Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanos...
Saved in:
Published in | Bioresource technology Vol. 173; no. C; pp. 82 - 86 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth. |
---|---|
AbstractList | This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth. This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H sub(2) transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth. This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth. |
Author | Chen, Shanshan Nevin, Kelly P. Liu, Fanghua Woodard, Trevor L. Lovley, Derek R. Rotaru, Amelia-Elena Philips, Jo |
Author_xml | – sequence: 1 givenname: Shanshan surname: Chen fullname: Chen, Shanshan – sequence: 2 givenname: Amelia-Elena orcidid: 0000-0003-2415-8585 surname: Rotaru fullname: Rotaru, Amelia-Elena – sequence: 3 givenname: Fanghua surname: Liu fullname: Liu, Fanghua – sequence: 4 givenname: Jo surname: Philips fullname: Philips, Jo – sequence: 5 givenname: Trevor L. surname: Woodard fullname: Woodard, Trevor L. – sequence: 6 givenname: Kelly P. surname: Nevin fullname: Nevin, Kelly P. – sequence: 7 givenname: Derek R. surname: Lovley fullname: Lovley, Derek R. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28890117$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/25285763$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2279893$$D View this record in Osti.gov |
BookMark | eNqNkk1rGzEQhkVJaZy0fyEshUIv3upjVx_QSzFtUgj00tKj0GpHWGa9ciXtIf--Y2xT6CU5CY2e0bzM-96QqznNQMgdoy2jTH7atUNMuYLftpyyrqWmpdS8IiumlVhzo-QVWVEj6Vr3vLsmN6XsKKWCKf6GXPOe615JsSK_Ny4PaW78lOq2KTXul8lVKM0YM_jaxLlCLgfwEWswYSkjXbObS4CMz015mrF22Ebf-LT2y1SXDOUteR3cVODd-bwlv759_bl5WD_-uP---fK49r1mFYXqoQtDcLwTQNWoqAHjWQ9cDyPzchTMKaCh96P0Du9Gh74zLjgWPBgubsn7078Jtdvi43ElPs0zKrWcK6ONQOjjCTrk9GeBUu0-Fg_T5GZIS7FMCyklFyjiWVT2rBO4X_0CVPRUcK3MC1BuTI-WHAXcndFl2MNoDznuXX6yF8sQ-HAGXPFuCmiFj-Ufp7WhjCnkPp84n1MpGYLF5bgaE9rl4mQZtcck2Z29JMkek2SpsZgkbJf_tV8mPNP4F-pj0M0 |
CitedBy_id | crossref_primary_10_1038_s41598_018_30745_7 crossref_primary_10_1016_j_biortech_2022_128289 crossref_primary_10_1021_acs_est_0c05525 crossref_primary_10_1155_2020_9432803 crossref_primary_10_1016_j_rser_2021_111697 crossref_primary_10_1016_j_psep_2024_03_021 crossref_primary_10_1007_s10532_022_10004_3 crossref_primary_10_1016_j_jhazmat_2024_135514 crossref_primary_10_1016_j_jwpe_2024_104949 crossref_primary_10_3390_life13102084 crossref_primary_10_1016_j_cej_2022_136711 crossref_primary_10_1016_j_chemosphere_2021_133247 crossref_primary_10_1111_1462_2920_13437 crossref_primary_10_1016_j_coal_2020_103393 crossref_primary_10_1039_D4CC05340K crossref_primary_10_1016_j_jwpe_2022_103193 crossref_primary_10_1016_j_psep_2024_06_102 crossref_primary_10_1016_j_biortech_2019_122058 crossref_primary_10_1080_09593330_2018_1538260 crossref_primary_10_1016_j_watres_2018_05_058 crossref_primary_10_1016_j_biortech_2016_06_010 crossref_primary_10_3390_su12125222 crossref_primary_10_1016_j_biortech_2017_08_023 crossref_primary_10_1016_j_bioelechem_2019_107346 crossref_primary_10_1016_j_gca_2018_02_009 crossref_primary_10_1016_j_scitotenv_2018_12_280 crossref_primary_10_1016_j_watres_2016_09_044 crossref_primary_10_1016_j_biortech_2021_125738 crossref_primary_10_1016_j_watres_2020_116575 crossref_primary_10_3389_fmicb_2018_01480 crossref_primary_10_1002_jctb_6149 crossref_primary_10_1038_ismej_2016_136 crossref_primary_10_1021_acsestwater_2c00258 crossref_primary_10_1016_j_cacint_2023_100133 crossref_primary_10_1016_j_jclepro_2018_04_244 crossref_primary_10_1016_j_scitotenv_2022_154406 crossref_primary_10_1016_j_procbio_2017_07_032 crossref_primary_10_1016_j_biortech_2018_03_050 crossref_primary_10_1016_j_ijhydene_2024_11_446 crossref_primary_10_1016_j_biortech_2018_06_101 crossref_primary_10_1016_j_scitotenv_2024_177643 crossref_primary_10_1016_j_biortech_2019_121536 crossref_primary_10_3390_pr8040424 crossref_primary_10_1016_j_biotechadv_2021_107812 crossref_primary_10_1016_j_jes_2024_05_020 crossref_primary_10_1016_j_isci_2023_107504 crossref_primary_10_1016_j_jenvman_2019_04_062 crossref_primary_10_3389_fpubh_2022_893497 crossref_primary_10_1016_j_cej_2022_136732 crossref_primary_10_3389_fmicb_2019_03068 crossref_primary_10_1007_s10068_018_0506_y crossref_primary_10_1016_j_biortech_2016_03_005 crossref_primary_10_1016_j_bej_2019_03_010 crossref_primary_10_1016_j_envres_2020_110498 crossref_primary_10_1007_s13762_021_03664_w crossref_primary_10_1016_j_scitotenv_2023_166596 crossref_primary_10_1016_j_chemosphere_2020_126638 crossref_primary_10_1016_j_envpol_2017_08_048 crossref_primary_10_1111_1462_2920_13774 crossref_primary_10_1007_s12649_019_00664_3 crossref_primary_10_1016_j_envres_2024_118884 crossref_primary_10_1016_j_jece_2024_112222 crossref_primary_10_1016_j_scitotenv_2021_147400 crossref_primary_10_1016_j_biortech_2019_121782 crossref_primary_10_1016_j_biortech_2021_126134 crossref_primary_10_1016_j_rser_2023_113503 crossref_primary_10_1016_j_cej_2020_124613 crossref_primary_10_1016_j_biortech_2021_124871 crossref_primary_10_1002_mbo3_647 crossref_primary_10_1016_j_rser_2021_111367 crossref_primary_10_1016_j_chemosphere_2025_144101 crossref_primary_10_1038_srep11094 crossref_primary_10_1016_j_eti_2020_101303 crossref_primary_10_1016_j_biortech_2018_12_068 crossref_primary_10_1016_j_resconrec_2021_105844 crossref_primary_10_1021_acs_est_8b00891 crossref_primary_10_1038_s41598_017_07593_y crossref_primary_10_1016_j_renene_2020_11_153 crossref_primary_10_1016_j_biteb_2019_100225 crossref_primary_10_1360_SST_2024_0064 crossref_primary_10_1016_j_rser_2024_114640 crossref_primary_10_3390_en8010399 crossref_primary_10_1016_j_watres_2022_118687 crossref_primary_10_1016_j_rser_2021_111371 crossref_primary_10_1016_j_biortech_2017_08_210 crossref_primary_10_1021_acssuschemeng_8b05847 crossref_primary_10_1016_j_biortech_2021_126226 crossref_primary_10_1080_10643389_2020_1773728 crossref_primary_10_1016_j_jhazmat_2024_135030 crossref_primary_10_1016_j_watres_2016_07_005 crossref_primary_10_1111_1462_2920_12708 crossref_primary_10_1016_j_rser_2021_110965 crossref_primary_10_1016_j_biortech_2017_07_121 crossref_primary_10_1016_j_watres_2018_02_025 crossref_primary_10_1021_acs_est_3c05830 crossref_primary_10_1016_j_watres_2020_115697 crossref_primary_10_1016_j_fuel_2023_127703 crossref_primary_10_2166_wst_2022_316 crossref_primary_10_1007_s11427_017_9177_1 crossref_primary_10_1128_AEM_01517_16 crossref_primary_10_1002_bit_26576 crossref_primary_10_1016_j_ceramint_2020_12_065 crossref_primary_10_3390_app8122384 crossref_primary_10_1016_j_ese_2024_100516 crossref_primary_10_1111_1751_7915_13286 crossref_primary_10_1016_j_biortech_2015_05_007 crossref_primary_10_1016_j_watres_2018_08_045 crossref_primary_10_1016_j_ijhydene_2018_12_080 crossref_primary_10_1016_j_envres_2024_119480 crossref_primary_10_1016_j_ceja_2022_100405 crossref_primary_10_3390_ma15030945 crossref_primary_10_1186_s13068_023_02391_3 crossref_primary_10_1016_j_watres_2021_117490 crossref_primary_10_1007_s12649_020_01039_9 crossref_primary_10_1039_C9RA05556H crossref_primary_10_1016_j_jenvman_2023_118743 crossref_primary_10_1016_j_biortech_2017_08_111 crossref_primary_10_1007_s40995_019_00800_7 crossref_primary_10_1016_j_jclepro_2021_129750 crossref_primary_10_1016_j_jenvman_2025_125045 crossref_primary_10_1016_j_biortech_2025_132295 crossref_primary_10_1016_j_carbon_2021_02_064 crossref_primary_10_1016_j_jhazmat_2021_127100 crossref_primary_10_1016_j_rser_2015_12_029 crossref_primary_10_1007_s00253_016_7503_y crossref_primary_10_1007_s11157_018_9470_5 crossref_primary_10_1016_j_enconman_2019_112221 crossref_primary_10_1128_mBio_02344_21 crossref_primary_10_12944_CWE_19_1_25 crossref_primary_10_1016_j_watres_2022_118653 crossref_primary_10_1016_j_cej_2023_144229 crossref_primary_10_1016_j_cej_2022_139137 crossref_primary_10_1021_acssuschemeng_8b04789 crossref_primary_10_1016_j_renene_2019_01_055 crossref_primary_10_1007_s11783_018_1074_3 crossref_primary_10_1016_j_envres_2020_109983 crossref_primary_10_1080_15567036_2021_1895368 crossref_primary_10_1016_j_biortech_2018_07_076 crossref_primary_10_1007_s00248_016_0882_x crossref_primary_10_1016_j_biotechadv_2018_07_001 crossref_primary_10_1016_j_biortech_2019_122443 crossref_primary_10_1016_j_envres_2023_117422 crossref_primary_10_1002_er_5616 crossref_primary_10_1016_j_copbio_2019_03_018 crossref_primary_10_1021_acssuschemeng_0c03623 crossref_primary_10_1016_j_jcae_2024_100416 crossref_primary_10_1002_aenm_201600690 crossref_primary_10_1016_j_envres_2023_117660 crossref_primary_10_1007_s42114_021_00342_w crossref_primary_10_1016_j_jenvman_2021_113745 crossref_primary_10_1016_j_ijhydene_2022_12_073 crossref_primary_10_1016_j_ijhydene_2024_04_199 crossref_primary_10_3390_en17174506 crossref_primary_10_1007_s40726_023_00259_6 crossref_primary_10_1016_j_biotechadv_2017_07_010 crossref_primary_10_1016_j_copbio_2021_01_014 crossref_primary_10_1016_j_biortech_2019_122696 crossref_primary_10_3389_fmicb_2018_01512 crossref_primary_10_3389_fmicb_2022_860749 crossref_primary_10_1002_jobm_201900415 crossref_primary_10_1016_j_envres_2023_116589 crossref_primary_10_1016_j_biortech_2023_129945 crossref_primary_10_1016_j_biortech_2021_126553 crossref_primary_10_1016_j_scitotenv_2018_06_043 crossref_primary_10_1016_j_watres_2017_02_067 crossref_primary_10_1007_s00253_017_8194_8 crossref_primary_10_3390_fermentation9100884 crossref_primary_10_1016_j_rser_2021_111069 crossref_primary_10_1016_j_wasman_2021_04_022 crossref_primary_10_1007_s13399_023_04737_1 crossref_primary_10_7717_peerj_4541 crossref_primary_10_1016_j_watres_2020_115763 crossref_primary_10_1016_j_renene_2022_06_055 crossref_primary_10_1016_j_cej_2022_140267 crossref_primary_10_1016_j_watres_2022_118118 crossref_primary_10_1016_j_cej_2019_121960 crossref_primary_10_1128_AEM_00223_17 crossref_primary_10_1016_j_biortech_2019_121373 crossref_primary_10_1016_j_biortech_2019_122345 crossref_primary_10_3390_en11010107 crossref_primary_10_3390_ijms18040874 crossref_primary_10_1016_j_biortech_2017_04_056 crossref_primary_10_1016_j_jenvman_2024_122762 crossref_primary_10_1128_mBio_01273_18 crossref_primary_10_1016_j_fuel_2021_121577 crossref_primary_10_1021_acssuschemeng_9b05124 crossref_primary_10_1108_IJPPM_09_2017_0224 crossref_primary_10_1016_j_jenvman_2022_114540 crossref_primary_10_1016_j_rser_2019_109373 crossref_primary_10_1016_j_scitotenv_2018_06_271 crossref_primary_10_1016_j_biortech_2020_122796 crossref_primary_10_3389_fmicb_2015_00744 crossref_primary_10_1016_j_biortech_2017_11_002 crossref_primary_10_1016_j_rser_2020_110378 crossref_primary_10_1016_j_rser_2020_110134 crossref_primary_10_1016_j_renene_2016_02_083 crossref_primary_10_1016_j_isci_2020_101794 crossref_primary_10_1007_s00253_017_8422_2 crossref_primary_10_1016_j_jbiosc_2020_10_003 crossref_primary_10_1146_annurev_micro_030117_020420 crossref_primary_10_1021_acs_est_8b01913 crossref_primary_10_1021_acssuschemeng_7b02581 crossref_primary_10_1016_j_jcis_2020_07_075 crossref_primary_10_1016_j_scitotenv_2019_135282 crossref_primary_10_1128_spectrum_00941_23 crossref_primary_10_1016_j_biortech_2019_121388 crossref_primary_10_1016_j_scitotenv_2021_146397 crossref_primary_10_1016_j_tibtech_2016_04_009 crossref_primary_10_1039_C9EN00339H crossref_primary_10_1016_j_biombioe_2020_105548 crossref_primary_10_5004_dwt_2017_20737 crossref_primary_10_1016_j_scitotenv_2020_143933 crossref_primary_10_1016_j_biortech_2022_126705 crossref_primary_10_1016_j_rser_2015_10_102 crossref_primary_10_1016_j_cej_2021_132004 crossref_primary_10_1016_j_cej_2024_154876 crossref_primary_10_1016_j_biotechadv_2024_108398 crossref_primary_10_1016_j_cej_2019_123689 crossref_primary_10_1149_1945_7111_ac6aea crossref_primary_10_1111_1758_2229_13080 crossref_primary_10_1039_C8EW00447A crossref_primary_10_1039_C7EN00577F crossref_primary_10_1264_jsme2_ME15028 crossref_primary_10_1021_acssuschemeng_8b02618 crossref_primary_10_1016_j_biotechadv_2019_107468 crossref_primary_10_3389_fmicb_2015_00121 crossref_primary_10_1016_j_biortech_2019_122403 crossref_primary_10_1016_j_biortech_2019_122524 crossref_primary_10_1016_j_watres_2021_117512 crossref_primary_10_1134_S0026261720020101 crossref_primary_10_1016_j_cej_2016_11_149 crossref_primary_10_1016_j_cej_2024_152206 crossref_primary_10_1016_j_energy_2019_02_076 crossref_primary_10_1128_mbio_00360_23 crossref_primary_10_1016_j_apsusc_2021_151859 crossref_primary_10_1016_j_fuel_2022_123903 crossref_primary_10_1021_acsomega_1c02682 crossref_primary_10_1007_s13762_018_2065_4 crossref_primary_10_1016_j_watres_2023_120896 crossref_primary_10_1016_j_jhazmat_2020_122760 crossref_primary_10_3389_feart_2020_608387 crossref_primary_10_1016_j_renene_2019_10_058 crossref_primary_10_1039_C6EM00219F crossref_primary_10_1016_j_biortech_2020_123977 crossref_primary_10_1016_j_jhazmat_2018_06_005 crossref_primary_10_3389_fmicb_2015_00477 crossref_primary_10_1016_j_biortech_2017_08_063 crossref_primary_10_1016_j_watres_2018_10_026 crossref_primary_10_1016_j_jclepro_2021_128593 crossref_primary_10_1016_j_rser_2021_111427 crossref_primary_10_1016_j_biortech_2017_02_010 crossref_primary_10_1002_jctb_7435 crossref_primary_10_1016_j_ijhydene_2021_12_205 crossref_primary_10_1002_adma_201707072 crossref_primary_10_1002_adma_202004051 crossref_primary_10_1016_j_ibiod_2016_09_023 crossref_primary_10_1016_j_renene_2022_06_133 crossref_primary_10_1016_j_wasman_2018_03_037 crossref_primary_10_1038_s41579_021_00597_6 crossref_primary_10_1128_mBio_00226_18 crossref_primary_10_1016_j_biotechadv_2019_107443 crossref_primary_10_1016_j_eti_2020_101056 crossref_primary_10_1016_j_biortech_2016_10_007 crossref_primary_10_1016_j_watres_2024_121598 crossref_primary_10_1021_acs_est_7b01854 crossref_primary_10_3389_fenrg_2023_1170133 crossref_primary_10_1016_j_rser_2024_114704 crossref_primary_10_3389_fmicb_2016_00236 crossref_primary_10_1016_j_envres_2025_121229 crossref_primary_10_3390_fermentation8080354 crossref_primary_10_1016_j_biortech_2019_122547 crossref_primary_10_3389_fmicb_2015_00941 crossref_primary_10_3390_molecules28093883 crossref_primary_10_1016_j_ibiod_2022_105524 crossref_primary_10_1016_j_biortech_2020_124146 crossref_primary_10_1016_j_cej_2015_09_071 crossref_primary_10_1016_j_biortech_2016_08_114 crossref_primary_10_1111_1758_2229_12737 crossref_primary_10_1080_17518253_2020_1854871 crossref_primary_10_1021_acs_est_2c08833 crossref_primary_10_1039_C9RA03142A crossref_primary_10_1016_j_biortech_2018_01_095 crossref_primary_10_1016_j_polymer_2017_05_073 crossref_primary_10_1007_s11356_016_7776_9 crossref_primary_10_1016_j_cej_2024_151456 crossref_primary_10_3389_fenrg_2019_00029 crossref_primary_10_3390_en11082101 crossref_primary_10_1016_j_biortech_2021_124671 crossref_primary_10_1016_j_biortech_2018_07_116 crossref_primary_10_1016_j_scitotenv_2022_160813 crossref_primary_10_1016_j_envpol_2022_120512 crossref_primary_10_1021_acs_jafc_8b05815 crossref_primary_10_1016_j_fuel_2019_116497 crossref_primary_10_1016_j_scitotenv_2019_04_372 crossref_primary_10_1016_j_renene_2023_119747 crossref_primary_10_1038_nrmicro_2016_93 crossref_primary_10_1007_s10311_024_01774_8 crossref_primary_10_1016_j_biortech_2017_06_018 crossref_primary_10_1038_s41598_019_57206_z crossref_primary_10_2139_ssrn_4125382 crossref_primary_10_3389_fenrg_2020_00088 crossref_primary_10_1016_j_watres_2018_01_062 |
Cites_doi | 10.1002/bit.20192 10.1128/AEM.01827-06 10.1128/JB.186.10.3022-3028.2004 10.1128/AEM.00023-10 10.1039/C3EE42189A 10.1111/1758-2229.12093 10.1111/j.1462-2920.2011.02611.x 10.1093/jmicro/52.4.429 10.1128/AEM.03837-12 10.1128/AEM.71.12.8634-8641.2005 10.1007/s00253-010-2667-3 10.1016/j.biortech.2011.10.086 10.1007/s00253-007-0888-x 10.1016/j.biortech.2013.04.027 10.1021/es5016789 10.1126/science.1196526 10.1128/aem.60.10.3752-3759.1994 10.1038/nature03661 10.1038/nnano.2011.119 10.1016/j.jbiosc.2009.03.003 10.1038/ismej.2009.137 10.1016/j.biortech.2012.02.079 10.1128/AEM.01946-12 10.1128/JB.01959-12 10.1016/j.biortech.2007.09.069 10.1016/j.biortech.2012.06.042 10.1128/AEM.00895-14 10.1007/BF00290916 10.1128/mBio.00159-11 10.1111/j.1462-2920.2004.00597.x 10.1128/JB.00356-09 10.1039/c2ee22459c |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SU 7TB C1K KR7 7S9 L.6 OTOTI |
DOI | 10.1016/j.biortech.2014.09.009 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Engineering Research Database MEDLINE - Academic Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 86 |
ExternalDocumentID | 2279893 25285763 28890117 10_1016_j_biortech_2014_09_009 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CITATION CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSH SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AACTN IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SU 7TB C1K KR7 7S9 EFKBS L.6 AABVA AAIAV ABPIF ABPTK ABYKQ AFKWA AJBFU AJOXV AMFUW CBWCG DOVZS OTOTI |
ID | FETCH-LOGICAL-c581t-298b4fbfa243e07d709e9c15e28bd1c6d31a7e0f5cd6cac6d98f549afa1fce923 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Mon Jan 15 05:22:45 EST 2024 Mon Jul 21 10:25:25 EDT 2025 Thu Jul 10 21:21:10 EDT 2025 Thu Jul 10 19:33:06 EDT 2025 Fri Jul 11 10:17:28 EDT 2025 Thu Apr 03 06:59:03 EDT 2025 Wed Apr 02 07:27:39 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 Tue Jul 01 02:06:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Methanomicrobiales Syntrophy Methanosarcina Archaeobacteria Direct interspecies electron transfer Electron transfer Bacteria Methanosarcinaceae Carbon cloth Geobacter Carbon |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c581t-298b4fbfa243e07d709e9c15e28bd1c6d31a7e0f5cd6cac6d98f549afa1fce923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE |
ORCID | 0000-0003-2415-8585 0000000324158585 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0960852414012607 |
PMID | 25285763 |
PQID | 1629958574 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_2279893 proquest_miscellaneous_1836662324 proquest_miscellaneous_1651432978 proquest_miscellaneous_1635032879 proquest_miscellaneous_1629958574 pubmed_primary_25285763 pascalfrancis_primary_28890117 crossref_citationtrail_10_1016_j_biortech_2014_09_009 crossref_primary_10_1016_j_biortech_2014_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England – name: United Kingdom |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2014 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Reguera (10.1016/j.biortech.2014.09.009_b0100) 2005; 435 Zhang (10.1016/j.biortech.2014.09.009_b0165) 2012; 104 Chen (10.1016/j.biortech.2014.09.009_b0025) 2014; 4 Rotaru (10.1016/j.biortech.2014.09.009_b0115) 2012; 78 Walker (10.1016/j.biortech.2014.09.009_b0160) 2009; 191 Sasaki (10.1016/j.biortech.2014.09.009_b0120) 2007; 75 Cruz Viggi (10.1016/j.biortech.2014.09.009_b0035) 2014; 48 Angenent (10.1016/j.biortech.2014.09.009_b0010) 2004; 6 Summers (10.1016/j.biortech.2014.09.009_b0150) 2010; 330 Rotaru (10.1016/j.biortech.2014.09.009_b0110) 2014; 7 Shrestha (10.1016/j.biortech.2014.09.009_b0135) 2013; 79 McMahon (10.1016/j.biortech.2014.09.009_b0080) 2004; 87 Araujo (10.1016/j.biortech.2014.09.009_b0015) 2003; 52 Liu (10.1016/j.biortech.2014.09.009_b0065) 2014 Shrestha (10.1016/j.biortech.2014.09.009_b0140) 2013; 5 Kato (10.1016/j.biortech.2014.09.009_b0050) 2012; 14 Coppi (10.1016/j.biortech.2014.09.009_b0030) 2004; 186 Tatara (10.1016/j.biortech.2014.09.009_b0155) 2008; 99 De Vrieze (10.1016/j.biortech.2014.09.009_b0040) 2012; 112 Franks (10.1016/j.biortech.2014.09.009_b0045) 2010; 4 Sasaki (10.1016/j.biortech.2014.09.009_b0130) 2010; 87 Rotaru (10.1016/j.biortech.2014.09.009_b0105) 2014; 80 Leang (10.1016/j.biortech.2014.09.009_b0055) 2010; 76 Meyer (10.1016/j.biortech.2014.09.009_b0090) 2013; 195 Steinhaus (10.1016/j.biortech.2014.09.009_b0145) 2007; 73 Morita (10.1016/j.biortech.2014.09.009_b0095) 2011; 2 Adu-Gyamfi (10.1016/j.biortech.2014.09.009_b0005) 2012; 120 Malvankar (10.1016/j.biortech.2014.09.009_b0075) 2011; 6 Liu (10.1016/j.biortech.2014.09.009_b0060) 2012; 5 Lovley (10.1016/j.biortech.2014.09.009_b0070) 1993; 159 Mehta (10.1016/j.biortech.2014.09.009_b0085) 2005; 71 Sasaki (10.1016/j.biortech.2014.09.009_b0125) 2009; 108 Zhao (10.1016/j.biortech.2014.09.009_b0170) 2013; 140 Caccavo (10.1016/j.biortech.2014.09.009_b0020) 1994; 60 |
References_xml | – volume: 87 start-page: 823 issue: 7 year: 2004 ident: 10.1016/j.biortech.2014.09.009_b0080 article-title: Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20192 – volume: 73 start-page: 1653 issue: 5 year: 2007 ident: 10.1016/j.biortech.2014.09.009_b0145 article-title: A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01827-06 – volume: 186 start-page: 3022 issue: 10 year: 2004 ident: 10.1016/j.biortech.2014.09.009_b0030 article-title: Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe (III) and other electron acceptors by Geobacter sulfurreducens publication-title: J. Bacteriol. doi: 10.1128/JB.186.10.3022-3028.2004 – volume: 76 start-page: 4080 issue: 12 year: 2010 ident: 10.1016/j.biortech.2014.09.009_b0055 article-title: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00023-10 – volume: 7 start-page: 408 issue: 1 year: 2014 ident: 10.1016/j.biortech.2014.09.009_b0110 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42189A – volume: 5 start-page: 904 issue: 6 year: 2013 ident: 10.1016/j.biortech.2014.09.009_b0140 article-title: Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12093 – volume: 14 start-page: 1646 issue: 7 year: 2012 ident: 10.1016/j.biortech.2014.09.009_b0050 article-title: Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02611.x – volume: 52 start-page: 429 issue: 4 year: 2003 ident: 10.1016/j.biortech.2014.09.009_b0015 article-title: Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge publication-title: J. Electron Microsc. doi: 10.1093/jmicro/52.4.429 – volume: 79 start-page: 2397 issue: 7 year: 2013 ident: 10.1016/j.biortech.2014.09.009_b0135 article-title: Transcriptomic and genetic analysis of direct interspecies electron transfer publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03837-12 – volume: 71 start-page: 8634 issue: 12 year: 2005 ident: 10.1016/j.biortech.2014.09.009_b0085 article-title: Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8634-8641.2005 – volume: 87 start-page: 1579 issue: 4 year: 2010 ident: 10.1016/j.biortech.2014.09.009_b0130 article-title: Efficient degradation of rice straw in the reactors packed by carbon fiber textiles publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2667-3 – volume: 4 issue: 5019 year: 2014 ident: 10.1016/j.biortech.2014.09.009_b0025 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. – volume: 104 start-page: 136 year: 2012 ident: 10.1016/j.biortech.2014.09.009_b0165 article-title: Bioreactor performance and methanogenic population dynamics in a low-temperature (5–18°C) anaerobic fixed-bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.086 – volume: 75 start-page: 941 issue: 4 year: 2007 ident: 10.1016/j.biortech.2014.09.009_b0120 article-title: Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-007-0888-x – volume: 140 start-page: 211 year: 2013 ident: 10.1016/j.biortech.2014.09.009_b0170 article-title: Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.027 – volume: 48 start-page: 7536 issue: 13 year: 2014 ident: 10.1016/j.biortech.2014.09.009_b0035 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5016789 – volume: 330 start-page: 1413 issue: 6009 year: 2010 ident: 10.1016/j.biortech.2014.09.009_b0150 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science doi: 10.1126/science.1196526 – volume: 60 start-page: 3752 issue: 10 year: 1994 ident: 10.1016/j.biortech.2014.09.009_b0020 article-title: Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.60.10.3752-3759.1994 – volume: 435 start-page: 1098 issue: 7045 year: 2005 ident: 10.1016/j.biortech.2014.09.009_b0100 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature doi: 10.1038/nature03661 – volume: 6 start-page: 573 issue: 9 year: 2011 ident: 10.1016/j.biortech.2014.09.009_b0075 article-title: Tunable metallic-like conductivity in microbial nanowire networks publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.119 – volume: 108 start-page: 130 issue: 2 year: 2009 ident: 10.1016/j.biortech.2014.09.009_b0125 article-title: Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2009.03.003 – year: 2014 ident: 10.1016/j.biortech.2014.09.009_b0065 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. – volume: 4 start-page: 509 issue: 4 year: 2010 ident: 10.1016/j.biortech.2014.09.009_b0045 article-title: Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms publication-title: ISME J. doi: 10.1038/ismej.2009.137 – volume: 112 start-page: 1 year: 2012 ident: 10.1016/j.biortech.2014.09.009_b0040 article-title: Methanosarcina: the rediscovered methanogen for heavy duty biomethanation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.02.079 – volume: 78 start-page: 7645 issue: 21 year: 2012 ident: 10.1016/j.biortech.2014.09.009_b0115 article-title: Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01946-12 – volume: 195 start-page: 990 issue: 5 year: 2013 ident: 10.1016/j.biortech.2014.09.009_b0090 article-title: Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth publication-title: J. Bacteriol. doi: 10.1128/JB.01959-12 – volume: 99 start-page: 4786 issue: 11 year: 2008 ident: 10.1016/j.biortech.2014.09.009_b0155 article-title: Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.09.069 – volume: 120 start-page: 248 year: 2012 ident: 10.1016/j.biortech.2014.09.009_b0005 article-title: Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.042 – volume: 80 start-page: 4599 issue: 15 year: 2014 ident: 10.1016/j.biortech.2014.09.009_b0105 article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00895-14 – volume: 159 start-page: 336 issue: 4 year: 1993 ident: 10.1016/j.biortech.2014.09.009_b0070 article-title: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals publication-title: Arch. Microbiol. doi: 10.1007/BF00290916 – volume: 2 start-page: e00159-11 issue: 4 year: 2011 ident: 10.1016/j.biortech.2014.09.009_b0095 article-title: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates publication-title: mBio doi: 10.1128/mBio.00159-11 – volume: 6 start-page: 315 issue: 4 year: 2004 ident: 10.1016/j.biortech.2014.09.009_b0010 article-title: Formation of granules and Methanosaeta fibres in an anaerobic migrating blanket reactor (AMBR) publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2004.00597.x – volume: 191 start-page: 5793 issue: 18 year: 2009 ident: 10.1016/j.biortech.2014.09.009_b0160 article-title: The electron transfer system of syntrophically grown Desulfovibrio vulgaris publication-title: J. Bacteriol. doi: 10.1128/JB.00356-09 – volume: 5 start-page: 8982 issue: 10 year: 2012 ident: 10.1016/j.biortech.2014.09.009_b0060 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22459c |
SSID | ssj0003172 |
Score | 2.595035 |
Snippet | This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in... |
SourceID | osti proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 82 |
SubjectTerms | anaerobic digesters Biological and medical sciences Carbon Carbon - chemistry Cell Communication - physiology Cloth coculture Coculture Techniques - methods cotton cytochromes Desulfovibrio Diets Electric Conductivity electrical conductivity Electrically conductive Electron transfer Electron Transport fimbriae Fundamental and applied biological sciences. Psychology Geobacter Materials Testing Membranes, Artificial Metabolism Microbial Consortia mutants Oxidation-Reduction Resistivity Symbiosis |
Title | Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25285763 https://www.proquest.com/docview/1629958574 https://www.proquest.com/docview/1635032879 https://www.proquest.com/docview/1651432978 https://www.proquest.com/docview/1836662324 https://www.osti.gov/biblio/2279893 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegHIADgvFVBlOQuFUp-XDi-DhVrSY0xoFW9BbZjrNm6pqpTS8c-Nt5L46bTCtlcIlS23Gt_F783vP7IuQTkzmwBZm5MVVYwoz7rpAS7hjLqAy5VhQDnL9exGcz-mUezduqqHV0SSWH6ufeuJL_QRXaAFeMkv0HZHeTQgPcA75wBYThei-MR2ItAT21LNHPvCqusRaX3gwMn6pTQdShlKAND2y9GywKAaKqRjd0zFcAbTeLQg1U6ZosHI1ToTX0FuW6OeEfVHeO4UdNbMf3Bcy5EJ2oskqst_W-c62XhXDHwNx2DOC8qLsmYnW52O5azdFOY5boHkb4tOPYYfbPhGFpONZkt97TZjddFna2TVN_6M5ubg4WroayQMfj2nbkm7S0Hm_5l7XZX3xLJ7Pz83Q6nk8fkkcB6A1Y0mL4q_X5AWGpNn_bFXVCxvf_yy1ppVcCkug8Kzbw_eSm8MmfNZNaQpk-J88a1cI5NXTygjzQqyPy9PRy3aRX0Ufk8cjW94OeTirKl-SHoSWnpiWnpSXH0JLTpSXH0pJjaQm6nZaWnA4tvSKzyXg6OnObohuuihK_gteSSJrLXAQ01B7LmMc1V36kg0Rmvoqz0BdMe3mkslgJ-M2TPKJc5MLPlQZ14TXprcqVfkscSlmsGIuyIBKUo2YP7EUwX_PMyxKe9UlkX26qmoz0WBhlmVrXw6vUgpIiKKnHUwClTz7vnrsxOVn--sQxYpeCVIldCn3IVJVi9kyQ1_vk5Baku0mDJMHIbNYnHy3GKYCEJjWx0uV2k_oxiHOgcTN6aEwYYdZKxg-NQcUFSDI5MCYJ4zhGDahP3hhCa1caBbCIOHx3j5Uekyftp_ue9Kr1Vn8AybqSJ_XX8hvnMdP- |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+cloth+stimulates+direct+interspecies+electron+transfer+in+syntrophic+co-cultures&rft.jtitle=Bioresource+technology&rft.au=Chen%2C+Shanshan&rft.au=Rotaru%2C+Amelia-Elena&rft.au=Liu%2C+Fanghua&rft.au=Philips%2C+Jo&rft.date=2014-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=173&rft.spage=82&rft_id=info:doi/10.1016%2Fj.biortech.2014.09.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |