Interspike interval correlations in neuron models with adaptation and correlated noise
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, dif...
Saved in:
Published in | PLoS computational biology Vol. 17; no. 8; p. e1009261 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
27.08.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1009261 |
Cover
Abstract | The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel’s time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability. |
---|---|
AbstractList | The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability. The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability. The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel’s time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability. The elementary processing units in the central nervous system are neurons that transmit information by short electrical pulses, so called action potentials or spikes. The generation of the action potential is a random process that can be shaped by correlated fluctuations (colored noise) and by adaptation. A consequence of these two ubiquitous features is that the successive time intervals between spikes, the interspike intervals, are not independent but correlated. As these correlations can significantly improve information transmission and weak-signal detection, it is an important task to develop analytical approaches to these statistics for well-established computational models. Here we present a theory of interval correlations for a widely used class of integrate-and-fire models endowed with an adaptation mechanism and subject to correlated fluctuations. We demonstrate which patterns of interval correlations can be expected from the interplay of colored noise, adaptation and intrinsic nonlinear dynamics. |
Audience | Academic |
Author | Ramlow, Lukas Lindner, Benjamin |
AuthorAffiliation | 2 Physics Department, Humboldt University zu Berlin, Berlin, Germany University of Pittsburgh, UNITED STATES 1 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany |
AuthorAffiliation_xml | – name: University of Pittsburgh, UNITED STATES – name: 2 Physics Department, Humboldt University zu Berlin, Berlin, Germany – name: 1 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany |
Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0001-6089-0613 surname: Ramlow fullname: Ramlow, Lukas – sequence: 2 givenname: Benjamin orcidid: 0000-0001-5617-127X surname: Lindner fullname: Lindner, Benjamin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34449771$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkltv1DAQhSNURC_wDxDKIzzsYseJnfCAVFVcVqpA4vZqTezx1iVrb-2kwL9ntrusujwgoVjKaPydI499ToujEAMWxVPO5lwo_vI6TinAMF-b3s85Y10l-YPihDeNmCnRtEf36uPiNOdrxqjs5KPiWNR13SnFT4pvizBiymv_HUu_KW9hKE1MCQcYfQyZumXAKcVQrqLFIZc__HhVgoX1eEeUEOxegbYM0Wd8XDx0MGR8svufFV_fvvly8X52-fHd4uL8cmaalo-zqlOsr2g5x5AxKwRWjXBtC4211HNNa4XsmeFNC51riHBcMWC9Quh6Ls6KxdbXRrjW6-RXkH7pCF7fNWJaakijNwNqaZiQne0RUNWCKZBMkaGrWKtMKwV5vd56rad-hdZgGBMMB6aHO8Ff6WW81W1dtapSZPB8Z5DizYR51CufDQ4DBIxT1lUjJasZPQOh8y26BDqaDy6So6HP4sobemjnqX8ulaQrotOS4MWBgJgRf45LmHLWi8-f_oP9cMg-uz_0fto_CSGg3gImxZwTuj3Cmd4EUe-CqDdB1LsgkuzVXzLjt3mhQf3wb_FvcIfoKw |
CitedBy_id | crossref_primary_10_1140_epje_s10189_023_00371_x crossref_primary_10_1103_PhysRevX_14_041047 crossref_primary_10_1103_PhysRevE_105_024202 crossref_primary_10_1007_s00422_022_00920_1 crossref_primary_10_1088_2634_4386_ad787f crossref_primary_10_3389_fnins_2023_1193930 crossref_primary_10_1016_j_bpj_2023_11_015 crossref_primary_10_1016_j_bpj_2023_01_007 |
Cites_doi | 10.1103/PhysRevLett.93.059904 10.1113/jphysiol.2012.234401 10.1016/j.cub.2020.11.054 10.1006/jtbi.1998.0782 10.1523/JNEUROSCI.13-01-00334.1993 10.1371/journal.pcbi.1004165 10.1523/JNEUROSCI.6231-11.2012 10.1007/978-0-387-87708-2 10.1103/PhysRevE.77.031914 10.1007/s00285-017-1141-6 10.1007/s10827-016-0635-3 10.1371/journal.pcbi.1003251 10.1103/PhysRevE.83.050905 10.1038/nrn2258 10.1038/nn.3220 10.1162/089976603762552915 10.1038/nn.3658 10.1007/978-94-011-7801-3 10.1523/JNEUROSCI.4795-04.2005 10.1152/jn.00359.2004 10.3389/fncom.2013.00113 10.1016/S0006-3495(67)86597-4 10.1523/JNEUROSCI.1792-08.2008 10.1103/PhysRevE.68.021920 10.1152/jn.2002.88.2.761 10.1162/08997660360675035 10.1023/A:1008916026143 10.1523/JNEUROSCI.14-05-02870.1994 10.1007/s10827-007-0044-8 10.1007/s00422-008-0259-4 10.1371/journal.pcbi.1003170 10.1209/0295-5075/115/68002 10.1103/PhysRevLett.85.1576 10.1162/089976603322385063 10.1103/PhysRevE.99.022210 10.1038/nn.3185 10.1140/epjst/e2010-01271-6 10.1152/jn.00742.2003 10.1103/PhysRevE.84.041904 10.1523/JNEUROSCI.21-14-05328.2001 10.2170/jjphysiol.4.234 10.1103/PhysRevE.72.021911 10.1152/jn.00955.2002 10.1162/089976604322860668 10.1103/PhysRevLett.115.069401 10.1080/09548980500444933 10.1007/s10827-015-0560-x 10.1162/089976698300017106 10.1137/1.9781611970159 10.1523/JNEUROSCI.0903-14.2014 10.1371/journal.pcbi.1002478 10.1162/neco.2008.05-07-525 10.1088/0954-898X_4_3_002 10.1162/neco.1996.8.5.979 10.1103/PhysRevLett.113.254101 10.1109/TMBMC.2016.2618863 10.1103/PhysRevE.81.046218 10.1371/journal.pcbi.1001026 10.1103/PhysRevE.92.040901 10.1038/nn.3431 10.1152/jn.01107.2007 10.1162/neco.2010.06-09-1036 10.1103/PhysRevE.99.062221 10.1371/journal.pcbi.1000182 10.1117/12.610938 10.1007/s00422-008-0267-4 10.1523/JNEUROSCI.0230-16.2016 10.1152/jn.00586.2013 10.1007/s00221-011-2553-y 10.1007/s00422-006-0082-8 10.1007/s10827-015-0558-4 10.1103/PhysRevResearch.1.023024 10.1103/PhysRevE.67.051916 10.1152/jn.2001.85.4.1614 10.1007/s00422-008-0261-x 10.1007/s00422-006-0068-6 10.1007/s10827-010-0305-9 10.1152/jn.01282.2007 10.1103/PhysRevLett.78.775 10.1017/CBO9781107447615 10.1038/nn.2259 10.3934/mbe.2016001 10.1016/j.jneumeth.2007.11.006 10.1121/1.403950 10.1103/PhysRevLett.45.1219 10.1140/epjst/e2010-01286-y 10.1371/journal.pcbi.1007122 10.1209/0295-5075/99/10004 10.1103/PhysRevLett.110.204102 10.1162/08997660152002861 10.1103/PhysRevE.69.022901 10.1007/978-3-642-46345-7 10.1103/PhysRevE.51.738 10.1103/PhysRevE.79.021905 10.1523/JNEUROSCI.20-17-06672.2000 10.1038/s41467-017-02717-4 10.1103/PhysRevE.80.036113 10.1016/j.neucom.2006.10.101 10.1152/jn.00240.2010 10.1103/PhysRevE.99.032402 10.1038/s41598-018-33064-z 10.1371/journal.pcbi.1005545 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Ramlow, Lindner 2021 Ramlow, Lindner |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Ramlow, Lindner 2021 Ramlow, Lindner |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1009261 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Interspike interval correlations in neuron models with adaptation and correlated noise |
EISSN | 1553-7358 |
ExternalDocumentID | oai_doaj_org_article_6c0369dbeae74307a60750df2087c863 PMC8428727 A676297430 34449771 10_1371_journal_pcbi_1009261 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: LI-1046/4-1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c581t-2970b20b2ff0e00d33e253f88a5ddff0f58d36b0c158a9f50d3f170a0b7ea9b13 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Wed Aug 27 01:29:12 EDT 2025 Thu Aug 21 17:36:08 EDT 2025 Sun Aug 24 03:47:46 EDT 2025 Tue Jun 10 20:14:53 EDT 2025 Fri Jun 27 04:21:45 EDT 2025 Fri Jun 27 05:01:24 EDT 2025 Mon Jul 21 06:00:43 EDT 2025 Thu Apr 24 23:13:23 EDT 2025 Tue Jul 01 01:26:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-2970b20b2ff0e00d33e253f88a5ddff0f58d36b0c158a9f50d3f170a0b7ea9b13 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0001-6089-0613 0000-0001-5617-127X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009261 |
PMID | 34449771 |
PQID | 2566040003 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6c0369dbeae74307a60750df2087c863 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8428727 proquest_miscellaneous_2566040003 gale_infotracacademiconefile_A676297430 gale_incontextgauss_ISR_A676297430 gale_incontextgauss_ISN_A676297430 pubmed_primary_34449771 crossref_primary_10_1371_journal_pcbi_1009261 crossref_citationtrail_10_1371_journal_pcbi_1009261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210827 |
PublicationDateYYYYMMDD | 2021-08-27 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210827 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S Vellmer (pcbi.1009261.ref045) 2019; 1 J Schwabedal (pcbi.1009261.ref101) 2013; 110 MJ Chacron (pcbi.1009261.ref016) 2001; 21 B Dummer (pcbi.1009261.ref062) 2014; 8 A Lerchner (pcbi.1009261.ref065) 2006; 17 E Urdapilleta (pcbi.1009261.ref090) 2016; 115 B Ermentrout (pcbi.1009261.ref046) 1996; 8 K Wimmer (pcbi.1009261.ref072) 2008; 4 R Jolivet (pcbi.1009261.ref006) 2008; 169 MP Nawrot (pcbi.1009261.ref018) 2007; 70 B Lindner (pcbi.1009261.ref038) 2004; 69 P Zhou (pcbi.1009261.ref082) 2013; 7 PM Harrison (pcbi.1009261.ref085) 2015; 11 F Farkhooi (pcbi.1009261.ref075) 2011; 83 C Pozzorini (pcbi.1009261.ref078) 2013; 16 J Ladenbauer (pcbi.1009261.ref086) 2014; 111 MJ Chacron (pcbi.1009261.ref051) 2005 RF Galán (pcbi.1009261.ref110) 2009; 80 L Badel (pcbi.1009261.ref084) 2008; 99 MJ Chacron (pcbi.1009261.ref068) 2003; 15 E Urdapilleta (pcbi.1009261.ref037) 2011; 84 WR Softky (pcbi.1009261.ref058) 1993; 13 A Treves (pcbi.1009261.ref057) 1993; 4 T Schwalger (pcbi.1009261.ref092) 2012; 99 J Benda (pcbi.1009261.ref036) 2021; 31 T Schwalger (pcbi.1009261.ref039) 2013; 7 T Deemyad (pcbi.1009261.ref077) 2012; 590 J Benda (pcbi.1009261.ref035) 2003; 15 J Benda (pcbi.1009261.ref069) 2005; 25 P Muscinelli (pcbi.1009261.ref027) 2019; 15 JTC Schwabedal (pcbi.1009261.ref099) 2010; 81 S Hagiwara (pcbi.1009261.ref014) 1954; 14 M Augustin (pcbi.1009261.ref087) 2017; 13 W Braun (pcbi.1009261.ref095) 2019; 99 R Ratnam (pcbi.1009261.ref015) 2000; 20 AA Faisal (pcbi.1009261.ref001) 2008; 9 O Avila-Akerberg (pcbi.1009261.ref021) 2011; 210 V Rostami (pcbi.1009261.ref061) 2020 AN Burkitt (pcbi.1009261.ref003) 2006; 95 B Lindner (pcbi.1009261.ref108) 2003; 15 S Blankenburg (pcbi.1009261.ref094) 2016; 13 W Gerstner (pcbi.1009261.ref004) 2014 C Bauermeister (pcbi.1009261.ref088) 2013; 9 A Pikovsky (pcbi.1009261.ref059) 1997; 78 D Wilson (pcbi.1009261.ref098) 2019; 99 L Badel (pcbi.1009261.ref005) 2008; 99 RF Pena (pcbi.1009261.ref063) 2018; 12 T Schwalger (pcbi.1009261.ref089) 2008; 77 F Farkhooi (pcbi.1009261.ref076) 2013; 9 J Touboul (pcbi.1009261.ref096) 2008; 99 pcbi.1009261.ref066 PJ Thomas (pcbi.1009261.ref106) 2015; 115 B Lindner (pcbi.1009261.ref025) 2005; 72 W Gerstner (pcbi.1009261.ref010) 1995; 51 AV Holden (pcbi.1009261.ref012) 1976 B Gutkin (pcbi.1009261.ref041) 2005; 94 L Shiau (pcbi.1009261.ref049) 2015; 38 Y Mochizuki (pcbi.1009261.ref060) 2016; 36 AN Burkitt (pcbi.1009261.ref002) 2006; 95 A Cao (pcbi.1009261.ref102) 2019 AJ Peterson (pcbi.1009261.ref022) 2014; 34 S Peron (pcbi.1009261.ref073) 2009; 12 J Ladenbauer (pcbi.1009261.ref081) 2012; 8 J Schwabedal (pcbi.1009261.ref100) 2010; 187 C Teeter (pcbi.1009261.ref007) 2018; 9 DH Perkel (pcbi.1009261.ref011) 2006; 7 B Ermentrout (pcbi.1009261.ref067) 1998; 10 T Schwalger (pcbi.1009261.ref033) 2010; 6 G Fuhrmann (pcbi.1009261.ref080) 2002; 88 GB Ermentrout (pcbi.1009261.ref042) 2010 P Thomas (pcbi.1009261.ref104) 2019; 99 J Benda (pcbi.1009261.ref074) 2010; 104 C Lewis (pcbi.1009261.ref052) 2001; 85 SA Prescott (pcbi.1009261.ref071) 2008; 28 S Song (pcbi.1009261.ref023) 2018; 8 S Wieland (pcbi.1009261.ref032) 2015; 92 K Fisch (pcbi.1009261.ref034) 2012; 32 R Jolivet (pcbi.1009261.ref083) 2008; 99 DR Cox (pcbi.1009261.ref009) 1962 B Ermentrout (pcbi.1009261.ref079) 2001; 13 T Tetzlaff (pcbi.1009261.ref028) 2008; 20 B Ermentrout (pcbi.1009261.ref111) 2011; 31 J Benda (pcbi.1009261.ref070) 2008; 24 JW Middleton (pcbi.1009261.ref048) 2003; 68 T Schwalger (pcbi.1009261.ref091) 2010; 187 N Brunel (pcbi.1009261.ref109) 1998; 195 HC Tuckwell (pcbi.1009261.ref013) 1989 B Lindner (pcbi.1009261.ref026) 2016; 2 F Farkhooi (pcbi.1009261.ref020) 2009; 79 A Pikovsky (pcbi.1009261.ref105) 2015; 115 TA Engel (pcbi.1009261.ref019) 2008; 100 N Brunel (pcbi.1009261.ref054) 2003; 67 J Schiemann (pcbi.1009261.ref043) 2012; 15 FT Arecchi (pcbi.1009261.ref107) 1980; 45 MJ Chacron (pcbi.1009261.ref024) 2004; 93 M Messer (pcbi.1009261.ref044) 2017; 42 E Brown (pcbi.1009261.ref040) 2004; 16 T Schwalger (pcbi.1009261.ref047) 2015; 39 D Wilson (pcbi.1009261.ref097) 2018; 76 DR Cox (pcbi.1009261.ref093) 1966 AB Neiman (pcbi.1009261.ref017) 2004; 92 A Litwin-Kumar (pcbi.1009261.ref030) 2012; 15 MJE Richardson (pcbi.1009261.ref053) 2003; 89 S Ostojic (pcbi.1009261.ref031) 2014; 17 EM Izhikevich (pcbi.1009261.ref008) 2007 YH Liu (pcbi.1009261.ref055) 2001; 10 R Moreno-Bote (pcbi.1009261.ref029) 2010; 22 PJ Thomas (pcbi.1009261.ref103) 2014; 113 W Bair (pcbi.1009261.ref064) 1994; 14 SB Lowen (pcbi.1009261.ref050) 1992; 92 MJ Chacron (pcbi.1009261.ref056) 2000; 85 |
References_xml | – volume: 93 start-page: 059904 year: 2004 ident: pcbi.1009261.ref024 article-title: Noise shaping by interval correlations increases information transfer publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.059904 – volume: 590 start-page: 4839 year: 2012 ident: pcbi.1009261.ref077 article-title: Sub- and suprathreshold adaptation currents have opposite effects on frequency tuning publication-title: J Physiol doi: 10.1113/jphysiol.2012.234401 – volume: 31 start-page: R110 issue: 3 year: 2021 ident: pcbi.1009261.ref036 article-title: Neural adaptation publication-title: Curr doi: 10.1016/j.cub.2020.11.054 – volume: 195 start-page: 87 year: 1998 ident: pcbi.1009261.ref109 article-title: Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics publication-title: J Theor Biol doi: 10.1006/jtbi.1998.0782 – volume: 13 start-page: 334 year: 1993 ident: pcbi.1009261.ref058 article-title: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-01-00334.1993 – volume: 11 start-page: 8 year: 2015 ident: pcbi.1009261.ref085 article-title: Experimentally Verified Parameter Sets for Modelling Heterogeneous Neocortical Pyramidal-Cell Populations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004165 – volume: 32 start-page: 17332 year: 2012 ident: pcbi.1009261.ref034 article-title: Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6231-11.2012 – volume-title: Mathematical foundations of neuroscience year: 2010 ident: pcbi.1009261.ref042 doi: 10.1007/978-0-387-87708-2 – volume: 77 start-page: 031914 year: 2008 ident: pcbi.1009261.ref089 article-title: Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times publication-title: Phys Rev E doi: 10.1103/PhysRevE.77.031914 – volume: 76 start-page: 37 issue: 1-2 year: 2018 ident: pcbi.1009261.ref097 article-title: Greater accuracy and broadened applicability of phase reduction using isostable coordinates publication-title: J Math Biol doi: 10.1007/s00285-017-1141-6 – volume: 12 issue: 9 year: 2018 ident: pcbi.1009261.ref063 article-title: Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks publication-title: Front Comp Neurosci – volume: 42 start-page: 187 issue: 2 year: 2017 ident: pcbi.1009261.ref044 article-title: Multi-scale detection of rate changes in spike trains with weak dependencies publication-title: J Comp Neurosci doi: 10.1007/s10827-016-0635-3 – year: 2019 ident: pcbi.1009261.ref102 publication-title: A partial differential equation for the mean—first–return-time phase of planar stochastic oscillators – volume: 9 start-page: e1003251 year: 2013 ident: pcbi.1009261.ref076 article-title: Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003251 – volume: 83 start-page: 050905(R) year: 2011 ident: pcbi.1009261.ref075 article-title: Adaptation reduces variability of the neuronal population code publication-title: Phys Rev E doi: 10.1103/PhysRevE.83.050905 – volume: 9 start-page: 292 issue: 4 year: 2008 ident: pcbi.1009261.ref001 article-title: Noise in the nervous system publication-title: Nat Rev Neurosci doi: 10.1038/nrn2258 – volume-title: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting year: 2007 ident: pcbi.1009261.ref008 – volume: 15 start-page: 1498 year: 2012 ident: pcbi.1009261.ref030 article-title: Slow dynamics and high variability in balanced cortical networks with clustered connections publication-title: Nat Neurosci doi: 10.1038/nn.3220 – volume: 15 start-page: 253 year: 2003 ident: pcbi.1009261.ref068 article-title: Interspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue publication-title: Neural Comput doi: 10.1162/089976603762552915 – volume: 17 start-page: 594 year: 2014 ident: pcbi.1009261.ref031 article-title: Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons publication-title: Nat Neurosci doi: 10.1038/nn.3658 – volume-title: The Statistical Analysis of Series of Events year: 1966 ident: pcbi.1009261.ref093 doi: 10.1007/978-94-011-7801-3 – volume: 25 start-page: 2312 year: 2005 ident: pcbi.1009261.ref069 article-title: Spike-frequency adaptation separates transient communication signals from background oscillations publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4795-04.2005 – volume: 94 start-page: 1623 issue: 2 year: 2005 ident: pcbi.1009261.ref041 article-title: Phase-response curves give the responses of neurons to transient inputs publication-title: J Neurophysiol doi: 10.1152/jn.00359.2004 – volume: 7 start-page: 113 year: 2013 ident: pcbi.1009261.ref082 article-title: Impact of neuronal heterogeneity on correlated colored-noise-induced synchronization publication-title: Front Comput Neurosci doi: 10.3389/fncom.2013.00113 – volume: 7 start-page: 419 year: 2006 ident: pcbi.1009261.ref011 article-title: Neuronal Spike Trains and Stochastic Point Processes publication-title: Biophys J doi: 10.1016/S0006-3495(67)86597-4 – volume: 28 start-page: 13649 year: 2008 ident: pcbi.1009261.ref071 article-title: Spike-Rate Coding and Spike-Time Coding Are Affected Oppositely by Different Adaptation Mechanisms publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1792-08.2008 – volume: 68 start-page: 021920 year: 2003 ident: pcbi.1009261.ref048 article-title: Firing statistics of a neuron model driven by long-range correlated noise publication-title: Phys Rev E doi: 10.1103/PhysRevE.68.021920 – volume: 88 start-page: 761 year: 2002 ident: pcbi.1009261.ref080 article-title: Spike Frequency Adaptation and Neocortical Rhythms publication-title: J Neurophysiol doi: 10.1152/jn.2002.88.2.761 – volume: 15 start-page: 1761 year: 2003 ident: pcbi.1009261.ref108 article-title: Analytic expressions for rate and CV of a type I neuron driven by white Gaussian noise publication-title: Neural Comp doi: 10.1162/08997660360675035 – volume: 10 start-page: 25 year: 2001 ident: pcbi.1009261.ref055 article-title: Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron publication-title: J Comput Neurosci doi: 10.1023/A:1008916026143 – volume: 14 start-page: 2870 year: 1994 ident: pcbi.1009261.ref064 article-title: Power spectrum analysis of bursting cells in area MT in the behaving monkey publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-05-02870.1994 – volume: 24 start-page: 113 year: 2008 ident: pcbi.1009261.ref070 article-title: Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron publication-title: J Comput Neurosci doi: 10.1007/s10827-007-0044-8 – volume: 99 start-page: 361 year: 2008 ident: pcbi.1009261.ref084 article-title: Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves publication-title: Biol Cybern doi: 10.1007/s00422-008-0259-4 – volume: 9 start-page: e1003170 year: 2013 ident: pcbi.1009261.ref088 article-title: Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003170 – volume: 115 start-page: 68002 issue: 6 year: 2016 ident: pcbi.1009261.ref090 article-title: Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons publication-title: Europhys Lett doi: 10.1209/0295-5075/115/68002 – volume: 85 start-page: 1576 year: 2000 ident: pcbi.1009261.ref056 article-title: Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.85.1576 – volume: 15 start-page: 2523 year: 2003 ident: pcbi.1009261.ref035 article-title: A universal model for spike-frequency adaptation publication-title: Neural Comput doi: 10.1162/089976603322385063 – volume: 99 start-page: 022210 issue: 2 year: 2019 ident: pcbi.1009261.ref098 article-title: Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers publication-title: Phys Rev E doi: 10.1103/PhysRevE.99.022210 – volume: 15 start-page: 1272 issue: 9 year: 2012 ident: pcbi.1009261.ref043 article-title: K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration publication-title: Nat Neurosci doi: 10.1038/nn.3185 – volume: 187 start-page: 63 year: 2010 ident: pcbi.1009261.ref100 article-title: Effective phase description of noise-perturbed and noise-induced oscillations publication-title: Euro PhysJ-Special Topics doi: 10.1140/epjst/e2010-01271-6 – volume: 92 start-page: 492 year: 2004 ident: pcbi.1009261.ref017 article-title: Two Distinct Types of Noisy Oscillators in Electroreceptors of Paddlefish publication-title: J Neurophysiol doi: 10.1152/jn.00742.2003 – volume: 84 start-page: 041904 year: 2011 ident: pcbi.1009261.ref037 article-title: Onset of negative interspike interval correlations in adapting neurons publication-title: Phys Rev E doi: 10.1103/PhysRevE.84.041904 – volume: 115 start-page: 069402 year: 2015 ident: pcbi.1009261.ref106 article-title: Comment on “Asymptotic Phase for Stochastic Oscillators” Reply publication-title: Phys Rev Lett – volume: 21 start-page: 5328 year: 2001 ident: pcbi.1009261.ref016 article-title: Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-14-05328.2001 – volume: 14 start-page: 234 year: 1954 ident: pcbi.1009261.ref014 article-title: Analysis of interval fluctuation of the sensory nerve impulse publication-title: Jpn J Physiol doi: 10.2170/jjphysiol.4.234 – volume: 72 start-page: 021911 year: 2005 ident: pcbi.1009261.ref025 article-title: Integrate-and-fire neurons with threshold noise—A tractable model of how interspike interval correlations affect neuronal signal transmission publication-title: Phys Rev E doi: 10.1103/PhysRevE.72.021911 – year: 2020 ident: pcbi.1009261.ref061 article-title: Spiking neural network model of motor cortex with joint excitatory and inhibitory clusters reflects task uncertainty, reaction times, and variability dynamics publication-title: bioRxiv – volume: 89 start-page: 2538 year: 2003 ident: pcbi.1009261.ref053 article-title: From subthreshold to firing-rate resonance publication-title: J Neurophysiol doi: 10.1152/jn.00955.2002 – volume: 16 start-page: 673 year: 2004 ident: pcbi.1009261.ref040 article-title: On the phase reduction and response dynamics of neural oscillator populations publication-title: Neural Comp doi: 10.1162/089976604322860668 – volume: 115 start-page: 069401 year: 2015 ident: pcbi.1009261.ref105 article-title: Comment on “Asymptotic Phase for Stochastic Oscillators” publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.115.069401 – volume: 17 start-page: 131 year: 2006 ident: pcbi.1009261.ref065 article-title: Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex publication-title: Network: Comp Neural Sys doi: 10.1080/09548980500444933 – volume: 39 start-page: 29 year: 2015 ident: pcbi.1009261.ref047 article-title: Statistical structure of neural spiking under non-Poissonian or other non-white stimulation publication-title: J Comput Neurosci doi: 10.1007/s10827-015-0560-x – volume: 10 start-page: 1721 year: 1998 ident: pcbi.1009261.ref067 article-title: Linearization of F-I curves by adaptation publication-title: Neural Comput doi: 10.1162/089976698300017106 – volume-title: Stochastic Processes in the Neuroscience year: 1989 ident: pcbi.1009261.ref013 doi: 10.1137/1.9781611970159 – volume: 34 start-page: 15097 issue: 45 year: 2014 ident: pcbi.1009261.ref022 article-title: A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0903-14.2014 – volume: 8 start-page: 104 year: 2014 ident: pcbi.1009261.ref062 article-title: Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity publication-title: Front Comp Neurosci – volume: 8 start-page: e1002478 year: 2012 ident: pcbi.1009261.ref081 article-title: Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002478 – volume: 20 start-page: 2133 issue: 9 year: 2008 ident: pcbi.1009261.ref028 article-title: Dependence of neuronal correlations on filter characteristics and marginal spike train statistics publication-title: Neural Comput doi: 10.1162/neco.2008.05-07-525 – volume: 4 start-page: 259 year: 1993 ident: pcbi.1009261.ref057 article-title: Mean-field analysis of neuronal spike dynamics publication-title: Network: Comput Neural Syst doi: 10.1088/0954-898X_4_3_002 – volume: 8 start-page: 979 year: 1996 ident: pcbi.1009261.ref046 article-title: Type I membranes, phase resetting curves, and synchrony publication-title: Neural Comput doi: 10.1162/neco.1996.8.5.979 – volume: 113 start-page: 254101 year: 2014 ident: pcbi.1009261.ref103 article-title: Asymptotic Phase of Stochastic oscillators publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.254101 – volume: 2 start-page: 5 year: 2016 ident: pcbi.1009261.ref026 article-title: Mechanisms of Information Filtering in Neural Systems publication-title: IEEE Trans Mol Biol Multi-Scale Commun doi: 10.1109/TMBMC.2016.2618863 – volume: 81 start-page: 046218 year: 2010 ident: pcbi.1009261.ref099 article-title: Effective phase dynamics of noise-induced oscillations in excitable systems publication-title: Phys Rev E doi: 10.1103/PhysRevE.81.046218 – volume: 6 start-page: e1001026 year: 2010 ident: pcbi.1009261.ref033 article-title: How noisy adaptation of neurons shapes interspike interval histograms and correlations publication-title: PLoS Comp Biol doi: 10.1371/journal.pcbi.1001026 – volume: 92 start-page: 040901(R) year: 2015 ident: pcbi.1009261.ref032 article-title: Slow fluctuations in recurrent networks of spiking neurons publication-title: Phys Rev E doi: 10.1103/PhysRevE.92.040901 – volume: 16 start-page: 942 year: 2013 ident: pcbi.1009261.ref078 article-title: Temporal whitening by power-law adaptation in neocortical neurons publication-title: Nat Neurosci doi: 10.1038/nn.3431 – volume: 99 start-page: 656 year: 2008 ident: pcbi.1009261.ref005 article-title: Dynamic I-V Curves Are Reliable Predictors of Naturalistic Pyramidal-Neuron Voltage Traces publication-title: J Neurophysiol doi: 10.1152/jn.01107.2007 – volume: 22 start-page: 1528 year: 2010 ident: pcbi.1009261.ref029 article-title: Response of Integrate-and-Fire Neurons to Noisy Inputs Filtered by Synapses with Arbitrary Timescales: Firing Rate and Correlations publication-title: Neural Comput doi: 10.1162/neco.2010.06-09-1036 – volume: 99 start-page: 062221 issue: 6 year: 2019 ident: pcbi.1009261.ref104 article-title: Phase descriptions of a multidimensional Ornstein-Uhlenbeck process publication-title: Phys Rev E doi: 10.1103/PhysRevE.99.062221 – volume: 4 start-page: e1000182 year: 2008 ident: pcbi.1009261.ref072 article-title: Adaptation and Selective Information Transmission in the Cricket Auditory Neuron AN2 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000182 – start-page: 150 volume-title: Fluctuations and Noise in Biological, Biophysical and Biomedical Systems III year: 2005 ident: pcbi.1009261.ref051 doi: 10.1117/12.610938 – volume-title: Renewal Theory year: 1962 ident: pcbi.1009261.ref009 – volume: 99 start-page: 319 year: 2008 ident: pcbi.1009261.ref096 article-title: Dynamics and bifurcations of the adaptive exponential integrate-and-fire model publication-title: Biol Cybern doi: 10.1007/s00422-008-0267-4 – volume: 36 start-page: 5736 year: 2016 ident: pcbi.1009261.ref060 article-title: Similarity in Neuronal Firing Regimes across Mammalian Species publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0230-16.2016 – volume: 111 start-page: 939 year: 2014 ident: pcbi.1009261.ref086 article-title: How adaptation currents change threshold, gain, and variability of neuronal spiking publication-title: J Neurophysiol doi: 10.1152/jn.00586.2013 – volume: 210 start-page: 353 year: 2011 ident: pcbi.1009261.ref021 article-title: Nonrenewal spike train statistics: causes and consequences on neural coding publication-title: Exp Brain Res doi: 10.1007/s00221-011-2553-y – volume: 95 start-page: 97 year: 2006 ident: pcbi.1009261.ref003 article-title: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties publication-title: Biol Cyber doi: 10.1007/s00422-006-0082-8 – volume: 7 start-page: 164 year: 2013 ident: pcbi.1009261.ref039 article-title: Patterns of interval correlations in neural oscillators with adaptation publication-title: Front Comp Neurosci – volume: 38 start-page: 589 year: 2015 ident: pcbi.1009261.ref049 article-title: Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation publication-title: J Comput Neurosci doi: 10.1007/s10827-015-0558-4 – volume: 1 start-page: 023024 issue: 2 year: 2019 ident: pcbi.1009261.ref045 article-title: Theory of spike-train power spectra for multidimensional integrate-and-fire neurons publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.1.023024 – volume: 67 start-page: 051916 year: 2003 ident: pcbi.1009261.ref054 article-title: Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.051916 – volume: 85 start-page: 1614 issue: 4 year: 2001 ident: pcbi.1009261.ref052 article-title: Long-term correlations in the spike trains of medullary sympathetic neurons publication-title: J Neurophysiol doi: 10.1152/jn.2001.85.4.1614 – volume: 99 start-page: 417 year: 2008 ident: pcbi.1009261.ref083 article-title: The quantitative single-neuron modeling competition publication-title: Biol Cybern doi: 10.1007/s00422-008-0261-x – volume: 95 start-page: 1 year: 2006 ident: pcbi.1009261.ref002 article-title: A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input publication-title: Biol Cyber doi: 10.1007/s00422-006-0068-6 – volume: 31 start-page: 185 issue: 2 year: 2011 ident: pcbi.1009261.ref111 article-title: The variance of phase-resetting curves publication-title: J Comput Neurosci doi: 10.1007/s10827-010-0305-9 – volume: 100 start-page: 1576 year: 2008 ident: pcbi.1009261.ref019 article-title: Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex publication-title: J Neurophysiol doi: 10.1152/jn.01282.2007 – volume: 78 start-page: 775 year: 1997 ident: pcbi.1009261.ref059 article-title: Coherence Resonance in a Noise-Driven Excitable System publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.78.775 – volume-title: Neuronal Dynamics From single neurons to networks and models of cognition year: 2014 ident: pcbi.1009261.ref004 doi: 10.1017/CBO9781107447615 – volume: 12 start-page: 318 year: 2009 ident: pcbi.1009261.ref073 article-title: Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron publication-title: Nat Neurosci doi: 10.1038/nn.2259 – volume: 13 start-page: 461 year: 2016 ident: pcbi.1009261.ref094 article-title: The effect of positive interspike interval correlations on neuronal information transmission publication-title: Math Biosci Eng doi: 10.3934/mbe.2016001 – volume: 169 start-page: 417 year: 2008 ident: pcbi.1009261.ref006 article-title: A benchmark test for a quantitative assessment of simple neuron models publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2007.11.006 – volume: 92 start-page: 803 year: 1992 ident: pcbi.1009261.ref050 article-title: Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales publication-title: J Acoust Soc Am doi: 10.1121/1.403950 – volume: 45 start-page: 1219 year: 1980 ident: pcbi.1009261.ref107 article-title: Transient Fluctuations in the Decay of an Unstable State publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.45.1219 – ident: pcbi.1009261.ref066 – volume: 187 start-page: 211 year: 2010 ident: pcbi.1009261.ref091 article-title: Theory for serial correlations of interevent intervals publication-title: Eur Phys J Spec Topics doi: 10.1140/epjst/e2010-01286-y – volume: 15 start-page: e1007122 issue: 6 year: 2019 ident: pcbi.1009261.ref027 article-title: How single neuron properties shape chaotic dynamics and signal transmission in random neural networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007122 – volume: 99 start-page: 10004 year: 2012 ident: pcbi.1009261.ref092 article-title: Interspike-interval correlations induced by two-state switching in an excitable system publication-title: Epl-Europhys Lett doi: 10.1209/0295-5075/99/10004 – volume: 110 start-page: 204102 year: 2013 ident: pcbi.1009261.ref101 article-title: Phase Description of Stochastic Oscillations publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.110.204102 – volume: 13 start-page: 1285 year: 2001 ident: pcbi.1009261.ref079 article-title: The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators publication-title: Neural Comput doi: 10.1162/08997660152002861 – volume: 69 start-page: 022901 year: 2004 ident: pcbi.1009261.ref038 article-title: Interspike interval statistics of neurons driven by colored noise publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.022901 – volume-title: Models of the Stochastic Activity of Neurones year: 1976 ident: pcbi.1009261.ref012 doi: 10.1007/978-3-642-46345-7 – volume: 51 start-page: 738 year: 1995 ident: pcbi.1009261.ref010 article-title: Time structure of the activity in neural network models publication-title: Phys Rev E doi: 10.1103/PhysRevE.51.738 – volume: 79 start-page: 021905 year: 2009 ident: pcbi.1009261.ref020 article-title: Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability publication-title: Phys Rev E doi: 10.1103/PhysRevE.79.021905 – volume: 20 start-page: 6672 year: 2000 ident: pcbi.1009261.ref015 article-title: Nonrenewal Statistics of Electrosensory Afferent Spike Trains: Implications for the Detection of Weak Sensory Signals publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-17-06672.2000 – volume: 9 start-page: 709 year: 2018 ident: pcbi.1009261.ref007 article-title: Generalized leaky integrate-and-fire models classify multiple neuron types publication-title: Nat Commun doi: 10.1038/s41467-017-02717-4 – volume: 80 start-page: 036113 issue: 3 year: 2009 ident: pcbi.1009261.ref110 article-title: Analytical calculation of the frequency shift in phase oscillators driven by colored noise: Implications for electrical engineering and neuroscience publication-title: Phys Rev E doi: 10.1103/PhysRevE.80.036113 – volume: 70 start-page: 1717 year: 2007 ident: pcbi.1009261.ref018 article-title: Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro publication-title: Neurocomp doi: 10.1016/j.neucom.2006.10.101 – volume: 104 start-page: 2806 year: 2010 ident: pcbi.1009261.ref074 article-title: Linear Versus Nonlinear Signal Transmission in Neuron Models With Adaptation Currents or Dynamic Thresholds publication-title: J Neurophysiol doi: 10.1152/jn.00240.2010 – volume: 99 start-page: 032402 issue: 3 year: 2019 ident: pcbi.1009261.ref095 article-title: Interspike interval correlations in networks of inhibitory integrate-and-fire neurons publication-title: Phys Rev E doi: 10.1103/PhysRevE.99.032402 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: pcbi.1009261.ref023 article-title: Mathematical modeling and analyses of interspike-intervals of spontaneous activity in afferent neurons of the zebrafish lateral line publication-title: Sci Rep doi: 10.1038/s41598-018-33064-z – volume: 13 start-page: e1005545 year: 2017 ident: pcbi.1009261.ref087 article-title: Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: comparison and implementation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005545 |
SSID | ssj0035896 |
Score | 2.391343 |
Snippet | The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1009261 |
SubjectTerms | Action potentials (Electrophysiology) Action Potentials - physiology Animals Biology and Life Sciences Computational Biology Computer and Information Sciences Computer Simulation Engineering and Technology Humans Models, Neurological Neural Conduction - physiology Neurons Neurons - physiology Physical Sciences Physiological aspects Signal-To-Noise Ratio Stochastic Processes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivh1dJYrgKW4nnX4dV3FZBfegrsyt6acGJTOYmYP_fqs6PcMEkb0IYQ491ST1daWqH5WvCHmlQmqFU7zuNIMf6V1tedJ1ZitCvrLO4Yb-pwtxftl9XPLlQakvzAmb6IEn4E6EBx-rg4s2QrCj0goMcnAHqqRXIvN8Uk13i6nJBzOucmUuLIpTS9Yty0dzTDYnZYzerL3rMUdAt6KZBaXM3f-3hz4IUfP0yYN4dHaH3C4Tyep0UuAuuRGHe-TmVFryz33yLW_1jev-Z6z6nNcIwh5LcZTkN2itMpnlUOVqOGOFW7KVDXY9nc5Xdgj7HjFUw6of4wNyefb-67vzutRQqD1XzaZutaSuhSslGikNjMWWs6SU5SFAW-IqMOGob7iyOgGyLDWSWupktNo17CE5GlZDfEwqLqJPSE_WtqHzyevUNNY5wFRKGxVfELYD0fhCMI51Ln6ZfGomYaExQWMQelOgX5B632s9EWxcI_8Wx2cvi_TYuQGMxhSjMdcZzYK8xNE1SIAxYIbNd7sdR_Phy4U5FRAeNPb6p9DnmdDrIpRWoKy35asGgAyJtWaSL3amZOAVxnMZO8TVdjQw6xToSyk816PJtPbqsa7rYIoOasuZ0c30n_8z9D8yTbjC1XArn_wPwJ6SWy0m81Bwq_KYHG1-b-MzmI1t3PP84l0BUXAzQQ priority: 102 providerName: Directory of Open Access Journals |
Title | Interspike interval correlations in neuron models with adaptation and correlated noise |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34449771 https://www.proquest.com/docview/2566040003 https://pubmed.ncbi.nlm.nih.gov/PMC8428727 https://doaj.org/article/6c0369dbeae74307a60750df2087c863 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEN90QBUQEk-ZnDiOnQeEWlgZSKvQoKhvlu3Yo2JKuqaV2H_PnZNWi2ACqUol9xz1Lmffne_yO0Jey9KnuZE8zgoGF2FNrLkv4oBWhHhlmcED_dNpfjLLPs_5fI9se7Z2Amz-GtphP6nZ6uLo1-XVO1jwb0PXBpFsJx0trVlg1r9IMR46ANuUYzh2mu3yCozL0LELm-XEgmXz7mW6m-7SM1YB0__Pnfua6eqXVV6zU5N75G7nYEajViPukz1XPSC325aTVw_J93AE2CwXP120CPWOQGyxRUdXFAejUQC5rKLQJaeJ8Kg20qVetln7SFflboYro6peNO4RmU2Ov70_ibveCrHlMlnHaSGoSeHjPXWUloy5lDMvpeZlCWOey5LlhtqES114DhQ-EVRTI5wuTMIek_2qrtxTEvHcWY-wZWlaZtbbwieJNgZkKoR2kg8I2wpR2Q54HPtfXKiQTRMQgLSiUSh61Yl-QOLdrGULvPEP-jE-nx0twmaHgXp1rrpVqHILBrsojdMOPCcqdI4eE6grlcLKnA3IK3y6CoExKqy8OdebplGfvk7VKAezUeCsG4nOekRvOiJfA7NWd287gMgQcKtH-XKrSgqWNuZrdOXqTaPAG81xj6Xwv560qrVjj2VZBq47sC16Stfjv_9LtfgR4MMlRsmpOPwfXp-ROykW8VDYTsVzsr9ebdwL8MLWZkhuibmAq5x8HJKD0fjDeALf4-Ppl7NhONkYhqX3GyHLOP0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interspike+interval+correlations+in+neuron+models+with+adaptation+and+correlated+noise&rft.jtitle=PLoS+computational+biology&rft.au=Ramlow%2C+Lukas&rft.au=Lindner%2C+Benjamin&rft.date=2021-08-27&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009261&rft.externalDBID=ISN&rft.externalDocID=A676297430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |