Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice

This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 12; no. 7; pp. 1271 - 1284
Main Authors Du, Fusheng, Zheng, Kai, Zeng, Shuwen, Yuan, Yufeng
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.04.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 and ultra-large GH shift of 4.4785 × 10 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
AbstractList This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10−9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10−7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10−9 and ultra-large GH shift of 4.4785 × 104 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10−7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 and ultra-large GH shift of 4.4785 × 10 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 −9 and ultra-large GH shift of 4.4785 × 10 4 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 7 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 −7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
Abstract This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos–Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10 −9 and ultra-large GH shift of 4.4785 × 10 4 µm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 10 7 µm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10 −7 RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application.
Author Zeng, Shuwen
Du, Fusheng
Zheng, Kai
Yuan, Yufeng
Author_xml – sequence: 1
  givenname: Fusheng
  surname: Du
  fullname: Du, Fusheng
  organization: School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
– sequence: 2
  givenname: Kai
  orcidid: 0000-0002-9003-572X
  surname: Zheng
  fullname: Zheng, Kai
  organization: School of Civil Aviation, Northwestern Polytechnical University, Xi’an, Shanxi, 710072, China
– sequence: 3
  givenname: Shuwen
  surname: Zeng
  fullname: Zeng, Shuwen
  email: shuwen.zeng@cnrs.fr
  organization: Light, Nanomaterials & Nanotechnologies (L2n), CNRS-ERL 7004, Université de Technologie de Troyes, Troyes, 10000, France
– sequence: 4
  givenname: Yufeng
  orcidid: 0000-0001-7472-4368
  surname: Yuan
  fullname: Yuan, Yufeng
  email: yufengyuan@dgut.edu.cn
  organization: School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39677592$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04285737$$DView record in HAL
BookMark eNp9Uk1v1DAQjVARLaV3TigSl3II-CP-OqGqAlppJQ7A2XKSya5XXnuxna323-OwS2krgWXJY_u9NzP2e1md-OChql5j9B4zzD5448N21RBESIOEks-qM4IVaSTH7cmD-LS6SGmNylCKYsVfVKdUcSGYImeV-wY-2Wx3Nu9r8CvjexjqPHnTOai3zqRN8LavOxtSQYZYT8n6ZZ3vQjPYzUwO3riytykXZmed2UOsl9FsV-ChTtMWojM52x5eVc9H4xJcHNfz6sfnT9-vb5rF1y-311eLpmcS56YdKO6EkExwJJXEbSdMhzBhCA1ylAoIEoj0pUFGuQQ0MoU55qQdJB24Gul5dXvQHYJZ6220GxP3Ohirfx-EuNQmloIc6HZgI5iOYSJEa8goEQxGdQTLse9GBkXr40FrO3UbGHrwORr3SPTxjbcrvQw7jTGnvMWsKLw7KKye8G6uFno-Qy0pvVKxwwV7ecwWw88JUtYbm3pwzngIU9IUt1wyTDEp0LdPoOswxfIXSRMhFW4ZJ7Sg3jws_z7_HwcUADoA-hhSijDeQzDSs8_0wWd69pmefVYo_Amlt9nkYoTyANb9j3h8yzvjMsQBlnHal-Bv5f-ilu-ZJ_0FdTLubg
CitedBy_id crossref_primary_10_1039_D3NR04583H
crossref_primary_10_1364_OL_528817
crossref_primary_10_1515_nanoph_2023_0500
crossref_primary_10_1016_j_physleta_2024_130167
crossref_primary_10_1016_j_optlaseng_2024_108332
crossref_primary_10_1063_5_0170550
crossref_primary_10_1088_2040_8986_acd463
crossref_primary_10_1088_1361_6463_ad1b0b
Cites_doi 10.1063/1.332395
10.1007/s40820-021-00613-7
10.3390/nano10071289
10.1016/j.optcom.2017.03.035
10.1038/nature26154
10.1038/s41563-020-0708-6
10.1038/s41567-020-01041-x
10.3390/nano12224078
10.1016/j.ssc.2008.02.024
10.1016/j.jpha.2020.03.009
10.1088/2516-1075/abd957
10.1103/PhysRevLett.119.247402
10.1126/science.aav1910
10.1038/s41565-021-00894-4
10.1038/s41467-021-23732-6
10.1016/j.revip.2021.100054
10.1088/1361-648X/ac2d5f
10.1002/andp.19484370108
10.3390/s20041028
10.1103/PhysRevLett.129.117602
10.1038/s41567-019-0606-5
10.1002/adom.201600278
10.1021/acs.nanolett.1c00696
10.1364/OME.8.003036
10.1126/science.abd3230
10.1364/AO.15.000236
10.1002/(SICI)1097-0282(199812)46:7<489::AID-BIP6>3.0.CO;2-E
10.1088/1367-2630/abbe53
10.1364/AO.396376
10.1088/0031-9155/56/13/017
10.1038/s41565-021-00960-x
10.1007/s40820-020-00464-8
10.1002/smll.201700600
10.1039/D0CS01002B
10.1016/j.snb.2014.10.124
10.1166/sl.2009.1161
10.1038/s41563-022-01290-6
10.1126/science.abb8754
10.1038/s41467-021-24272-9
10.1038/s41586-021-04121-x
10.1126/science.aaw3780
10.1103/PhysRevB.104.245412
10.1016/S1369-7021(11)70160-2
10.1021/acs.nanolett.6b02587
10.1021/acsomega.0c01676
10.1103/PhysRevLett.99.256802
10.1039/D0NR02179B
10.1088/1361-6463/abecb2
ContentType Journal Article
Copyright 2023 the author(s), published by De Gruyter, Berlin/Boston.
2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.1515/nanoph-2022-0798
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 1284
ExternalDocumentID oai_doaj_org_article_4d5feab512774a2f80eda9b218fcbf5e
PMC11636415
oai_HAL_hal_04285737v1
39677592
10_1515_nanoph_2022_0798
10_1515_nanoph_2022_07981271271
Genre Journal Article
GrantInformation_xml – fundername: High-level talent program of Dongguan University of Technology
  grantid: 221110080
– fundername: Industrial Development and Foster Project of Yangtze River Delta Research Institute of NPU at Taicang
  grantid: CY20210207
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515010377; 2022A1515011191
– fundername: National Natural Science Foundation of China
  grantid: 62005172; 62075137
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c581t-4d31b778576089814b7ab012500d8f89e20702c2195368e0f59161624d83d69f3
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:29:36 EDT 2025
Thu Aug 21 18:29:24 EDT 2025
Fri May 09 12:26:53 EDT 2025
Fri Jul 11 11:29:26 EDT 2025
Sun Jul 13 04:11:25 EDT 2025
Mon Jul 21 05:35:01 EDT 2025
Tue Jul 01 00:41:54 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Thu Jul 10 10:33:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords twisted bilayer graphene superlattice
SARS-CoV-2
human hemoglobin
tunable plasmonic biosensor
GH shift
sensitivity enhancement
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2023 the author(s), published by De Gruyter, Berlin/Boston.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-4d31b778576089814b7ab012500d8f89e20702c2195368e0f59161624d83d69f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9003-572X
0000-0001-7472-4368
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0798
PMID 39677592
PQID 2789145623
PQPubID 2038884
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_4d5feab512774a2f80eda9b218fcbf5e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11636415
hal_primary_oai_HAL_hal_04285737v1
proquest_miscellaneous_3146851312
proquest_journals_2789145623
pubmed_primary_39677592
crossref_primary_10_1515_nanoph_2022_0798
crossref_citationtrail_10_1515_nanoph_2022_0798
walterdegruyter_journals_10_1515_nanoph_2022_07981271271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023040100564051559_j_nanoph-2022-0798_ref_031
2023040100564051559_j_nanoph-2022-0798_ref_030
2023040100564051559_j_nanoph-2022-0798_ref_019
2023040100564051559_j_nanoph-2022-0798_ref_018
2023040100564051559_j_nanoph-2022-0798_ref_015
2023040100564051559_j_nanoph-2022-0798_ref_037
2023040100564051559_j_nanoph-2022-0798_ref_014
2023040100564051559_j_nanoph-2022-0798_ref_036
2023040100564051559_j_nanoph-2022-0798_ref_017
2023040100564051559_j_nanoph-2022-0798_ref_039
2023040100564051559_j_nanoph-2022-0798_ref_016
2023040100564051559_j_nanoph-2022-0798_ref_038
2023040100564051559_j_nanoph-2022-0798_ref_011
2023040100564051559_j_nanoph-2022-0798_ref_033
2023040100564051559_j_nanoph-2022-0798_ref_010
2023040100564051559_j_nanoph-2022-0798_ref_032
2023040100564051559_j_nanoph-2022-0798_ref_013
2023040100564051559_j_nanoph-2022-0798_ref_035
2023040100564051559_j_nanoph-2022-0798_ref_012
2023040100564051559_j_nanoph-2022-0798_ref_034
2023040100564051559_j_nanoph-2022-0798_ref_040
2023040100564051559_j_nanoph-2022-0798_ref_020
2023040100564051559_j_nanoph-2022-0798_ref_042
2023040100564051559_j_nanoph-2022-0798_ref_041
2023040100564051559_j_nanoph-2022-0798_ref_008
2023040100564051559_j_nanoph-2022-0798_ref_007
2023040100564051559_j_nanoph-2022-0798_ref_029
2023040100564051559_j_nanoph-2022-0798_ref_009
2023040100564051559_j_nanoph-2022-0798_ref_004
2023040100564051559_j_nanoph-2022-0798_ref_026
2023040100564051559_j_nanoph-2022-0798_ref_048
2023040100564051559_j_nanoph-2022-0798_ref_003
2023040100564051559_j_nanoph-2022-0798_ref_025
2023040100564051559_j_nanoph-2022-0798_ref_047
2023040100564051559_j_nanoph-2022-0798_ref_006
2023040100564051559_j_nanoph-2022-0798_ref_028
2023040100564051559_j_nanoph-2022-0798_ref_005
2023040100564051559_j_nanoph-2022-0798_ref_027
2023040100564051559_j_nanoph-2022-0798_ref_022
2023040100564051559_j_nanoph-2022-0798_ref_044
2023040100564051559_j_nanoph-2022-0798_ref_021
2023040100564051559_j_nanoph-2022-0798_ref_043
2023040100564051559_j_nanoph-2022-0798_ref_002
2023040100564051559_j_nanoph-2022-0798_ref_024
2023040100564051559_j_nanoph-2022-0798_ref_046
2023040100564051559_j_nanoph-2022-0798_ref_001
2023040100564051559_j_nanoph-2022-0798_ref_023
2023040100564051559_j_nanoph-2022-0798_ref_045
References_xml – ident: 2023040100564051559_j_nanoph-2022-0798_ref_041
  doi: 10.1063/1.332395
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_045
  doi: 10.1007/s40820-021-00613-7
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_043
  doi: 10.3390/nano10071289
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_044
  doi: 10.1016/j.optcom.2017.03.035
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_004
  doi: 10.1038/nature26154
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_005
  doi: 10.1038/s41563-020-0708-6
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_003
  doi: 10.1038/s41567-020-01041-x
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_034
  doi: 10.3390/nano12224078
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_033
  doi: 10.1016/j.ssc.2008.02.024
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_048
  doi: 10.1016/j.jpha.2020.03.009
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_014
  doi: 10.1088/2516-1075/abd957
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_026
  doi: 10.1103/PhysRevLett.119.247402
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_018
  doi: 10.1126/science.aav1910
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_022
  doi: 10.1038/s41565-021-00894-4
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_006
  doi: 10.1038/s41467-021-23732-6
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_025
  doi: 10.1016/j.revip.2021.100054
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_011
  doi: 10.1088/1361-648X/ac2d5f
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_040
  doi: 10.1002/andp.19484370108
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_030
  doi: 10.3390/s20041028
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_015
  doi: 10.1103/PhysRevLett.129.117602
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_016
  doi: 10.1038/s41567-019-0606-5
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_024
  doi: 10.1002/adom.201600278
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_021
  doi: 10.1021/acs.nanolett.1c00696
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_046
  doi: 10.1364/OME.8.003036
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_009
  doi: 10.1126/science.abd3230
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_042
  doi: 10.1364/AO.15.000236
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_037
  doi: 10.1002/(SICI)1097-0282(199812)46:7<489::AID-BIP6>3.0.CO;2-E
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_036
  doi: 10.1088/1367-2630/abbe53
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_031
  doi: 10.1364/AO.396376
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_038
  doi: 10.1088/0031-9155/56/13/017
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_023
  doi: 10.1038/s41565-021-00960-x
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_001
  doi: 10.1007/s40820-020-00464-8
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_047
  doi: 10.1002/smll.201700600
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_010
  doi: 10.1039/D0CS01002B
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_035
  doi: 10.1016/j.snb.2014.10.124
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_039
  doi: 10.1166/sl.2009.1161
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_013
  doi: 10.1038/s41563-022-01290-6
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_017
  doi: 10.1126/science.abb8754
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_008
  doi: 10.1038/s41467-021-24272-9
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_019
  doi: 10.1038/s41586-021-04121-x
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_020
  doi: 10.1126/science.aaw3780
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_012
  doi: 10.1103/PhysRevB.104.245412
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_028
  doi: 10.1016/S1369-7021(11)70160-2
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_027
  doi: 10.1021/acs.nanolett.6b02587
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_032
  doi: 10.1021/acsomega.0c01676
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_002
  doi: 10.1103/PhysRevLett.99.256802
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_007
  doi: 10.1039/D0NR02179B
– ident: 2023040100564051559_j_nanoph-2022-0798_ref_029
  doi: 10.1088/1361-6463/abecb2
SSID ssj0000993196
Score 2.2925372
Snippet This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer...
Abstract This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1271
SubjectTerms Bilayers
Biomedical materials
Biomolecules
Biosensors
Configurations
Engineering Sciences
GH shift
Graphene
Hemoglobin
human hemoglobin
Microorganisms
Optics
Photonic
Plasmonics
Refractivity
SARS-CoV-2
Sensitivity enhancement
Severe acute respiratory syndrome coronavirus 2
Superlattices
Thin films
tunable plasmonic biosensor
twisted bilayer graphene superlattice
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1zKNwQKMogLh2jjOI6dY0FUKwRcoFJvlh073aJtstokVPx7Zuzs0lABF6S9bOx8rOc582Zn_EzIa2cgkFYCZlrmRFpwK1Nwej61dW5NXTfMlLga-dPncnlafDgTZ9e2-sKasCgPHAduUTjReGPBLwFRMXmjMu9MZcEzNbVthMe3L_i8a8HUt8h7EFtTXhJ89qI1bbdZAShyrLas1MwPBbl-8C4rLIa8yTRvFkweXoVktvPn2_HHsEueBp90cpccTmSSHscfcY_c8u19cmcilnSatv0Dsv6CZepxnwjq21XI-tNhDOum6AYI9CUq5FJ70fXQs9tSLIc_p8NVlzqU_4_SHfAdQeGg39oAVadB7RpelrQfN_i_4ICVdA_J6cn7r--W6bTNQloLxYa0cJxZKRVEHpmqFCusNBb8lsgypxpV-RxeC3mdY8KtVD5rBFBKVuaFU9yVVcMfkYO2a_0TQmthFMpLeW7AO2ZlBfGS5LVSDeNgRpmQxW7QdT1pkONWGGuNsQiYSUczaTSTRjMl5M3-jE3U3_hL37dox30_VM4OBwBPesKT_heeEvIKUDC7xvL4o8ZjGF4KyeV3lpCjHUj0NOd7jWuKGQaUPCEv980wWzEFY1rfjb3muNJNMM7yhDyOmNrfilellKKCFjVD2-xZ5i3txSoogjNg1SVQMTj1N2D-erw_jRoMBH6e_o_Be0Zuw3V5rGw6IgfDdvTPgbQN9kWYnz8BLj9DIA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-FlfENgIIN44SFqHMeJ84Q2tKlCMCFg0t4sO3baSSUJTcLEf89d4mYKE5P60thuXN_57ne-8x0h76wGQ1oK2GmRFWHCTRaC0nOhKWKji6JkOsXbyF_O0uV58ulCXPgDt9aHVe5k4iCobV3gGfkCb2wyhOv8Q_MrxKpR6F31JTTukn0QwRKMr_3jk7Ov36ZTFsA_yGNYYQ6gTCgBrntfJejxRaWrulkDo8QYgZnLmW4aUviDxlljgORN9HkziPLganBwW7fa9n-6nUN10FOnD8iBB5j0aOSIh-SOqx6R-x5sUr-V28dk8x1D18faEdRV6yESgHb9cJeKNgCqf2LWXGou6xZ61luKIfIr2l3VocWSAGM6D_iOjGKh30YDfKdDBmwQoLTtGzwr7DC67gk5Pz358XEZ-tILYSEk68LEcmayTII1EslcssRk2oAuE1FkZSlzF4OoiIsYnXCpdFEpAGayNE6s5DbNS_6U7FV15Z4TWggtMeWU4xo0ZpTmYENlvJCyZFyULgvIYrfoqvB5ybE8xkahfQJkUiOZFJJJIZkC8n4a0Yw5OW7pe4x0nPphNu3hQb1dKb85VWJhItoA9gEwrONSRs7q3AD6KQtTCheQt8AFs99YHn1W-AxNTpHx7DcLyOGOSZSXA6265tqAvJmaYQejW0ZXru5bxfH2m2CcxQF5NvLU9Cqep1kmcmiRM26bzWXeUl2uhyzhDJB2CvAMhv7DmNfT-9-qwULg58Xtf-kluQcj-BjHdEj2um3vXgFE68xrvw__AhJcPFc
  priority: 102
  providerName: ProQuest
Title Sensitivity enhanced tunable plasmonic biosensor using two-dimensional twisted bilayer graphene superlattice
URI https://www.degruyter.com/doi/10.1515/nanoph-2022-0798
https://www.ncbi.nlm.nih.gov/pubmed/39677592
https://www.proquest.com/docview/2789145623
https://www.proquest.com/docview/3146851312
https://hal.science/hal-04285737
https://pubmed.ncbi.nlm.nih.gov/PMC11636415
https://doaj.org/article/4d5feab512774a2f80eda9b218fcbf5e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY9sLL-GaBURnECw9hcRzHzgNCG1qpEJsQUGlvkR077VBJSpoy9t9z56SdygYSUh_a2Emt-8j9zne-I-Sl1eBIKwGaFlkRJtzIEIyeC00RG10UJdMpnkY-OU1H4-TDmTi7Oh7dE3Bxo2uH_aTGzez1rx-Xb0Hh3_juPUwcVLqq51Pgd4yJlJnaIjtglySq6UkP9r91WAjlDbvNAawJFRimPm5500M27JQv5w_WZ4rJkteR6PWEyt0LH-y2btIsL9tVcNXbrOFdstuDTXrYScc9cstV98mdHnjSXq0XD8jsC6axd30kqKumPiuAtkt_rorOAWB_xwq61JzXC5hZNxTT5Se0vahDi-0ButIe8BuFxsK8mQYoT301bHiZ0sVyjvuGLWbaPSTj4fHXd6Owb8MQFkKxNkwsZ0ZKBZ5JpDLFEiO1AbsmosiqUmUuhtdGXMQYkEuVi0oBkJOlcWIVt2lW8kdku6ort0doIbTC8lOOa7CeUZqBPyV5oVTJuCidDMjBiuh50dcox1YZsxx9FWBT3rEpRzblyKaAvFrfMe_qc_xj7hHycT0PK2v7C3UzyXtFzRMLC9EGcBAAYx2XKnJWZwaQUFmYUriAvAAp2HjG6PBjjtfQ_RSSy58sIPsrIclXIp3jmWOGDicPyPP1MGgzhmh05erlIud4Ek4wzuKAPO5kav1XPEulFBmMqA1p21jL5kh1PvUVwxmg7hSgGtz6h2BeLe9vVANC4OfJfxD6KbkN33mX4LRPtttm6Z4BdmvNgGyp4fsB2Tk6Pv30eeB3QAZeTQd-o-03kGhHjQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcoBLeYOhgGDgwMETy7Js-cAw5RFSmvZCO9ObkCw56UywQ-yQ6Z_iN7LrRzqhQ2-dySWW5Cja1e632tUuIW-sBkNaCthpgRV-xE3ig9JzvslCo7MsZzrG28iHR_HoJPp2Kk63yJ_-LgyGVfYysRHUtszwjHyANzYZwnX-Yf7Lx6pR6F3tS2i0bHHgzldgslXv9z8Dfd-G4fDL8aeR31UV8DMhWe1HljOTJBKAdiBTySKTaANiWgSBlblMXQi7IMxC9C_F0gW5AATF4jCykts4zTm89wa5GXGe4o6Sw6_rMx1AW8jRWM8OgJMvwTjoPKOAGgaFLsr5FNgyxHjPVG5owqZgAOi3KYZjXsa6l0M2d1aNO926yWJ5Xvfu20YrDu-SnQ7O0r2W_-6RLVfcJ3c6aEs7wVE9ILPvGCjfVqqgrpg2cQe0XjY3t-gcIPxPzNFLzVlZQc9yQTEgf0LrVelbLEDQJg-B78iWFvrNNBgLtMm3DeKaVss5nkzWGMv3kJxcC0keke2iLNwTQjOhJSa4clyDfg7iFCy2hGdS5oyL3CUeGfSLrrIuCzoW45gptIaATKolk0IyKSSTR96tR8zbDCBX9P2IdFz3w9zdzYNyMVGdKFCRhYloA0gLoLcOcxk4q1MDWCvPTC6cR14DF2y8Y7Q3VvgMDVyR8OQ388huzySqkzqVutgjHnm1bgZ5gU4gXbhyWSmOd-0E4yz0yOOWp9Y_BRydJCKFFrnBbRtz2WwpzqZNTnIGuD4GMAhD_2HMi-n9b9VgIfDz9Oq_9JLcGh0fjtV4_-jgGbkNo3kbQbVLtuvF0j0HcFibF82OpOTHdYuAvxQddAE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJyFeNn6OjAEG8cJD1DiOE-exDEqBMZDGpL1Zduy0k0pSNQkT_z13SRooAx6Q8tLYTi3fne87-_yZkBdWQyAtBVhaYIUfcZP44PScb7LQ6CzLmY7xNPLH03h2Hr2_EBc75HhzFgbTKq2br5vvdceQOrZl1uBC2cA1AB54XOiiXC1AxCHmTqZyvLL5DbIbxymPRmR3Mnt79mlYagEQhIrWb1L-qfmWU2q5-8HVLDAz8jrsvJ49uXfV7mwP3f7FQU1vk70eWdJJpwp3yI4r7pL9HmXS3oare2R5hjnr3aUR1BWLNgWA1k17iIquAE1_Rbpcai7LCmqWa4q58XNaX5W-xbsAOh4P-I0aYqHeUgNupy31NcyctGpWuEhYY1rdfXI-ffPleOb3dy74mZCs9iPLmUkSCWFIIFPJIpNoA05MBIGVuUxdCHNEmIW4-xZLF-QC8CWLw8hKbuM05w_IqCgL95DQTGiJXFOOa3CVQZxC8JTwTMqccZG7xCPjzaCrrCckx3sxlgoDExCT6sSkUEwKxeSRl0OLVUfG8Y-6r1COQz2k0W5flOu56q1SRRY6og2AHkDBOsxl4KxODcCePDO5cB55Dlqw9Y3Z5EThO4w1RcKTb8wjRxslUf0EUCk8YMwwuuQeeTYUg-nifowuXNlUiuOxN8E4Cz1y0OnU8Fc8jZNEpFAit7Rtqy_bJcXloqUHZwCxY8Bl0PQ3xfzZvb-NGgwEPof_3_Qpufn59VSdvDv98IjcglLe5TkdkVG9btxjgHC1edKb6A8XAEYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+enhanced+tunable+plasmonic+biosensor+using+two-dimensional+twisted+bilayer+graphene+superlattice&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Du%2C+Fusheng&rft.au=Zheng%2C+Kai&rft.au=Zeng%2C+Shuwen&rft.au=Yuan%2C+Yufeng&rft.date=2023-04-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=12&rft.issue=7&rft.spage=1271&rft.epage=1284&rft_id=info:doi/10.1515%2Fnanoph-2022-0798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2022_0798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon