Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures

This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanos...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 173; no. C; pp. 82 - 86
Main Authors Chen, Shanshan, Rotaru, Amelia-Elena, Liu, Fanghua, Philips, Jo, Woodard, Trevor L., Nevin, Kelly P., Lovley, Derek R.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.
AbstractList This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.
This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H sub(2) transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.
This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.
Author Chen, Shanshan
Nevin, Kelly P.
Liu, Fanghua
Woodard, Trevor L.
Lovley, Derek R.
Rotaru, Amelia-Elena
Philips, Jo
Author_xml – sequence: 1
  givenname: Shanshan
  surname: Chen
  fullname: Chen, Shanshan
– sequence: 2
  givenname: Amelia-Elena
  orcidid: 0000-0003-2415-8585
  surname: Rotaru
  fullname: Rotaru, Amelia-Elena
– sequence: 3
  givenname: Fanghua
  surname: Liu
  fullname: Liu, Fanghua
– sequence: 4
  givenname: Jo
  surname: Philips
  fullname: Philips, Jo
– sequence: 5
  givenname: Trevor L.
  surname: Woodard
  fullname: Woodard, Trevor L.
– sequence: 6
  givenname: Kelly P.
  surname: Nevin
  fullname: Nevin, Kelly P.
– sequence: 7
  givenname: Derek R.
  surname: Lovley
  fullname: Lovley, Derek R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28890117$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25285763$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2279893$$D View this record in Osti.gov
BookMark eNqNkk1rGzEQhkVJaZy0fyEshUIv3upjVx_QSzFtUgj00tKj0GpHWGa9ciXtIf--Y2xT6CU5CY2e0bzM-96QqznNQMgdoy2jTH7atUNMuYLftpyyrqWmpdS8IiumlVhzo-QVWVEj6Vr3vLsmN6XsKKWCKf6GXPOe615JsSK_Ny4PaW78lOq2KTXul8lVKM0YM_jaxLlCLgfwEWswYSkjXbObS4CMz015mrF22Ebf-LT2y1SXDOUteR3cVODd-bwlv759_bl5WD_-uP---fK49r1mFYXqoQtDcLwTQNWoqAHjWQ9cDyPzchTMKaCh96P0Du9Gh74zLjgWPBgubsn7078Jtdvi43ElPs0zKrWcK6ONQOjjCTrk9GeBUu0-Fg_T5GZIS7FMCyklFyjiWVT2rBO4X_0CVPRUcK3MC1BuTI-WHAXcndFl2MNoDznuXX6yF8sQ-HAGXPFuCmiFj-Ufp7WhjCnkPp84n1MpGYLF5bgaE9rl4mQZtcck2Z29JMkek2SpsZgkbJf_tV8mPNP4F-pj0M0
CitedBy_id crossref_primary_10_1038_s41598_018_30745_7
crossref_primary_10_1016_j_biortech_2022_128289
crossref_primary_10_1021_acs_est_0c05525
crossref_primary_10_1155_2020_9432803
crossref_primary_10_1016_j_rser_2021_111697
crossref_primary_10_1016_j_psep_2024_03_021
crossref_primary_10_1007_s10532_022_10004_3
crossref_primary_10_1016_j_jhazmat_2024_135514
crossref_primary_10_1016_j_jwpe_2024_104949
crossref_primary_10_3390_life13102084
crossref_primary_10_1016_j_cej_2022_136711
crossref_primary_10_1016_j_chemosphere_2021_133247
crossref_primary_10_1111_1462_2920_13437
crossref_primary_10_1016_j_coal_2020_103393
crossref_primary_10_1039_D4CC05340K
crossref_primary_10_1016_j_jwpe_2022_103193
crossref_primary_10_1016_j_psep_2024_06_102
crossref_primary_10_1016_j_biortech_2019_122058
crossref_primary_10_1080_09593330_2018_1538260
crossref_primary_10_1016_j_watres_2018_05_058
crossref_primary_10_1016_j_biortech_2016_06_010
crossref_primary_10_3390_su12125222
crossref_primary_10_1016_j_biortech_2017_08_023
crossref_primary_10_1016_j_bioelechem_2019_107346
crossref_primary_10_1016_j_gca_2018_02_009
crossref_primary_10_1016_j_scitotenv_2018_12_280
crossref_primary_10_1016_j_watres_2016_09_044
crossref_primary_10_1016_j_biortech_2021_125738
crossref_primary_10_1016_j_watres_2020_116575
crossref_primary_10_3389_fmicb_2018_01480
crossref_primary_10_1002_jctb_6149
crossref_primary_10_1038_ismej_2016_136
crossref_primary_10_1021_acsestwater_2c00258
crossref_primary_10_1016_j_cacint_2023_100133
crossref_primary_10_1016_j_jclepro_2018_04_244
crossref_primary_10_1016_j_scitotenv_2022_154406
crossref_primary_10_1016_j_procbio_2017_07_032
crossref_primary_10_1016_j_biortech_2018_03_050
crossref_primary_10_1016_j_ijhydene_2024_11_446
crossref_primary_10_1016_j_biortech_2018_06_101
crossref_primary_10_1016_j_scitotenv_2024_177643
crossref_primary_10_1016_j_biortech_2019_121536
crossref_primary_10_3390_pr8040424
crossref_primary_10_1016_j_biotechadv_2021_107812
crossref_primary_10_1016_j_jes_2024_05_020
crossref_primary_10_1016_j_isci_2023_107504
crossref_primary_10_1016_j_jenvman_2019_04_062
crossref_primary_10_3389_fpubh_2022_893497
crossref_primary_10_1016_j_cej_2022_136732
crossref_primary_10_3389_fmicb_2019_03068
crossref_primary_10_1007_s10068_018_0506_y
crossref_primary_10_1016_j_biortech_2016_03_005
crossref_primary_10_1016_j_bej_2019_03_010
crossref_primary_10_1016_j_envres_2020_110498
crossref_primary_10_1007_s13762_021_03664_w
crossref_primary_10_1016_j_scitotenv_2023_166596
crossref_primary_10_1016_j_chemosphere_2020_126638
crossref_primary_10_1016_j_envpol_2017_08_048
crossref_primary_10_1111_1462_2920_13774
crossref_primary_10_1007_s12649_019_00664_3
crossref_primary_10_1016_j_envres_2024_118884
crossref_primary_10_1016_j_jece_2024_112222
crossref_primary_10_1016_j_scitotenv_2021_147400
crossref_primary_10_1016_j_biortech_2019_121782
crossref_primary_10_1016_j_biortech_2021_126134
crossref_primary_10_1016_j_rser_2023_113503
crossref_primary_10_1016_j_cej_2020_124613
crossref_primary_10_1016_j_biortech_2021_124871
crossref_primary_10_1002_mbo3_647
crossref_primary_10_1016_j_rser_2021_111367
crossref_primary_10_1016_j_chemosphere_2025_144101
crossref_primary_10_1038_srep11094
crossref_primary_10_1016_j_eti_2020_101303
crossref_primary_10_1016_j_biortech_2018_12_068
crossref_primary_10_1016_j_resconrec_2021_105844
crossref_primary_10_1021_acs_est_8b00891
crossref_primary_10_1038_s41598_017_07593_y
crossref_primary_10_1016_j_renene_2020_11_153
crossref_primary_10_1016_j_biteb_2019_100225
crossref_primary_10_1360_SST_2024_0064
crossref_primary_10_1016_j_rser_2024_114640
crossref_primary_10_3390_en8010399
crossref_primary_10_1016_j_watres_2022_118687
crossref_primary_10_1016_j_rser_2021_111371
crossref_primary_10_1016_j_biortech_2017_08_210
crossref_primary_10_1021_acssuschemeng_8b05847
crossref_primary_10_1016_j_biortech_2021_126226
crossref_primary_10_1080_10643389_2020_1773728
crossref_primary_10_1016_j_jhazmat_2024_135030
crossref_primary_10_1016_j_watres_2016_07_005
crossref_primary_10_1111_1462_2920_12708
crossref_primary_10_1016_j_rser_2021_110965
crossref_primary_10_1016_j_biortech_2017_07_121
crossref_primary_10_1016_j_watres_2018_02_025
crossref_primary_10_1021_acs_est_3c05830
crossref_primary_10_1016_j_watres_2020_115697
crossref_primary_10_1016_j_fuel_2023_127703
crossref_primary_10_2166_wst_2022_316
crossref_primary_10_1007_s11427_017_9177_1
crossref_primary_10_1128_AEM_01517_16
crossref_primary_10_1002_bit_26576
crossref_primary_10_1016_j_ceramint_2020_12_065
crossref_primary_10_3390_app8122384
crossref_primary_10_1016_j_ese_2024_100516
crossref_primary_10_1111_1751_7915_13286
crossref_primary_10_1016_j_biortech_2015_05_007
crossref_primary_10_1016_j_watres_2018_08_045
crossref_primary_10_1016_j_ijhydene_2018_12_080
crossref_primary_10_1016_j_envres_2024_119480
crossref_primary_10_1016_j_ceja_2022_100405
crossref_primary_10_3390_ma15030945
crossref_primary_10_1186_s13068_023_02391_3
crossref_primary_10_1016_j_watres_2021_117490
crossref_primary_10_1007_s12649_020_01039_9
crossref_primary_10_1039_C9RA05556H
crossref_primary_10_1016_j_jenvman_2023_118743
crossref_primary_10_1016_j_biortech_2017_08_111
crossref_primary_10_1007_s40995_019_00800_7
crossref_primary_10_1016_j_jclepro_2021_129750
crossref_primary_10_1016_j_jenvman_2025_125045
crossref_primary_10_1016_j_biortech_2025_132295
crossref_primary_10_1016_j_carbon_2021_02_064
crossref_primary_10_1016_j_jhazmat_2021_127100
crossref_primary_10_1016_j_rser_2015_12_029
crossref_primary_10_1007_s00253_016_7503_y
crossref_primary_10_1007_s11157_018_9470_5
crossref_primary_10_1016_j_enconman_2019_112221
crossref_primary_10_1128_mBio_02344_21
crossref_primary_10_12944_CWE_19_1_25
crossref_primary_10_1016_j_watres_2022_118653
crossref_primary_10_1016_j_cej_2023_144229
crossref_primary_10_1016_j_cej_2022_139137
crossref_primary_10_1021_acssuschemeng_8b04789
crossref_primary_10_1016_j_renene_2019_01_055
crossref_primary_10_1007_s11783_018_1074_3
crossref_primary_10_1016_j_envres_2020_109983
crossref_primary_10_1080_15567036_2021_1895368
crossref_primary_10_1016_j_biortech_2018_07_076
crossref_primary_10_1007_s00248_016_0882_x
crossref_primary_10_1016_j_biotechadv_2018_07_001
crossref_primary_10_1016_j_biortech_2019_122443
crossref_primary_10_1016_j_envres_2023_117422
crossref_primary_10_1002_er_5616
crossref_primary_10_1016_j_copbio_2019_03_018
crossref_primary_10_1021_acssuschemeng_0c03623
crossref_primary_10_1016_j_jcae_2024_100416
crossref_primary_10_1002_aenm_201600690
crossref_primary_10_1016_j_envres_2023_117660
crossref_primary_10_1007_s42114_021_00342_w
crossref_primary_10_1016_j_jenvman_2021_113745
crossref_primary_10_1016_j_ijhydene_2022_12_073
crossref_primary_10_1016_j_ijhydene_2024_04_199
crossref_primary_10_3390_en17174506
crossref_primary_10_1007_s40726_023_00259_6
crossref_primary_10_1016_j_biotechadv_2017_07_010
crossref_primary_10_1016_j_copbio_2021_01_014
crossref_primary_10_1016_j_biortech_2019_122696
crossref_primary_10_3389_fmicb_2018_01512
crossref_primary_10_3389_fmicb_2022_860749
crossref_primary_10_1002_jobm_201900415
crossref_primary_10_1016_j_envres_2023_116589
crossref_primary_10_1016_j_biortech_2023_129945
crossref_primary_10_1016_j_biortech_2021_126553
crossref_primary_10_1016_j_scitotenv_2018_06_043
crossref_primary_10_1016_j_watres_2017_02_067
crossref_primary_10_1007_s00253_017_8194_8
crossref_primary_10_3390_fermentation9100884
crossref_primary_10_1016_j_rser_2021_111069
crossref_primary_10_1016_j_wasman_2021_04_022
crossref_primary_10_1007_s13399_023_04737_1
crossref_primary_10_7717_peerj_4541
crossref_primary_10_1016_j_watres_2020_115763
crossref_primary_10_1016_j_renene_2022_06_055
crossref_primary_10_1016_j_cej_2022_140267
crossref_primary_10_1016_j_watres_2022_118118
crossref_primary_10_1016_j_cej_2019_121960
crossref_primary_10_1128_AEM_00223_17
crossref_primary_10_1016_j_biortech_2019_121373
crossref_primary_10_1016_j_biortech_2019_122345
crossref_primary_10_3390_en11010107
crossref_primary_10_3390_ijms18040874
crossref_primary_10_1016_j_biortech_2017_04_056
crossref_primary_10_1016_j_jenvman_2024_122762
crossref_primary_10_1128_mBio_01273_18
crossref_primary_10_1016_j_fuel_2021_121577
crossref_primary_10_1021_acssuschemeng_9b05124
crossref_primary_10_1108_IJPPM_09_2017_0224
crossref_primary_10_1016_j_jenvman_2022_114540
crossref_primary_10_1016_j_rser_2019_109373
crossref_primary_10_1016_j_scitotenv_2018_06_271
crossref_primary_10_1016_j_biortech_2020_122796
crossref_primary_10_3389_fmicb_2015_00744
crossref_primary_10_1016_j_biortech_2017_11_002
crossref_primary_10_1016_j_rser_2020_110378
crossref_primary_10_1016_j_rser_2020_110134
crossref_primary_10_1016_j_renene_2016_02_083
crossref_primary_10_1016_j_isci_2020_101794
crossref_primary_10_1007_s00253_017_8422_2
crossref_primary_10_1016_j_jbiosc_2020_10_003
crossref_primary_10_1146_annurev_micro_030117_020420
crossref_primary_10_1021_acs_est_8b01913
crossref_primary_10_1021_acssuschemeng_7b02581
crossref_primary_10_1016_j_jcis_2020_07_075
crossref_primary_10_1016_j_scitotenv_2019_135282
crossref_primary_10_1128_spectrum_00941_23
crossref_primary_10_1016_j_biortech_2019_121388
crossref_primary_10_1016_j_scitotenv_2021_146397
crossref_primary_10_1016_j_tibtech_2016_04_009
crossref_primary_10_1039_C9EN00339H
crossref_primary_10_1016_j_biombioe_2020_105548
crossref_primary_10_5004_dwt_2017_20737
crossref_primary_10_1016_j_scitotenv_2020_143933
crossref_primary_10_1016_j_biortech_2022_126705
crossref_primary_10_1016_j_rser_2015_10_102
crossref_primary_10_1016_j_cej_2021_132004
crossref_primary_10_1016_j_cej_2024_154876
crossref_primary_10_1016_j_biotechadv_2024_108398
crossref_primary_10_1016_j_cej_2019_123689
crossref_primary_10_1149_1945_7111_ac6aea
crossref_primary_10_1111_1758_2229_13080
crossref_primary_10_1039_C8EW00447A
crossref_primary_10_1039_C7EN00577F
crossref_primary_10_1264_jsme2_ME15028
crossref_primary_10_1021_acssuschemeng_8b02618
crossref_primary_10_1016_j_biotechadv_2019_107468
crossref_primary_10_3389_fmicb_2015_00121
crossref_primary_10_1016_j_biortech_2019_122403
crossref_primary_10_1016_j_biortech_2019_122524
crossref_primary_10_1016_j_watres_2021_117512
crossref_primary_10_1134_S0026261720020101
crossref_primary_10_1016_j_cej_2016_11_149
crossref_primary_10_1016_j_cej_2024_152206
crossref_primary_10_1016_j_energy_2019_02_076
crossref_primary_10_1128_mbio_00360_23
crossref_primary_10_1016_j_apsusc_2021_151859
crossref_primary_10_1016_j_fuel_2022_123903
crossref_primary_10_1021_acsomega_1c02682
crossref_primary_10_1007_s13762_018_2065_4
crossref_primary_10_1016_j_watres_2023_120896
crossref_primary_10_1016_j_jhazmat_2020_122760
crossref_primary_10_3389_feart_2020_608387
crossref_primary_10_1016_j_renene_2019_10_058
crossref_primary_10_1039_C6EM00219F
crossref_primary_10_1016_j_biortech_2020_123977
crossref_primary_10_1016_j_jhazmat_2018_06_005
crossref_primary_10_3389_fmicb_2015_00477
crossref_primary_10_1016_j_biortech_2017_08_063
crossref_primary_10_1016_j_watres_2018_10_026
crossref_primary_10_1016_j_jclepro_2021_128593
crossref_primary_10_1016_j_rser_2021_111427
crossref_primary_10_1016_j_biortech_2017_02_010
crossref_primary_10_1002_jctb_7435
crossref_primary_10_1016_j_ijhydene_2021_12_205
crossref_primary_10_1002_adma_201707072
crossref_primary_10_1002_adma_202004051
crossref_primary_10_1016_j_ibiod_2016_09_023
crossref_primary_10_1016_j_renene_2022_06_133
crossref_primary_10_1016_j_wasman_2018_03_037
crossref_primary_10_1038_s41579_021_00597_6
crossref_primary_10_1128_mBio_00226_18
crossref_primary_10_1016_j_biotechadv_2019_107443
crossref_primary_10_1016_j_eti_2020_101056
crossref_primary_10_1016_j_biortech_2016_10_007
crossref_primary_10_1016_j_watres_2024_121598
crossref_primary_10_1021_acs_est_7b01854
crossref_primary_10_3389_fenrg_2023_1170133
crossref_primary_10_1016_j_rser_2024_114704
crossref_primary_10_3389_fmicb_2016_00236
crossref_primary_10_1016_j_envres_2025_121229
crossref_primary_10_3390_fermentation8080354
crossref_primary_10_1016_j_biortech_2019_122547
crossref_primary_10_3389_fmicb_2015_00941
crossref_primary_10_3390_molecules28093883
crossref_primary_10_1016_j_ibiod_2022_105524
crossref_primary_10_1016_j_biortech_2020_124146
crossref_primary_10_1016_j_cej_2015_09_071
crossref_primary_10_1016_j_biortech_2016_08_114
crossref_primary_10_1111_1758_2229_12737
crossref_primary_10_1080_17518253_2020_1854871
crossref_primary_10_1021_acs_est_2c08833
crossref_primary_10_1039_C9RA03142A
crossref_primary_10_1016_j_biortech_2018_01_095
crossref_primary_10_1016_j_polymer_2017_05_073
crossref_primary_10_1007_s11356_016_7776_9
crossref_primary_10_1016_j_cej_2024_151456
crossref_primary_10_3389_fenrg_2019_00029
crossref_primary_10_3390_en11082101
crossref_primary_10_1016_j_biortech_2021_124671
crossref_primary_10_1016_j_biortech_2018_07_116
crossref_primary_10_1016_j_scitotenv_2022_160813
crossref_primary_10_1016_j_envpol_2022_120512
crossref_primary_10_1021_acs_jafc_8b05815
crossref_primary_10_1016_j_fuel_2019_116497
crossref_primary_10_1016_j_scitotenv_2019_04_372
crossref_primary_10_1016_j_renene_2023_119747
crossref_primary_10_1038_nrmicro_2016_93
crossref_primary_10_1007_s10311_024_01774_8
crossref_primary_10_1016_j_biortech_2017_06_018
crossref_primary_10_1038_s41598_019_57206_z
crossref_primary_10_2139_ssrn_4125382
crossref_primary_10_3389_fenrg_2020_00088
crossref_primary_10_1016_j_watres_2018_01_062
Cites_doi 10.1002/bit.20192
10.1128/AEM.01827-06
10.1128/JB.186.10.3022-3028.2004
10.1128/AEM.00023-10
10.1039/C3EE42189A
10.1111/1758-2229.12093
10.1111/j.1462-2920.2011.02611.x
10.1093/jmicro/52.4.429
10.1128/AEM.03837-12
10.1128/AEM.71.12.8634-8641.2005
10.1007/s00253-010-2667-3
10.1016/j.biortech.2011.10.086
10.1007/s00253-007-0888-x
10.1016/j.biortech.2013.04.027
10.1021/es5016789
10.1126/science.1196526
10.1128/aem.60.10.3752-3759.1994
10.1038/nature03661
10.1038/nnano.2011.119
10.1016/j.jbiosc.2009.03.003
10.1038/ismej.2009.137
10.1016/j.biortech.2012.02.079
10.1128/AEM.01946-12
10.1128/JB.01959-12
10.1016/j.biortech.2007.09.069
10.1016/j.biortech.2012.06.042
10.1128/AEM.00895-14
10.1007/BF00290916
10.1128/mBio.00159-11
10.1111/j.1462-2920.2004.00597.x
10.1128/JB.00356-09
10.1039/c2ee22459c
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SU
7TB
C1K
KR7
7S9
L.6
OTOTI
DOI 10.1016/j.biortech.2014.09.009
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
Engineering Research Database
MEDLINE - Academic
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 86
ExternalDocumentID 2279893
25285763
28890117
10_1016_j_biortech_2014_09_009
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSH
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AACTN
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SU
7TB
C1K
KR7
7S9
EFKBS
L.6
AABVA
AAIAV
ABPIF
ABPTK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
CBWCG
DOVZS
OTOTI
ID FETCH-LOGICAL-c581t-298b4fbfa243e07d709e9c15e28bd1c6d31a7e0f5cd6cac6d98f549afa1fce923
ISSN 0960-8524
1873-2976
IngestDate Mon Jan 15 05:22:45 EST 2024
Mon Jul 21 10:25:25 EDT 2025
Thu Jul 10 21:21:10 EDT 2025
Thu Jul 10 19:33:06 EDT 2025
Fri Jul 11 10:17:28 EDT 2025
Thu Apr 03 06:59:03 EDT 2025
Wed Apr 02 07:27:39 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Tue Jul 01 02:06:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Methanomicrobiales
Syntrophy
Methanosarcina
Archaeobacteria
Direct interspecies electron transfer
Electron transfer
Bacteria
Methanosarcinaceae
Carbon cloth
Geobacter
Carbon
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581t-298b4fbfa243e07d709e9c15e28bd1c6d31a7e0f5cd6cac6d98f549afa1fce923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ORCID 0000-0003-2415-8585
0000000324158585
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0960852414012607
PMID 25285763
PQID 1629958574
PQPubID 23479
PageCount 5
ParticipantIDs osti_scitechconnect_2279893
proquest_miscellaneous_1836662324
proquest_miscellaneous_1651432978
proquest_miscellaneous_1635032879
proquest_miscellaneous_1629958574
pubmed_primary_25285763
pascalfrancis_primary_28890117
crossref_citationtrail_10_1016_j_biortech_2014_09_009
crossref_primary_10_1016_j_biortech_2014_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
– name: United Kingdom
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2014
Publisher Elsevier
Publisher_xml – name: Elsevier
References Reguera (10.1016/j.biortech.2014.09.009_b0100) 2005; 435
Zhang (10.1016/j.biortech.2014.09.009_b0165) 2012; 104
Chen (10.1016/j.biortech.2014.09.009_b0025) 2014; 4
Rotaru (10.1016/j.biortech.2014.09.009_b0115) 2012; 78
Walker (10.1016/j.biortech.2014.09.009_b0160) 2009; 191
Sasaki (10.1016/j.biortech.2014.09.009_b0120) 2007; 75
Cruz Viggi (10.1016/j.biortech.2014.09.009_b0035) 2014; 48
Angenent (10.1016/j.biortech.2014.09.009_b0010) 2004; 6
Summers (10.1016/j.biortech.2014.09.009_b0150) 2010; 330
Rotaru (10.1016/j.biortech.2014.09.009_b0110) 2014; 7
Shrestha (10.1016/j.biortech.2014.09.009_b0135) 2013; 79
McMahon (10.1016/j.biortech.2014.09.009_b0080) 2004; 87
Araujo (10.1016/j.biortech.2014.09.009_b0015) 2003; 52
Liu (10.1016/j.biortech.2014.09.009_b0065) 2014
Shrestha (10.1016/j.biortech.2014.09.009_b0140) 2013; 5
Kato (10.1016/j.biortech.2014.09.009_b0050) 2012; 14
Coppi (10.1016/j.biortech.2014.09.009_b0030) 2004; 186
Tatara (10.1016/j.biortech.2014.09.009_b0155) 2008; 99
De Vrieze (10.1016/j.biortech.2014.09.009_b0040) 2012; 112
Franks (10.1016/j.biortech.2014.09.009_b0045) 2010; 4
Sasaki (10.1016/j.biortech.2014.09.009_b0130) 2010; 87
Rotaru (10.1016/j.biortech.2014.09.009_b0105) 2014; 80
Leang (10.1016/j.biortech.2014.09.009_b0055) 2010; 76
Meyer (10.1016/j.biortech.2014.09.009_b0090) 2013; 195
Steinhaus (10.1016/j.biortech.2014.09.009_b0145) 2007; 73
Morita (10.1016/j.biortech.2014.09.009_b0095) 2011; 2
Adu-Gyamfi (10.1016/j.biortech.2014.09.009_b0005) 2012; 120
Malvankar (10.1016/j.biortech.2014.09.009_b0075) 2011; 6
Liu (10.1016/j.biortech.2014.09.009_b0060) 2012; 5
Lovley (10.1016/j.biortech.2014.09.009_b0070) 1993; 159
Mehta (10.1016/j.biortech.2014.09.009_b0085) 2005; 71
Sasaki (10.1016/j.biortech.2014.09.009_b0125) 2009; 108
Zhao (10.1016/j.biortech.2014.09.009_b0170) 2013; 140
Caccavo (10.1016/j.biortech.2014.09.009_b0020) 1994; 60
References_xml – volume: 87
  start-page: 823
  issue: 7
  year: 2004
  ident: 10.1016/j.biortech.2014.09.009_b0080
  article-title: Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20192
– volume: 73
  start-page: 1653
  issue: 5
  year: 2007
  ident: 10.1016/j.biortech.2014.09.009_b0145
  article-title: A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01827-06
– volume: 186
  start-page: 3022
  issue: 10
  year: 2004
  ident: 10.1016/j.biortech.2014.09.009_b0030
  article-title: Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe (III) and other electron acceptors by Geobacter sulfurreducens
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.10.3022-3028.2004
– volume: 76
  start-page: 4080
  issue: 12
  year: 2010
  ident: 10.1016/j.biortech.2014.09.009_b0055
  article-title: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00023-10
– volume: 7
  start-page: 408
  issue: 1
  year: 2014
  ident: 10.1016/j.biortech.2014.09.009_b0110
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42189A
– volume: 5
  start-page: 904
  issue: 6
  year: 2013
  ident: 10.1016/j.biortech.2014.09.009_b0140
  article-title: Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12093
– volume: 14
  start-page: 1646
  issue: 7
  year: 2012
  ident: 10.1016/j.biortech.2014.09.009_b0050
  article-title: Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02611.x
– volume: 52
  start-page: 429
  issue: 4
  year: 2003
  ident: 10.1016/j.biortech.2014.09.009_b0015
  article-title: Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge
  publication-title: J. Electron Microsc.
  doi: 10.1093/jmicro/52.4.429
– volume: 79
  start-page: 2397
  issue: 7
  year: 2013
  ident: 10.1016/j.biortech.2014.09.009_b0135
  article-title: Transcriptomic and genetic analysis of direct interspecies electron transfer
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03837-12
– volume: 71
  start-page: 8634
  issue: 12
  year: 2005
  ident: 10.1016/j.biortech.2014.09.009_b0085
  article-title: Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.12.8634-8641.2005
– volume: 87
  start-page: 1579
  issue: 4
  year: 2010
  ident: 10.1016/j.biortech.2014.09.009_b0130
  article-title: Efficient degradation of rice straw in the reactors packed by carbon fiber textiles
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2667-3
– volume: 4
  issue: 5019
  year: 2014
  ident: 10.1016/j.biortech.2014.09.009_b0025
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
– volume: 104
  start-page: 136
  year: 2012
  ident: 10.1016/j.biortech.2014.09.009_b0165
  article-title: Bioreactor performance and methanogenic population dynamics in a low-temperature (5–18°C) anaerobic fixed-bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.086
– volume: 75
  start-page: 941
  issue: 4
  year: 2007
  ident: 10.1016/j.biortech.2014.09.009_b0120
  article-title: Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-0888-x
– volume: 140
  start-page: 211
  year: 2013
  ident: 10.1016/j.biortech.2014.09.009_b0170
  article-title: Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.04.027
– volume: 48
  start-page: 7536
  issue: 13
  year: 2014
  ident: 10.1016/j.biortech.2014.09.009_b0035
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5016789
– volume: 330
  start-page: 1413
  issue: 6009
  year: 2010
  ident: 10.1016/j.biortech.2014.09.009_b0150
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
  doi: 10.1126/science.1196526
– volume: 60
  start-page: 3752
  issue: 10
  year: 1994
  ident: 10.1016/j.biortech.2014.09.009_b0020
  article-title: Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.60.10.3752-3759.1994
– volume: 435
  start-page: 1098
  issue: 7045
  year: 2005
  ident: 10.1016/j.biortech.2014.09.009_b0100
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
  doi: 10.1038/nature03661
– volume: 6
  start-page: 573
  issue: 9
  year: 2011
  ident: 10.1016/j.biortech.2014.09.009_b0075
  article-title: Tunable metallic-like conductivity in microbial nanowire networks
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.119
– volume: 108
  start-page: 130
  issue: 2
  year: 2009
  ident: 10.1016/j.biortech.2014.09.009_b0125
  article-title: Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2009.03.003
– year: 2014
  ident: 10.1016/j.biortech.2014.09.009_b0065
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
– volume: 4
  start-page: 509
  issue: 4
  year: 2010
  ident: 10.1016/j.biortech.2014.09.009_b0045
  article-title: Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.137
– volume: 112
  start-page: 1
  year: 2012
  ident: 10.1016/j.biortech.2014.09.009_b0040
  article-title: Methanosarcina: the rediscovered methanogen for heavy duty biomethanation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.02.079
– volume: 78
  start-page: 7645
  issue: 21
  year: 2012
  ident: 10.1016/j.biortech.2014.09.009_b0115
  article-title: Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01946-12
– volume: 195
  start-page: 990
  issue: 5
  year: 2013
  ident: 10.1016/j.biortech.2014.09.009_b0090
  article-title: Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01959-12
– volume: 99
  start-page: 4786
  issue: 11
  year: 2008
  ident: 10.1016/j.biortech.2014.09.009_b0155
  article-title: Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.09.069
– volume: 120
  start-page: 248
  year: 2012
  ident: 10.1016/j.biortech.2014.09.009_b0005
  article-title: Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.042
– volume: 80
  start-page: 4599
  issue: 15
  year: 2014
  ident: 10.1016/j.biortech.2014.09.009_b0105
  article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00895-14
– volume: 159
  start-page: 336
  issue: 4
  year: 1993
  ident: 10.1016/j.biortech.2014.09.009_b0070
  article-title: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00290916
– volume: 2
  start-page: e00159-11
  issue: 4
  year: 2011
  ident: 10.1016/j.biortech.2014.09.009_b0095
  article-title: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
  publication-title: mBio
  doi: 10.1128/mBio.00159-11
– volume: 6
  start-page: 315
  issue: 4
  year: 2004
  ident: 10.1016/j.biortech.2014.09.009_b0010
  article-title: Formation of granules and Methanosaeta fibres in an anaerobic migrating blanket reactor (AMBR)
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2004.00597.x
– volume: 191
  start-page: 5793
  issue: 18
  year: 2009
  ident: 10.1016/j.biortech.2014.09.009_b0160
  article-title: The electron transfer system of syntrophically grown Desulfovibrio vulgaris
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00356-09
– volume: 5
  start-page: 8982
  issue: 10
  year: 2012
  ident: 10.1016/j.biortech.2014.09.009_b0060
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22459c
SSID ssj0003172
Score 2.595035
Snippet This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 82
SubjectTerms anaerobic digesters
Biological and medical sciences
Carbon
Carbon - chemistry
Cell Communication - physiology
Cloth
coculture
Coculture Techniques - methods
cotton
cytochromes
Desulfovibrio
Diets
Electric Conductivity
electrical conductivity
Electrically conductive
Electron transfer
Electron Transport
fimbriae
Fundamental and applied biological sciences. Psychology
Geobacter
Materials Testing
Membranes, Artificial
Metabolism
Microbial Consortia
mutants
Oxidation-Reduction
Resistivity
Symbiosis
Title Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
URI https://www.ncbi.nlm.nih.gov/pubmed/25285763
https://www.proquest.com/docview/1629958574
https://www.proquest.com/docview/1635032879
https://www.proquest.com/docview/1651432978
https://www.proquest.com/docview/1836662324
https://www.osti.gov/biblio/2279893
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegHIADgvFVBlOQuFUp-XDi-DhVrSY0xoFW9BbZjrNm6pqpTS8c-Nt5L46bTCtlcIlS23Gt_F783vP7IuQTkzmwBZm5MVVYwoz7rpAS7hjLqAy5VhQDnL9exGcz-mUezduqqHV0SSWH6ufeuJL_QRXaAFeMkv0HZHeTQgPcA75wBYThei-MR2ItAT21LNHPvCqusRaX3gwMn6pTQdShlKAND2y9GywKAaKqRjd0zFcAbTeLQg1U6ZosHI1ToTX0FuW6OeEfVHeO4UdNbMf3Bcy5EJ2oskqst_W-c62XhXDHwNx2DOC8qLsmYnW52O5azdFOY5boHkb4tOPYYfbPhGFpONZkt97TZjddFna2TVN_6M5ubg4WroayQMfj2nbkm7S0Hm_5l7XZX3xLJ7Pz83Q6nk8fkkcB6A1Y0mL4q_X5AWGpNn_bFXVCxvf_yy1ppVcCkug8Kzbw_eSm8MmfNZNaQpk-J88a1cI5NXTygjzQqyPy9PRy3aRX0Ufk8cjW94OeTirKl-SHoSWnpiWnpSXH0JLTpSXH0pJjaQm6nZaWnA4tvSKzyXg6OnObohuuihK_gteSSJrLXAQ01B7LmMc1V36kg0Rmvoqz0BdMe3mkslgJ-M2TPKJc5MLPlQZ14TXprcqVfkscSlmsGIuyIBKUo2YP7EUwX_PMyxKe9UlkX26qmoz0WBhlmVrXw6vUgpIiKKnHUwClTz7vnrsxOVn--sQxYpeCVIldCn3IVJVi9kyQ1_vk5Baku0mDJMHIbNYnHy3GKYCEJjWx0uV2k_oxiHOgcTN6aEwYYdZKxg-NQcUFSDI5MCYJ4zhGDahP3hhCa1caBbCIOHx3j5Uekyftp_ue9Kr1Vn8AybqSJ_XX8hvnMdP-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+cloth+stimulates+direct+interspecies+electron+transfer+in+syntrophic+co-cultures&rft.jtitle=Bioresource+technology&rft.au=Chen%2C+Shanshan&rft.au=Rotaru%2C+Amelia-Elena&rft.au=Liu%2C+Fanghua&rft.au=Philips%2C+Jo&rft.date=2014-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=173&rft.spage=82&rft_id=info:doi/10.1016%2Fj.biortech.2014.09.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon