10_1007_BF02831156
crossref_primary_10_1017_cjn_2014_105
crossref_primary_10_1016_j_brainresrev_2007_08_002
crossref_primary_10_1111_j_1750_3639_2005_tb00111_x
crossref_primary_10_1134_S1990747813050048
crossref_primary_10_1016_j_brainres_2019_05_020
crossref_primary_10_1111_jth_13721
crossref_primary_10_1016_S0163_7258_02_00237_1
crossref_primary_10_1007_s11605_014_2565_6
crossref_primary_10_1017_S0959259811000207
crossref_primary_10_1016_S0006_8993_01_03148_1
crossref_primary_10_4061_2010_151097
crossref_primary_10_1002_glia_10012
crossref_primary_10_1002_jnr_10643
crossref_primary_10_1007_s00604_015_1674_6
Cites_doi 10.1046/j.1471-4159.1996.66041374.x
10.1002/(SICI)1097-4695(199807)36:1<64::AID-NEU6>3.0.CO;2-8
10.1046/j.1471-4159.1997.69051890.x
10.1021/jm00020a029
10.1016/S0306-4522(97)00686-6
10.1002/jnr.490370211
10.1074/jbc.273.21.12746
10.1007/BF01707275
10.1046/j.1460-9568.1998.00183.x
10.1016/S0166-2236(98)01392-7
10.1016/S0306-4522(97)00229-7
10.1016/0896-6273(91)90060-D
10.1523/JNEUROSCI.15-04-02906.1995
10.1523/JNEUROSCI.15-08-05840.1995
10.1016/0006-8993(93)90567-7
10.1016/0165-0270(90)90007-3
10.1002/(SICI)1097-4695(199606)30:2<255::AID-NEU7>3.0.CO;2-4
10.1016/0165-0270(91)90128-M
10.1523/JNEUROSCI.17-14-05316.1997
10.1016/S0165-0173(97)00015-5
10.1152/ajpcell.1998.274.6.C1429
10.1055/s-2007-999018
10.1016/S0006-8993(96)01218-8
10.1523/JNEUROSCI.15-07-05389.1995
10.1016/0304-3940(93)90364-Q
ContentType Journal Article
Copyright Copyright 1993-2000 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 29, 2000
Copyright © 2000, The National Academy of Sciences 2000
Copyright_xml – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 29, 2000
– notice: Copyright © 2000, The National Academy of Sciences 2000
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.040552897
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic
Neurosciences Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1091-6490
EndPage 2269
ExternalDocumentID 52626787
10_1073_pnas_040552897
10681455
97_5_2264
122031
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c581t-72c0d9a8a3ed37ae6b10cc0ebc59c7371ea38b44fd3c63e9c21e600f46f69983
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:16:45 EDT 2024
Fri Oct 25 07:52:53 EDT 2024
Sat Oct 26 00:06:34 EDT 2024
Thu Oct 10 19:09:37 EDT 2024
Fri Aug 23 03:34:18 EDT 2024
Sat Sep 28 07:34:42 EDT 2024
Wed Nov 11 00:29:17 EST 2020
Thu May 30 08:51:43 EDT 2019
Fri Feb 02 07:06:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-72c0d9a8a3ed37ae6b10cc0ebc59c7371ea38b44fd3c63e9c21e600f46f69983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
To whom reprint requests should be addressed. E-mail: georg.reiser@medizin.uni-magdeburg.de.
Communicated by Ricardo Miledi, University of California, Irvine, CA
OpenAccessLink https://europepmc.org/articles/pmc15789?pdf=render
PMID 10681455
PQID 201353522
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_70935533
proquest_miscellaneous_17502769
pnas_primary_97_5_2264
jstor_primary_122031
pubmed_primary_10681455
pubmedcentral_primary_oai_pubmedcentral_nih_gov_15789
pnas_primary_97_5_2264_fulltext
crossref_primary_10_1073_pnas_040552897
proquest_journals_201353522
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2000-02-29
PublicationDateYYYYMMDD 2000-02-29
PublicationDate_xml – month: 02
  year: 2000
  text: 2000-02-29
  day: 29
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2000
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Publisher_xml – name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
– name: National Academy of Sciences
– name: The National Academy of Sciences
References 8281456 - Brain Res. 1993 Oct 29;626(1-2):90-8
9330361 - Neuroscience. 1997 Dec;81(4):989-98
9370052 - Brain Res Brain Res Rev. 1997 Sep 30;25(1):85-95
9658339 - J Neurobiol. 1998 Jul;36(1):64-80
1894188 - Haemostasis. 1991;21 Suppl 1:133-6
9582299 - J Biol Chem. 1998 May 22;273(21):12746-52
9349532 - J Neurochem. 1997 Nov;69(5):1890-6
7643224 - J Neurosci. 1995 Aug;15(8):5840-50
2308380 - J Neurosci Methods. 1990 Jan;31(1):43-6
8627288 - J Neurochem. 1996 Apr;66(4):1374-82
9037491 - Brain Res. 1997 Jan 23;746(1-2):126-32
8309618 - Neurosci Lett. 1993 Dec 12;163(2):135-7
9751132 - Eur J Neurosci. 1998 May;10(5):1590-607
9696685 - Am J Physiol. 1998 Jun;274(6 Pt 1):C1429-52
8836012 - Semin Thromb Hemost. 1996;22(3):267-71
7722637 - J Neurosci. 1995 Apr;15(4):2906-19
7623161 - J Neurosci. 1995 Jul;15(7 Pt 2):5389-401
2015093 - Neuron. 1991 Apr;6(4):575-81
8738754 - J Neurobiol. 1996 Jun;30(2):255-66
1912033 - Ann Hematol. 1991 Aug;63(2):67-76
9881872 - Neuroscience. 1998 Sep;86(2):597-609
1715499 - J Neurosci Methods. 1991 Apr;37(2):173-82
10199631 - Trends Neurosci. 1999 Mar;22(3):97-9
8151733 - J Neurosci Res. 1994 Feb 1;37(2):256-70
9204916 - J Neurosci. 1997 Jul 15;17(14):5316-26
7562949 - J Med Chem. 1995 Sep 29;38(20):4125-30
Markwardt F (e_1_3_3_23_2) 1991; 1
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_26_2
  doi: 10.1046/j.1471-4159.1996.66041374.x
– ident: e_1_3_3_14_2
  doi: 10.1002/(SICI)1097-4695(199807)36:1<64::AID-NEU6>3.0.CO;2-8
– ident: e_1_3_3_5_2
  doi: 10.1046/j.1471-4159.1997.69051890.x
– ident: e_1_3_3_21_2
  doi: 10.1021/jm00020a029
– ident: e_1_3_3_6_2
  doi: 10.1016/S0306-4522(97)00686-6
– ident: e_1_3_3_4_2
  doi: 10.1002/jnr.490370211
– ident: e_1_3_3_25_2
  doi: 10.1074/jbc.273.21.12746
– ident: e_1_3_3_22_2
  doi: 10.1007/BF01707275
– ident: e_1_3_3_7_2
  doi: 10.1046/j.1460-9568.1998.00183.x
– ident: e_1_3_3_24_2
  doi: 10.1016/S0166-2236(98)01392-7
– ident: e_1_3_3_20_2
  doi: 10.1016/S0306-4522(97)00229-7
– ident: e_1_3_3_1_2
  doi: 10.1016/0896-6273(91)90060-D
– ident: e_1_3_3_2_2
  doi: 10.1523/JNEUROSCI.15-04-02906.1995
– ident: e_1_3_3_12_2
  doi: 10.1523/JNEUROSCI.15-08-05840.1995
– ident: e_1_3_3_3_2
  doi: 10.1016/0006-8993(93)90567-7
– ident: e_1_3_3_17_2
  doi: 10.1016/0165-0270(90)90007-3
– ident: e_1_3_3_15_2
  doi: 10.1002/(SICI)1097-4695(199606)30:2<255::AID-NEU7>3.0.CO;2-4
– ident: e_1_3_3_16_2
  doi: 10.1016/0165-0270(91)90128-M
– ident: e_1_3_3_13_2
  doi: 10.1523/JNEUROSCI.17-14-05316.1997
– ident: e_1_3_3_10_2
  doi: 10.1016/S0165-0173(97)00015-5
– ident: e_1_3_3_11_2
  doi: 10.1152/ajpcell.1998.274.6.C1429
– volume: 1
  start-page: 133
  year: 1991
  ident: e_1_3_3_23_2
  publication-title: Haemostasis
  contributor:
    fullname: Markwardt F
– ident: e_1_3_3_9_2
  doi: 10.1055/s-2007-999018
– ident: e_1_3_3_18_2
  doi: 10.1016/S0006-8993(96)01218-8
– ident: e_1_3_3_8_2
  doi: 10.1523/JNEUROSCI.15-07-05389.1995
– ident: e_1_3_3_19_2
  doi: 10.1016/0304-3940(93)90364-Q
SSID ssj0009580
Score 2.1903555
Snippet We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2264
SubjectTerms Agonists
Animals
Antithrombins - pharmacology
Biological Sciences
Biology
Brain
Brain Ischemia - prevention & control
Calcium
Calcium Signaling
Cell death
Cell Survival
Culture Techniques
Dose-Response Relationship, Drug
Fluorescence
Gerbillinae
Hippocampus - cytology
Hippocampus - metabolism
Hirudins - pharmacology
Humans
Ischemia
Male
Memory interference
Neurology
Neurons
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Neuroscience
Oxygen
Pyramidal cells
Rats
Rats, Wistar
Receptors, Thrombin - metabolism
Thrombin - adverse effects
Thrombin - antagonists & inhibitors
Thrombin - metabolism
Thrombin receptors
Title The Protease Thrombin Is an Endogenous Mediator of Hippocampal Neuroprotection against Ischemia at Low Concentrations but Causes Degeneration at High Concentrations
URI https://www.jstor.org/stable/122031
http://www.pnas.org/content/97/5/2264.abstract
https://www.ncbi.nlm.nih.gov/pubmed/10681455
https://www.proquest.com/docview/201353522
https://search.proquest.com/docview/17502769
https://search.proquest.com/docview/70935533
https://pubmed.ncbi.nlm.nih.gov/PMC15789
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3BbtQwEEAt2hMXRCmF0FLmgAQcspvYjhMfUUVVQCAORerNchynXWnXG5Gs-CE-tGPHWbpVuXCNx5GjmbFnlJlnQt4amcvGCpFymtmUG2rTqtBtWrR1y5knkJtA-_wuLn7yL1fFVezj7mNZpTP1YuaWq5lb3ITaym5l5lOd2PzHt7MczUzO98gemueUoG85u9XYdUJx8-WUT5zGks07p_sZ2mxRYJIRLt_LROU53TtH0liV6FGnKP5Q2Hm_evLOcXT-lDyJcSR8HNd7QB5Z94wcRE_t4X3ESX84JH_QEiDgGPDAAn8twgqzYVj0oB1Y16xHTCuEHhJcFKxbuFl0HR5yuFUsIRAvI84BlQj6Wi8wpsQXGA8b0KAHWK5_g_ENkC5SeHuoNwMYvelxMY29DqsZpw_gEcn3xJ-Ty_NPl2cXabybITVFlQ9pSU3WSF1pZhtWaivqPDMms7UppClZmVvNqprztmFGMCsNzS3GVi0XrcAMjx2Rfbd29iUBjDjaTMvMV-dwxjG5z4VuqOW0riva2IS8m7SjupHAocKf85IpryO1VWlCDoPy_opRintWQo6C3PRUlqpQvn84IW8eHlBtLLxJyPGkfxV9u1cYMjEPxaF-_jSKTun_tGhnUWMKYzI0QCH_LVEGsD1jCXkxWtOdbxutMiHFjp1tBTwQfHcE_SSAwYNfvPrPecfk8YgZoCmVJ2R_-LWxrzHgGupTTDU-fz0NjnYLLPAxJg
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIZHUA5wKZTSEgrUByTgkN3Edr6OqKJaoK04LFJvlu04bcSud9VkhcTv4YcydpKluyoHuMbjKJZfj8fKzGOAN7qIi9KkachpZEKuqQnzRFZhUqmKM0cg1572eZFOvvHPl8llX8fd9GmVVqt6ZGfzka2vfW7lcq7HQ57Y-Ov5SYwyK8b34QGu1ogPR_Q1aTfv6k4oul9O-UBqzNh4aWUzQtUmCR4z_PV7UZo7UvfGptTlJTrYKZrfFXhu50_e2pBOH8N0GEqXh_J9tGrVSP_cojz-41ifwG4foJIPXeMe3DP2Kez1LqAh73pO9ft9-IUSI57zgDshcfctzPGYTeqGSEuMLRcd_5X44hQcK1lU5LpeLnH3RB80Ix6l2XMiUB1EXskag1V8gXYUA0lkS2aLH0S7ykrb430bolYt0XLV4MeU5sp_Tde9JY69vGX-DKanH6cnk7C_9CHUSR63YUZ1VBYyl8yULJMmVXGkdWSUTgqdsSw2kuWK86pkOmWm0DQ2GLRVPK1SPDqyA9ixC2ueA8FQpopkEbm0H864USxOZUkNp0rltDQBvB0mXSw7tIfwv-QzJtzUi7VSAtj3mvhjRik6wwAOvN3wtMhEIlxhcgDHdzeIqs_oCeBokJXonUYjMBZjjrZDXf-hFVe7-4UjrcEZExjsoa7T4u8WmSfmMxbAYSfSW2PrxB5AsiHftYEjjW-2oCg9cdyL8MV_9juGh5Pp-Zk4-3Tx5QgedSwDGtLiJey0NyvzCqO6Vr32q_g3A7FRvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIYtKBLiUiilJRSoD0jAIZvEdpzkiAqr8lX1UKS9WbbjtBG73qjJConfww9l7CRLd1UuvcbjKJZfj8fx-DFCb3SRFKXhPGQkNiHTxIR5KqswrVTFqCOQa0_7POOnP9iXWTobfl20Q1ql1aqe2PliYusrn1vZLHQ05olF599PEpBZETVlFd1HD2DExnxcpq9pu3l_9oSAC2aEjbTGjEaNle0ElJumsNTwV_DFPHe07o2Jqc9NdMBTML8t-NzOobwxKU0fo9nYnD4X5edk1amJ_r1FerxDe5-g3SFQxR96gz10z9inaG9wBS1-N_Cq3--jPyA17HkPMCNid-_CApbbuG6xtNjYctlzYLE_pALtxcsKX9VNA7Mo-KI59kjNgRcBKsHyUtYQtMILtKMZSCw7PF_-wtqdsLQD5rfFatVhLVctfExpLv3X9NU77BjMW-bP0MX008XJaThc_hDqNE-6MCM6LguZS2pKmknDVRJrHRul00JnNEuMpLlirCqp5tQUmiQGgreK8YrDEpIeoB27tOY5whDSVLEsYpf-wygziiZclsQwolROShOgt2PHi6ZHfAi_NZ9R4bpfrNUSoH2vi39mhIBTDNCBtxufFplIhTugHKDj2wtENWT2BOholJYYnEcrICajjrpDXP2xFEa928qR1kCPCQj6QNu8-L9F5sn5lAbosBfqjbb1gg9QuiHhtYEjjm-WgDA9edwL8cUd6x2jh-cfp-Lb57OvR-hRjzQgISleop3uemVeQXDXqdd-IP8FTXJUPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+protease+thrombin+is+an+endogenous+mediator+of+hippocampal+neuroprotection+against+ischemia+at+low+concentrations+but+causes+degeneration+at+high+concentrations&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Frank+Striggow&rft.au=Monika+Riek&rft.au=J%C3%B6rg+Breder&rft.au=Petra+Henrich-Noack&rft.date=2000-02-29&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=97&rft.issue=5&rft.spage=2264&rft_id=info:doi/10.1073%2Fpnas.040552897&rft_id=info%3Apmid%2F10681455&rft.externalDBID=n%2Fa&rft.externalDocID=97_5_2264
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F5.cover.gif