Interspike interval correlations in neuron models with adaptation and correlated noise

The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, dif...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 8; p. e1009261
Main Authors Ramlow, Lukas, Lindner, Benjamin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.08.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1009261

Cover

Abstract The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel’s time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
AbstractList The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel’s time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability. The elementary processing units in the central nervous system are neurons that transmit information by short electrical pulses, so called action potentials or spikes. The generation of the action potential is a random process that can be shaped by correlated fluctuations (colored noise) and by adaptation. A consequence of these two ubiquitous features is that the successive time intervals between spikes, the interspike intervals, are not independent but correlated. As these correlations can significantly improve information transmission and weak-signal detection, it is an important task to develop analytical approaches to these statistics for well-established computational models. Here we present a theory of interval correlations for a widely used class of integrate-and-fire models endowed with an adaptation mechanism and subject to correlated fluctuations. We demonstrate which patterns of interval correlations can be expected from the interplay of colored noise, adaptation and intrinsic nonlinear dynamics.
Audience Academic
Author Ramlow, Lukas
Lindner, Benjamin
AuthorAffiliation 2 Physics Department, Humboldt University zu Berlin, Berlin, Germany
University of Pittsburgh, UNITED STATES
1 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
AuthorAffiliation_xml – name: University of Pittsburgh, UNITED STATES
– name: 2 Physics Department, Humboldt University zu Berlin, Berlin, Germany
– name: 1 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0000-0001-6089-0613
  surname: Ramlow
  fullname: Ramlow, Lukas
– sequence: 2
  givenname: Benjamin
  orcidid: 0000-0001-5617-127X
  surname: Lindner
  fullname: Lindner, Benjamin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34449771$$D View this record in MEDLINE/PubMed
BookMark eNqVkltv1DAQhSNURC_wDxDKIzzsYseJnfCAVFVcVqpA4vZqTezx1iVrb-2kwL9ntrusujwgoVjKaPydI499ToujEAMWxVPO5lwo_vI6TinAMF-b3s85Y10l-YPihDeNmCnRtEf36uPiNOdrxqjs5KPiWNR13SnFT4pvizBiymv_HUu_KW9hKE1MCQcYfQyZumXAKcVQrqLFIZc__HhVgoX1eEeUEOxegbYM0Wd8XDx0MGR8svufFV_fvvly8X52-fHd4uL8cmaalo-zqlOsr2g5x5AxKwRWjXBtC4211HNNa4XsmeFNC51riHBcMWC9Quh6Ls6KxdbXRrjW6-RXkH7pCF7fNWJaakijNwNqaZiQne0RUNWCKZBMkaGrWKtMKwV5vd56rad-hdZgGBMMB6aHO8Ff6WW81W1dtapSZPB8Z5DizYR51CufDQ4DBIxT1lUjJasZPQOh8y26BDqaDy6So6HP4sobemjnqX8ulaQrotOS4MWBgJgRf45LmHLWi8-f_oP9cMg-uz_0fto_CSGg3gImxZwTuj3Cmd4EUe-CqDdB1LsgkuzVXzLjt3mhQf3wb_FvcIfoKw
CitedBy_id crossref_primary_10_1140_epje_s10189_023_00371_x
crossref_primary_10_1103_PhysRevX_14_041047
crossref_primary_10_1103_PhysRevE_105_024202
crossref_primary_10_1007_s00422_022_00920_1
crossref_primary_10_1088_2634_4386_ad787f
crossref_primary_10_3389_fnins_2023_1193930
crossref_primary_10_1016_j_bpj_2023_11_015
crossref_primary_10_1016_j_bpj_2023_01_007
Cites_doi 10.1103/PhysRevLett.93.059904
10.1113/jphysiol.2012.234401
10.1016/j.cub.2020.11.054
10.1006/jtbi.1998.0782
10.1523/JNEUROSCI.13-01-00334.1993
10.1371/journal.pcbi.1004165
10.1523/JNEUROSCI.6231-11.2012
10.1007/978-0-387-87708-2
10.1103/PhysRevE.77.031914
10.1007/s00285-017-1141-6
10.1007/s10827-016-0635-3
10.1371/journal.pcbi.1003251
10.1103/PhysRevE.83.050905
10.1038/nrn2258
10.1038/nn.3220
10.1162/089976603762552915
10.1038/nn.3658
10.1007/978-94-011-7801-3
10.1523/JNEUROSCI.4795-04.2005
10.1152/jn.00359.2004
10.3389/fncom.2013.00113
10.1016/S0006-3495(67)86597-4
10.1523/JNEUROSCI.1792-08.2008
10.1103/PhysRevE.68.021920
10.1152/jn.2002.88.2.761
10.1162/08997660360675035
10.1023/A:1008916026143
10.1523/JNEUROSCI.14-05-02870.1994
10.1007/s10827-007-0044-8
10.1007/s00422-008-0259-4
10.1371/journal.pcbi.1003170
10.1209/0295-5075/115/68002
10.1103/PhysRevLett.85.1576
10.1162/089976603322385063
10.1103/PhysRevE.99.022210
10.1038/nn.3185
10.1140/epjst/e2010-01271-6
10.1152/jn.00742.2003
10.1103/PhysRevE.84.041904
10.1523/JNEUROSCI.21-14-05328.2001
10.2170/jjphysiol.4.234
10.1103/PhysRevE.72.021911
10.1152/jn.00955.2002
10.1162/089976604322860668
10.1103/PhysRevLett.115.069401
10.1080/09548980500444933
10.1007/s10827-015-0560-x
10.1162/089976698300017106
10.1137/1.9781611970159
10.1523/JNEUROSCI.0903-14.2014
10.1371/journal.pcbi.1002478
10.1162/neco.2008.05-07-525
10.1088/0954-898X_4_3_002
10.1162/neco.1996.8.5.979
10.1103/PhysRevLett.113.254101
10.1109/TMBMC.2016.2618863
10.1103/PhysRevE.81.046218
10.1371/journal.pcbi.1001026
10.1103/PhysRevE.92.040901
10.1038/nn.3431
10.1152/jn.01107.2007
10.1162/neco.2010.06-09-1036
10.1103/PhysRevE.99.062221
10.1371/journal.pcbi.1000182
10.1117/12.610938
10.1007/s00422-008-0267-4
10.1523/JNEUROSCI.0230-16.2016
10.1152/jn.00586.2013
10.1007/s00221-011-2553-y
10.1007/s00422-006-0082-8
10.1007/s10827-015-0558-4
10.1103/PhysRevResearch.1.023024
10.1103/PhysRevE.67.051916
10.1152/jn.2001.85.4.1614
10.1007/s00422-008-0261-x
10.1007/s00422-006-0068-6
10.1007/s10827-010-0305-9
10.1152/jn.01282.2007
10.1103/PhysRevLett.78.775
10.1017/CBO9781107447615
10.1038/nn.2259
10.3934/mbe.2016001
10.1016/j.jneumeth.2007.11.006
10.1121/1.403950
10.1103/PhysRevLett.45.1219
10.1140/epjst/e2010-01286-y
10.1371/journal.pcbi.1007122
10.1209/0295-5075/99/10004
10.1103/PhysRevLett.110.204102
10.1162/08997660152002861
10.1103/PhysRevE.69.022901
10.1007/978-3-642-46345-7
10.1103/PhysRevE.51.738
10.1103/PhysRevE.79.021905
10.1523/JNEUROSCI.20-17-06672.2000
10.1038/s41467-017-02717-4
10.1103/PhysRevE.80.036113
10.1016/j.neucom.2006.10.101
10.1152/jn.00240.2010
10.1103/PhysRevE.99.032402
10.1038/s41598-018-33064-z
10.1371/journal.pcbi.1005545
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Ramlow, Lindner 2021 Ramlow, Lindner
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Ramlow, Lindner 2021 Ramlow, Lindner
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009261
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Interspike interval correlations in neuron models with adaptation and correlated noise
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_6c0369dbeae74307a60750df2087c863
PMC8428727
A676297430
34449771
10_1371_journal_pcbi_1009261
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: LI-1046/4-1
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c581t-2970b20b2ff0e00d33e253f88a5ddff0f58d36b0c158a9f50d3f170a0b7ea9b13
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Wed Aug 27 01:29:12 EDT 2025
Thu Aug 21 17:36:08 EDT 2025
Sun Aug 24 03:47:46 EDT 2025
Tue Jun 10 20:14:53 EDT 2025
Fri Jun 27 04:21:45 EDT 2025
Fri Jun 27 05:01:24 EDT 2025
Mon Jul 21 06:00:43 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
Tue Jul 01 01:26:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-2970b20b2ff0e00d33e253f88a5ddff0f58d36b0c158a9f50d3f170a0b7ea9b13
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-6089-0613
0000-0001-5617-127X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009261
PMID 34449771
PQID 2566040003
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6c0369dbeae74307a60750df2087c863
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8428727
proquest_miscellaneous_2566040003
gale_infotracacademiconefile_A676297430
gale_incontextgauss_ISR_A676297430
gale_incontextgauss_ISN_A676297430
pubmed_primary_34449771
crossref_primary_10_1371_journal_pcbi_1009261
crossref_citationtrail_10_1371_journal_pcbi_1009261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210827
PublicationDateYYYYMMDD 2021-08-27
PublicationDate_xml – month: 8
  year: 2021
  text: 20210827
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Vellmer (pcbi.1009261.ref045) 2019; 1
J Schwabedal (pcbi.1009261.ref101) 2013; 110
MJ Chacron (pcbi.1009261.ref016) 2001; 21
B Dummer (pcbi.1009261.ref062) 2014; 8
A Lerchner (pcbi.1009261.ref065) 2006; 17
E Urdapilleta (pcbi.1009261.ref090) 2016; 115
B Ermentrout (pcbi.1009261.ref046) 1996; 8
K Wimmer (pcbi.1009261.ref072) 2008; 4
R Jolivet (pcbi.1009261.ref006) 2008; 169
MP Nawrot (pcbi.1009261.ref018) 2007; 70
B Lindner (pcbi.1009261.ref038) 2004; 69
P Zhou (pcbi.1009261.ref082) 2013; 7
PM Harrison (pcbi.1009261.ref085) 2015; 11
F Farkhooi (pcbi.1009261.ref075) 2011; 83
C Pozzorini (pcbi.1009261.ref078) 2013; 16
J Ladenbauer (pcbi.1009261.ref086) 2014; 111
MJ Chacron (pcbi.1009261.ref051) 2005
RF Galán (pcbi.1009261.ref110) 2009; 80
L Badel (pcbi.1009261.ref084) 2008; 99
MJ Chacron (pcbi.1009261.ref068) 2003; 15
E Urdapilleta (pcbi.1009261.ref037) 2011; 84
WR Softky (pcbi.1009261.ref058) 1993; 13
A Treves (pcbi.1009261.ref057) 1993; 4
T Schwalger (pcbi.1009261.ref092) 2012; 99
J Benda (pcbi.1009261.ref036) 2021; 31
T Schwalger (pcbi.1009261.ref039) 2013; 7
T Deemyad (pcbi.1009261.ref077) 2012; 590
J Benda (pcbi.1009261.ref035) 2003; 15
J Benda (pcbi.1009261.ref069) 2005; 25
P Muscinelli (pcbi.1009261.ref027) 2019; 15
JTC Schwabedal (pcbi.1009261.ref099) 2010; 81
S Hagiwara (pcbi.1009261.ref014) 1954; 14
M Augustin (pcbi.1009261.ref087) 2017; 13
W Braun (pcbi.1009261.ref095) 2019; 99
R Ratnam (pcbi.1009261.ref015) 2000; 20
AA Faisal (pcbi.1009261.ref001) 2008; 9
O Avila-Akerberg (pcbi.1009261.ref021) 2011; 210
V Rostami (pcbi.1009261.ref061) 2020
AN Burkitt (pcbi.1009261.ref003) 2006; 95
B Lindner (pcbi.1009261.ref108) 2003; 15
S Blankenburg (pcbi.1009261.ref094) 2016; 13
W Gerstner (pcbi.1009261.ref004) 2014
C Bauermeister (pcbi.1009261.ref088) 2013; 9
A Pikovsky (pcbi.1009261.ref059) 1997; 78
D Wilson (pcbi.1009261.ref098) 2019; 99
L Badel (pcbi.1009261.ref005) 2008; 99
RF Pena (pcbi.1009261.ref063) 2018; 12
T Schwalger (pcbi.1009261.ref089) 2008; 77
F Farkhooi (pcbi.1009261.ref076) 2013; 9
J Touboul (pcbi.1009261.ref096) 2008; 99
pcbi.1009261.ref066
PJ Thomas (pcbi.1009261.ref106) 2015; 115
B Lindner (pcbi.1009261.ref025) 2005; 72
W Gerstner (pcbi.1009261.ref010) 1995; 51
AV Holden (pcbi.1009261.ref012) 1976
B Gutkin (pcbi.1009261.ref041) 2005; 94
L Shiau (pcbi.1009261.ref049) 2015; 38
Y Mochizuki (pcbi.1009261.ref060) 2016; 36
AN Burkitt (pcbi.1009261.ref002) 2006; 95
A Cao (pcbi.1009261.ref102) 2019
AJ Peterson (pcbi.1009261.ref022) 2014; 34
S Peron (pcbi.1009261.ref073) 2009; 12
J Ladenbauer (pcbi.1009261.ref081) 2012; 8
J Schwabedal (pcbi.1009261.ref100) 2010; 187
C Teeter (pcbi.1009261.ref007) 2018; 9
DH Perkel (pcbi.1009261.ref011) 2006; 7
B Ermentrout (pcbi.1009261.ref067) 1998; 10
T Schwalger (pcbi.1009261.ref033) 2010; 6
G Fuhrmann (pcbi.1009261.ref080) 2002; 88
GB Ermentrout (pcbi.1009261.ref042) 2010
P Thomas (pcbi.1009261.ref104) 2019; 99
J Benda (pcbi.1009261.ref074) 2010; 104
C Lewis (pcbi.1009261.ref052) 2001; 85
SA Prescott (pcbi.1009261.ref071) 2008; 28
S Song (pcbi.1009261.ref023) 2018; 8
S Wieland (pcbi.1009261.ref032) 2015; 92
K Fisch (pcbi.1009261.ref034) 2012; 32
R Jolivet (pcbi.1009261.ref083) 2008; 99
DR Cox (pcbi.1009261.ref009) 1962
B Ermentrout (pcbi.1009261.ref079) 2001; 13
T Tetzlaff (pcbi.1009261.ref028) 2008; 20
B Ermentrout (pcbi.1009261.ref111) 2011; 31
J Benda (pcbi.1009261.ref070) 2008; 24
JW Middleton (pcbi.1009261.ref048) 2003; 68
T Schwalger (pcbi.1009261.ref091) 2010; 187
N Brunel (pcbi.1009261.ref109) 1998; 195
HC Tuckwell (pcbi.1009261.ref013) 1989
B Lindner (pcbi.1009261.ref026) 2016; 2
F Farkhooi (pcbi.1009261.ref020) 2009; 79
A Pikovsky (pcbi.1009261.ref105) 2015; 115
TA Engel (pcbi.1009261.ref019) 2008; 100
N Brunel (pcbi.1009261.ref054) 2003; 67
J Schiemann (pcbi.1009261.ref043) 2012; 15
FT Arecchi (pcbi.1009261.ref107) 1980; 45
MJ Chacron (pcbi.1009261.ref024) 2004; 93
M Messer (pcbi.1009261.ref044) 2017; 42
E Brown (pcbi.1009261.ref040) 2004; 16
T Schwalger (pcbi.1009261.ref047) 2015; 39
D Wilson (pcbi.1009261.ref097) 2018; 76
DR Cox (pcbi.1009261.ref093) 1966
AB Neiman (pcbi.1009261.ref017) 2004; 92
A Litwin-Kumar (pcbi.1009261.ref030) 2012; 15
MJE Richardson (pcbi.1009261.ref053) 2003; 89
S Ostojic (pcbi.1009261.ref031) 2014; 17
EM Izhikevich (pcbi.1009261.ref008) 2007
YH Liu (pcbi.1009261.ref055) 2001; 10
R Moreno-Bote (pcbi.1009261.ref029) 2010; 22
PJ Thomas (pcbi.1009261.ref103) 2014; 113
W Bair (pcbi.1009261.ref064) 1994; 14
SB Lowen (pcbi.1009261.ref050) 1992; 92
MJ Chacron (pcbi.1009261.ref056) 2000; 85
References_xml – volume: 93
  start-page: 059904
  year: 2004
  ident: pcbi.1009261.ref024
  article-title: Noise shaping by interval correlations increases information transfer
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.93.059904
– volume: 590
  start-page: 4839
  year: 2012
  ident: pcbi.1009261.ref077
  article-title: Sub- and suprathreshold adaptation currents have opposite effects on frequency tuning
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2012.234401
– volume: 31
  start-page: R110
  issue: 3
  year: 2021
  ident: pcbi.1009261.ref036
  article-title: Neural adaptation
  publication-title: Curr
  doi: 10.1016/j.cub.2020.11.054
– volume: 195
  start-page: 87
  year: 1998
  ident: pcbi.1009261.ref109
  article-title: Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.1998.0782
– volume: 13
  start-page: 334
  year: 1993
  ident: pcbi.1009261.ref058
  article-title: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-01-00334.1993
– volume: 11
  start-page: 8
  year: 2015
  ident: pcbi.1009261.ref085
  article-title: Experimentally Verified Parameter Sets for Modelling Heterogeneous Neocortical Pyramidal-Cell Populations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004165
– volume: 32
  start-page: 17332
  year: 2012
  ident: pcbi.1009261.ref034
  article-title: Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.6231-11.2012
– volume-title: Mathematical foundations of neuroscience
  year: 2010
  ident: pcbi.1009261.ref042
  doi: 10.1007/978-0-387-87708-2
– volume: 77
  start-page: 031914
  year: 2008
  ident: pcbi.1009261.ref089
  article-title: Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.77.031914
– volume: 76
  start-page: 37
  issue: 1-2
  year: 2018
  ident: pcbi.1009261.ref097
  article-title: Greater accuracy and broadened applicability of phase reduction using isostable coordinates
  publication-title: J Math Biol
  doi: 10.1007/s00285-017-1141-6
– volume: 12
  issue: 9
  year: 2018
  ident: pcbi.1009261.ref063
  article-title: Self-consistent scheme for spike-train power spectra in heterogeneous sparse networks
  publication-title: Front Comp Neurosci
– volume: 42
  start-page: 187
  issue: 2
  year: 2017
  ident: pcbi.1009261.ref044
  article-title: Multi-scale detection of rate changes in spike trains with weak dependencies
  publication-title: J Comp Neurosci
  doi: 10.1007/s10827-016-0635-3
– year: 2019
  ident: pcbi.1009261.ref102
  publication-title: A partial differential equation for the mean—first–return-time phase of planar stochastic oscillators
– volume: 9
  start-page: e1003251
  year: 2013
  ident: pcbi.1009261.ref076
  article-title: Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003251
– volume: 83
  start-page: 050905(R)
  year: 2011
  ident: pcbi.1009261.ref075
  article-title: Adaptation reduces variability of the neuronal population code
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.83.050905
– volume: 9
  start-page: 292
  issue: 4
  year: 2008
  ident: pcbi.1009261.ref001
  article-title: Noise in the nervous system
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2258
– volume-title: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
  year: 2007
  ident: pcbi.1009261.ref008
– volume: 15
  start-page: 1498
  year: 2012
  ident: pcbi.1009261.ref030
  article-title: Slow dynamics and high variability in balanced cortical networks with clustered connections
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3220
– volume: 15
  start-page: 253
  year: 2003
  ident: pcbi.1009261.ref068
  article-title: Interspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue
  publication-title: Neural Comput
  doi: 10.1162/089976603762552915
– volume: 17
  start-page: 594
  year: 2014
  ident: pcbi.1009261.ref031
  article-title: Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3658
– volume-title: The Statistical Analysis of Series of Events
  year: 1966
  ident: pcbi.1009261.ref093
  doi: 10.1007/978-94-011-7801-3
– volume: 25
  start-page: 2312
  year: 2005
  ident: pcbi.1009261.ref069
  article-title: Spike-frequency adaptation separates transient communication signals from background oscillations
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4795-04.2005
– volume: 94
  start-page: 1623
  issue: 2
  year: 2005
  ident: pcbi.1009261.ref041
  article-title: Phase-response curves give the responses of neurons to transient inputs
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00359.2004
– volume: 7
  start-page: 113
  year: 2013
  ident: pcbi.1009261.ref082
  article-title: Impact of neuronal heterogeneity on correlated colored-noise-induced synchronization
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2013.00113
– volume: 7
  start-page: 419
  year: 2006
  ident: pcbi.1009261.ref011
  article-title: Neuronal Spike Trains and Stochastic Point Processes
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(67)86597-4
– volume: 28
  start-page: 13649
  year: 2008
  ident: pcbi.1009261.ref071
  article-title: Spike-Rate Coding and Spike-Time Coding Are Affected Oppositely by Different Adaptation Mechanisms
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1792-08.2008
– volume: 68
  start-page: 021920
  year: 2003
  ident: pcbi.1009261.ref048
  article-title: Firing statistics of a neuron model driven by long-range correlated noise
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.68.021920
– volume: 88
  start-page: 761
  year: 2002
  ident: pcbi.1009261.ref080
  article-title: Spike Frequency Adaptation and Neocortical Rhythms
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2002.88.2.761
– volume: 15
  start-page: 1761
  year: 2003
  ident: pcbi.1009261.ref108
  article-title: Analytic expressions for rate and CV of a type I neuron driven by white Gaussian noise
  publication-title: Neural Comp
  doi: 10.1162/08997660360675035
– volume: 10
  start-page: 25
  year: 2001
  ident: pcbi.1009261.ref055
  article-title: Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron
  publication-title: J Comput Neurosci
  doi: 10.1023/A:1008916026143
– volume: 14
  start-page: 2870
  year: 1994
  ident: pcbi.1009261.ref064
  article-title: Power spectrum analysis of bursting cells in area MT in the behaving monkey
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-05-02870.1994
– volume: 24
  start-page: 113
  year: 2008
  ident: pcbi.1009261.ref070
  article-title: Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-007-0044-8
– volume: 99
  start-page: 361
  year: 2008
  ident: pcbi.1009261.ref084
  article-title: Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves
  publication-title: Biol Cybern
  doi: 10.1007/s00422-008-0259-4
– volume: 9
  start-page: e1003170
  year: 2013
  ident: pcbi.1009261.ref088
  article-title: Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003170
– volume: 115
  start-page: 68002
  issue: 6
  year: 2016
  ident: pcbi.1009261.ref090
  article-title: Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/115/68002
– volume: 85
  start-page: 1576
  year: 2000
  ident: pcbi.1009261.ref056
  article-title: Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.85.1576
– volume: 15
  start-page: 2523
  year: 2003
  ident: pcbi.1009261.ref035
  article-title: A universal model for spike-frequency adaptation
  publication-title: Neural Comput
  doi: 10.1162/089976603322385063
– volume: 99
  start-page: 022210
  issue: 2
  year: 2019
  ident: pcbi.1009261.ref098
  article-title: Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.99.022210
– volume: 15
  start-page: 1272
  issue: 9
  year: 2012
  ident: pcbi.1009261.ref043
  article-title: K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3185
– volume: 187
  start-page: 63
  year: 2010
  ident: pcbi.1009261.ref100
  article-title: Effective phase description of noise-perturbed and noise-induced oscillations
  publication-title: Euro PhysJ-Special Topics
  doi: 10.1140/epjst/e2010-01271-6
– volume: 92
  start-page: 492
  year: 2004
  ident: pcbi.1009261.ref017
  article-title: Two Distinct Types of Noisy Oscillators in Electroreceptors of Paddlefish
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00742.2003
– volume: 84
  start-page: 041904
  year: 2011
  ident: pcbi.1009261.ref037
  article-title: Onset of negative interspike interval correlations in adapting neurons
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.84.041904
– volume: 115
  start-page: 069402
  year: 2015
  ident: pcbi.1009261.ref106
  article-title: Comment on “Asymptotic Phase for Stochastic Oscillators” Reply
  publication-title: Phys Rev Lett
– volume: 21
  start-page: 5328
  year: 2001
  ident: pcbi.1009261.ref016
  article-title: Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-14-05328.2001
– volume: 14
  start-page: 234
  year: 1954
  ident: pcbi.1009261.ref014
  article-title: Analysis of interval fluctuation of the sensory nerve impulse
  publication-title: Jpn J Physiol
  doi: 10.2170/jjphysiol.4.234
– volume: 72
  start-page: 021911
  year: 2005
  ident: pcbi.1009261.ref025
  article-title: Integrate-and-fire neurons with threshold noise—A tractable model of how interspike interval correlations affect neuronal signal transmission
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.72.021911
– year: 2020
  ident: pcbi.1009261.ref061
  article-title: Spiking neural network model of motor cortex with joint excitatory and inhibitory clusters reflects task uncertainty, reaction times, and variability dynamics
  publication-title: bioRxiv
– volume: 89
  start-page: 2538
  year: 2003
  ident: pcbi.1009261.ref053
  article-title: From subthreshold to firing-rate resonance
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00955.2002
– volume: 16
  start-page: 673
  year: 2004
  ident: pcbi.1009261.ref040
  article-title: On the phase reduction and response dynamics of neural oscillator populations
  publication-title: Neural Comp
  doi: 10.1162/089976604322860668
– volume: 115
  start-page: 069401
  year: 2015
  ident: pcbi.1009261.ref105
  article-title: Comment on “Asymptotic Phase for Stochastic Oscillators”
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.115.069401
– volume: 17
  start-page: 131
  year: 2006
  ident: pcbi.1009261.ref065
  article-title: Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex
  publication-title: Network: Comp Neural Sys
  doi: 10.1080/09548980500444933
– volume: 39
  start-page: 29
  year: 2015
  ident: pcbi.1009261.ref047
  article-title: Statistical structure of neural spiking under non-Poissonian or other non-white stimulation
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-015-0560-x
– volume: 10
  start-page: 1721
  year: 1998
  ident: pcbi.1009261.ref067
  article-title: Linearization of F-I curves by adaptation
  publication-title: Neural Comput
  doi: 10.1162/089976698300017106
– volume-title: Stochastic Processes in the Neuroscience
  year: 1989
  ident: pcbi.1009261.ref013
  doi: 10.1137/1.9781611970159
– volume: 34
  start-page: 15097
  issue: 45
  year: 2014
  ident: pcbi.1009261.ref022
  article-title: A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0903-14.2014
– volume: 8
  start-page: 104
  year: 2014
  ident: pcbi.1009261.ref062
  article-title: Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity
  publication-title: Front Comp Neurosci
– volume: 8
  start-page: e1002478
  year: 2012
  ident: pcbi.1009261.ref081
  article-title: Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002478
– volume: 20
  start-page: 2133
  issue: 9
  year: 2008
  ident: pcbi.1009261.ref028
  article-title: Dependence of neuronal correlations on filter characteristics and marginal spike train statistics
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.05-07-525
– volume: 4
  start-page: 259
  year: 1993
  ident: pcbi.1009261.ref057
  article-title: Mean-field analysis of neuronal spike dynamics
  publication-title: Network: Comput Neural Syst
  doi: 10.1088/0954-898X_4_3_002
– volume: 8
  start-page: 979
  year: 1996
  ident: pcbi.1009261.ref046
  article-title: Type I membranes, phase resetting curves, and synchrony
  publication-title: Neural Comput
  doi: 10.1162/neco.1996.8.5.979
– volume: 113
  start-page: 254101
  year: 2014
  ident: pcbi.1009261.ref103
  article-title: Asymptotic Phase of Stochastic oscillators
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.254101
– volume: 2
  start-page: 5
  year: 2016
  ident: pcbi.1009261.ref026
  article-title: Mechanisms of Information Filtering in Neural Systems
  publication-title: IEEE Trans Mol Biol Multi-Scale Commun
  doi: 10.1109/TMBMC.2016.2618863
– volume: 81
  start-page: 046218
  year: 2010
  ident: pcbi.1009261.ref099
  article-title: Effective phase dynamics of noise-induced oscillations in excitable systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.81.046218
– volume: 6
  start-page: e1001026
  year: 2010
  ident: pcbi.1009261.ref033
  article-title: How noisy adaptation of neurons shapes interspike interval histograms and correlations
  publication-title: PLoS Comp Biol
  doi: 10.1371/journal.pcbi.1001026
– volume: 92
  start-page: 040901(R)
  year: 2015
  ident: pcbi.1009261.ref032
  article-title: Slow fluctuations in recurrent networks of spiking neurons
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.92.040901
– volume: 16
  start-page: 942
  year: 2013
  ident: pcbi.1009261.ref078
  article-title: Temporal whitening by power-law adaptation in neocortical neurons
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3431
– volume: 99
  start-page: 656
  year: 2008
  ident: pcbi.1009261.ref005
  article-title: Dynamic I-V Curves Are Reliable Predictors of Naturalistic Pyramidal-Neuron Voltage Traces
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01107.2007
– volume: 22
  start-page: 1528
  year: 2010
  ident: pcbi.1009261.ref029
  article-title: Response of Integrate-and-Fire Neurons to Noisy Inputs Filtered by Synapses with Arbitrary Timescales: Firing Rate and Correlations
  publication-title: Neural Comput
  doi: 10.1162/neco.2010.06-09-1036
– volume: 99
  start-page: 062221
  issue: 6
  year: 2019
  ident: pcbi.1009261.ref104
  article-title: Phase descriptions of a multidimensional Ornstein-Uhlenbeck process
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.99.062221
– volume: 4
  start-page: e1000182
  year: 2008
  ident: pcbi.1009261.ref072
  article-title: Adaptation and Selective Information Transmission in the Cricket Auditory Neuron AN2
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000182
– start-page: 150
  volume-title: Fluctuations and Noise in Biological, Biophysical and Biomedical Systems III
  year: 2005
  ident: pcbi.1009261.ref051
  doi: 10.1117/12.610938
– volume-title: Renewal Theory
  year: 1962
  ident: pcbi.1009261.ref009
– volume: 99
  start-page: 319
  year: 2008
  ident: pcbi.1009261.ref096
  article-title: Dynamics and bifurcations of the adaptive exponential integrate-and-fire model
  publication-title: Biol Cybern
  doi: 10.1007/s00422-008-0267-4
– volume: 36
  start-page: 5736
  year: 2016
  ident: pcbi.1009261.ref060
  article-title: Similarity in Neuronal Firing Regimes across Mammalian Species
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0230-16.2016
– volume: 111
  start-page: 939
  year: 2014
  ident: pcbi.1009261.ref086
  article-title: How adaptation currents change threshold, gain, and variability of neuronal spiking
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00586.2013
– volume: 210
  start-page: 353
  year: 2011
  ident: pcbi.1009261.ref021
  article-title: Nonrenewal spike train statistics: causes and consequences on neural coding
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-011-2553-y
– volume: 95
  start-page: 97
  year: 2006
  ident: pcbi.1009261.ref003
  article-title: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties
  publication-title: Biol Cyber
  doi: 10.1007/s00422-006-0082-8
– volume: 7
  start-page: 164
  year: 2013
  ident: pcbi.1009261.ref039
  article-title: Patterns of interval correlations in neural oscillators with adaptation
  publication-title: Front Comp Neurosci
– volume: 38
  start-page: 589
  year: 2015
  ident: pcbi.1009261.ref049
  article-title: Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-015-0558-4
– volume: 1
  start-page: 023024
  issue: 2
  year: 2019
  ident: pcbi.1009261.ref045
  article-title: Theory of spike-train power spectra for multidimensional integrate-and-fire neurons
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.1.023024
– volume: 67
  start-page: 051916
  year: 2003
  ident: pcbi.1009261.ref054
  article-title: Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.051916
– volume: 85
  start-page: 1614
  issue: 4
  year: 2001
  ident: pcbi.1009261.ref052
  article-title: Long-term correlations in the spike trains of medullary sympathetic neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.4.1614
– volume: 99
  start-page: 417
  year: 2008
  ident: pcbi.1009261.ref083
  article-title: The quantitative single-neuron modeling competition
  publication-title: Biol Cybern
  doi: 10.1007/s00422-008-0261-x
– volume: 95
  start-page: 1
  year: 2006
  ident: pcbi.1009261.ref002
  article-title: A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input
  publication-title: Biol Cyber
  doi: 10.1007/s00422-006-0068-6
– volume: 31
  start-page: 185
  issue: 2
  year: 2011
  ident: pcbi.1009261.ref111
  article-title: The variance of phase-resetting curves
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-010-0305-9
– volume: 100
  start-page: 1576
  year: 2008
  ident: pcbi.1009261.ref019
  article-title: Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01282.2007
– volume: 78
  start-page: 775
  year: 1997
  ident: pcbi.1009261.ref059
  article-title: Coherence Resonance in a Noise-Driven Excitable System
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.78.775
– volume-title: Neuronal Dynamics From single neurons to networks and models of cognition
  year: 2014
  ident: pcbi.1009261.ref004
  doi: 10.1017/CBO9781107447615
– volume: 12
  start-page: 318
  year: 2009
  ident: pcbi.1009261.ref073
  article-title: Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2259
– volume: 13
  start-page: 461
  year: 2016
  ident: pcbi.1009261.ref094
  article-title: The effect of positive interspike interval correlations on neuronal information transmission
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2016001
– volume: 169
  start-page: 417
  year: 2008
  ident: pcbi.1009261.ref006
  article-title: A benchmark test for a quantitative assessment of simple neuron models
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2007.11.006
– volume: 92
  start-page: 803
  year: 1992
  ident: pcbi.1009261.ref050
  article-title: Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.403950
– volume: 45
  start-page: 1219
  year: 1980
  ident: pcbi.1009261.ref107
  article-title: Transient Fluctuations in the Decay of an Unstable State
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.45.1219
– ident: pcbi.1009261.ref066
– volume: 187
  start-page: 211
  year: 2010
  ident: pcbi.1009261.ref091
  article-title: Theory for serial correlations of interevent intervals
  publication-title: Eur Phys J Spec Topics
  doi: 10.1140/epjst/e2010-01286-y
– volume: 15
  start-page: e1007122
  issue: 6
  year: 2019
  ident: pcbi.1009261.ref027
  article-title: How single neuron properties shape chaotic dynamics and signal transmission in random neural networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007122
– volume: 99
  start-page: 10004
  year: 2012
  ident: pcbi.1009261.ref092
  article-title: Interspike-interval correlations induced by two-state switching in an excitable system
  publication-title: Epl-Europhys Lett
  doi: 10.1209/0295-5075/99/10004
– volume: 110
  start-page: 204102
  year: 2013
  ident: pcbi.1009261.ref101
  article-title: Phase Description of Stochastic Oscillations
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.110.204102
– volume: 13
  start-page: 1285
  year: 2001
  ident: pcbi.1009261.ref079
  article-title: The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators
  publication-title: Neural Comput
  doi: 10.1162/08997660152002861
– volume: 69
  start-page: 022901
  year: 2004
  ident: pcbi.1009261.ref038
  article-title: Interspike interval statistics of neurons driven by colored noise
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.022901
– volume-title: Models of the Stochastic Activity of Neurones
  year: 1976
  ident: pcbi.1009261.ref012
  doi: 10.1007/978-3-642-46345-7
– volume: 51
  start-page: 738
  year: 1995
  ident: pcbi.1009261.ref010
  article-title: Time structure of the activity in neural network models
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.51.738
– volume: 79
  start-page: 021905
  year: 2009
  ident: pcbi.1009261.ref020
  article-title: Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.79.021905
– volume: 20
  start-page: 6672
  year: 2000
  ident: pcbi.1009261.ref015
  article-title: Nonrenewal Statistics of Electrosensory Afferent Spike Trains: Implications for the Detection of Weak Sensory Signals
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-17-06672.2000
– volume: 9
  start-page: 709
  year: 2018
  ident: pcbi.1009261.ref007
  article-title: Generalized leaky integrate-and-fire models classify multiple neuron types
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02717-4
– volume: 80
  start-page: 036113
  issue: 3
  year: 2009
  ident: pcbi.1009261.ref110
  article-title: Analytical calculation of the frequency shift in phase oscillators driven by colored noise: Implications for electrical engineering and neuroscience
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.80.036113
– volume: 70
  start-page: 1717
  year: 2007
  ident: pcbi.1009261.ref018
  article-title: Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro
  publication-title: Neurocomp
  doi: 10.1016/j.neucom.2006.10.101
– volume: 104
  start-page: 2806
  year: 2010
  ident: pcbi.1009261.ref074
  article-title: Linear Versus Nonlinear Signal Transmission in Neuron Models With Adaptation Currents or Dynamic Thresholds
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00240.2010
– volume: 99
  start-page: 032402
  issue: 3
  year: 2019
  ident: pcbi.1009261.ref095
  article-title: Interspike interval correlations in networks of inhibitory integrate-and-fire neurons
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.99.032402
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: pcbi.1009261.ref023
  article-title: Mathematical modeling and analyses of interspike-intervals of spontaneous activity in afferent neurons of the zebrafish lateral line
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33064-z
– volume: 13
  start-page: e1005545
  year: 2017
  ident: pcbi.1009261.ref087
  article-title: Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: comparison and implementation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005545
SSID ssj0035896
Score 2.391343
Snippet The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009261
SubjectTerms Action potentials (Electrophysiology)
Action Potentials - physiology
Animals
Biology and Life Sciences
Computational Biology
Computer and Information Sciences
Computer Simulation
Engineering and Technology
Humans
Models, Neurological
Neural Conduction - physiology
Neurons
Neurons - physiology
Physical Sciences
Physiological aspects
Signal-To-Noise Ratio
Stochastic Processes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivh1dJYrgKW4nnX4dV3FZBfegrsyt6acGJTOYmYP_fqs6PcMEkb0IYQ491ST1daWqH5WvCHmlQmqFU7zuNIMf6V1tedJ1ZitCvrLO4Yb-pwtxftl9XPLlQakvzAmb6IEn4E6EBx-rg4s2QrCj0goMcnAHqqRXIvN8Uk13i6nJBzOucmUuLIpTS9Yty0dzTDYnZYzerL3rMUdAt6KZBaXM3f-3hz4IUfP0yYN4dHaH3C4Tyep0UuAuuRGHe-TmVFryz33yLW_1jev-Z6z6nNcIwh5LcZTkN2itMpnlUOVqOGOFW7KVDXY9nc5Xdgj7HjFUw6of4wNyefb-67vzutRQqD1XzaZutaSuhSslGikNjMWWs6SU5SFAW-IqMOGob7iyOgGyLDWSWupktNo17CE5GlZDfEwqLqJPSE_WtqHzyevUNNY5wFRKGxVfELYD0fhCMI51Ln6ZfGomYaExQWMQelOgX5B632s9EWxcI_8Wx2cvi_TYuQGMxhSjMdcZzYK8xNE1SIAxYIbNd7sdR_Phy4U5FRAeNPb6p9DnmdDrIpRWoKy35asGgAyJtWaSL3amZOAVxnMZO8TVdjQw6xToSyk816PJtPbqsa7rYIoOasuZ0c30n_8z9D8yTbjC1XArn_wPwJ6SWy0m81Bwq_KYHG1-b-MzmI1t3PP84l0BUXAzQQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Interspike interval correlations in neuron models with adaptation and correlated noise
URI https://www.ncbi.nlm.nih.gov/pubmed/34449771
https://www.proquest.com/docview/2566040003
https://pubmed.ncbi.nlm.nih.gov/PMC8428727
https://doaj.org/article/6c0369dbeae74307a60750df2087c863
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEN90QBUQEk-ZnDiOnQeEWlgZSKvQoKhvlu3Yo2JKuqaV2H_PnZNWi2ACqUol9xz1Lmffne_yO0Jey9KnuZE8zgoGF2FNrLkv4oBWhHhlmcED_dNpfjLLPs_5fI9se7Z2Amz-GtphP6nZ6uLo1-XVO1jwb0PXBpFsJx0trVlg1r9IMR46ANuUYzh2mu3yCozL0LELm-XEgmXz7mW6m-7SM1YB0__Pnfua6eqXVV6zU5N75G7nYEajViPukz1XPSC325aTVw_J93AE2CwXP120CPWOQGyxRUdXFAejUQC5rKLQJaeJ8Kg20qVetln7SFflboYro6peNO4RmU2Ov70_ibveCrHlMlnHaSGoSeHjPXWUloy5lDMvpeZlCWOey5LlhtqES114DhQ-EVRTI5wuTMIek_2qrtxTEvHcWY-wZWlaZtbbwieJNgZkKoR2kg8I2wpR2Q54HPtfXKiQTRMQgLSiUSh61Yl-QOLdrGULvPEP-jE-nx0twmaHgXp1rrpVqHILBrsojdMOPCcqdI4eE6grlcLKnA3IK3y6CoExKqy8OdebplGfvk7VKAezUeCsG4nOekRvOiJfA7NWd287gMgQcKtH-XKrSgqWNuZrdOXqTaPAG81xj6Xwv560qrVjj2VZBq47sC16Stfjv_9LtfgR4MMlRsmpOPwfXp-ROykW8VDYTsVzsr9ebdwL8MLWZkhuibmAq5x8HJKD0fjDeALf4-Ppl7NhONkYhqX3GyHLOP0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interspike+interval+correlations+in+neuron+models+with+adaptation+and+correlated+noise&rft.jtitle=PLoS+computational+biology&rft.au=Ramlow%2C+Lukas&rft.au=Lindner%2C+Benjamin&rft.date=2021-08-27&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009261&rft.externalDBID=ISN&rft.externalDocID=A676297430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon