Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration

Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of novel physical phenomena under extremely strong quantum confinement. The 1D character of electrons, phonons and excitons in individual CNTs features extraordinary electronic, thermal and optical prope...

Full description

Saved in:
Bibliographic Details
Published inRoyal Society open science Vol. 6; no. 3; p. 181605
Main Authors Gao, Weilu, Kono, Junichiro
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 01.03.2019
The Royal Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of novel physical phenomena under extremely strong quantum confinement. The 1D character of electrons, phonons and excitons in individual CNTs features extraordinary electronic, thermal and optical properties. Since their discovery in 1991, they have been continuing to attract interest in various disciplines, including chemistry, materials science, physics and engineering. However, the macroscopic manifestation of 1D properties is still limited, despite significant efforts for decades. Recently, a controlled vacuum filtration method has been developed for the preparation of wafer-scale films of crystalline chirality-enriched CNTs, and such films have enabled exciting new fundamental studies and applications. In this review, we will first discuss the controlled vacuum filtration technique, and then summarize recent discoveries in optical spectroscopy studies and optoelectronic device applications using films prepared by this technique.
AbstractList Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of novel physical phenomena under extremely strong quantum confinement. The 1D character of electrons, phonons and excitons in individual CNTs features extraordinary electronic, thermal and optical properties. Since their discovery in 1991, they have been continuing to attract interest in various disciplines, including chemistry, materials science, physics and engineering. However, the macroscopic manifestation of 1D properties is still limited, despite significant efforts for decades. Recently, a controlled vacuum filtration method has been developed for the preparation of wafer-scale films of crystalline chirality-enriched CNTs, and such films have enabled exciting new fundamental studies and applications. In this review, we will first discuss the controlled vacuum filtration technique, and then summarize recent discoveries in optical spectroscopy studies and optoelectronic device applications using films prepared by this technique.
Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of novel physical phenomena under extremely strong quantum confinement. The 1D character of electrons, phonons and excitons in individual CNTs features extraordinary electronic, thermal and optical properties. Since their discovery in 1991, they have been continuing to attract interest in various disciplines, including chemistry, materials science, physics and engineering. However, the macroscopic manifestation of 1D properties is still limited, despite significant efforts for decades. Recently, a controlled vacuum filtration method has been developed for the preparation of wafer-scale films of crystalline chirality-enriched CNTs, and such films have enabled exciting new fundamental studies and applications. In this review, we will first discuss the controlled vacuum filtration technique, and then summarize recent discoveries in optical spectroscopy studies and optoelectronic device applications using films prepared by this technique.Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of novel physical phenomena under extremely strong quantum confinement. The 1D character of electrons, phonons and excitons in individual CNTs features extraordinary electronic, thermal and optical properties. Since their discovery in 1991, they have been continuing to attract interest in various disciplines, including chemistry, materials science, physics and engineering. However, the macroscopic manifestation of 1D properties is still limited, despite significant efforts for decades. Recently, a controlled vacuum filtration method has been developed for the preparation of wafer-scale films of crystalline chirality-enriched CNTs, and such films have enabled exciting new fundamental studies and applications. In this review, we will first discuss the controlled vacuum filtration technique, and then summarize recent discoveries in optical spectroscopy studies and optoelectronic device applications using films prepared by this technique.
Not provided.
Author Kono, Junichiro
Gao, Weilu
AuthorAffiliation 3 Department of Materials Science and NanoEngineering, Rice University , Houston, TX 77005 , USA
2 Department of Physics and Astronomy, Rice University , Houston, TX 77005 , USA
1 Department of Electrical and Computer Engineering, Rice University , Houston, TX 77005 , USA
AuthorAffiliation_xml – name: 3 Department of Materials Science and NanoEngineering, Rice University , Houston, TX 77005 , USA
– name: 1 Department of Electrical and Computer Engineering, Rice University , Houston, TX 77005 , USA
– name: 2 Department of Physics and Astronomy, Rice University , Houston, TX 77005 , USA
Author_xml – sequence: 1
  givenname: Weilu
  orcidid: 0000-0003-3139-034X
  surname: Gao
  fullname: Gao, Weilu
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
– sequence: 2
  givenname: Junichiro
  orcidid: 0000-0002-4195-0577
  surname: Kono
  fullname: Kono, Junichiro
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA, Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA, Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31032018$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1609736$$D View this record in Osti.gov
BookMark eNptks1rFDEUwAep2Fp78i6DJ0G25mtmMhdBih-Fggf1HN4kL7sp2WRMMi39783u1tKKpzxefvnlJe-9bI5CDNg0ryk5p2SUH1KO-ZxK2pPuWXPCSCdW3UD40aP4uDnL-ZoQQjvCh3540RxzSjgjVJ40tz-0w6CxhWBamGfvNBQXQ26jbW_BYlplDR5bne5yAe9dqDGkKYY2QIhlmbC1zm9zOyecIaFpyybFZb1pdQwlRe9r6gb0smx3YEl7_6vmuQWf8ex-PW1-ffn88-Lb6ur718uLT1cr3UlaVlSitKbDCXsYLeE1qw0YYi3lRjPgONlBWMYGJqAjNRaMCjowajgHYflpc3nwmgjXak5uC-lORXBqn4hprSAVpz0qMRqBYuomwqToOyMtjgPtpp5JNqEk1fXx4JqXaYtGY30e-CfSpzvBbdQ63qhedFKwvgreHgQxF6eydgX1pv5SQF1UbeE48B307v6WFH8vmIvauqzRewgYl6wYo_0wsJHs0DePC3qo5G97K_D-AOgUc05oHxBK1G5-1G5-1GF-Kk3_oWuF-27V1zj_3zN_AC7my9s
CitedBy_id crossref_primary_10_1021_acs_nanolett_9b04764
crossref_primary_10_1039_D4TA03027C
crossref_primary_10_1002_smll_202206774
crossref_primary_10_1038_s41467_023_43199_x
crossref_primary_10_3390_ma15155386
crossref_primary_10_1021_acsphotonics_3c01892
crossref_primary_10_1039_D1RA08250G
crossref_primary_10_1039_D2EN00155A
crossref_primary_10_1002_adfm_202107411
crossref_primary_10_1007_s12274_021_3986_7
crossref_primary_10_1021_acsanm_1c03894
crossref_primary_10_1038_s41598_023_45940_4
crossref_primary_10_1021_acsami_4c01550
crossref_primary_10_1063_1_5127209
crossref_primary_10_1016_j_carbon_2021_10_048
crossref_primary_10_1002_adfm_202426084
crossref_primary_10_1002_admi_202002106
crossref_primary_10_1016_j_carbon_2025_120016
crossref_primary_10_3103_S1061386222010022
crossref_primary_10_1021_acsanm_4c03735
crossref_primary_10_1103_PhysRevLett_132_056902
crossref_primary_10_1364_OPTICA_422826
crossref_primary_10_1103_PhysRevB_100_235401
crossref_primary_10_1007_s11082_021_03386_w
crossref_primary_10_1103_PhysRevApplied_14_044006
crossref_primary_10_1021_acs_nanolett_9b00552
crossref_primary_10_1021_acs_nanolett_9b03022
crossref_primary_10_1134_S0022476624020161
crossref_primary_10_3390_polym15193955
crossref_primary_10_1007_s10008_023_05516_8
crossref_primary_10_1134_S1063776122100107
crossref_primary_10_1088_1361_6463_ab4ca4
crossref_primary_10_1088_2040_8986_ac5809
crossref_primary_10_1021_acs_nanolett_9b05082
crossref_primary_10_1098_rsos_201786
crossref_primary_10_3390_ma15041535
crossref_primary_10_1021_acsnano_4c01475
crossref_primary_10_1021_acs_nanolett_3c00765
crossref_primary_10_1002_adma_202008432
crossref_primary_10_35848_1347_4065_ac52b9
crossref_primary_10_1002_smll_202105619
crossref_primary_10_1021_acsnano_4c14699
crossref_primary_10_1021_acs_nanolett_9b02853
Cites_doi 10.1021/jp044741o
10.1016/S0009-2614(98)00845-8
10.1002/smll.201201398
10.1002/smll.200500120
10.1038/nnano.2007.290
10.1021/ph500266d
10.1038/nature13607
10.1002/adom.201500237
10.1103/PhysRevLett.109.097402
10.1021/nl3035652
10.1038/nnano.2010.68
10.1021/ja402762e
10.1126/science.1101243
10.1021/acs.nanolett.7b02522
10.1021/nl034841q
10.1021/nl500693x
10.1007/978-3-540-72865-8
10.1021/jp8070585
10.1021/nn201314t
10.1021/nl080302f
10.1002/adma.201100549
10.1038/ncomms12899
10.1038/nnano.2007.77
10.1021/nl5012678
10.1038/nphoton.2014.304
10.1038/ncomms13078
10.1038/ncomms12056
10.1021/nn800708w
10.1021/ja8038689
10.1016/S0009-2614(03)01094-7
10.1038/nmat1849
10.1002/adma.201707068
10.1103/PhysRevLett.114.176807
10.1039/B311016H
10.1007/978-3-540-72865-8_4
10.1021/nl0518122
10.1103/PhysRevB.97.125420
10.1038/nature07110
10.1021/ja8006947
10.1073/pnas.0904148106
10.1103/PhysRevB.78.085411
10.1002/pssb.200776148
10.1038/s41929-018-0057-x
10.1038/nature13434
10.1038/354056a0
10.1103/RevModPhys.82.1489
10.1021/nl0491935
10.1021/jp0364708
10.1021/nn9013356
10.1021/acsnano.7b07665
10.1038/nnano.2016.44
10.1103/PhysRevApplied.9.034018
10.1038/25692
10.1038/nmat2885
10.1103/RevModPhys.71.1591
10.1007/s10854-015-3378-4
10.1021/acs.jpcc.7b03896
10.1039/c3nr33560g
10.1063/1.1415412
10.1103/PhysRevB.60.13339
10.1016/j.carbon.2009.03.005
10.1126/science.1110265
10.1038/nphoton.2011.15
10.1038/nnano.2006.52
10.1103/PhysRevB.74.155411
10.1002/adma.201201751
10.1143/JPSJ.74.777
10.1007/978-3-642-20595-8_4
10.1021/nn201828y
10.1126/science.1104962
10.1038/386474a0
10.1143/JPSJ.66.1066
10.1038/nmat4940
10.1126/science.1197321
10.1063/1.1850606
10.1103/PhysRevLett.105.263603
10.1021/nn402679u
10.1103/PhysRevLett.93.157402
10.1002/adma.200401741
10.1021/nl403175g
10.1038/ncomms1313
10.1038/nature08116
10.1021/ja071114e
10.1021/nl051952b
10.1021/ie3001925
10.1073/pnas.1816251115
10.1038/nenergy.2016.33
10.1002/adfm.201606022
10.1038/s41566-018-0157-9
10.1016/j.compositesa.2010.07.003
10.1016/j.sna.2012.05.050
10.1002/adma.201304873
10.1126/science.1104276
10.1038/nphoton.2008.94
10.1063/1.127078
10.1038/nature21051
10.1021/ja209333m
10.1021/nn505566r
10.1038/318162a0
10.1016/j.cplett.2003.12.095
10.1126/science.1091911
10.1021/nn102305z
10.1039/b802707b
10.1143/JPSJ.67.1704
10.1038/nnano.2012.257
10.1038/s41467-018-03381-y
10.1103/PhysRevLett.118.257401
10.1016/0921-4526(94)91112-6
10.1103/PhysRevLett.90.207401
10.1021/nn505430s
10.1002/adma.201003509
10.1126/science.1102896
10.1103/RevModPhys.91.025005
ContentType Journal Article
Copyright 2019 The Authors. 2019
Copyright_xml – notice: 2019 The Authors. 2019
CorporateAuthor Rice Univ., Houston, TX (United States)
CorporateAuthor_xml – name: Rice Univ., Houston, TX (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
5PM
DOA
DOI 10.1098/rsos.181605
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
DocumentTitleAlternate wafer-scale crystalline carbon nanotubes
EISSN 2054-5703
ExternalDocumentID oai_doaj_org_article_49d4e4b5b028465d8fe9715b6282be80
PMC6458426
1609736
31032018
10_1098_rsos_181605
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: C-1509
– fundername: ;
  grantid: ECCS-1708315
– fundername: ;
  grantid: DE-FG02-06ER46308
GroupedDBID 53G
5VS
7X2
88I
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
ADRAZ
AEUYN
AFKRA
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
AZQEC
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
HYE
ICLEN
KB.
KQ8
M0K
M2P
M48
M7P
M7S
M~E
OK1
OP1
PATMY
PCBAR
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PTHSS
PYCSY
RPM
NPM
V1E
7X8
ABXXB
OTOTI
RRY
5PM
ID FETCH-LOGICAL-c581t-18e8fd5ebe6a9f03c58cdad0ff13dc2a3ebf74f22724a50f7442141721d33a4f3
IEDL.DBID M48
ISSN 2054-5703
IngestDate Wed Aug 27 01:21:54 EDT 2025
Thu Aug 21 18:22:49 EDT 2025
Fri May 19 01:10:05 EDT 2023
Fri Jul 11 02:23:58 EDT 2025
Thu Jan 02 23:02:16 EST 2025
Tue Jul 01 03:45:20 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords controlled vacuum filtration
optoelectronics
photonics
wafer-scale crystalline carbon nanotubes
Language English
License Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-18e8fd5ebe6a9f03c58cdad0ff13dc2a3ebf74f22724a50f7442141721d33a4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
FG02-06ER46308
USDOE Office of Science (SC)
This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance.
ORCID 0000-0003-3139-034X
0000-0002-4195-0577
000000033139034X
0000000241950577
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsos.181605
PMID 31032018
PQID 2216772906
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_49d4e4b5b028465d8fe9715b6282be80
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6458426
osti_scitechconnect_1609736
proquest_miscellaneous_2216772906
pubmed_primary_31032018
crossref_primary_10_1098_rsos_181605
crossref_citationtrail_10_1098_rsos_181605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Royal Society open science
PublicationTitleAlternate R Soc Open Sci
PublicationYear 2019
Publisher The Royal Society Publishing
The Royal Society
Publisher_xml – name: The Royal Society Publishing
– name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_76_2
e_1_3_6_53_2
e_1_3_6_95_2
e_1_3_6_113_2
e_1_3_6_72_2
e_1_3_6_19_2
e_1_3_6_38_2
e_1_3_6_11_2
e_1_3_6_34_2
e_1_3_6_15_2
e_1_3_6_57_2
e_1_3_6_99_2
e_1_3_6_105_2
e_1_3_6_65_2
e_1_3_6_42_2
e_1_3_6_84_2
e_1_3_6_101_2
e_1_3_6_61_2
e_1_3_6_80_2
e_1_3_6_2_2
e_1_3_6_6_2
e_1_3_6_27_2
Liu H (e_1_3_6_91_2) 2000
e_1_3_6_109_2
e_1_3_6_23_2
e_1_3_6_69_2
e_1_3_6_46_2
e_1_3_6_88_2
e_1_3_6_52_2
e_1_3_6_75_2
e_1_3_6_98_2
e_1_3_6_10_2
e_1_3_6_71_2
e_1_3_6_94_2
e_1_3_6_114_2
e_1_3_6_90_2
e_1_3_6_110_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_79_2
e_1_3_6_41_2
e_1_3_6_64_2
e_1_3_6_87_2
e_1_3_6_106_2
e_1_3_6_60_2
e_1_3_6_83_2
e_1_3_6_102_2
e_1_3_6_3_2
e_1_3_6_7_2
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_68_2
e_1_3_6_51_2
e_1_3_6_97_2
e_1_3_6_32_2
e_1_3_6_74_2
e_1_3_6_93_2
e_1_3_6_115_2
e_1_3_6_70_2
e_1_3_6_111_2
e_1_3_6_13_2
e_1_3_6_59_2
e_1_3_6_17_2
e_1_3_6_55_2
e_1_3_6_36_2
e_1_3_6_78_2
e_1_3_6_40_2
e_1_3_6_86_2
e_1_3_6_107_2
e_1_3_6_21_2
e_1_3_6_63_2
e_1_3_6_82_2
e_1_3_6_103_2
e_1_3_6_4_2
e_1_3_6_8_2
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_67_2
e_1_3_6_116_2
e_1_3_6_31_2
e_1_3_6_54_2
e_1_3_6_73_2
e_1_3_6_96_2
e_1_3_6_112_2
e_1_3_6_50_2
e_1_3_6_92_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_77_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_62_2
e_1_3_6_85_2
e_1_3_6_108_2
e_1_3_6_81_2
e_1_3_6_104_2
e_1_3_6_5_2
e_1_3_6_100_2
e_1_3_6_9_2
e_1_3_6_28_2
e_1_3_6_24_2
e_1_3_6_47_2
e_1_3_6_66_2
e_1_3_6_89_2
References_xml – ident: e_1_3_6_80_2
  doi: 10.1021/jp044741o
– ident: e_1_3_6_113_2
  doi: 10.1016/S0009-2614(98)00845-8
– ident: e_1_3_6_61_2
  doi: 10.1002/smll.201201398
– ident: e_1_3_6_16_2
  doi: 10.1002/smll.200500120
– ident: e_1_3_6_46_2
  doi: 10.1038/nnano.2007.290
– ident: e_1_3_6_106_2
  doi: 10.1021/ph500266d
– ident: e_1_3_6_39_2
  doi: 10.1038/nature13607
– ident: e_1_3_6_26_2
  doi: 10.1002/adom.201500237
– ident: e_1_3_6_114_2
  doi: 10.1103/PhysRevLett.109.097402
– ident: e_1_3_6_24_2
  doi: 10.1021/nl3035652
– ident: e_1_3_6_48_2
  doi: 10.1038/nnano.2010.68
– ident: e_1_3_6_50_2
  doi: 10.1021/ja402762e
– ident: e_1_3_6_25_2
  doi: 10.1126/science.1101243
– ident: e_1_3_6_72_2
  doi: 10.1021/acs.nanolett.7b02522
– ident: e_1_3_6_13_2
  doi: 10.1021/nl034841q
– ident: e_1_3_6_19_2
  doi: 10.1021/nl500693x
– ident: e_1_3_6_2_2
  doi: 10.1007/978-3-540-72865-8
– ident: e_1_3_6_33_2
  doi: 10.1021/jp8070585
– ident: e_1_3_6_30_2
  doi: 10.1021/nn201314t
– ident: e_1_3_6_69_2
  doi: 10.1021/nl080302f
– ident: e_1_3_6_95_2
  doi: 10.1002/adma.201100549
– ident: e_1_3_6_89_2
  doi: 10.1038/ncomms12899
– ident: e_1_3_6_20_2
  doi: 10.1038/nnano.2007.77
– ident: e_1_3_6_81_2
  doi: 10.1021/nl5012678
– ident: e_1_3_6_107_2
  doi: 10.1038/nphoton.2014.304
– ident: e_1_3_6_108_2
  doi: 10.1038/ncomms13078
– ident: e_1_3_6_98_2
  doi: 10.1038/ncomms12056
– ident: e_1_3_6_56_2
  doi: 10.1021/nn800708w
– ident: e_1_3_6_87_2
  doi: 10.1021/ja8038689
– ident: e_1_3_6_31_2
  doi: 10.1016/S0009-2614(03)01094-7
– ident: e_1_3_6_7_2
  doi: 10.1038/nmat1849
– ident: e_1_3_6_60_2
  doi: 10.1002/adma.201707068
– ident: e_1_3_6_96_2
  doi: 10.1103/PhysRevLett.114.176807
– ident: e_1_3_6_78_2
  doi: 10.1039/B311016H
– ident: e_1_3_6_34_2
  doi: 10.1007/978-3-540-72865-8_4
– ident: e_1_3_6_86_2
  doi: 10.1021/nl0518122
– ident: e_1_3_6_93_2
  doi: 10.1103/PhysRevB.97.125420
– ident: e_1_3_6_22_2
  doi: 10.1038/nature07110
– ident: e_1_3_6_42_2
  doi: 10.1021/ja8006947
– ident: e_1_3_6_115_2
  doi: 10.1073/pnas.0904148106
– ident: e_1_3_6_88_2
  doi: 10.1103/PhysRevB.78.085411
– ident: e_1_3_6_18_2
  doi: 10.1002/pssb.200776148
– ident: e_1_3_6_41_2
  doi: 10.1038/s41929-018-0057-x
– ident: e_1_3_6_38_2
  doi: 10.1038/nature13434
– ident: e_1_3_6_5_2
  doi: 10.1038/354056a0
– ident: e_1_3_6_101_2
  doi: 10.1103/RevModPhys.82.1489
– ident: e_1_3_6_17_2
  doi: 10.1021/nl0491935
– ident: e_1_3_6_97_2
– ident: e_1_3_6_36_2
  doi: 10.1021/jp0364708
– ident: e_1_3_6_37_2
  doi: 10.1021/nn9013356
– ident: e_1_3_6_53_2
  doi: 10.1021/acsnano.7b07665
– ident: e_1_3_6_67_2
  doi: 10.1038/nnano.2016.44
– ident: e_1_3_6_92_2
  doi: 10.1103/PhysRevApplied.9.034018
– ident: e_1_3_6_105_2
  doi: 10.1038/25692
– ident: e_1_3_6_3_2
  doi: 10.1038/nmat2885
– ident: e_1_3_6_100_2
  doi: 10.1103/RevModPhys.71.1591
– ident: e_1_3_6_28_2
  doi: 10.1007/s10854-015-3378-4
– ident: e_1_3_6_99_2
  doi: 10.1021/acs.jpcc.7b03896
– ident: e_1_3_6_14_2
  doi: 10.1039/c3nr33560g
– ident: e_1_3_6_35_2
  doi: 10.1063/1.1415412
– ident: e_1_3_6_94_2
  doi: 10.1103/PhysRevB.60.13339
– ident: e_1_3_6_79_2
  doi: 10.1016/j.carbon.2009.03.005
– ident: e_1_3_6_85_2
  doi: 10.1126/science.1110265
– ident: e_1_3_6_102_2
  doi: 10.1038/nphoton.2011.15
– ident: e_1_3_6_47_2
  doi: 10.1038/nnano.2006.52
– ident: e_1_3_6_76_2
  doi: 10.1103/PhysRevB.74.155411
– ident: e_1_3_6_9_2
  doi: 10.1002/adma.201201751
– ident: e_1_3_6_75_2
  doi: 10.1143/JPSJ.74.777
– ident: e_1_3_6_10_2
  doi: 10.1007/978-3-642-20595-8_4
– ident: e_1_3_6_29_2
  doi: 10.1021/nn201828y
– ident: e_1_3_6_32_2
  doi: 10.1126/science.1104962
– ident: e_1_3_6_12_2
  doi: 10.1038/386474a0
– ident: e_1_3_6_82_2
  doi: 10.1143/JPSJ.66.1066
– ident: e_1_3_6_109_2
  doi: 10.1038/nmat4940
– ident: e_1_3_6_116_2
  doi: 10.1126/science.1197321
– ident: e_1_3_6_63_2
  doi: 10.1063/1.1850606
– ident: e_1_3_6_104_2
  doi: 10.1103/PhysRevLett.105.263603
– ident: e_1_3_6_23_2
  doi: 10.1021/nn402679u
– ident: e_1_3_6_84_2
  doi: 10.1103/PhysRevLett.93.157402
– ident: e_1_3_6_65_2
  doi: 10.1002/adma.200401741
– ident: e_1_3_6_73_2
  doi: 10.1021/nl403175g
– ident: e_1_3_6_49_2
  doi: 10.1038/ncomms1313
– ident: e_1_3_6_45_2
  doi: 10.1038/nature08116
– ident: e_1_3_6_57_2
  doi: 10.1021/ja071114e
– ident: e_1_3_6_66_2
  doi: 10.1021/nl051952b
– ident: e_1_3_6_58_2
  doi: 10.1021/ie3001925
– ident: e_1_3_6_70_2
  doi: 10.1073/pnas.1816251115
– volume-title: Intersubband Transitions in Quantum Wells: Physics and Device Applications I
  year: 2000
  ident: e_1_3_6_91_2
– ident: e_1_3_6_21_2
  doi: 10.1038/nenergy.2016.33
– ident: e_1_3_6_77_2
  doi: 10.1002/adfm.201606022
– ident: e_1_3_6_110_2
  doi: 10.1038/s41566-018-0157-9
– ident: e_1_3_6_68_2
  doi: 10.1016/j.compositesa.2010.07.003
– ident: e_1_3_6_27_2
  doi: 10.1016/j.sna.2012.05.050
– ident: e_1_3_6_51_2
  doi: 10.1002/adma.201304873
– ident: e_1_3_6_52_2
  doi: 10.1126/science.1104276
– ident: e_1_3_6_8_2
  doi: 10.1038/nphoton.2008.94
– ident: e_1_3_6_54_2
  doi: 10.1063/1.127078
– ident: e_1_3_6_40_2
  doi: 10.1038/nature21051
– ident: e_1_3_6_71_2
  doi: 10.1021/ja209333m
– ident: e_1_3_6_59_2
  doi: 10.1021/nn505566r
– ident: e_1_3_6_4_2
  doi: 10.1038/318162a0
– ident: e_1_3_6_15_2
  doi: 10.1016/j.cplett.2003.12.095
– ident: e_1_3_6_44_2
  doi: 10.1126/science.1091911
– ident: e_1_3_6_55_2
  doi: 10.1021/nn102305z
– ident: e_1_3_6_64_2
  doi: 10.1039/b802707b
– ident: e_1_3_6_11_2
  doi: 10.1143/JPSJ.67.1704
– ident: e_1_3_6_62_2
  doi: 10.1038/nnano.2012.257
– ident: e_1_3_6_90_2
  doi: 10.1038/s41467-018-03381-y
– ident: e_1_3_6_112_2
  doi: 10.1103/PhysRevLett.118.257401
– ident: e_1_3_6_74_2
  doi: 10.1016/0921-4526(94)91112-6
– ident: e_1_3_6_83_2
  doi: 10.1103/PhysRevLett.90.207401
– ident: e_1_3_6_111_2
  doi: 10.1021/nn505430s
– ident: e_1_3_6_43_2
  doi: 10.1002/adma.201003509
– ident: e_1_3_6_6_2
  doi: 10.1126/science.1102896
– ident: e_1_3_6_103_2
  doi: 10.1103/RevModPhys.91.025005
SSID ssj0001503767
Score 2.3685596
SecondaryResourceType review_article
Snippet Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of novel physical phenomena under extremely strong quantum...
Not provided.
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 181605
SubjectTerms Chemistry
controlled vacuum filtration
optoelectronics
photonics
Review
Science & Technology - Other Topics
wafer-scale crystalline carbon nanotubes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3La9ZAEF-kJy9ifcaqrNCDCrFJ9pHN0YqlFOrJQm_LPrHwNSl5WPzvnUm2H_lKwYunLJtJmOzMZmaY2d8Qcuid9AWPPueeiZxb43Pllc99FGXt6hDknC44_yFPL_jZpbhctfrCmrAFHnhZuCPeeB64FRYMIZfCqxiauhRWQqxgg5qjdbB5q2BqOR9cIExJOpBXNOoI3NfhC5gziY3qViZoRuqHSwc76iEv836x5Mr6nDwlT5LbSL8u7O6TR6F9RvbTxhzox4Qe_ek5uU2T1LSertPTtIv01sTQ5wPIJVDX_wHPECG5YWx627W0NW03TjbQeLW5HuhNH-b6dJqa-dBU176Bqd_GTdM1Eibc3Rfk4uT7z2-neequkDuhyjEvVVDRCxCiNE0sGMw6b3wRY8m8qwwLNtY8VlVdcSMKGPOq5BgxesYMj-wl2Wu7Nrwm1IfoGMMErmBg34zyQBgV_k14gEcz8vluwbVL0OPYAWOjlxS40igdvUgnI4db4psFceNhsmOU3JYEYbLnCVAenZRH_0t5MnKActfgbSBkrsPaIjdqeH9TM5mRD3fqoGHTYSbFtKGbBl1VpcSwpACaV4t6bBnBxm3gVamM1DuKs8Pp7p326tcM7C0xaV3JN__j0w7IY-CiWcrl3pK9sZ_CO_CfRvt-3ip_Aad5HRA
  priority: 102
  providerName: Directory of Open Access Journals
Title Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration
URI https://www.ncbi.nlm.nih.gov/pubmed/31032018
https://www.proquest.com/docview/2216772906
https://www.osti.gov/biblio/1609736
https://pubmed.ncbi.nlm.nih.gov/PMC6458426
https://doaj.org/article/49d4e4b5b028465d8fe9715b6282be80
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaqcuGCKM9QqIzUAyClJPEjzgEhQFQVUoEDK_VmOX5ApW1S8qD03zOTeFfdasUliZxxZHk8mc-ZyTeEHDorXcaDS7ljIuW1calyyqUuiLy0pfdyChecfpUnC_7lTJztkFUxzjiB_datHdaTWnTLo7-_r9-Dwb-byZDUW0Cm_RF4KolcpnfAJZVooacR58-_C2fIWoKF5gCipMg6Ff_Vu9V_wztNJP5wasHYtgHQ23mUNxzT8X1yLyJK-mFeAntkxzcPyF602Z6-isTSrx-Sq9hITePozcg1bQO9MsF3aQ8q89R21wAaka0brk1Xtw1tTNMOY-1pOF9e9PSy81PqOo11fmhMeV9C0x9jx_ECBSMl7yOyOP7849NJGgsvpFaofEhz5VVwAvQrTRUyBq3WGZeFkDNnC8N8HUoeiqIsuBEZXPMi57iZdIwZHthjstu0jX9KqPPBMoaxXcHA9RnlQDAofNFwD10T8mY14dpGVnIsjrHUc3RcadSOnrWTkMO18OVMxrFd7CNqbi2CDNpTQ9v91NEgNa8c97wWNQAsLoVTwVdlLmoJe9Daqywh-6h3DUAE2XQtph3ZQcPzq5LJhLxcLQcN9ohBFtP4dux1UeQSdywZyDyZl8d6IFjTDQCXSki5sXA2Rrp5pzn_NXF-S4xnF_LZf0e1T-7C46s5Re452R260b8AzDTUB9O3hoPJKuD47Xv-D1a8G2A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Science+and+applications+of+wafer-scale+crystalline+carbon+nanotube+films+prepared+through+controlled+vacuum+filtration&rft.jtitle=Royal+Society+open+science&rft.au=Gao%2C+Weilu&rft.au=Kono%2C+Junichiro&rft.date=2019-03-01&rft.pub=The+Royal+Society+Publishing&rft.issn=2054-5703&rft.eissn=2054-5703&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1098%2Frsos.181605&rft.externalDocID=1609736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon