Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 12; no. 7; pp. 1271 - 1284 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.04.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10
and ultra-large GH shift of 4.4785 × 10
µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10
µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10
RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. |
---|---|
AbstractList | This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10−9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10−7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10−9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10−7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 and ultra-large GH shift of 4.4785 × 10 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 −9 and ultra-large GH shift of 4.4785 × 10 4 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 7 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 −7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. Abstract This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 −9 and ultra-large GH shift of 4.4785 × 10 4 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 7 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 −7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. |
Author | Zeng, Shuwen Du, Fusheng Zheng, Kai Yuan, Yufeng |
Author_xml | – sequence: 1 givenname: Fusheng surname: Du fullname: Du, Fusheng organization: School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China – sequence: 2 givenname: Kai orcidid: 0000-0002-9003-572X surname: Zheng fullname: Zheng, Kai organization: School of Civil Aviation, Northwestern Polytechnical University, Xi’an, Shanxi, 710072, China – sequence: 3 givenname: Shuwen surname: Zeng fullname: Zeng, Shuwen email: shuwen.zeng@cnrs.fr organization: Light, Nanomaterials & Nanotechnologies (L2n), CNRS-ERL 7004, Université de Technologie de Troyes, Troyes, 10000, France – sequence: 4 givenname: Yufeng orcidid: 0000-0001-7472-4368 surname: Yuan fullname: Yuan, Yufeng email: yufengyuan@dgut.edu.cn organization: School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39677592$$D View this record in MEDLINE/PubMed https://hal.science/hal-04285737$$DView record in HAL |
BookMark | eNp9Uk1v1DAQjVARLaV3TigSl3II-CP-OqGqAlppJQ7A2XKSya5XXnuxna323-OwS2krgWXJY_u9NzP2e1md-OChql5j9B4zzD5448N21RBESIOEks-qM4IVaSTH7cmD-LS6SGmNylCKYsVfVKdUcSGYImeV-wY-2Wx3Nu9r8CvjexjqPHnTOai3zqRN8LavOxtSQYZYT8n6ZZ3vQjPYzUwO3riytykXZmed2UOsl9FsV-ChTtMWojM52x5eVc9H4xJcHNfz6sfnT9-vb5rF1y-311eLpmcS56YdKO6EkExwJJXEbSdMhzBhCA1ylAoIEoj0pUFGuQQ0MoU55qQdJB24Gul5dXvQHYJZ6220GxP3Ohirfx-EuNQmloIc6HZgI5iOYSJEa8goEQxGdQTLse9GBkXr40FrO3UbGHrwORr3SPTxjbcrvQw7jTGnvMWsKLw7KKye8G6uFno-Qy0pvVKxwwV7ecwWw88JUtYbm3pwzngIU9IUt1wyTDEp0LdPoOswxfIXSRMhFW4ZJ7Sg3jws_z7_HwcUADoA-hhSijDeQzDSs8_0wWd69pmefVYo_Amlt9nkYoTyANb9j3h8yzvjMsQBlnHal-Bv5f-ilu-ZJ_0FdTLubg |
CitedBy_id | crossref_primary_10_1039_D3NR04583H crossref_primary_10_1364_OL_528817 crossref_primary_10_1515_nanoph_2023_0500 crossref_primary_10_1016_j_physleta_2024_130167 crossref_primary_10_1016_j_optlaseng_2024_108332 crossref_primary_10_1063_5_0170550 crossref_primary_10_1088_2040_8986_acd463 crossref_primary_10_1088_1361_6463_ad1b0b |
Cites_doi | 10.1063/1.332395 10.1007/s40820-021-00613-7 10.3390/nano10071289 10.1016/j.optcom.2017.03.035 10.1038/nature26154 10.1038/s41563-020-0708-6 10.1038/s41567-020-01041-x 10.3390/nano12224078 10.1016/j.ssc.2008.02.024 10.1016/j.jpha.2020.03.009 10.1088/2516-1075/abd957 10.1103/PhysRevLett.119.247402 10.1126/science.aav1910 10.1038/s41565-021-00894-4 10.1038/s41467-021-23732-6 10.1016/j.revip.2021.100054 10.1088/1361-648X/ac2d5f 10.1002/andp.19484370108 10.3390/s20041028 10.1103/PhysRevLett.129.117602 10.1038/s41567-019-0606-5 10.1002/adom.201600278 10.1021/acs.nanolett.1c00696 10.1364/OME.8.003036 10.1126/science.abd3230 10.1364/AO.15.000236 10.1002/(SICI)1097-0282(199812)46:7<489::AID-BIP6>3.0.CO;2-E 10.1088/1367-2630/abbe53 10.1364/AO.396376 10.1088/0031-9155/56/13/017 10.1038/s41565-021-00960-x 10.1007/s40820-020-00464-8 10.1002/smll.201700600 10.1039/D0CS01002B 10.1016/j.snb.2014.10.124 10.1166/sl.2009.1161 10.1038/s41563-022-01290-6 10.1126/science.abb8754 10.1038/s41467-021-24272-9 10.1038/s41586-021-04121-x 10.1126/science.aaw3780 10.1103/PhysRevB.104.245412 10.1016/S1369-7021(11)70160-2 10.1021/acs.nanolett.6b02587 10.1021/acsomega.0c01676 10.1103/PhysRevLett.99.256802 10.1039/D0NR02179B 10.1088/1361-6463/abecb2 |
ContentType | Journal Article |
Copyright | 2023 the author(s), published by De Gruyter, Berlin/Boston. 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
DOI | 10.1515/nanoph-2022-0798 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 1284 |
ExternalDocumentID | oai_doaj_org_article_4d5feab512774a2f80eda9b218fcbf5e PMC11636415 oai_HAL_hal_04285737v1 39677592 10_1515_nanoph_2022_0798 10_1515_nanoph_2022_07981271271 |
Genre | Journal Article |
GrantInformation_xml | – fundername: High-level talent program of Dongguan University of Technology grantid: 221110080 – fundername: Industrial Development and Foster Project of Yangtze River Delta Research Institute of NPU at Taicang grantid: CY20210207 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515010377; 2022A1515011191 – fundername: National Natural Science Foundation of China grantid: 62005172; 62075137 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c581t-4d31b778576089814b7ab012500d8f89e20702c2195368e0f59161624d83d69f3 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:29:36 EDT 2025 Thu Aug 21 18:29:24 EDT 2025 Fri May 09 12:26:53 EDT 2025 Fri Jul 11 11:29:26 EDT 2025 Sun Jul 13 04:11:25 EDT 2025 Mon Jul 21 05:35:01 EDT 2025 Tue Jul 01 00:41:54 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Thu Jul 10 10:33:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | twisted bilayer graphene superlattice SARS-CoV-2 human hemoglobin tunable plasmonic biosensor GH shift sensitivity enhancement |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2023 the author(s), published by De Gruyter, Berlin/Boston. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-4d31b778576089814b7ab012500d8f89e20702c2195368e0f59161624d83d69f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9003-572X 0000-0001-7472-4368 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0798 |
PMID | 39677592 |
PQID | 2789145623 |
PQPubID | 2038884 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4d5feab512774a2f80eda9b218fcbf5e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11636415 hal_primary_oai_HAL_hal_04285737v1 proquest_miscellaneous_3146851312 proquest_journals_2789145623 pubmed_primary_39677592 crossref_primary_10_1515_nanoph_2022_0798 crossref_citationtrail_10_1515_nanoph_2022_0798 walterdegruyter_journals_10_1515_nanoph_2022_07981271271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2023 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023040100564051559_j_nanoph-2022-0798_ref_031 2023040100564051559_j_nanoph-2022-0798_ref_030 2023040100564051559_j_nanoph-2022-0798_ref_019 2023040100564051559_j_nanoph-2022-0798_ref_018 2023040100564051559_j_nanoph-2022-0798_ref_015 2023040100564051559_j_nanoph-2022-0798_ref_037 2023040100564051559_j_nanoph-2022-0798_ref_014 2023040100564051559_j_nanoph-2022-0798_ref_036 2023040100564051559_j_nanoph-2022-0798_ref_017 2023040100564051559_j_nanoph-2022-0798_ref_039 2023040100564051559_j_nanoph-2022-0798_ref_016 2023040100564051559_j_nanoph-2022-0798_ref_038 2023040100564051559_j_nanoph-2022-0798_ref_011 2023040100564051559_j_nanoph-2022-0798_ref_033 2023040100564051559_j_nanoph-2022-0798_ref_010 2023040100564051559_j_nanoph-2022-0798_ref_032 2023040100564051559_j_nanoph-2022-0798_ref_013 2023040100564051559_j_nanoph-2022-0798_ref_035 2023040100564051559_j_nanoph-2022-0798_ref_012 2023040100564051559_j_nanoph-2022-0798_ref_034 2023040100564051559_j_nanoph-2022-0798_ref_040 2023040100564051559_j_nanoph-2022-0798_ref_020 2023040100564051559_j_nanoph-2022-0798_ref_042 2023040100564051559_j_nanoph-2022-0798_ref_041 2023040100564051559_j_nanoph-2022-0798_ref_008 2023040100564051559_j_nanoph-2022-0798_ref_007 2023040100564051559_j_nanoph-2022-0798_ref_029 2023040100564051559_j_nanoph-2022-0798_ref_009 2023040100564051559_j_nanoph-2022-0798_ref_004 2023040100564051559_j_nanoph-2022-0798_ref_026 2023040100564051559_j_nanoph-2022-0798_ref_048 2023040100564051559_j_nanoph-2022-0798_ref_003 2023040100564051559_j_nanoph-2022-0798_ref_025 2023040100564051559_j_nanoph-2022-0798_ref_047 2023040100564051559_j_nanoph-2022-0798_ref_006 2023040100564051559_j_nanoph-2022-0798_ref_028 2023040100564051559_j_nanoph-2022-0798_ref_005 2023040100564051559_j_nanoph-2022-0798_ref_027 2023040100564051559_j_nanoph-2022-0798_ref_022 2023040100564051559_j_nanoph-2022-0798_ref_044 2023040100564051559_j_nanoph-2022-0798_ref_021 2023040100564051559_j_nanoph-2022-0798_ref_043 2023040100564051559_j_nanoph-2022-0798_ref_002 2023040100564051559_j_nanoph-2022-0798_ref_024 2023040100564051559_j_nanoph-2022-0798_ref_046 2023040100564051559_j_nanoph-2022-0798_ref_001 2023040100564051559_j_nanoph-2022-0798_ref_023 2023040100564051559_j_nanoph-2022-0798_ref_045 |
References_xml | – ident: 2023040100564051559_j_nanoph-2022-0798_ref_041 doi: 10.1063/1.332395 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_045 doi: 10.1007/s40820-021-00613-7 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_043 doi: 10.3390/nano10071289 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_044 doi: 10.1016/j.optcom.2017.03.035 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_004 doi: 10.1038/nature26154 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_005 doi: 10.1038/s41563-020-0708-6 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_003 doi: 10.1038/s41567-020-01041-x – ident: 2023040100564051559_j_nanoph-2022-0798_ref_034 doi: 10.3390/nano12224078 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_033 doi: 10.1016/j.ssc.2008.02.024 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_048 doi: 10.1016/j.jpha.2020.03.009 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_014 doi: 10.1088/2516-1075/abd957 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_026 doi: 10.1103/PhysRevLett.119.247402 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_018 doi: 10.1126/science.aav1910 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_022 doi: 10.1038/s41565-021-00894-4 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_006 doi: 10.1038/s41467-021-23732-6 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_025 doi: 10.1016/j.revip.2021.100054 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_011 doi: 10.1088/1361-648X/ac2d5f – ident: 2023040100564051559_j_nanoph-2022-0798_ref_040 doi: 10.1002/andp.19484370108 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_030 doi: 10.3390/s20041028 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_015 doi: 10.1103/PhysRevLett.129.117602 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_016 doi: 10.1038/s41567-019-0606-5 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_024 doi: 10.1002/adom.201600278 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_021 doi: 10.1021/acs.nanolett.1c00696 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_046 doi: 10.1364/OME.8.003036 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_009 doi: 10.1126/science.abd3230 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_042 doi: 10.1364/AO.15.000236 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_037 doi: 10.1002/(SICI)1097-0282(199812)46:7<489::AID-BIP6>3.0.CO;2-E – ident: 2023040100564051559_j_nanoph-2022-0798_ref_036 doi: 10.1088/1367-2630/abbe53 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_031 doi: 10.1364/AO.396376 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_038 doi: 10.1088/0031-9155/56/13/017 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_023 doi: 10.1038/s41565-021-00960-x – ident: 2023040100564051559_j_nanoph-2022-0798_ref_001 doi: 10.1007/s40820-020-00464-8 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_047 doi: 10.1002/smll.201700600 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_010 doi: 10.1039/D0CS01002B – ident: 2023040100564051559_j_nanoph-2022-0798_ref_035 doi: 10.1016/j.snb.2014.10.124 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_039 doi: 10.1166/sl.2009.1161 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_013 doi: 10.1038/s41563-022-01290-6 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_017 doi: 10.1126/science.abb8754 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_008 doi: 10.1038/s41467-021-24272-9 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_019 doi: 10.1038/s41586-021-04121-x – ident: 2023040100564051559_j_nanoph-2022-0798_ref_020 doi: 10.1126/science.aaw3780 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_012 doi: 10.1103/PhysRevB.104.245412 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_028 doi: 10.1016/S1369-7021(11)70160-2 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_027 doi: 10.1021/acs.nanolett.6b02587 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_032 doi: 10.1021/acsomega.0c01676 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_002 doi: 10.1103/PhysRevLett.99.256802 – ident: 2023040100564051559_j_nanoph-2022-0798_ref_007 doi: 10.1039/D0NR02179B – ident: 2023040100564051559_j_nanoph-2022-0798_ref_029 doi: 10.1088/1361-6463/abecb2 |
SSID | ssj0000993196 |
Score | 2.2925372 |
Snippet | This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer... Abstract This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1271 |
SubjectTerms | Bilayers Biomedical materials Biomolecules Biosensors Configurations Engineering Sciences GH shift Graphene Hemoglobin human hemoglobin Microorganisms Optics Photonic Plasmonics Refractivity SARS-CoV-2 Sensitivity enhancement Severe acute respiratory syndrome coronavirus 2 Superlattices Thin films tunable plasmonic biosensor twisted bilayer graphene superlattice |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1zKNwQKMogLh2jjOI6dY0FUKwRcoFJvlh073aJtstokVPx7Zuzs0lABF6S9bOx8rOc582Zn_EzIa2cgkFYCZlrmRFpwK1Nwej61dW5NXTfMlLga-dPncnlafDgTZ9e2-sKasCgPHAduUTjReGPBLwFRMXmjMu9MZcEzNbVthMe3L_i8a8HUt8h7EFtTXhJ89qI1bbdZAShyrLas1MwPBbl-8C4rLIa8yTRvFkweXoVktvPn2_HHsEueBp90cpccTmSSHscfcY_c8u19cmcilnSatv0Dsv6CZepxnwjq21XI-tNhDOum6AYI9CUq5FJ70fXQs9tSLIc_p8NVlzqU_4_SHfAdQeGg39oAVadB7RpelrQfN_i_4ICVdA_J6cn7r--W6bTNQloLxYa0cJxZKRVEHpmqFCusNBb8lsgypxpV-RxeC3mdY8KtVD5rBFBKVuaFU9yVVcMfkYO2a_0TQmthFMpLeW7AO2ZlBfGS5LVSDeNgRpmQxW7QdT1pkONWGGuNsQiYSUczaTSTRjMl5M3-jE3U3_hL37dox30_VM4OBwBPesKT_heeEvIKUDC7xvL4o8ZjGF4KyeV3lpCjHUj0NOd7jWuKGQaUPCEv980wWzEFY1rfjb3muNJNMM7yhDyOmNrfilellKKCFjVD2-xZ5i3txSoogjNg1SVQMTj1N2D-erw_jRoMBH6e_o_Be0Zuw3V5rGw6IgfDdvTPgbQN9kWYnz8BLj9DIA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-FlfENgIIN44SFqHMeJ84Q2tKlCMCFg0t4sO3baSSUJTcLEf89d4mYKE5P60thuXN_57ne-8x0h76wGQ1oK2GmRFWHCTRaC0nOhKWKji6JkOsXbyF_O0uV58ulCXPgDt9aHVe5k4iCobV3gGfkCb2wyhOv8Q_MrxKpR6F31JTTukn0QwRKMr_3jk7Ov36ZTFsA_yGNYYQ6gTCgBrntfJejxRaWrulkDo8QYgZnLmW4aUviDxlljgORN9HkziPLganBwW7fa9n-6nUN10FOnD8iBB5j0aOSIh-SOqx6R-x5sUr-V28dk8x1D18faEdRV6yESgHb9cJeKNgCqf2LWXGou6xZ61luKIfIr2l3VocWSAGM6D_iOjGKh30YDfKdDBmwQoLTtGzwr7DC67gk5Pz358XEZ-tILYSEk68LEcmayTII1EslcssRk2oAuE1FkZSlzF4OoiIsYnXCpdFEpAGayNE6s5DbNS_6U7FV15Z4TWggtMeWU4xo0ZpTmYENlvJCyZFyULgvIYrfoqvB5ybE8xkahfQJkUiOZFJJJIZkC8n4a0Yw5OW7pe4x0nPphNu3hQb1dKb85VWJhItoA9gEwrONSRs7q3AD6KQtTCheQt8AFs99YHn1W-AxNTpHx7DcLyOGOSZSXA6265tqAvJmaYQejW0ZXru5bxfH2m2CcxQF5NvLU9Cqep1kmcmiRM26bzWXeUl2uhyzhDJB2CvAMhv7DmNfT-9-qwULg58Xtf-kluQcj-BjHdEj2um3vXgFE68xrvw__AhJcPFc priority: 102 providerName: ProQuest |
Title | Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2022-0798 https://www.ncbi.nlm.nih.gov/pubmed/39677592 https://www.proquest.com/docview/2789145623 https://www.proquest.com/docview/3146851312 https://hal.science/hal-04285737 https://pubmed.ncbi.nlm.nih.gov/PMC11636415 https://doaj.org/article/4d5feab512774a2f80eda9b218fcbf5e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY9sLL-GaBURnECw9hcRzHzgNCG1qpEJsQUGlvkR077VBJSpoy9t9z56SdygYSUh_a2Emt-8j9zne-I-Sl1eBIKwGaFlkRJtzIEIyeC00RG10UJdMpnkY-OU1H4-TDmTi7Oh7dE3Bxo2uH_aTGzez1rx-Xb0Hh3_juPUwcVLqq51Pgd4yJlJnaIjtglySq6UkP9r91WAjlDbvNAawJFRimPm5500M27JQv5w_WZ4rJkteR6PWEyt0LH-y2btIsL9tVcNXbrOFdstuDTXrYScc9cstV98mdHnjSXq0XD8jsC6axd30kqKumPiuAtkt_rorOAWB_xwq61JzXC5hZNxTT5Se0vahDi-0ButIe8BuFxsK8mQYoT301bHiZ0sVyjvuGLWbaPSTj4fHXd6Owb8MQFkKxNkwsZ0ZKBZ5JpDLFEiO1AbsmosiqUmUuhtdGXMQYkEuVi0oBkJOlcWIVt2lW8kdku6ort0doIbTC8lOOa7CeUZqBPyV5oVTJuCidDMjBiuh50dcox1YZsxx9FWBT3rEpRzblyKaAvFrfMe_qc_xj7hHycT0PK2v7C3UzyXtFzRMLC9EGcBAAYx2XKnJWZwaQUFmYUriAvAAp2HjG6PBjjtfQ_RSSy58sIPsrIclXIp3jmWOGDicPyPP1MGgzhmh05erlIud4Ek4wzuKAPO5kav1XPEulFBmMqA1p21jL5kh1PvUVwxmg7hSgGtz6h2BeLe9vVANC4OfJfxD6KbkN33mX4LRPtttm6Z4BdmvNgGyp4fsB2Tk6Pv30eeB3QAZeTQd-o-03kGhHjQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcoBLeYOhgGDgwMETy7Js-cAw5RFSmvZCO9ObkCw56UywQ-yQ6Z_iN7LrRzqhQ2-dySWW5Cja1e632tUuIW-sBkNaCthpgRV-xE3ig9JzvslCo7MsZzrG28iHR_HoJPp2Kk63yJ_-LgyGVfYysRHUtszwjHyANzYZwnX-Yf7Lx6pR6F3tS2i0bHHgzldgslXv9z8Dfd-G4fDL8aeR31UV8DMhWe1HljOTJBKAdiBTySKTaANiWgSBlblMXQi7IMxC9C_F0gW5AATF4jCykts4zTm89wa5GXGe4o6Sw6_rMx1AW8jRWM8OgJMvwTjoPKOAGgaFLsr5FNgyxHjPVG5owqZgAOi3KYZjXsa6l0M2d1aNO926yWJ5Xvfu20YrDu-SnQ7O0r2W_-6RLVfcJ3c6aEs7wVE9ILPvGCjfVqqgrpg2cQe0XjY3t-gcIPxPzNFLzVlZQc9yQTEgf0LrVelbLEDQJg-B78iWFvrNNBgLtMm3DeKaVss5nkzWGMv3kJxcC0keke2iLNwTQjOhJSa4clyDfg7iFCy2hGdS5oyL3CUeGfSLrrIuCzoW45gptIaATKolk0IyKSSTR96tR8zbDCBX9P2IdFz3w9zdzYNyMVGdKFCRhYloA0gLoLcOcxk4q1MDWCvPTC6cR14DF2y8Y7Q3VvgMDVyR8OQ388huzySqkzqVutgjHnm1bgZ5gU4gXbhyWSmOd-0E4yz0yOOWp9Y_BRydJCKFFrnBbRtz2WwpzqZNTnIGuD4GMAhD_2HMi-n9b9VgIfDz9Oq_9JLcGh0fjtV4_-jgGbkNo3kbQbVLtuvF0j0HcFibF82OpOTHdYuAvxQddAE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJyFeNn6OjAEG8cJD1DiOE-exDEqBMZDGpL1Zduy0k0pSNQkT_z13SRooAx6Q8tLYTi3fne87-_yZkBdWQyAtBVhaYIUfcZP44PScb7LQ6CzLmY7xNPLH03h2Hr2_EBc75HhzFgbTKq2br5vvdceQOrZl1uBC2cA1AB54XOiiXC1AxCHmTqZyvLL5DbIbxymPRmR3Mnt79mlYagEQhIrWb1L-qfmWU2q5-8HVLDAz8jrsvJ49uXfV7mwP3f7FQU1vk70eWdJJpwp3yI4r7pL9HmXS3oare2R5hjnr3aUR1BWLNgWA1k17iIquAE1_Rbpcai7LCmqWa4q58XNaX5W-xbsAOh4P-I0aYqHeUgNupy31NcyctGpWuEhYY1rdfXI-ffPleOb3dy74mZCs9iPLmUkSCWFIIFPJIpNoA05MBIGVuUxdCHNEmIW4-xZLF-QC8CWLw8hKbuM05w_IqCgL95DQTGiJXFOOa3CVQZxC8JTwTMqccZG7xCPjzaCrrCckx3sxlgoDExCT6sSkUEwKxeSRl0OLVUfG8Y-6r1COQz2k0W5flOu56q1SRRY6og2AHkDBOsxl4KxODcCePDO5cB55Dlqw9Y3Z5EThO4w1RcKTb8wjRxslUf0EUCk8YMwwuuQeeTYUg-nifowuXNlUiuOxN8E4Cz1y0OnU8Fc8jZNEpFAit7Rtqy_bJcXloqUHZwCxY8Bl0PQ3xfzZvb-NGgwEPof_3_Qpufn59VSdvDv98IjcglLe5TkdkVG9btxjgHC1edKb6A8XAEYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+enhanced+tunable+plasmonic+biosensor+using+two-dimensional+twisted+bilayer+graphene+superlattice&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Du%2C+Fusheng&rft.au=Zheng%2C+Kai&rft.au=Zeng%2C+Shuwen&rft.au=Yuan%2C+Yufeng&rft.date=2023-04-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=12&rft.issue=7&rft.spage=1271&rft.epage=1284&rft_id=info:doi/10.1515%2Fnanoph-2022-0798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2022_0798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |