The Protease Thrombin Is an Endogenous Mediator of Hippocampal Neuroprotection against Ischemia at Low Concentrations but Causes Degeneration at High Concentrations
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 97; no. 5; pp. 2264 - 2269 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences of the United States of America
29.02.2000
National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10μ M) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+elevation. Thus, distinct Ca2+signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia. |
---|---|
AbstractList | We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 microM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca(2+) spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca(2+) elevation. Thus, distinct Ca(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia. We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo , because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca 2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca 2+ elevation. Thus, distinct Ca 2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia. We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 mu M) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca super(2+) spikes in fura-2- loaded CA1 neurons whereas higher concentrations caused a sustained Ca super(2+) elevation. Thus, distinct Ca super(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia. We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo , because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca 2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca 2+ elevation. Thus, distinct Ca 2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia. We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10μ M) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+elevation. Thus, distinct Ca2+signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia. |
Author | Striggow, Frank Breder, Jorg Riek, Monika Reymann, Klaus G. Reiser, Georg Henrich-Noack, Petra |
AuthorAffiliation | Institute of Neurobiochemistry, Otto-von-Guericke-University Magdeburg, Medical School, Leipziger Strasse 44, D-39120 Magdeburg, Germany; and † Project Group Neuropharmacology, Leibniz Institute for Neurobiology, POB 1860, D-39118 Magdeburg, Germany |
AuthorAffiliation_xml | – name: Institute of Neurobiochemistry, Otto-von-Guericke-University Magdeburg, Medical School, Leipziger Strasse 44, D-39120 Magdeburg, Germany; and † Project Group Neuropharmacology, Leibniz Institute for Neurobiology, POB 1860, D-39118 Magdeburg, Germany |
Author_xml | – sequence: 1 givenname: Frank surname: Striggow fullname: Striggow, Frank – sequence: 2 givenname: Monika surname: Riek fullname: Riek, Monika – sequence: 3 givenname: Jorg surname: Breder fullname: Breder, Jorg – sequence: 4 givenname: Petra surname: Henrich-Noack fullname: Henrich-Noack, Petra – sequence: 5 givenname: Klaus G. surname: Reymann fullname: Reymann, Klaus G. – sequence: 6 givenname: Georg surname: Reiser fullname: Reiser, Georg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10681455$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkuP0zAUhS00iOkMbNkgkMWCXYsfcRJLs0FloCOVx6J7y3FuWleJHeyEx__hh-Iow1BmASsvznfuy-cCnTnvAKGnlKwoKfjr3um4IhkRgpWyeIAWlEi6zDNJztCCEFYsy4xl5-gixiMhRIqSPELnlOQlzYRYoJ-7A-DPwQ-gI-DdIfiusg7fRKwdvna134PzY8QfoLZ68AH7Bm9s33uju163-COMwfeT3wzWO6z32ro4pALmAJ3VWA9467_htXcG3BD0REVcjQNe6zFCxG8htYBZmOiN3R_u4Y_Rw0a3EZ7cvpdo9-56t94st5_e36zfbJdGlHRYFsyQWupSc6h5oSGvKDGGQGWENAUvKGheVlnW1NzkHKRhFHJCmixvcilLfomu5rL9WHVQzwO0qg-20-GH8tqqvxVnD2rvvyoqilIm-6tbe_BfRoiD6mw00LbaQTqhKojkQnD-X5AWIn1cPlV8eQ88-jG4dALFCOWCC8YStJohE3yMAZq7gSlRU0bUlBF1l5FkeHG65gk-h-Jkvsn4W5aFEoqxPFPN2LYDfB8S-PxfYNKfzfoxpuj8acQY4ZT_AmXD3r4 |
CitedBy_id | crossref_primary_10_1016_S0006_8993_01_02354_X crossref_primary_10_1046_j_1471_4159_2003_02268_x crossref_primary_10_1161_STROKEAHA_110_584920 crossref_primary_10_1046_j_0022_3042_2001_00761_x crossref_primary_10_1227_01_NEU_0000197333_55473_AD crossref_primary_10_1007_s12035_021_02639_9 crossref_primary_10_1046_j_1471_4159_2003_01637_x crossref_primary_10_1016_j_brainres_2005_10_100 crossref_primary_10_1007_s11936_013_0277_y crossref_primary_10_1016_S0006_8993_01_02064_9 crossref_primary_10_3390_ijms17101770 crossref_primary_10_1016_j_neuropharm_2015_04_028 crossref_primary_10_1016_j_neulet_2016_07_023 crossref_primary_10_1371_journal_pone_0241565 crossref_primary_10_1007_s10517_005_0468_y crossref_primary_10_1002_glia_20150 crossref_primary_10_1016_j_lfs_2014_12_002 crossref_primary_10_1016_j_mvr_2012_08_004 crossref_primary_10_4049_jimmunol_0803392 crossref_primary_10_1097_01_WCB_0000090621_86921_D5 crossref_primary_10_1007_s12031_018_1228_6 crossref_primary_10_1016_j_brainres_2015_04_003 crossref_primary_10_1177_1073858404269955 crossref_primary_10_1016_j_bios_2016_10_089 crossref_primary_10_1186_1742_2094_9_96 crossref_primary_10_1074_jbc_M104212200 crossref_primary_10_1016_j_nbd_2016_04_010 crossref_primary_10_1038_s41598_022_15592_x crossref_primary_10_1021_acsami_1c03784 crossref_primary_10_1016_j_brainres_2011_01_016 crossref_primary_10_1016_j_expneurol_2013_02_011 crossref_primary_10_1055_s_0041_1741569 crossref_primary_10_1016_j_bbrc_2006_05_174 crossref_primary_10_1210_er_2003_0025 crossref_primary_10_1046_j_0953_816x_2001_01676_x crossref_primary_10_1177_1934578X221081367 crossref_primary_10_1038_nm826 crossref_primary_10_3389_fnmol_2020_00114 crossref_primary_10_1111_febs_15149 crossref_primary_10_1186_s12974_016_0670_z crossref_primary_10_1016_S0166_2236_00_01617_9 crossref_primary_10_1523_JNEUROSCI_4306_04_2005 crossref_primary_10_1002_neu_1044 crossref_primary_10_1186_s12868_018_0481_5 crossref_primary_10_1007_s00210_014_1026_9 crossref_primary_10_1007_s10517_007_0396_0 crossref_primary_10_1089_neu_2020_7297 crossref_primary_10_1097_00004647_200204000_00004 crossref_primary_10_1179_174313209X385680 crossref_primary_10_3390_ijms17010084 crossref_primary_10_1182_blood_2004_10_3985 crossref_primary_10_1046_j_1538_7933_2003_00573_x crossref_primary_10_1002_jnr_1119 crossref_primary_10_1021_acsami_6b00777 crossref_primary_10_1016_j_brainres_2005_04_040 crossref_primary_10_1002_jnr_21571 crossref_primary_10_1016_j_neuroscience_2004_03_024 crossref_primary_10_1111_jnc_12293 crossref_primary_10_1111_neup_12897 crossref_primary_10_1016_j_ccr_2018_09_010 crossref_primary_10_1089_ars_2010_3359 crossref_primary_10_1038_sj_bjp_0706410 crossref_primary_10_1155_2017_5135429 crossref_primary_10_1002_chem_201304800 crossref_primary_10_1016_j_neuroscience_2005_04_038 crossref_primary_10_1007_s10753_011_9414_5 crossref_primary_10_1007_s12975_024_01233_0 crossref_primary_10_1007_s00011_013_0613_4 crossref_primary_10_1016_j_nbd_2015_03_026 crossref_primary_10_1111_j_1471_4159_2010_06790_x crossref_primary_10_1160_TH15_08_0631 crossref_primary_10_1021_la901703p crossref_primary_10_1046_j_1471_4159_2002_01052_x crossref_primary_10_1016_j_brainres_2007_02_025 crossref_primary_10_1111_bdi_12447 crossref_primary_10_1248_yakushi_121_1 crossref_primary_10_1016_j_biomaterials_2018_08_046 crossref_primary_10_1002_glia_22534 crossref_primary_10_1002_ddr_10320 crossref_primary_10_1002_ddr_10321 crossref_primary_10_1097_00004647_200201000_00007 crossref_primary_10_1002_ddr_10319 crossref_primary_10_1016_j_neuroscience_2014_09_038 crossref_primary_10_1038_srep07912 crossref_primary_10_1111_j_1471_4159_2008_05658_x crossref_primary_10_1016_j_neulet_2006_12_050 crossref_primary_10_1007_s12035_015_9362_4 crossref_primary_10_1039_c2an35340g crossref_primary_10_1523_JNEUROSCI_5200_04_2005 crossref_primary_10_1016_S0896_6273_04_00019_4 crossref_primary_10_1007_s11481_018_9793_6 crossref_primary_10_1152_physrev_00011_2010 crossref_primary_10_1016_j_mito_2012_07_110 crossref_primary_10_2217_14796708_3_2_199 crossref_primary_10_1134_S000629790610004X crossref_primary_10_1016_S0304_3940_02_00645_6 crossref_primary_10_1007_s10517_005_0196_3 crossref_primary_10_1016_j_jcyt_2014_05_007 crossref_primary_10_1111_jnc_15807 crossref_primary_10_1134_S1819712410010010 crossref_primary_10_1161_01_STR_0000080941_73934_30 crossref_primary_10_1016_j_brainres_2005_02_018 crossref_primary_10_1016_j_expneurol_2006_03_020 crossref_primary_10_1161_STROKEAHA_112_661819 crossref_primary_10_1523_JNEUROSCI_0369_12_2012 crossref_primary_10_1038_srep29246 crossref_primary_10_3389_fneur_2022_1032343 crossref_primary_10_1002_jnr_10847 crossref_primary_10_1016_j_jns_2008_03_010 crossref_primary_10_1016_j_nbd_2012_09_004 crossref_primary_10_1038_sj_bjp_0704152 crossref_primary_10_1016_j_nbd_2012_10_017 crossref_primary_10_1111_j_1471_4159_2009_06418_x crossref_primary_10_1021_la100397g crossref_primary_10_1007_s11655_013_1441_7 crossref_primary_10_1111_j_1471_4159_2006_04105_x crossref_primary_10_3389_fncel_2014_00388 crossref_primary_10_1097_MBC_0b013e3283104093 crossref_primary_10_1111_j_1471_4159_2011_07527_x crossref_primary_10_1134_S1819712410040069 crossref_primary_10_1152_physrev_00028_2003 crossref_primary_10_1016_j_nbd_2005_10_008 crossref_primary_10_3390_ijms140816719 crossref_primary_10_1046_j_1471_4159_2003_01268_x crossref_primary_10_1016_j_bbaexp_2004_03_007 crossref_primary_10_1111_cns_14250 crossref_primary_10_1097_WNR_0000000000000363 crossref_primary_10_1016_j_neuint_2013_12_007 crossref_primary_10_1074_jbc_M408318200 crossref_primary_10_1161_hs0901_095408 crossref_primary_10_1016_j_niox_2009_10_008 crossref_primary_10_1161_STROKEAHA_107_488486 crossref_primary_10_1039_c0cc02631j crossref_primary_10_1515_BC_2003_021 crossref_primary_10_1002_jnr_20746 crossref_primary_10_1111_j_1471_4159_2006_03950_x crossref_primary_10_1002_hipo_22288 crossref_primary_10_1602_neurorx_1_1_26 crossref_primary_10_1093_brain_awz393 crossref_primary_10_1152_ajplung_00392_2001 crossref_primary_10_1002_jnr_10270 crossref_primary_10_1038_s41598_024_61633_y crossref_primary_10_1134_S1990747822010044 crossref_primary_10_1016_j_nbd_2009_11_013 crossref_primary_10_1016_S1042_3680_02_00007_4 crossref_primary_10_1007_s12975_013_0288_8 crossref_primary_10_1124_jpet_105_090787 crossref_primary_10_1097_WNR_0000000000000902 crossref_primary_10_1089_neu_2015_4146 crossref_primary_10_1016_S1474_4422_12_70104_7 crossref_primary_10_1002_jnr_22261 crossref_primary_10_1161_STROKEAHA_114_007143 crossref_primary_10_1134_S1990747811060067 crossref_primary_10_1016_S1474_4422_05_70283_0 crossref_primary_10_1016_j_neuroscience_2009_11_027 crossref_primary_10_1038_nrn1255 crossref_primary_10_3233_JAD_200658 crossref_primary_10_1016_j_neuro_2004_03_009 crossref_primary_10_3390_biom11040562 crossref_primary_10_4049_jimmunol_170_5_2638 crossref_primary_10_1016_j_neuroscience_2014_07_023 crossref_primary_10_1142_S0219635209002149 crossref_primary_10_1007_s10895_012_1127_0 crossref_primary_10_1002_jnr_22754 crossref_primary_10_1016_j_brainres_2010_09_025 crossref_primary_10_1111_wrr_12234 crossref_primary_10_1016_j_thromres_2018_04_019 crossref_primary_10_1161_ATVBAHA_120_315061 crossref_primary_10_1016_j_nbd_2022_105948 crossref_primary_10_1152_ajpcell_00001_2002 crossref_primary_10_3389_fphar_2024_1293428 crossref_primary_10_1038_jcbfm_2008_73 crossref_primary_10_1097_01_WCB_0000100062_36077_84 crossref_primary_10_1016_j_neurobiolaging_2003_07_007 crossref_primary_10_1007_s12031_013_0072_y crossref_primary_10_1111_j_1471_4159_2007_04803_x crossref_primary_10_1007_s12975_020_00855_4 crossref_primary_10_1016_j_brainres_2005_05_063 crossref_primary_10_1002_glia_20513 crossref_primary_10_1016_S0049_3848_16_30369_3 crossref_primary_10_3389_fnins_2020_00762 crossref_primary_10_1016_j_nbd_2008_01_006 crossref_primary_10_1046_j_1471_4159_2001_00001_x crossref_primary_10_1523_JNEUROSCI_2806_06_2006 crossref_primary_10_1016_j_bios_2014_05_007 crossref_primary_10_1038_sj_jcbfm_9591524_0009 crossref_primary_10_1002_glia_20190 crossref_primary_10_1155_2020_8884320 crossref_primary_10_1002_jbm_a_34007 crossref_primary_10_1227_01_NEU_0000170435_47739_AE crossref_primary_10_1016_j_talanta_2022_123456 crossref_primary_10_1002_glia_23215 crossref_primary_10_1002_jnr_22299 crossref_primary_10_1074_jbc_M301406200 crossref_primary_10_1089_neu_2019_6582 crossref_primary_10_1186_1742_2094_3_15 crossref_primary_10_1016_j_jneumeth_2006_11_019 crossref_primary_10_1111_j_1471_4159_2009_06369_x crossref_primary_10_15407_fz64_02_012 crossref_primary_10_1016_j_pharmthera_2007_04_002 crossref_primary_10_1038_jcbfm_2009_283 crossref_primary_10_1016_j_ejphar_2016_05_035 crossref_primary_10_1523_JNEUROSCI_23_13_05877_2003 crossref_primary_10_1016_j_brainresbull_2008_02_031 crossref_primary_10_1097_01_WCB_0000128266_87474_BF crossref_primary_10_1016_j_expneurol_2009_01_023 crossref_primary_10_1113_jphysiol_2002_036384 crossref_primary_10_1161_01_STR_0000032302_91894_0F crossref_primary_10_1016_j_molbrainres_2003_12_001 crossref_primary_10_1007_BF02831156 crossref_primary_10_1017_cjn_2014_105 crossref_primary_10_1016_j_brainresrev_2007_08_002 crossref_primary_10_1111_j_1750_3639_2005_tb00111_x crossref_primary_10_1134_S1990747813050048 crossref_primary_10_1016_j_brainres_2019_05_020 crossref_primary_10_1111_jth_13721 crossref_primary_10_1016_S0163_7258_02_00237_1 crossref_primary_10_1007_s11605_014_2565_6 crossref_primary_10_1017_S0959259811000207 crossref_primary_10_1016_S0006_8993_01_03148_1 crossref_primary_10_4061_2010_151097 crossref_primary_10_1002_glia_10012 crossref_primary_10_1002_jnr_10643 crossref_primary_10_1007_s00604_015_1674_6 |
Cites_doi | 10.1046/j.1471-4159.1996.66041374.x 10.1002/(SICI)1097-4695(199807)36:1<64::AID-NEU6>3.0.CO;2-8 10.1046/j.1471-4159.1997.69051890.x 10.1021/jm00020a029 10.1016/S0306-4522(97)00686-6 10.1002/jnr.490370211 10.1074/jbc.273.21.12746 10.1007/BF01707275 10.1046/j.1460-9568.1998.00183.x 10.1016/S0166-2236(98)01392-7 10.1016/S0306-4522(97)00229-7 10.1016/0896-6273(91)90060-D 10.1523/JNEUROSCI.15-04-02906.1995 10.1523/JNEUROSCI.15-08-05840.1995 10.1016/0006-8993(93)90567-7 10.1016/0165-0270(90)90007-3 10.1002/(SICI)1097-4695(199606)30:2<255::AID-NEU7>3.0.CO;2-4 10.1016/0165-0270(91)90128-M 10.1523/JNEUROSCI.17-14-05316.1997 10.1016/S0165-0173(97)00015-5 10.1152/ajpcell.1998.274.6.C1429 10.1055/s-2007-999018 10.1016/S0006-8993(96)01218-8 10.1523/JNEUROSCI.15-07-05389.1995 10.1016/0304-3940(93)90364-Q |
ContentType | Journal Article |
Copyright | Copyright 1993-2000 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 29, 2000 Copyright © 2000, The National Academy of Sciences 2000 |
Copyright_xml | – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 29, 2000 – notice: Copyright © 2000, The National Academy of Sciences 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.040552897 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1091-6490 |
EndPage | 2269 |
ExternalDocumentID | 52626787 10_1073_pnas_040552897 10681455 97_5_2264 122031 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c581t-72c0d9a8a3ed37ae6b10cc0ebc59c7371ea38b44fd3c63e9c21e600f46f69983 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:16:45 EDT 2024 Fri Oct 25 07:52:53 EDT 2024 Sat Oct 26 00:06:34 EDT 2024 Thu Oct 10 19:09:37 EDT 2024 Fri Aug 23 03:34:18 EDT 2024 Sat Sep 28 07:34:42 EDT 2024 Wed Nov 11 00:29:17 EST 2020 Thu May 30 08:51:43 EDT 2019 Fri Feb 02 07:06:02 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-72c0d9a8a3ed37ae6b10cc0ebc59c7371ea38b44fd3c63e9c21e600f46f69983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 To whom reprint requests should be addressed. E-mail: georg.reiser@medizin.uni-magdeburg.de. Communicated by Ricardo Miledi, University of California, Irvine, CA |
OpenAccessLink | https://europepmc.org/articles/pmc15789?pdf=render |
PMID | 10681455 |
PQID | 201353522 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_70935533 proquest_miscellaneous_17502769 pnas_primary_97_5_2264 jstor_primary_122031 pubmed_primary_10681455 pubmedcentral_primary_oai_pubmedcentral_nih_gov_15789 pnas_primary_97_5_2264_fulltext crossref_primary_10_1073_pnas_040552897 proquest_journals_201353522 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2000-02-29 |
PublicationDateYYYYMMDD | 2000-02-29 |
PublicationDate_xml | – month: 02 year: 2000 text: 2000-02-29 day: 29 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2000 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences of the United States of America – name: National Acad Sciences – name: National Academy of Sciences – name: The National Academy of Sciences |
References | 8281456 - Brain Res. 1993 Oct 29;626(1-2):90-8 9330361 - Neuroscience. 1997 Dec;81(4):989-98 9370052 - Brain Res Brain Res Rev. 1997 Sep 30;25(1):85-95 9658339 - J Neurobiol. 1998 Jul;36(1):64-80 1894188 - Haemostasis. 1991;21 Suppl 1:133-6 9582299 - J Biol Chem. 1998 May 22;273(21):12746-52 9349532 - J Neurochem. 1997 Nov;69(5):1890-6 7643224 - J Neurosci. 1995 Aug;15(8):5840-50 2308380 - J Neurosci Methods. 1990 Jan;31(1):43-6 8627288 - J Neurochem. 1996 Apr;66(4):1374-82 9037491 - Brain Res. 1997 Jan 23;746(1-2):126-32 8309618 - Neurosci Lett. 1993 Dec 12;163(2):135-7 9751132 - Eur J Neurosci. 1998 May;10(5):1590-607 9696685 - Am J Physiol. 1998 Jun;274(6 Pt 1):C1429-52 8836012 - Semin Thromb Hemost. 1996;22(3):267-71 7722637 - J Neurosci. 1995 Apr;15(4):2906-19 7623161 - J Neurosci. 1995 Jul;15(7 Pt 2):5389-401 2015093 - Neuron. 1991 Apr;6(4):575-81 8738754 - J Neurobiol. 1996 Jun;30(2):255-66 1912033 - Ann Hematol. 1991 Aug;63(2):67-76 9881872 - Neuroscience. 1998 Sep;86(2):597-609 1715499 - J Neurosci Methods. 1991 Apr;37(2):173-82 10199631 - Trends Neurosci. 1999 Mar;22(3):97-9 8151733 - J Neurosci Res. 1994 Feb 1;37(2):256-70 9204916 - J Neurosci. 1997 Jul 15;17(14):5316-26 7562949 - J Med Chem. 1995 Sep 29;38(20):4125-30 Markwardt F (e_1_3_3_23_2) 1991; 1 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_26_2 doi: 10.1046/j.1471-4159.1996.66041374.x – ident: e_1_3_3_14_2 doi: 10.1002/(SICI)1097-4695(199807)36:1<64::AID-NEU6>3.0.CO;2-8 – ident: e_1_3_3_5_2 doi: 10.1046/j.1471-4159.1997.69051890.x – ident: e_1_3_3_21_2 doi: 10.1021/jm00020a029 – ident: e_1_3_3_6_2 doi: 10.1016/S0306-4522(97)00686-6 – ident: e_1_3_3_4_2 doi: 10.1002/jnr.490370211 – ident: e_1_3_3_25_2 doi: 10.1074/jbc.273.21.12746 – ident: e_1_3_3_22_2 doi: 10.1007/BF01707275 – ident: e_1_3_3_7_2 doi: 10.1046/j.1460-9568.1998.00183.x – ident: e_1_3_3_24_2 doi: 10.1016/S0166-2236(98)01392-7 – ident: e_1_3_3_20_2 doi: 10.1016/S0306-4522(97)00229-7 – ident: e_1_3_3_1_2 doi: 10.1016/0896-6273(91)90060-D – ident: e_1_3_3_2_2 doi: 10.1523/JNEUROSCI.15-04-02906.1995 – ident: e_1_3_3_12_2 doi: 10.1523/JNEUROSCI.15-08-05840.1995 – ident: e_1_3_3_3_2 doi: 10.1016/0006-8993(93)90567-7 – ident: e_1_3_3_17_2 doi: 10.1016/0165-0270(90)90007-3 – ident: e_1_3_3_15_2 doi: 10.1002/(SICI)1097-4695(199606)30:2<255::AID-NEU7>3.0.CO;2-4 – ident: e_1_3_3_16_2 doi: 10.1016/0165-0270(91)90128-M – ident: e_1_3_3_13_2 doi: 10.1523/JNEUROSCI.17-14-05316.1997 – ident: e_1_3_3_10_2 doi: 10.1016/S0165-0173(97)00015-5 – ident: e_1_3_3_11_2 doi: 10.1152/ajpcell.1998.274.6.C1429 – volume: 1 start-page: 133 year: 1991 ident: e_1_3_3_23_2 publication-title: Haemostasis contributor: fullname: Markwardt F – ident: e_1_3_3_9_2 doi: 10.1055/s-2007-999018 – ident: e_1_3_3_18_2 doi: 10.1016/S0006-8993(96)01218-8 – ident: e_1_3_3_8_2 doi: 10.1523/JNEUROSCI.15-07-05389.1995 – ident: e_1_3_3_19_2 doi: 10.1016/0304-3940(93)90364-Q |
SSID | ssj0009580 |
Score | 2.1903555 |
Snippet | We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2264 |
SubjectTerms | Agonists Animals Antithrombins - pharmacology Biological Sciences Biology Brain Brain Ischemia - prevention & control Calcium Calcium Signaling Cell death Cell Survival Culture Techniques Dose-Response Relationship, Drug Fluorescence Gerbillinae Hippocampus - cytology Hippocampus - metabolism Hirudins - pharmacology Humans Ischemia Male Memory interference Neurology Neurons Neurons - cytology Neurons - drug effects Neurons - metabolism Neuroscience Oxygen Pyramidal cells Rats Rats, Wistar Receptors, Thrombin - metabolism Thrombin - adverse effects Thrombin - antagonists & inhibitors Thrombin - metabolism Thrombin receptors |
Title | The Protease Thrombin Is an Endogenous Mediator of Hippocampal Neuroprotection against Ischemia at Low Concentrations but Causes Degeneration at High Concentrations |
URI | https://www.jstor.org/stable/122031 http://www.pnas.org/content/97/5/2264.abstract https://www.ncbi.nlm.nih.gov/pubmed/10681455 https://www.proquest.com/docview/201353522 https://search.proquest.com/docview/17502769 https://search.proquest.com/docview/70935533 https://pubmed.ncbi.nlm.nih.gov/PMC15789 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3BbtQwEEAt2hMXRCmF0FLmgAQcspvYjhMfUUVVQCAORerNchynXWnXG5Gs-CE-tGPHWbpVuXCNx5GjmbFnlJlnQt4amcvGCpFymtmUG2rTqtBtWrR1y5knkJtA-_wuLn7yL1fFVezj7mNZpTP1YuaWq5lb3ITaym5l5lOd2PzHt7MczUzO98gemueUoG85u9XYdUJx8-WUT5zGks07p_sZ2mxRYJIRLt_LROU53TtH0liV6FGnKP5Q2Hm_evLOcXT-lDyJcSR8HNd7QB5Z94wcRE_t4X3ESX84JH_QEiDgGPDAAn8twgqzYVj0oB1Y16xHTCuEHhJcFKxbuFl0HR5yuFUsIRAvI84BlQj6Wi8wpsQXGA8b0KAHWK5_g_ENkC5SeHuoNwMYvelxMY29DqsZpw_gEcn3xJ-Ty_NPl2cXabybITVFlQ9pSU3WSF1pZhtWaivqPDMms7UppClZmVvNqprztmFGMCsNzS3GVi0XrcAMjx2Rfbd29iUBjDjaTMvMV-dwxjG5z4VuqOW0riva2IS8m7SjupHAocKf85IpryO1VWlCDoPy_opRintWQo6C3PRUlqpQvn84IW8eHlBtLLxJyPGkfxV9u1cYMjEPxaF-_jSKTun_tGhnUWMKYzI0QCH_LVEGsD1jCXkxWtOdbxutMiHFjp1tBTwQfHcE_SSAwYNfvPrPecfk8YgZoCmVJ2R_-LWxrzHgGupTTDU-fz0NjnYLLPAxJg |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIZHUA5wKZTSEgrUByTgkN3Edr6OqKJaoK04LFJvlu04bcSud9VkhcTv4YcydpKluyoHuMbjKJZfj8fKzGOAN7qIi9KkachpZEKuqQnzRFZhUqmKM0cg1572eZFOvvHPl8llX8fd9GmVVqt6ZGfzka2vfW7lcq7HQ57Y-Ov5SYwyK8b34QGu1ogPR_Q1aTfv6k4oul9O-UBqzNh4aWUzQtUmCR4z_PV7UZo7UvfGptTlJTrYKZrfFXhu50_e2pBOH8N0GEqXh_J9tGrVSP_cojz-41ifwG4foJIPXeMe3DP2Kez1LqAh73pO9ft9-IUSI57zgDshcfctzPGYTeqGSEuMLRcd_5X44hQcK1lU5LpeLnH3RB80Ix6l2XMiUB1EXskag1V8gXYUA0lkS2aLH0S7ykrb430bolYt0XLV4MeU5sp_Tde9JY69vGX-DKanH6cnk7C_9CHUSR63YUZ1VBYyl8yULJMmVXGkdWSUTgqdsSw2kuWK86pkOmWm0DQ2GLRVPK1SPDqyA9ixC2ueA8FQpopkEbm0H864USxOZUkNp0rltDQBvB0mXSw7tIfwv-QzJtzUi7VSAtj3mvhjRik6wwAOvN3wtMhEIlxhcgDHdzeIqs_oCeBokJXonUYjMBZjjrZDXf-hFVe7-4UjrcEZExjsoa7T4u8WmSfmMxbAYSfSW2PrxB5AsiHftYEjjW-2oCg9cdyL8MV_9juGh5Pp-Zk4-3Tx5QgedSwDGtLiJey0NyvzCqO6Vr32q_g3A7FRvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIYtKBLiUiilJRSoD0jAIZvEdpzkiAqr8lX1UKS9WbbjtBG73qjJConfww9l7CRLd1UuvcbjKJZfj8fx-DFCb3SRFKXhPGQkNiHTxIR5KqswrVTFqCOQa0_7POOnP9iXWTobfl20Q1ql1aqe2PliYusrn1vZLHQ05olF599PEpBZETVlFd1HD2DExnxcpq9pu3l_9oSAC2aEjbTGjEaNle0ElJumsNTwV_DFPHe07o2Jqc9NdMBTML8t-NzOobwxKU0fo9nYnD4X5edk1amJ_r1FerxDe5-g3SFQxR96gz10z9inaG9wBS1-N_Cq3--jPyA17HkPMCNid-_CApbbuG6xtNjYctlzYLE_pALtxcsKX9VNA7Mo-KI59kjNgRcBKsHyUtYQtMILtKMZSCw7PF_-wtqdsLQD5rfFatVhLVctfExpLv3X9NU77BjMW-bP0MX008XJaThc_hDqNE-6MCM6LguZS2pKmknDVRJrHRul00JnNEuMpLlirCqp5tQUmiQGgreK8YrDEpIeoB27tOY5whDSVLEsYpf-wygziiZclsQwolROShOgt2PHi6ZHfAi_NZ9R4bpfrNUSoH2vi39mhIBTDNCBtxufFplIhTugHKDj2wtENWT2BOholJYYnEcrICajjrpDXP2xFEa928qR1kCPCQj6QNu8-L9F5sn5lAbosBfqjbb1gg9QuiHhtYEjjm-WgDA9edwL8cUd6x2jh-cfp-Lb57OvR-hRjzQgISleop3uemVeQXDXqdd-IP8FTXJUPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+protease+thrombin+is+an+endogenous+mediator+of+hippocampal+neuroprotection+against+ischemia+at+low+concentrations+but+causes+degeneration+at+high+concentrations&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Frank+Striggow&rft.au=Monika+Riek&rft.au=J%C3%B6rg+Breder&rft.au=Petra+Henrich-Noack&rft.date=2000-02-29&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=97&rft.issue=5&rft.spage=2264&rft_id=info:doi/10.1073%2Fpnas.040552897&rft_id=info%3Apmid%2F10681455&rft.externalDBID=n%2Fa&rft.externalDocID=97_5_2264 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F5.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F5.cover.gif |