Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism
Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of i...
Saved in:
Published in | Cell Vol. 177; no. 5; pp. 1124 - 1135.e16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.05.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular “breathing” of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in “universal” flu vaccines.
[Display omitted]
•Human B cells specific for a novel epitope on influenza A groups 1 and 2•Crystallography locates the epitope at the interface of the hemagglutinin head domains•Robust protection by antibodies to this epitope, dependent on IgG subclass•Protective, cross-group antibodies are encoded by diverse sets of Ig gene segments
Antibodies targeting a novel site at the interface of the head domains of hemagglutinin provide broad, IgG-subclass-dependent protection against influenza. |
---|---|
AbstractList | Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection
in vitro
, but passive administration to mice affords robust, IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular “breathing” of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in “universal” flu vaccines.
Antibodies targeting a novel site at the interface of the head domains of hemagglutinin provide broad protection against influenza that is IgG subclass dependent. Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular “breathing” of the HA trimer can expose the interface to antibody and B cells. Lastly, antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in “universal” flu vaccines. Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular "breathing" of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in "universal" flu vaccines. Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular “breathing” of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in “universal” flu vaccines. [Display omitted] •Human B cells specific for a novel epitope on influenza A groups 1 and 2•Crystallography locates the epitope at the interface of the hemagglutinin head domains•Robust protection by antibodies to this epitope, dependent on IgG subclass•Protective, cross-group antibodies are encoded by diverse sets of Ig gene segments Antibodies targeting a novel site at the interface of the head domains of hemagglutinin provide broad, IgG-subclass-dependent protection against influenza. Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular “breathing” of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in “universal” flu vaccines. Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular "breathing" of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in "universal" flu vaccines.Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular "breathing" of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in "universal" flu vaccines. |
Author | Onodera, Taishi Caradonna, Timothy M. Adachi, Yu Song, Shengli Kelsoe, Garnett Kepler, Thomas B. Kuraoka, Masayuki McCarthy, Kevin R. Schmidt, Aaron G. Tonouchi, Keisuke Bajic, Goran McGee, Charles E. Takahashi, Yoshimasa Sempowski, Gregory D. Feng, Feng Harrison, Stephen C. Watanabe, Akiko Urick, Patricia |
AuthorAffiliation | 9 Contributed equally 2 Departments of Pathology, Duke University, Durham, NC 27710, USA 5 Ragon Institute and Harvard Medical School, Cambridge, MA 02139, USA 4 Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA 3 Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA 8 USA Howard Hughes Medical Institute, Boston, MA 02115, USA 1 Departments of Immunology, Duke University, Durham, NC 27710, USA 6 Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan 7 Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 |
AuthorAffiliation_xml | – name: 9 Contributed equally – name: 2 Departments of Pathology, Duke University, Durham, NC 27710, USA – name: 7 Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 – name: 3 Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – name: 8 USA Howard Hughes Medical Institute, Boston, MA 02115, USA – name: 1 Departments of Immunology, Duke University, Durham, NC 27710, USA – name: 5 Ragon Institute and Harvard Medical School, Cambridge, MA 02139, USA – name: 4 Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – name: 6 Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan |
Author_xml | – sequence: 1 givenname: Akiko surname: Watanabe fullname: Watanabe, Akiko organization: Department of Immunology, Duke University, Durham, NC 27710, USA – sequence: 2 givenname: Kevin R. surname: McCarthy fullname: McCarthy, Kevin R. organization: Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 3 givenname: Masayuki surname: Kuraoka fullname: Kuraoka, Masayuki organization: Department of Immunology, Duke University, Durham, NC 27710, USA – sequence: 4 givenname: Aaron G. surname: Schmidt fullname: Schmidt, Aaron G. organization: Ragon Institute and Harvard Medical School, Cambridge, MA 02139, USA – sequence: 5 givenname: Yu surname: Adachi fullname: Adachi, Yu organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 6 givenname: Taishi surname: Onodera fullname: Onodera, Taishi organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 7 givenname: Keisuke surname: Tonouchi fullname: Tonouchi, Keisuke organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 8 givenname: Timothy M. surname: Caradonna fullname: Caradonna, Timothy M. organization: Ragon Institute and Harvard Medical School, Cambridge, MA 02139, USA – sequence: 9 givenname: Goran surname: Bajic fullname: Bajic, Goran organization: Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 10 givenname: Shengli surname: Song fullname: Song, Shengli organization: Department of Immunology, Duke University, Durham, NC 27710, USA – sequence: 11 givenname: Charles E. surname: McGee fullname: McGee, Charles E. organization: Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – sequence: 12 givenname: Gregory D. surname: Sempowski fullname: Sempowski, Gregory D. organization: Department of Pathology, Duke University, Durham, NC 27710, USA – sequence: 13 givenname: Feng surname: Feng fullname: Feng, Feng organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 14 givenname: Patricia surname: Urick fullname: Urick, Patricia organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 15 givenname: Thomas B. surname: Kepler fullname: Kepler, Thomas B. organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 16 givenname: Yoshimasa surname: Takahashi fullname: Takahashi, Yoshimasa organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 17 givenname: Stephen C. surname: Harrison fullname: Harrison, Stephen C. email: harrison@crystal.harvard.edu organization: Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 18 givenname: Garnett orcidid: 0000-0002-8770-040X surname: Kelsoe fullname: Kelsoe, Garnett email: ghkelsoe@duke.edu organization: Department of Immunology, Duke University, Durham, NC 27710, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31100267$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1524669$$D View this record in Osti.gov |
BookMark | eNqNUk2LFDEQDbLizq7-AQ8SPHnpNkl_BkRYxv0YWFFQzyEf1TsZepI2yQyMv940s7uoh8VTKPLeq_eq6gydOO8AodeUlJTQ9v2m1DCOJSOUl6QqSd0_QwtKeFfUtGMnaEEIZ0XfdvUpOotxQwjpm6Z5gU4rSglhbbdA6wuXrPLGQsTJY4mX3kUIezB45YZxB-6XxDcg5zJBGKQGfDnZ5CfAX4NPoBNWBywdXt1d4287lQ4TFJ9gAmfAJfwZ9Fo6G7cv0fNBjhFe3b_n6MfV5fflTXH75Xq1vLgtdNPTVLCeGwrQKwLGdEwpXgEdSK81cCVlbZipaMvaSjVccwUtl4wqTgatNKgaqnP08ag77dQWjM4mghzFFOxWhoPw0oq_f5xdizu_F23Pmp40WeDtUcDHZEXUNmdca-9cjipow-q25Rn07r5L8D93EJPY2jhvQzrwuygYayrWcFqR_4BWjNSMU5ahb_70_mj6YV0Z0B8BOvgYAwwi25PJ-jmKHQUlYr4MsRFzAzFfhiCVyJeRqewf6oP6k6QPRxLkje0thHke4DQYG-ZxGG-fov8Gan3TTw |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2019_125379 crossref_primary_10_1093_intimm_dxaa038 crossref_primary_10_3390_v13040546 crossref_primary_10_1016_j_str_2024_08_022 crossref_primary_10_1371_journal_ppat_1011554 crossref_primary_10_1038_s41467_019_11821_6 crossref_primary_10_1371_journal_ppat_1008942 crossref_primary_10_3390_vaccines8030392 crossref_primary_10_1128_mBio_01144_21 crossref_primary_10_3389_fimmu_2022_816634 crossref_primary_10_4049_jimmunol_2200956 crossref_primary_10_3389_fimmu_2023_1256094 crossref_primary_10_1101_cshperspect_a038778 crossref_primary_10_1016_j_coviro_2022_101207 crossref_primary_10_1172_JCI136032 crossref_primary_10_3390_antib14010004 crossref_primary_10_1126_science_abf6950 crossref_primary_10_3389_fimmu_2021_737973 crossref_primary_10_1002_jmv_28901 crossref_primary_10_1146_annurev_med_120617_041310 crossref_primary_10_3390_antib14010006 crossref_primary_10_1038_s42003_021_02881_w crossref_primary_10_1073_pnas_2315592121 crossref_primary_10_3390_vaccines8030424 crossref_primary_10_1016_j_celrep_2022_111628 crossref_primary_10_1128_jvi_01694_22 crossref_primary_10_1016_j_lanmic_2024_06_002 crossref_primary_10_1038_s41467_024_45404_x crossref_primary_10_1126_science_adg0564 crossref_primary_10_3390_vaccines9070717 crossref_primary_10_1146_annurev_immunol_042718_041309 crossref_primary_10_1371_journal_ppat_1008762 crossref_primary_10_20411_pai_v10i1_734 crossref_primary_10_1073_pnas_2110714118 crossref_primary_10_1371_journal_pone_0239112 crossref_primary_10_1007_s11684_020_0764_y crossref_primary_10_3390_microorganisms8111745 crossref_primary_10_1126_scitranslmed_abg4535 crossref_primary_10_1172_JCI146791 crossref_primary_10_1080_14656566_2020_1856814 crossref_primary_10_1128_jvi_01070_22 crossref_primary_10_1101_cshperspect_a038638 crossref_primary_10_1126_scitranslmed_adj4685 crossref_primary_10_1073_pnas_2026752118 crossref_primary_10_1016_j_isci_2021_103131 crossref_primary_10_1038_s41467_024_51066_6 crossref_primary_10_3390_ph14060587 crossref_primary_10_1016_j_chom_2019_04_003 crossref_primary_10_1016_j_chom_2020_04_023 crossref_primary_10_2222_jsv_69_161 crossref_primary_10_1128_mbio_02546_22 crossref_primary_10_1021_acsinfecdis_0c00726 crossref_primary_10_3389_fimmu_2023_1086297 crossref_primary_10_1016_j_antiviral_2019_104562 crossref_primary_10_1093_intimm_dxaa028 crossref_primary_10_1080_21645515_2024_2384192 crossref_primary_10_1126_sciimmunol_abn8590 crossref_primary_10_3389_fimmu_2022_832533 crossref_primary_10_3390_vaccines9020125 crossref_primary_10_3389_fimmu_2020_00335 crossref_primary_10_3389_fimmu_2019_01457 crossref_primary_10_2142_biophys_61_082 crossref_primary_10_1128_mBio_02343_19 crossref_primary_10_3389_fimmu_2020_614743 crossref_primary_10_1002_advs_202100985 crossref_primary_10_1093_lifemedi_lnac006 crossref_primary_10_1186_s12929_019_0572_3 crossref_primary_10_1038_s41467_021_25997_3 crossref_primary_10_1126_science_abf6648 crossref_primary_10_1038_s41467_021_24090_z crossref_primary_10_1016_j_ijbiomac_2024_131511 crossref_primary_10_1021_acscentsci_2c00981 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_1016_j_vaccine_2023_06_019 crossref_primary_10_1073_pnas_2115379119 crossref_primary_10_1038_s41467_024_55193_y crossref_primary_10_1172_JCI161968 crossref_primary_10_1016_j_dci_2023_105058 crossref_primary_10_1016_j_celrep_2023_113553 crossref_primary_10_1126_scitranslmed_adp9927 crossref_primary_10_3389_fimmu_2021_705140 crossref_primary_10_1016_j_celrep_2023_113552 crossref_primary_10_1016_j_immuni_2020_10_023 crossref_primary_10_3390_vaccines9020071 crossref_primary_10_1080_17460441_2020_1801629 crossref_primary_10_3390_membranes11100757 crossref_primary_10_1016_j_coisb_2020_10_008 crossref_primary_10_1016_j_imbio_2022_152279 crossref_primary_10_1016_j_cell_2019_04_034 crossref_primary_10_1126_science_abb7269 crossref_primary_10_1016_j_cell_2022_03_009 crossref_primary_10_1073_pnas_2306465120 crossref_primary_10_1371_journal_pbio_3002415 crossref_primary_10_1111_imr_12805 crossref_primary_10_1128_jvi_01646_22 crossref_primary_10_1016_j_antiviral_2023_105785 crossref_primary_10_1016_j_celrep_2020_107725 crossref_primary_10_1073_pnas_2316964120 crossref_primary_10_1038_s41591_020_1118_7 crossref_primary_10_1080_17460441_2021_1828859 crossref_primary_10_1101_cshperspect_a038448 crossref_primary_10_3390_v13060973 crossref_primary_10_1038_s41573_019_0056_x crossref_primary_10_4049_jimmunol_2101171 crossref_primary_10_1038_s41467_022_28931_3 crossref_primary_10_1002_smtd_202101516 crossref_primary_10_3390_v12030276 crossref_primary_10_32607_actanaturae_27374 crossref_primary_10_3389_fimmu_2019_02997 crossref_primary_10_1128_iai_00183_24 crossref_primary_10_15252_emmm_201910938 crossref_primary_10_1016_S2666_5247_23_00134_9 crossref_primary_10_1021_acs_bioconjchem_3c00223 crossref_primary_10_1016_j_celrep_2022_111399 crossref_primary_10_1126_sciadv_adf0661 crossref_primary_10_1002_adtp_202400263 crossref_primary_10_1080_14728214_2022_2149734 crossref_primary_10_1021_acs_analchem_0c02237 crossref_primary_10_1101_cshperspect_a038786 crossref_primary_10_1016_j_celrep_2024_113948 crossref_primary_10_1128_JVI_00323_20 crossref_primary_10_1038_s41467_020_19146_5 crossref_primary_10_3390_v13060965 crossref_primary_10_1073_pnas_2406434121 crossref_primary_10_1016_j_anai_2020_04_008 crossref_primary_10_1073_pnas_2200821119 crossref_primary_10_3390_v12091053 crossref_primary_10_1016_j_isci_2022_105085 crossref_primary_10_1038_s41586_020_2333_6 crossref_primary_10_1128_MMBR_00078_20 |
Cites_doi | 10.1016/j.celrep.2015.11.063 10.1101/pdb.prot093799 10.1073/pnas.1218256109 10.1128/JVI.00420-14 10.1038/ni.2939 10.1038/nm.3443 10.1128/JVI.01381-14 10.1084/jem.20090209 10.1038/ni.3770 10.1016/j.chom.2019.04.003 10.1093/nar/gkn316 10.1172/JCI84428 10.1126/science.1205669 10.1016/j.jim.2007.09.017 10.1126/science.1206954 10.1084/jem.20151267 10.1038/nm.4224 10.3390/v8060155 10.1016/j.immuni.2016.02.010 10.1107/S0907444909052925 10.1016/j.coviro.2016.12.004 10.1126/science.1097211 10.1038/9299 10.1016/j.cell.2018.05.050 10.1146/annurev.immunol.19.1.275 10.1016/j.celrep.2015.11.027 10.1073/pnas.1111497108 10.1002/prot.24745 10.1126/science.1244730 10.1182/blood-2008-09-177139 10.1107/S0021889807021206 10.1056/NEJMoa0903810 10.1111/j.1365-2567.2006.02421.x 10.1107/S0907444909042073 10.12688/f1000research.2-103.v1 10.4049/jimmunol.1502193 10.1016/j.chom.2017.08.011 10.1371/journal.ppat.1000796 10.1107/S0907444909047337 10.1038/ng1766 10.1038/nrd4529 10.1107/S0907444904019158 10.1038/376092a0 10.1073/pnas.1715471115 10.1016/j.immuni.2013.02.023 10.1016/j.chom.2009.07.006 10.1084/jem.187.6.885 10.1126/science.1256427 10.1038/s41467-018-03665-3 10.1371/journal.pone.0025797 10.1126/scitranslmed.aad0522 10.1038/nm.4223 10.7554/eLife.03300 10.1016/j.immuni.2017.12.009 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OIOZB OTOTI 5PM |
DOI | 10.1016/j.cell.2019.03.048 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1135.e16 |
ExternalDocumentID | PMC6825805 1524669 31100267 10_1016_j_cell_2019_03_048 S0092867419303496 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI089618 – fundername: NIAID NIH HHS grantid: UC6 AI058607 – fundername: NIGMS NIH HHS grantid: T32 GM007753 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: T32 GM008313 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 ABPTK ABQIS AFUVZ AKALU OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c581t-289d1ee8b0edd72bb93e1f08cce9baa4d2d316263b59c9be69a21b90fcbceb4e3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:13:10 EDT 2025 Mon Jul 03 03:57:08 EDT 2023 Fri Jul 11 06:37:18 EDT 2025 Thu Jul 10 22:05:50 EDT 2025 Mon Jul 21 06:04:32 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 Tue Jul 01 02:17:03 EDT 2025 Fri Feb 23 02:49:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-289d1ee8b0edd72bb93e1f08cce9baa4d2d316263b59c9be69a21b90fcbceb4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 National Institutes of Health (NIH). National Institute of General Medical Sciences (NIGMS) USDOE Office of Science (SC) AC02-06CH11357; P41 GM103403; JP18fk0108051; P01 AI089618; U19 AI117892; R01 AI128832 AUTHOR CONTRIBUTIONS: G.K., M.K., Y.T., and S.C.H. designed research; A.W., K.R.M., M.K., A.G.S. Y.A., T.O., K.T., and T.M.C. performed research; F.F., P.U., and T.B.K. recruited and managed human subject materials; S.S., G.B, C.E.M., and G.D.S. provided critical reagents and assays; A.W., K.R.M., M.K., A.G.S., T.B.K., T.M.C., Y.T, S.C.H., and G.K. analyzed data; A.W. K.R.M., M.K., Y.T., S.C.H., and G.K. wrote the paper. T.M.C., G.B., T.B.K., and C.E.M. edited and revised the paper. |
ORCID | 0000-0002-8770-040X 000000028770040X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1524669 |
PMID | 31100267 |
PQID | 2232042912 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825805 osti_scitechconnect_1524669 proquest_miscellaneous_2253259130 proquest_miscellaneous_2232042912 pubmed_primary_31100267 crossref_citationtrail_10_1016_j_cell_2019_03_048 crossref_primary_10_1016_j_cell_2019_03_048 elsevier_sciencedirect_doi_10_1016_j_cell_2019_03_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-16 |
PublicationDateYYYYMMDD | 2019-05-16 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Thyagarajan, Bloom (bib46) 2014; 3 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66 Bajic, Maron, Adachi, Onodera, McCarthy, McGee, Sempowski, Takahashi, Kelsoe, Kuraoka (bib3) 2019; 25 Doud, Bloom (bib14) 2016; 8 Schmidt, Do, McCarthy, Kepler, Liao, Moody, Haynes, Harrison (bib41) 2015; 13 Luo, Maarschalk, O’Connell, Wang, Yang, Baltimore (bib31) 2009; 113 McCarthy, Watanabe, Kuraoka, Do, McGee, Sempowski, Kepler, Schmidt, Kelsoe, Harrison (bib33) 2018; 48 DiLillo, Tan, Palese, Ravetch (bib12) 2014; 20 Moody, Zhang, Walter, Woods, Ginsburg, McClain, Denny, Chen, Munshaw, Marshall (bib35) 2011; 6 Koel, Burke, Bestebroer, van der Vliet, Zondag, Vervaet, Skepner, Lewis, Spronken, Russell (bib25) 2013; 342 (bib50) 2010 Heesters, Chatterjee, Kim, Gonzalez, Kuligowski, Kirchhausen, Carroll (bib19) 2013; 38 Kepler (bib22) 2013; 2 Raymond, Stewart, Lee, Ferdman, Bajic, Do, Ernandes, Suphaphiphat, Settembre, Dormitzer (bib38) 2016; 22 Su, Watanabe, Yeh, Kelsoe, Kuraoka (bib43) 2016; 197 Kabsch (bib57) 2010; 66 (bib6) 2009 Dawood, Jain, Finelli, Shaw, Lindstrom, Garten, Gubareva, Xu, Bridges, Uyeki (bib11) 2009; 360 Corti, Voss, Gamblin, Codoni, Macagno, Jarrossay, Vachieri, Pinna, Minola, Vanzetta (bib9) 2011; 333 Bizebard, Gigant, Rigolet, Rasmussen, Diat, Bösecke, Wharton, Skehel, Knossow (bib4) 1995; 376 Kissler, Stern, Takahashi, Hunter, Peterson, Wicker (bib23) 2006; 38 Schmidt, Xu, Khan, O’Donnell, Khurana, King, Manischewitz, Golding, Suphaphiphat, Carfi (bib40) 2013; 110 Suzuki, Grigorova, Phan, Kelly, Cyster (bib44) 2009; 206 Fleury, Barrère, Bizebard, Daniels, Skehel, Knossow (bib17) 1999; 6 Kao, Danzer, Collin, Groß, Eichler, Stambuk, Lauc, Lux, Nimmerjahn (bib21) 2015; 13 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib34) 2007; 40 Knossow, Skehel (bib24) 2006; 119 Lee, Romain, Yan, Watanabe, Charab, Todorova, Lee, Triplett, Donkor, Lungu (bib29) 2017; 18 Matsuzaki, Sugawara, Nakauchi, Takahashi, Onodera, Tsunetsugu-Yokota, Matsumura, Ato, Kobayashi, Shimotai (bib32) 2014; 88 Duensing, Watson (bib16) 2018; 2018 Raymond, Bajic, Ferdman, Suphaphiphat, Settembre, Moody, Schmidt, Harrison (bib39) 2018; 115 Brochet, Lefranc, Giudicelli (bib55) 2008; 36 Das, Govindan, Nikić-Spiegel, Krammer, Lemke, Munro (bib10) 2018; 174 Pincetic, Bournazos, DiLillo, Maamary, Wang, Dahan, Fiebiger, Ravetch (bib36) 2014; 15 Emsley, Cowtan (bib56) 2004; 60 (bib51) 2011 Whittle, Zhang, Khurana, King, Manischewitz, Golding, Dormitzer, Haynes, Walter, Moody (bib49) 2011; 108 Wang, Tan, Hai, Pica, Petersen, Moran, Palese (bib48) 2010; 6 Fonville, Wilks, James, Fox, Ventresca, Aban, Xue, Jones, Le, Pham (bib18) 2014; 346 Li, Ravetch (bib30) 2011; 333 Iba, Fujii, Ohshima, Sumida, Kubota-Koketsu, Ikeda, Wakiyama, Shirouzu, Okada, Okuno (bib20) 2014; 88 DiLillo, Palese, Wilson, Ravetch (bib13) 2016; 126 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib7) 2010; 66 Xu, Schmidt, O’Donnell, Therkelsen, Kepler, Moody, Haynes, Liao, Harrison, Shaw (bib52) 2015; 83 Doud, Lee, Bloom (bib15) 2018; 9 Smith, Lapedes, de Jong, Bestebroer, Rimmelzwaan, Osterhaus, Fouchier (bib42) 2004; 305 Tiller, Meffre, Yurasov, Tsuiji, Nussenzweig, Wardemann (bib47) 2008; 329 Andrews, Huang, Kaur, Popova, Ho, Pauli, Henry Dunand, Taylor, Lim, Huang (bib2) 2015; 7 Krammer, Palese (bib26) 2015; 14 Kuraoka, Schmidt, Nojima, Feng, Watanabe, Kitamura, Harrison, Kepler, Kelsoe (bib27) 2016; 44 Cobey, Hensley (bib8) 2017; 22 Zaas, Chen, Varkey, Veldman, Hero, Lucas, Huang, Turner, Gilbert, Lambkin-Williams (bib54) 2009; 6 Lee, Boutz, Chromikova, Joyce, Vollmers, Leung, Horton, DeKosky, Lee, Lavinder (bib28) 2016; 22 Takahashi, Dutta, Cerasoli, Kelsoe (bib45) 1998; 187 Yu, Song, Wu, Chang, Wang, Li, Hong, Xia, Wang, Khurana (bib53) 2017; 22 Bournazos, DiLillo, Ravetch (bib5) 2015; 212 Ravetch, Bolland (bib37) 2001; 19 Chen (10.1016/j.cell.2019.03.048_bib7) 2010; 66 Takahashi (10.1016/j.cell.2019.03.048_bib45) 1998; 187 Zaas (10.1016/j.cell.2019.03.048_bib54) 2009; 6 McCoy (10.1016/j.cell.2019.03.048_bib34) 2007; 40 Su (10.1016/j.cell.2019.03.048_bib43) 2016; 197 Moody (10.1016/j.cell.2019.03.048_bib35) 2011; 6 Cobey (10.1016/j.cell.2019.03.048_bib8) 2017; 22 Kissler (10.1016/j.cell.2019.03.048_bib23) 2006; 38 Heesters (10.1016/j.cell.2019.03.048_bib19) 2013; 38 Yu (10.1016/j.cell.2019.03.048_bib53) 2017; 22 Das (10.1016/j.cell.2019.03.048_bib10) 2018; 174 Kao (10.1016/j.cell.2019.03.048_bib21) 2015; 13 Brochet (10.1016/j.cell.2019.03.048_bib55) 2008; 36 Whittle (10.1016/j.cell.2019.03.048_bib49) 2011; 108 McCarthy (10.1016/j.cell.2019.03.048_bib33) 2018; 48 Raymond (10.1016/j.cell.2019.03.048_bib39) 2018; 115 Fleury (10.1016/j.cell.2019.03.048_bib17) 1999; 6 Schmidt (10.1016/j.cell.2019.03.048_bib41) 2015; 13 (10.1016/j.cell.2019.03.048_bib6) 2009 DiLillo (10.1016/j.cell.2019.03.048_bib13) 2016; 126 Lee (10.1016/j.cell.2019.03.048_bib29) 2017; 18 Bournazos (10.1016/j.cell.2019.03.048_bib5) 2015; 212 Li (10.1016/j.cell.2019.03.048_bib30) 2011; 333 Krammer (10.1016/j.cell.2019.03.048_bib26) 2015; 14 Tiller (10.1016/j.cell.2019.03.048_bib47) 2008; 329 Andrews (10.1016/j.cell.2019.03.048_bib2) 2015; 7 Bizebard (10.1016/j.cell.2019.03.048_bib4) 1995; 376 Emsley (10.1016/j.cell.2019.03.048_bib56) 2004; 60 Smith (10.1016/j.cell.2019.03.048_bib42) 2004; 305 Schmidt (10.1016/j.cell.2019.03.048_bib40) 2013; 110 Kabsch (10.1016/j.cell.2019.03.048_bib57) 2010; 66 Thyagarajan (10.1016/j.cell.2019.03.048_bib46) 2014; 3 Pincetic (10.1016/j.cell.2019.03.048_bib36) 2014; 15 Kuraoka (10.1016/j.cell.2019.03.048_bib27) 2016; 44 Fonville (10.1016/j.cell.2019.03.048_bib18) 2014; 346 Corti (10.1016/j.cell.2019.03.048_bib9) 2011; 333 Matsuzaki (10.1016/j.cell.2019.03.048_bib32) 2014; 88 Xu (10.1016/j.cell.2019.03.048_bib52) 2015; 83 Wang (10.1016/j.cell.2019.03.048_bib48) 2010; 6 Adams (10.1016/j.cell.2019.03.048_bib1) 2010; 66 (10.1016/j.cell.2019.03.048_bib50) 2010 Doud (10.1016/j.cell.2019.03.048_bib14) 2016; 8 Duensing (10.1016/j.cell.2019.03.048_bib16) 2018; 2018 Doud (10.1016/j.cell.2019.03.048_bib15) 2018; 9 Lee (10.1016/j.cell.2019.03.048_bib28) 2016; 22 Suzuki (10.1016/j.cell.2019.03.048_bib44) 2009; 206 DiLillo (10.1016/j.cell.2019.03.048_bib12) 2014; 20 Luo (10.1016/j.cell.2019.03.048_bib31) 2009; 113 (10.1016/j.cell.2019.03.048_bib51) 2011 Koel (10.1016/j.cell.2019.03.048_bib25) 2013; 342 Knossow (10.1016/j.cell.2019.03.048_bib24) 2006; 119 Ravetch (10.1016/j.cell.2019.03.048_bib37) 2001; 19 Iba (10.1016/j.cell.2019.03.048_bib20) 2014; 88 Bajic (10.1016/j.cell.2019.03.048_bib3) 2019; 25 Kepler (10.1016/j.cell.2019.03.048_bib22) 2013; 2 Raymond (10.1016/j.cell.2019.03.048_bib38) 2016; 22 Dawood (10.1016/j.cell.2019.03.048_bib11) 2009; 360 31100263 - Cell. 2019 May 16;177(5):1086-1088. doi: 10.1016/j.cell.2019.04.034 |
References_xml | – volume: 18 start-page: 889 year: 2017 end-page: 898 ident: bib29 article-title: IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions publication-title: Nat. Immunol. – volume: 22 start-page: 1456 year: 2016 end-page: 1464 ident: bib28 article-title: Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination publication-title: Nat. Med. – volume: 360 start-page: 2605 year: 2009 end-page: 2615 ident: bib11 article-title: Emergence of a novel swine-origin influenza A (H1N1) virus in humans publication-title: N. Engl. J. Med. – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: bib57 article-title: XDS publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 2 start-page: 103 year: 2013 ident: bib22 article-title: Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors publication-title: F1000Res. – volume: 7 start-page: 316ra192 year: 2015 ident: bib2 article-title: Immune history profoundly affects broadly protective B cell responses to influenza publication-title: Sci. Transl. Med. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib56 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – year: 2009 ident: bib6 article-title: Influenza Virus Microneutralization Assay H1N1 Pandemic Response – volume: 88 start-page: 7130 year: 2014 end-page: 7144 ident: bib20 article-title: Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses publication-title: J. Virol. – volume: 38 start-page: 479 year: 2006 end-page: 483 ident: bib23 article-title: In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes publication-title: Nat. Genet. – volume: 6 start-page: e25797 year: 2011 ident: bib35 article-title: H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination publication-title: PLoS ONE – volume: 346 start-page: 996 year: 2014 end-page: 1000 ident: bib18 article-title: Antibody landscapes after influenza virus infection or vaccination publication-title: Science – volume: 22 start-page: 1465 year: 2016 end-page: 1469 ident: bib38 article-title: Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain publication-title: Nat. Med. – volume: 13 start-page: 2376 year: 2015 end-page: 2385 ident: bib21 article-title: A Monosaccharide Residue Is Sufficient to Maintain Mouse and Human IgG Subclass Activity and Directs IgG Effector Functions to Cellular Fc Receptors publication-title: Cell Rep. – volume: 115 start-page: 168 year: 2018 end-page: 173 ident: bib39 article-title: Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody publication-title: Proc. Natl. Acad. Sci. USA – volume: 187 start-page: 885 year: 1998 end-page: 895 ident: bib45 article-title: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection publication-title: J. Exp. Med. – volume: 20 start-page: 143 year: 2014 end-page: 151 ident: bib12 article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo publication-title: Nat. Med. – volume: 113 start-page: 1422 year: 2009 end-page: 1431 ident: bib31 article-title: Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes publication-title: Blood – volume: 48 start-page: 174 year: 2018 end-page: 184.e9 ident: bib33 article-title: Memory B Cells that Cross-React with Group 1 and Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires publication-title: Immunity – volume: 110 start-page: 264 year: 2013 end-page: 269 ident: bib40 article-title: Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody publication-title: Proc. Natl. Acad. Sci. USA – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib7 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 206 start-page: 1485 year: 2009 end-page: 1493 ident: bib44 article-title: Visualizing B cell capture of cognate antigen from follicular dendritic cells publication-title: J. Exp. Med. – volume: 2018 year: 2018 ident: bib16 article-title: Complement-Dependent Cytotoxicity Assay publication-title: Cold Spring Harb. Protoc. – volume: 36 start-page: W305 year: 2008 end-page: W508 ident: bib55 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res. – volume: 119 start-page: 1 year: 2006 end-page: 7 ident: bib24 article-title: Variation and infectivity neutralization in influenza publication-title: Immunology – volume: 22 start-page: 471 year: 2017 end-page: 483.e5 ident: bib53 article-title: A Potent Germline-like Human Monoclonal Antibody Targets a pH-Sensitive Epitope on H7N9 Influenza Hemagglutinin publication-title: Cell Host Microbe – volume: 13 start-page: 2842 year: 2015 end-page: 2850 ident: bib41 article-title: Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site publication-title: Cell Rep. – volume: 212 start-page: 1361 year: 2015 end-page: 1369 ident: bib5 article-title: The role of Fc-FcγR interactions in IgG-mediated microbial neutralization publication-title: J. Exp. Med. – volume: 305 start-page: 371 year: 2004 end-page: 376 ident: bib42 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science – volume: 22 start-page: 105 year: 2017 end-page: 111 ident: bib8 article-title: Immune history and influenza virus susceptibility publication-title: Curr. Opin. Virol. – volume: 329 start-page: 112 year: 2008 end-page: 124 ident: bib47 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J. Immunol. Methods – volume: 9 start-page: 1386 year: 2018 ident: bib15 article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin publication-title: Nat. Commun. – volume: 342 start-page: 976 year: 2013 end-page: 979 ident: bib25 article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution publication-title: Science – volume: 6 start-page: 530 year: 1999 end-page: 534 ident: bib17 article-title: A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site publication-title: Nat. Struct. Biol. – volume: 19 start-page: 275 year: 2001 end-page: 290 ident: bib37 article-title: IgG Fc receptors publication-title: Annu. Rev. Immunol. – volume: 6 start-page: e1000796 year: 2010 ident: bib48 article-title: Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins publication-title: PLoS Pathog. – volume: 3 year: 2014 ident: bib46 article-title: The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin publication-title: eLife – volume: 333 start-page: 850 year: 2011 end-page: 856 ident: bib9 article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins publication-title: Science – volume: 108 start-page: 14216 year: 2011 end-page: 14221 ident: bib49 article-title: Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin publication-title: Proc. Natl. Acad. Sci. USA – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 38 start-page: 1164 year: 2013 end-page: 1175 ident: bib19 article-title: Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation publication-title: Immunity – volume: 14 start-page: 167 year: 2015 end-page: 182 ident: bib26 article-title: Advances in the development of influenza virus vaccines publication-title: Nat. Rev. Drug Discov. – volume: 83 start-page: 771 year: 2015 end-page: 780 ident: bib52 article-title: Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage publication-title: Proteins – volume: 8 start-page: E155 year: 2016 ident: bib14 article-title: Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin publication-title: Viruses – year: 2010 ident: bib50 article-title: Serological diagnosis of influenza by microneutralization assay – volume: 15 start-page: 707 year: 2014 end-page: 716 ident: bib36 article-title: Type I and type II Fc receptors regulate innate and adaptive immunity publication-title: Nat. Immunol. – volume: 25 year: 2019 ident: bib3 article-title: Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope publication-title: Cell Host Microbe – volume: 376 start-page: 92 year: 1995 end-page: 94 ident: bib4 article-title: Structure of influenza virus haemagglutinin complexed with a neutralizing antibody publication-title: Nature – volume: 6 start-page: 207 year: 2009 end-page: 217 ident: bib54 article-title: Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans publication-title: Cell Host Microbe – volume: 126 start-page: 605 year: 2016 end-page: 610 ident: bib13 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. – volume: 174 start-page: 926 year: 2018 end-page: 937.e12 ident: bib10 article-title: Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers publication-title: Cell – volume: 44 start-page: 542 year: 2016 end-page: 552 ident: bib27 article-title: Complex Antigens Drive Permissive Clonal Selection in Germinal Centers publication-title: Immunity – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bib34 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. – volume: 88 start-page: 12364 year: 2014 end-page: 12373 ident: bib32 article-title: Epitope mapping of the hemagglutinin molecule of A/(H1N1)pdm09 influenza virus by using monoclonal antibody escape mutants publication-title: J. Virol. – volume: 333 start-page: 1030 year: 2011 end-page: 1034 ident: bib30 article-title: Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies publication-title: Science – year: 2011 ident: bib51 article-title: Manual for the laboratory diagnosis and virological surveillance of influenza – volume: 197 start-page: 4163 year: 2016 end-page: 4176 ident: bib43 article-title: Efficient Culture of Human Naive and Memory B Cells for Use as APCs publication-title: J. Immunol. – volume: 13 start-page: 2842 year: 2015 ident: 10.1016/j.cell.2019.03.048_bib41 article-title: Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.11.063 – volume: 2018 year: 2018 ident: 10.1016/j.cell.2019.03.048_bib16 article-title: Complement-Dependent Cytotoxicity Assay publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot093799 – volume: 110 start-page: 264 year: 2013 ident: 10.1016/j.cell.2019.03.048_bib40 article-title: Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1218256109 – year: 2009 ident: 10.1016/j.cell.2019.03.048_bib6 – volume: 88 start-page: 7130 year: 2014 ident: 10.1016/j.cell.2019.03.048_bib20 article-title: Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses publication-title: J. Virol. doi: 10.1128/JVI.00420-14 – year: 2010 ident: 10.1016/j.cell.2019.03.048_bib50 – volume: 15 start-page: 707 year: 2014 ident: 10.1016/j.cell.2019.03.048_bib36 article-title: Type I and type II Fc receptors regulate innate and adaptive immunity publication-title: Nat. Immunol. doi: 10.1038/ni.2939 – volume: 20 start-page: 143 year: 2014 ident: 10.1016/j.cell.2019.03.048_bib12 article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo publication-title: Nat. Med. doi: 10.1038/nm.3443 – volume: 88 start-page: 12364 year: 2014 ident: 10.1016/j.cell.2019.03.048_bib32 article-title: Epitope mapping of the hemagglutinin molecule of A/(H1N1)pdm09 influenza virus by using monoclonal antibody escape mutants publication-title: J. Virol. doi: 10.1128/JVI.01381-14 – volume: 206 start-page: 1485 year: 2009 ident: 10.1016/j.cell.2019.03.048_bib44 article-title: Visualizing B cell capture of cognate antigen from follicular dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20090209 – volume: 18 start-page: 889 year: 2017 ident: 10.1016/j.cell.2019.03.048_bib29 article-title: IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions publication-title: Nat. Immunol. doi: 10.1038/ni.3770 – volume: 25 year: 2019 ident: 10.1016/j.cell.2019.03.048_bib3 article-title: Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.04.003 – volume: 36 start-page: W305 year: 2008 ident: 10.1016/j.cell.2019.03.048_bib55 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn316 – volume: 126 start-page: 605 year: 2016 ident: 10.1016/j.cell.2019.03.048_bib13 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. doi: 10.1172/JCI84428 – volume: 333 start-page: 850 year: 2011 ident: 10.1016/j.cell.2019.03.048_bib9 article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins publication-title: Science doi: 10.1126/science.1205669 – volume: 329 start-page: 112 year: 2008 ident: 10.1016/j.cell.2019.03.048_bib47 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2007.09.017 – volume: 333 start-page: 1030 year: 2011 ident: 10.1016/j.cell.2019.03.048_bib30 article-title: Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies publication-title: Science doi: 10.1126/science.1206954 – volume: 212 start-page: 1361 year: 2015 ident: 10.1016/j.cell.2019.03.048_bib5 article-title: The role of Fc-FcγR interactions in IgG-mediated microbial neutralization publication-title: J. Exp. Med. doi: 10.1084/jem.20151267 – volume: 22 start-page: 1456 year: 2016 ident: 10.1016/j.cell.2019.03.048_bib28 article-title: Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination publication-title: Nat. Med. doi: 10.1038/nm.4224 – volume: 8 start-page: E155 year: 2016 ident: 10.1016/j.cell.2019.03.048_bib14 article-title: Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin publication-title: Viruses doi: 10.3390/v8060155 – volume: 44 start-page: 542 year: 2016 ident: 10.1016/j.cell.2019.03.048_bib27 article-title: Complex Antigens Drive Permissive Clonal Selection in Germinal Centers publication-title: Immunity doi: 10.1016/j.immuni.2016.02.010 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.cell.2019.03.048_bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 22 start-page: 105 year: 2017 ident: 10.1016/j.cell.2019.03.048_bib8 article-title: Immune history and influenza virus susceptibility publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2016.12.004 – volume: 305 start-page: 371 year: 2004 ident: 10.1016/j.cell.2019.03.048_bib42 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science doi: 10.1126/science.1097211 – volume: 6 start-page: 530 year: 1999 ident: 10.1016/j.cell.2019.03.048_bib17 article-title: A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site publication-title: Nat. Struct. Biol. doi: 10.1038/9299 – year: 2011 ident: 10.1016/j.cell.2019.03.048_bib51 – volume: 174 start-page: 926 year: 2018 ident: 10.1016/j.cell.2019.03.048_bib10 article-title: Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers publication-title: Cell doi: 10.1016/j.cell.2018.05.050 – volume: 19 start-page: 275 year: 2001 ident: 10.1016/j.cell.2019.03.048_bib37 article-title: IgG Fc receptors publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.19.1.275 – volume: 13 start-page: 2376 year: 2015 ident: 10.1016/j.cell.2019.03.048_bib21 article-title: A Monosaccharide Residue Is Sufficient to Maintain Mouse and Human IgG Subclass Activity and Directs IgG Effector Functions to Cellular Fc Receptors publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.11.027 – volume: 108 start-page: 14216 year: 2011 ident: 10.1016/j.cell.2019.03.048_bib49 article-title: Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111497108 – volume: 83 start-page: 771 year: 2015 ident: 10.1016/j.cell.2019.03.048_bib52 article-title: Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage publication-title: Proteins doi: 10.1002/prot.24745 – volume: 342 start-page: 976 year: 2013 ident: 10.1016/j.cell.2019.03.048_bib25 article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution publication-title: Science doi: 10.1126/science.1244730 – volume: 113 start-page: 1422 year: 2009 ident: 10.1016/j.cell.2019.03.048_bib31 article-title: Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes publication-title: Blood doi: 10.1182/blood-2008-09-177139 – volume: 40 start-page: 658 year: 2007 ident: 10.1016/j.cell.2019.03.048_bib34 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807021206 – volume: 360 start-page: 2605 year: 2009 ident: 10.1016/j.cell.2019.03.048_bib11 article-title: Emergence of a novel swine-origin influenza A (H1N1) virus in humans publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0903810 – volume: 119 start-page: 1 year: 2006 ident: 10.1016/j.cell.2019.03.048_bib24 article-title: Variation and infectivity neutralization in influenza publication-title: Immunology doi: 10.1111/j.1365-2567.2006.02421.x – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.cell.2019.03.048_bib7 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 2 start-page: 103 year: 2013 ident: 10.1016/j.cell.2019.03.048_bib22 article-title: Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors publication-title: F1000Res. doi: 10.12688/f1000research.2-103.v1 – volume: 197 start-page: 4163 year: 2016 ident: 10.1016/j.cell.2019.03.048_bib43 article-title: Efficient Culture of Human Naive and Memory B Cells for Use as APCs publication-title: J. Immunol. doi: 10.4049/jimmunol.1502193 – volume: 22 start-page: 471 year: 2017 ident: 10.1016/j.cell.2019.03.048_bib53 article-title: A Potent Germline-like Human Monoclonal Antibody Targets a pH-Sensitive Epitope on H7N9 Influenza Hemagglutinin publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.08.011 – volume: 6 start-page: e1000796 year: 2010 ident: 10.1016/j.cell.2019.03.048_bib48 article-title: Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000796 – volume: 66 start-page: 125 year: 2010 ident: 10.1016/j.cell.2019.03.048_bib57 article-title: XDS publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909047337 – volume: 38 start-page: 479 year: 2006 ident: 10.1016/j.cell.2019.03.048_bib23 article-title: In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes publication-title: Nat. Genet. doi: 10.1038/ng1766 – volume: 14 start-page: 167 year: 2015 ident: 10.1016/j.cell.2019.03.048_bib26 article-title: Advances in the development of influenza virus vaccines publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4529 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.cell.2019.03.048_bib56 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 376 start-page: 92 year: 1995 ident: 10.1016/j.cell.2019.03.048_bib4 article-title: Structure of influenza virus haemagglutinin complexed with a neutralizing antibody publication-title: Nature doi: 10.1038/376092a0 – volume: 115 start-page: 168 year: 2018 ident: 10.1016/j.cell.2019.03.048_bib39 article-title: Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1715471115 – volume: 38 start-page: 1164 year: 2013 ident: 10.1016/j.cell.2019.03.048_bib19 article-title: Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation publication-title: Immunity doi: 10.1016/j.immuni.2013.02.023 – volume: 6 start-page: 207 year: 2009 ident: 10.1016/j.cell.2019.03.048_bib54 article-title: Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.07.006 – volume: 187 start-page: 885 year: 1998 ident: 10.1016/j.cell.2019.03.048_bib45 article-title: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection publication-title: J. Exp. Med. doi: 10.1084/jem.187.6.885 – volume: 346 start-page: 996 year: 2014 ident: 10.1016/j.cell.2019.03.048_bib18 article-title: Antibody landscapes after influenza virus infection or vaccination publication-title: Science doi: 10.1126/science.1256427 – volume: 9 start-page: 1386 year: 2018 ident: 10.1016/j.cell.2019.03.048_bib15 article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin publication-title: Nat. Commun. doi: 10.1038/s41467-018-03665-3 – volume: 6 start-page: e25797 year: 2011 ident: 10.1016/j.cell.2019.03.048_bib35 article-title: H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination publication-title: PLoS ONE doi: 10.1371/journal.pone.0025797 – volume: 7 start-page: 316ra192 year: 2015 ident: 10.1016/j.cell.2019.03.048_bib2 article-title: Immune history profoundly affects broadly protective B cell responses to influenza publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad0522 – volume: 22 start-page: 1465 year: 2016 ident: 10.1016/j.cell.2019.03.048_bib38 article-title: Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain publication-title: Nat. Med. doi: 10.1038/nm.4223 – volume: 3 year: 2014 ident: 10.1016/j.cell.2019.03.048_bib46 article-title: The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin publication-title: eLife doi: 10.7554/eLife.03300 – volume: 48 start-page: 174 year: 2018 ident: 10.1016/j.cell.2019.03.048_bib33 article-title: Memory B Cells that Cross-React with Group 1 and Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires publication-title: Immunity doi: 10.1016/j.immuni.2017.12.009 – reference: 31100263 - Cell. 2019 May 16;177(5):1086-1088. doi: 10.1016/j.cell.2019.04.034 |
SSID | ssj0008555 |
Score | 2.6137378 |
Snippet | Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize... Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as influenza virus must elicit antibodies that recognize conserved... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1124 |
SubjectTerms | Adult Animals antibodies Antibodies, Viral - immunology B-lymphocytes BASIC BIOLOGICAL SCIENCES Dogs epitopes Epitopes - immunology Female Hemagglutinin Glycoproteins, Influenza Virus - immunology hemagglutinins Humans humoral immunity immunoglobulin G Immunoglobulin G - immunology influenza Influenza A virus - immunology influenza vaccines Influenza Vaccines - immunology Madin Darby Canine Kidney Cells Male Mice Middle Aged Orthomyxoviridae Orthomyxoviridae Infections - immunology Orthomyxoviridae Infections - pathology Orthomyxoviridae Infections - prevention & control pathogens |
Title | Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism |
URI | https://dx.doi.org/10.1016/j.cell.2019.03.048 https://www.ncbi.nlm.nih.gov/pubmed/31100267 https://www.proquest.com/docview/2232042912 https://www.proquest.com/docview/2253259130 https://www.osti.gov/servlets/purl/1524669 https://pubmed.ncbi.nlm.nih.gov/PMC6825805 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhIZBLadq0ddMWFXIrJpZsydIxzaObQkIPDexNSLLcuKT2kjiH5NdnxrKXbgl76NG2xlgezUPim28IOQgQkpUuZGpLX6dFLVjqtIDNCvOZqKyo_IAmvLiU86vi-0IstsjxVAuDsMrR90efPnjr8c7h-DcPl02DNb6aKwkRUecD7Tn44bxQQxHf4uvKGyshYhcDDZYPo8fCmYjxwsNxhHdFolPsAfR8cJp1YG_P5aD_Qin_ik1nL8mLMamkR_G7d8lWaF-R7dhm8uE1uT5q-8Z1iBekfUctxS6diHSs6HnsUfJo6RyUTYfzwdr6QE-XYOrLQH9EHgfqHqht6fmvbxRcDZ7bpidj-9yeXgQsH27u_uyRq7PTn8fzdOywkHqhWJ_CbqtiISiXhaoquXM6D6zOlPdBO2uLilc5Q74aJ7TXLkhtOXM6q73zwRUhf0NmbdeGd4TCq2rILoUN3BZ1VmqnFffCegc5pipVQtj0a40f6cexC8aNmXBmvw2qw6A6TJYbUEdCvqxklpF8Y-NoMWnMrC0hA9Fho9w-qhdlkDfXI8AIhCCxKaTUCfk8ad2A5aGwbUN3f2cgseIYzhnfNEbksMGERCEhb-NKWc0kR7Y-LsuElGtraDUAmb_Xn7TN9cAALmFfrzLx_j9nvE928ApBEEx-ILP-9j58hNyqd58G43kCmRkjAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VRQguiO-G8mEkbihqnMSJfSylZRe6FYdW2ptlOw4NosmKpofy65mJsysWVXvgmniiJOOZebae3wC891iSpcqL2JSujvNa8NgqgYsV7hJRGVG5gU04Py2m5_mXhVjswOHqLAzRKsfcH3L6kK3HK_vj39xfNg2d8VWpLLAiqmyQPb8DdxENlNS_Ybb4uE7HUojQxkBh6OPw8eRMIHnR7jjxu4LSKTUBur06TToMuNtA6L9cyr-K0_EjeDiiSnYQXvwx7Pj2CdwLfSZvnsLFQds3tiPCIOs7Zhi16SSqY8VmoUnJb8Om6G02bBDWxnl2tMRYX3r2LQg5MHvDTMtm3z8zzDW0cRt_Gvvn9mzu6fxwc3X5DM6Pj84Op_HYYiF2QvI-xuVWxb2XNvFVVabWqszzOpHOeWWNyau0yjgJ1lihnLK-UCblViW1s87b3GfPYdJ2rd8Fho-qEV4K41OT10mprJKpE8ZZBJmylBHw1a_VbtQfpzYYP_WKaPZDkzs0uUMnmUZ3RPBhbbMM6htbR4uVx_TGHNJYHrba7ZF7yYaEcx0xjNAIkU1eFCqCdyuvaww9Mjat766vNCKrlOo5T7eNERmuMBEpRPAizJT1l2Qk15cWZQTlxhxaDyDp7807bXMxSIAXuLCXiXj5n1_8Fu5Pz-Yn-mR2-nUPHtAdYkTw4hVM-l_X_jUCrd6-GQLpDzD-JiI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibodies+to+a+Conserved+Influenza+Head+Interface+Epitope+Protect+by+an+IgG+Subtype-Dependent+Mechanism&rft.jtitle=Cell&rft.au=Watanabe%2C+Akiko&rft.au=McCarthy%2C+Kevin+R.&rft.au=Kuraoka%2C+Masayuki&rft.au=Schmidt%2C+Aaron+G.&rft.date=2019-05-16&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=177&rft.issue=5&rft.spage=1124&rft.epage=1135.e16&rft_id=info:doi/10.1016%2Fj.cell.2019.03.048&rft.externalDocID=S0092867419303496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |