Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) – Anaerobic reactor

Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic react...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 47; no. 15; pp. 5719 - 5728
Main Authors Zhang, Jingxin, Zhang, Yaobin, Quan, Xie, Chen, Shuo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. [Display omitted] •Fe(III) dosing enhanced anaerobic digestion.•Combining a MEC and Fe(III) enhanced anaerobic digestion of organics with respect to Fe(III) only.•The reduced Fe(II) combined electric field helped to improve EPS production.•Increased EPS and Fe(II) were favorable for the enrichment of bacteria in anode biofilm and R1.•Fe(III) dosing helped to enrich more bacterial and archaeal communities in R1.
AbstractList Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.
Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.
Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)₃ (R1), an anaerobic reactor with dosing Fe(OH)₃ (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)₃ enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.
Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. [Display omitted] •Fe(III) dosing enhanced anaerobic digestion.•Combining a MEC and Fe(III) enhanced anaerobic digestion of organics with respect to Fe(III) only.•The reduced Fe(II) combined electric field helped to improve EPS production.•Increased EPS and Fe(II) were favorable for the enrichment of bacteria in anode biofilm and R1.•Fe(III) dosing helped to enrich more bacterial and archaeal communities in R1.
Author Zhang, Jingxin
Chen, Shuo
Quan, Xie
Zhang, Yaobin
Author_xml – sequence: 1
  givenname: Jingxin
  surname: Zhang
  fullname: Zhang, Jingxin
– sequence: 2
  givenname: Yaobin
  surname: Zhang
  fullname: Zhang, Yaobin
  email: zhangyb@dlut.edu.cn, yaobinzhang@163.com
– sequence: 3
  givenname: Xie
  surname: Quan
  fullname: Quan, Xie
– sequence: 4
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27770358$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23886545$$D View this record in MEDLINE/PubMed
BookMark eNqNks-KFDEQxhtZcWdX30A0F2E9zFhJ-k96D8IyjH9gxYPuOVSnK5qhpzMmmZW5-QriG_okZphZFQ_uQiBQ_L76iqrvpDga_UhF8ZjDjAOvXyxnXzEFijMBXM6gnkFV3ysmXDXtVJSlOiomAKWcclmVx8VJjEsAEEK2D4pjIZWqq7KaFN8X1pJJkXnLLIXgDHPBjyy_9JkYjkjBd7marTCtaEy51rOVM7syDqxzvnfXFKJLW-ZGhsz4zXqgvxkaskXwwza6yAwNAzt7t5g_Zz-__WAXvx2ygUk-PCzuWxwiPTr8p8XVq8XH-Zvp5fvXb-cXl1NTKZ6mnCspLXayA7KiEqa1AgQvhe2aikzNG4XYW1n31KGoDTTYCkAlUHKUqpOnxdm-7zr4LxuKSa9c3A2HI_lN1LyuZe7S5u3eAQWQVdOIO6BlAxykhNvRUlaqElI0GX1yQDfdinq9Dm6FYatv7piBZwcAo8HBBhyNi3-4pmnygCpz53sunybGQFYblzA5P6aAbtAc9C5ceqn34dK7cGmodQ5XFpf_iG_63yJ7updZ9Bo_hTzX1YcMVDmP0CrYLe3lnqB872tHQUfjaDTUu5CTo3vv_m_xC4Jo9IE
CODEN WATRAG
CitedBy_id crossref_primary_10_1002_jctb_6099
crossref_primary_10_1002_ep_12868
crossref_primary_10_1039_C5EW00112A
crossref_primary_10_1016_j_watres_2016_06_002
crossref_primary_10_1016_j_scitotenv_2018_03_008
crossref_primary_10_1186_s13068_018_1175_z
crossref_primary_10_1039_C6RA02591A
crossref_primary_10_1016_j_scitotenv_2018_03_255
crossref_primary_10_1016_j_scitotenv_2023_166082
crossref_primary_10_1016_j_chemosphere_2020_126259
crossref_primary_10_1016_j_scitotenv_2019_06_228
crossref_primary_10_1080_10643389_2017_1334457
crossref_primary_10_3390_fermentation4010002
crossref_primary_10_1016_j_renene_2019_06_050
crossref_primary_10_1016_j_scitotenv_2024_175013
crossref_primary_10_1039_C8RA08590K
crossref_primary_10_1016_j_cej_2017_10_159
crossref_primary_10_1016_j_jhazmat_2020_123937
crossref_primary_10_1061__ASCE_EE_1943_7870_0001246
crossref_primary_10_4491_KSEE_2015_37_9_542
crossref_primary_10_1016_j_cej_2016_07_017
crossref_primary_10_1016_j_cej_2019_04_207
crossref_primary_10_1016_j_cej_2017_12_032
crossref_primary_10_1016_j_watres_2022_118119
crossref_primary_10_1186_s12866_016_0800_x
crossref_primary_10_1016_j_cej_2018_05_066
crossref_primary_10_1016_j_psep_2015_09_009
crossref_primary_10_1007_s11783_022_1576_x
crossref_primary_10_1016_j_egyr_2019_08_007
crossref_primary_10_1016_j_watres_2022_119270
crossref_primary_10_1016_j_biortech_2020_123127
crossref_primary_10_1016_j_biotechadv_2020_107610
crossref_primary_10_1016_j_ijhydene_2013_08_131
crossref_primary_10_1016_j_watres_2024_122359
crossref_primary_10_1016_j_jhazmat_2021_127015
crossref_primary_10_20964_2019_01_31
crossref_primary_10_1016_j_biortech_2020_123115
crossref_primary_10_1007_s00203_022_03253_6
crossref_primary_10_1016_j_cej_2017_06_181
crossref_primary_10_1016_j_chemosphere_2022_135410
crossref_primary_10_1039_C6RA02532C
crossref_primary_10_1016_j_biortech_2020_123123
crossref_primary_10_1016_j_jwpe_2021_102379
crossref_primary_10_1016_j_jece_2020_104720
crossref_primary_10_1016_j_watres_2019_03_032
crossref_primary_10_3390_ijerph17030806
crossref_primary_10_1134_S0003683817020193
crossref_primary_10_1007_s11356_017_9047_9
crossref_primary_10_1016_j_scitotenv_2018_03_164
crossref_primary_10_1039_C5RA02362A
crossref_primary_10_1016_j_biortech_2020_123077
crossref_primary_10_1007_s11783_022_1519_6
crossref_primary_10_1016_j_biortech_2014_11_102
crossref_primary_10_1016_j_ijhydene_2017_10_003
crossref_primary_10_1016_j_biortech_2018_05_071
crossref_primary_10_1021_acssuschemeng_6b01221
crossref_primary_10_1016_j_scitotenv_2023_167141
crossref_primary_10_1080_15567036_2020_1788675
crossref_primary_10_1016_j_jtice_2018_12_015
crossref_primary_10_1080_09593330_2018_1540664
crossref_primary_10_1016_j_biortech_2016_07_135
crossref_primary_10_1039_C6RA06868E
crossref_primary_10_1016_j_watres_2018_08_045
crossref_primary_10_2139_ssrn_4165303
crossref_primary_10_1039_C5RA24134K
crossref_primary_10_1016_j_energy_2016_10_004
crossref_primary_10_1038_s41598_017_10572_y
crossref_primary_10_1016_j_jwpe_2024_105020
crossref_primary_10_1016_j_biortech_2018_09_112
crossref_primary_10_1016_j_renene_2022_02_028
crossref_primary_10_1039_C4RA15792C
crossref_primary_10_1007_s11356_020_12031_0
crossref_primary_10_1016_j_jhazmat_2021_127622
crossref_primary_10_1016_j_biortech_2014_12_011
crossref_primary_10_1155_2022_5685178
crossref_primary_10_1016_j_scitotenv_2017_07_078
crossref_primary_10_1016_j_jenvman_2022_114731
crossref_primary_10_1016_j_watres_2022_118667
crossref_primary_10_1016_j_envint_2019_105020
crossref_primary_10_1080_19443994_2015_1065448
crossref_primary_10_3390_ijerph13121259
crossref_primary_10_1016_j_biortech_2017_06_010
crossref_primary_10_1016_j_wasman_2018_02_020
crossref_primary_10_1016_j_biortech_2016_07_037
crossref_primary_10_1016_j_biortech_2023_129089
crossref_primary_10_1016_j_cej_2023_141754
crossref_primary_10_1016_j_ijhydene_2015_10_097
crossref_primary_10_1016_j_biortech_2023_128835
crossref_primary_10_1016_j_scitotenv_2021_147049
crossref_primary_10_1016_j_jece_2022_107790
crossref_primary_10_5004_dwt_2019_24289
crossref_primary_10_1016_j_jes_2017_08_012
crossref_primary_10_1016_j_biortech_2016_02_092
crossref_primary_10_1016_j_jpowsour_2014_10_168
crossref_primary_10_1016_j_watres_2015_10_023
crossref_primary_10_1007_s42729_025_02270_w
crossref_primary_10_3390_en15197042
crossref_primary_10_1016_j_wasman_2018_07_036
crossref_primary_10_1016_j_jhazmat_2022_130515
crossref_primary_10_1016_j_watres_2019_03_075
Cites_doi 10.1016/j.watres.2011.05.028
10.1016/S0960-8524(01)00110-9
10.2166/wst.2009.379
10.1023/B:ABIM.0000033914.52026.e5
10.1016/0043-1354(94)00251-2
10.1016/j.biortech.2011.02.097
10.1016/S0043-1354(00)00345-6
10.1016/j.biortech.2009.12.076
10.1016/j.watres.2012.02.005
10.1016/j.biortech.2011.04.022
10.1038/nature04742
10.1016/j.watres.2009.04.026
10.1021/ja063526d
10.1016/S0021-9258(19)52451-6
10.1038/ismej.2008.48
10.1128/AEM.71.8.4728-4735.2005
10.1023/A:1015475425566
10.1007/BF00218466
10.1021/es0257164
10.1038/nature03959
10.1016/j.biortech.2009.03.070
10.1016/j.ijhydene.2009.05.112
10.1016/j.watres.2009.05.036
10.1016/j.watres.2012.03.059
10.1128/aem.52.5.1167-1172.1986
10.1016/j.watres.2005.12.026
10.1002/bit.20347
10.1016/j.bej.2012.01.008
10.1002/bit.260270514
10.1016/0043-1354(95)00323-1
10.1021/es050244p
10.1021/es702668w
10.1128/AEM.65.3.1280-1288.1999
10.1128/AEM.69.3.1548-1555.2003
10.1016/j.jclepro.2010.06.018
10.1111/j.1365-2958.2007.05778.x
10.1016/j.colsurfa.2011.08.056
10.1111/j.1462-2920.2010.02284.x
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7T7
7U6
7UA
8FD
C1K
F1W
FR3
H96
H97
L.G
P64
SOI
KR7
7S9
L.6
DOI 10.1016/j.watres.2013.06.056
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aqualine
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2448
EndPage 5728
ExternalDocumentID 23886545
27770358
10_1016_j_watres_2013_06_056
US201500009802
S0043135413005599
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
HMC
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAQXK
ABEFU
ABPIF
ABPTK
ABTAH
ACKIV
ADMUD
AEQTP
AFFNX
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
HVGLF
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QH
7ST
7T7
7U6
7UA
8FD
C1K
F1W
FR3
H96
H97
L.G
P64
SOI
KR7
7S9
L.6
ID FETCH-LOGICAL-c581t-11833fab3b0ef252c9f202142fb75ec6178aadf36deba26c07a920a82a31a38b3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Thu Jul 10 19:02:08 EDT 2025
Fri Jul 11 00:32:28 EDT 2025
Fri Jul 11 08:04:21 EDT 2025
Fri Jul 11 02:45:39 EDT 2025
Mon Jul 21 05:17:44 EDT 2025
Wed Apr 02 08:10:25 EDT 2025
Tue Jul 01 03:53:38 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Wed Dec 27 19:11:51 EST 2023
Fri Feb 23 02:26:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Microbial electrolysis cell
Fe(III)
Pyrosequencing
Anaerobic
Organic matter
Natural polymer
Iron III Ions
Biodiversity
Anaerobic digestion
Biochemical fuel cell
Anaerobe
Mineralization
Biopolymer
Volatile fatty acid
Hydroxyl radicals
Bacteria
Oxidation
Biological treatment
Reactor
Sequencing
Organic compounds
Iron II
Archaea
Denaturing gradient gel electrophoresis
Volatile organic compound
Extracellular
Real time system
Polymerase chain reaction
Iron III
Electric field
DNA
Biofilm
Oside polymer
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-11833fab3b0ef252c9f202142fb75ec6178aadf36deba26c07a920a82a31a38b3
Notes http://dx.doi.org/10.1016/j.watres.2013.06.056
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23886545
PQID 1435852327
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1663617901
proquest_miscellaneous_1660035772
proquest_miscellaneous_1647010330
proquest_miscellaneous_1435852327
pubmed_primary_23886545
pascalfrancis_primary_27770358
crossref_citationtrail_10_1016_j_watres_2013_06_056
crossref_primary_10_1016_j_watres_2013_06_056
fao_agris_US201500009802
elsevier_sciencedirect_doi_10_1016_j_watres_2013_06_056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Xiong, Shi, Chen, Mayer, Lower, Londer, Bose, Hochella, Fredrickson, Squier (bib36) 2006; 128
Connaughton, Collins, O’Flaherty (bib6) 2006; 40
Hwang, Song, Kim, Kim, Hwang (bib11) 2010; 101
Molina, Garcia, Roca, Lema, Molina, Castellano (bib21) 2009; 60
Gralnick, Newman (bib9) 2007; 65
Frolund, Palmgren, Keiding, Nielsen (bib8) 1996; 30
Wu, Zhou, Li, Zhang (bib35) 2009; 43
Liu, Grot, Logan (bib16) 2005; 39
Tilman, Reich, Knops (bib30) 2006; 441
Tugel, Hines, Jones (bib32) 1986; 52
Zhang, Zhang, Quan (bib41) 2012; 46
Stams, Oude Elferink, Westermann (bib27) 2003; 81
Zhang, Chen, Zhou (bib40) 2009; 43
Lowry, Rosebrough, Farr, Randall (bib18) 1951; 193
Lu, Xing, Ren (bib19) 2012; 46
Wrana, Sparling, Cicek, Levin (bib33) 2010; 18
Yu, Tay, Fang (bib38) 2001; 35
Margulies, Egholm, Altman, Attiya, Bader, Bemben, Berka, Braverman, Chen, Chen, Dewell, Du, Fierro, Gomes, Godwin, He, Helgesen, Ho, Irzyk, Jando, Alenquer, Jarvie, Jirage, Kim, Knight, Lanza, Leamon, Lefkowitz, Lei, Li, Lohman, Lu, Makhijani, McDade, McKenna, Myers, Nickerson, Nobile, Plant, Puc, Ronan, Roth, Sarkis, Simons, Simpson, Srinivasan, Tartaro, Tomasz, Vogt, Volkmer, Wang, Wang, Weiner, Yu, Begley, Rothberg (bib20) 2005; 437
Bryers (bib4) 1985; 27
Yu, Lee, Kim, Hwang (bib39) 2005; 89
Harms, Layton, Dionisi, Garrett, Hawkins, Robinson, Sayler (bib10) 2003; 37
Sekiguchi, Kamagata, Nakamura, Ohashi, Harada (bib26) 1999; 65
Thrash, Coates (bib29) 2008; 42
Ye, Shao, Zhang, Tong, Lok (bib37) 2011; 45
Ivanov, Stabnikova, Stabnikov, Kim, Zubair (bib12) 2002; 38
Toprak (bib31) 1995; 29
Wrighton, Agbo, Warnecke, Weber, Brodie, DeSantis, Hugenholtz, Andersen, Coates (bib34) 2008; 2
Ahring, Sandberg, Angelidaki (bib1) 1995; 43
Sasaki, Morita, Sasaki, Hirano, Matsumoto, Watanabe, Ohmura, Igarashi (bib24) 2011; 102
Ringeisen, Henderson, Wu, Pietron, Ray, Little, Biffinger, Stabnikov, Tay, Tay, Ivanov (bib22) 2004; 40
Zhang, Zhang, Quan, Li, Chen, Zhao, Wang (bib42) 2012; 63
Sasaki, Sasaki, Morita, Hirano, Matsumoto, Ohmura, Igarashi (bib23) 2010; 101
Fang, Liu (bib7) 2002; 82
Tartakovsky, Mehta, Bourque, Guiot (bib28) 2011; 102
Coates, Cole, Michaelidou, Patrick, Mcinerney, Achenbach (bib5) 2005; 71
Sasaki, Morita, Sasaki, Hirano, Matsumoto, Watanabe, Ohmura, Igarashi (bib25) 2011; 102
Kato, Nakamura, Kai, Watanabe, Hashimoto (bib14) 2010; 12
Ji, Jia, Wu, Bai, Ge, Gu (bib13) 2011; 390
Bond, Lovley (bib3) 2003; 69
APHA (bib2) 2005
Lalaurette, Thammannagowda, Mohagheghi, Maness, Logan (bib15) 2009; 34
Bond (10.1016/j.watres.2013.06.056_bib3) 2003; 69
APHA (10.1016/j.watres.2013.06.056_bib2) 2005
Yu (10.1016/j.watres.2013.06.056_bib38) 2001; 35
Harms (10.1016/j.watres.2013.06.056_bib10) 2003; 37
Sekiguchi (10.1016/j.watres.2013.06.056_bib26) 1999; 65
Wu (10.1016/j.watres.2013.06.056_bib35) 2009; 43
Ji (10.1016/j.watres.2013.06.056_bib13) 2011; 390
Lu (10.1016/j.watres.2013.06.056_bib19) 2012; 46
Gralnick (10.1016/j.watres.2013.06.056_bib9) 2007; 65
Tartakovsky (10.1016/j.watres.2013.06.056_bib28) 2011; 102
Xiong (10.1016/j.watres.2013.06.056_bib36) 2006; 128
Sasaki (10.1016/j.watres.2013.06.056_bib23) 2010; 101
Toprak (10.1016/j.watres.2013.06.056_bib31) 1995; 29
Ahring (10.1016/j.watres.2013.06.056_bib1) 1995; 43
Ringeisen (10.1016/j.watres.2013.06.056_bib22) 2004; 40
Liu (10.1016/j.watres.2013.06.056_bib16) 2005; 39
Lalaurette (10.1016/j.watres.2013.06.056_bib15) 2009; 34
Connaughton (10.1016/j.watres.2013.06.056_bib6) 2006; 40
Sasaki (10.1016/j.watres.2013.06.056_bib25) 2011; 102
Thrash (10.1016/j.watres.2013.06.056_bib29) 2008; 42
Kato (10.1016/j.watres.2013.06.056_bib14) 2010; 12
Ye (10.1016/j.watres.2013.06.056_bib37) 2011; 45
Frolund (10.1016/j.watres.2013.06.056_bib8) 1996; 30
Wrana (10.1016/j.watres.2013.06.056_bib33) 2010; 18
Wrighton (10.1016/j.watres.2013.06.056_bib34) 2008; 2
Coates (10.1016/j.watres.2013.06.056_bib5) 2005; 71
Hwang (10.1016/j.watres.2013.06.056_bib11) 2010; 101
Stams (10.1016/j.watres.2013.06.056_bib27) 2003; 81
Tugel (10.1016/j.watres.2013.06.056_bib32) 1986; 52
Tilman (10.1016/j.watres.2013.06.056_bib30) 2006; 441
Ivanov (10.1016/j.watres.2013.06.056_bib12) 2002; 38
Zhang (10.1016/j.watres.2013.06.056_bib42) 2012; 63
Sasaki (10.1016/j.watres.2013.06.056_bib24) 2011; 102
Zhang (10.1016/j.watres.2013.06.056_bib40) 2009; 43
Margulies (10.1016/j.watres.2013.06.056_bib20) 2005; 437
Zhang (10.1016/j.watres.2013.06.056_bib41) 2012; 46
Yu (10.1016/j.watres.2013.06.056_bib39) 2005; 89
Lowry (10.1016/j.watres.2013.06.056_bib18) 1951; 193
Fang (10.1016/j.watres.2013.06.056_bib7) 2002; 82
Molina (10.1016/j.watres.2013.06.056_bib21) 2009; 60
Bryers (10.1016/j.watres.2013.06.056_bib4) 1985; 27
References_xml – volume: 12
  start-page: 3114
  year: 2010
  end-page: 3123
  ident: bib14
  article-title: Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
– year: 2005
  ident: bib2
  article-title: Standard Methods for the Examination on of Water and Wastewater
– volume: 60
  start-page: 615
  year: 2009
  end-page: 622
  ident: bib21
  article-title: Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes
  publication-title: Water Sci. Technol.
– volume: 35
  start-page: 1052
  year: 2001
  end-page: 1060
  ident: bib38
  article-title: The roles of calcium in sludge granulation during UASB reactor start-up
  publication-title: Water Res.
– volume: 29
  start-page: 1111
  year: 1995
  end-page: 1119
  ident: bib31
  article-title: Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond
  publication-title: Water Res.
– volume: 63
  start-page: 31
  year: 2012
  end-page: 37
  ident: bib42
  article-title: An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater treatment
  publication-title: Biochem. Eng. J.
– volume: 30
  start-page: 1749
  year: 1996
  end-page: 1758
  ident: bib8
  article-title: Extraction of extracellular polymers from activated sludge using a cation exchange resin
  publication-title: Water Res.
– volume: 43
  start-page: 3029
  year: 2009
  end-page: 3036
  ident: bib35
  article-title: Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor
  publication-title: Water Res.
– volume: 46
  start-page: 3535
  year: 2012
  end-page: 3543
  ident: bib41
  article-title: Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities
  publication-title: Water Res.
– volume: 102
  start-page: 6837
  year: 2011
  end-page: 6842
  ident: bib25
  article-title: A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 376
  year: 2004
  end-page: 380
  ident: bib22
  article-title: Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge
  publication-title: Appl. Biochem. Microbiol.
– volume: 45
  start-page: 4390
  year: 2011
  end-page: 4398
  ident: bib37
  article-title: Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing
  publication-title: Water Res.
– volume: 71
  start-page: 4728
  year: 2005
  end-page: 4735
  ident: bib5
  article-title: Biological control of hog waste odor through stimulated microbial Fe(III) reduction
  publication-title: Appl. Environ. Microbiol.
– volume: 390
  start-page: 56
  year: 2011
  end-page: 61
  ident: bib13
  article-title: A layer-by-layer self-assembled Fe
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
– volume: 89
  start-page: 670
  year: 2005
  end-page: 679
  ident: bib39
  article-title: Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction
  publication-title: Biotechnol. Bioeng.
– volume: 65
  start-page: 1
  year: 2007
  end-page: 11
  ident: bib9
  article-title: MicroReview: extracellular respiration
  publication-title: Mol. Microbiol.
– volume: 38
  start-page: 295
  year: 2002
  end-page: 299
  ident: bib12
  article-title: Effects of iron compounds on the treatment of fat-containing wastewaters
  publication-title: Appl. Biochem. Microbiol.
– volume: 101
  start-page: 3415
  year: 2010
  end-page: 3422
  ident: bib23
  article-title: Bioelectrochemical system stabilizes methane fermentation from garbage slurry
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 1146
  year: 2008
  end-page: 1156
  ident: bib34
  article-title: A novel ecological role of the
  publication-title: ISME J
– volume: 46
  start-page: 2425
  year: 2012
  end-page: 2434
  ident: bib19
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H
  publication-title: Water Res.
– volume: 65
  start-page: 1280
  year: 1999
  end-page: 1288
  ident: bib26
  article-title: Fluorescene in situ hydridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules
  publication-title: Appl. Environ. Microbiol.
– volume: 18
  start-page: S105
  year: 2010
  end-page: S111
  ident: bib33
  article-title: Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis
  publication-title: J. Clean. Prod.
– volume: 128
  start-page: 13978
  year: 2006
  end-page: 13979
  ident: bib36
  article-title: High-affinity binding and direct electron transfer to solid metals by the
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 1548
  year: 2003
  end-page: 1555
  ident: bib3
  article-title: Electricity production by Geobacter sulfurreducens attached to electrodes
  publication-title: App. Environ. Microbiol.
– volume: 101
  start-page: S2
  year: 2010
  end-page: S6
  ident: bib11
  article-title: Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 638
  year: 1985
  end-page: 649
  ident: bib4
  article-title: Structures modeling of the anaerobic digestion of biomass particulate
  publication-title: Biotechnol. Bioeng.
– volume: 441
  start-page: 629
  year: 2006
  end-page: 632
  ident: bib30
  article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment
  publication-title: Nature
– volume: 81
  start-page: 31
  year: 2003
  end-page: 56
  ident: bib27
  article-title: Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 102
  start-page: 6837
  year: 2011
  end-page: 6842
  ident: bib24
  article-title: A bioelectrochemical reactor containing carbon fiber texiles enables efficient methane fermentation from garbage slurry
  publication-title: Bioresour. Technol.
– volume: 34
  start-page: 6201
  year: 2009
  end-page: 6210
  ident: bib15
  article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
  publication-title: Int. J. of Hydrogen Energy
– volume: 102
  start-page: 5685
  year: 2011
  end-page: 5691
  ident: bib28
  article-title: Electrolysis-enhanced anaerobic digestion of wastewater
  publication-title: Bioresour. Technol.
– volume: 437
  start-page: 376
  year: 2005
  end-page: 380
  ident: bib20
  article-title: Genome sequencing in micro fabricated high-density picolitre reactors
  publication-title: Nature
– volume: 43
  start-page: 3735
  year: 2009
  end-page: 3742
  ident: bib40
  article-title: Waste activated sludge hydrolysis and short – chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH
  publication-title: Water Res.
– volume: 82
  start-page: 87
  year: 2002
  end-page: 93
  ident: bib7
  article-title: Effect of pH on hydrogen production from glucose by a mixed culture
  publication-title: Bioresour. Technol.
– volume: 37
  start-page: 343
  year: 2003
  end-page: 351
  ident: bib10
  article-title: Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant
  publication-title: Environ. Sci. Technol.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  ident: bib18
  article-title: Protein measurement with the folin phenol reagent
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 559
  year: 1995
  end-page: 565
  ident: bib1
  article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 42
  start-page: 3921
  year: 2008
  end-page: 3931
  ident: bib29
  article-title: Review: direct and indirect electrical stimulation of microbial metabolism
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 1167
  year: 1986
  end-page: 1172
  ident: bib32
  article-title: Microbial iron reduction by enrichment cultures isolated from estuarine sediments
  publication-title: Appl. Environ. Microbiol.
– volume: 40
  start-page: 1009
  year: 2006
  end-page: 1017
  ident: bib6
  article-title: Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18 °C
  publication-title: Water Res.
– volume: 39
  start-page: 4317
  year: 2005
  end-page: 4320
  ident: bib16
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 4390
  issue: 15
  year: 2011
  ident: 10.1016/j.watres.2013.06.056_bib37
  article-title: Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.05.028
– volume: 82
  start-page: 87
  issue: 1
  year: 2002
  ident: 10.1016/j.watres.2013.06.056_bib7
  article-title: Effect of pH on hydrogen production from glucose by a mixed culture
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00110-9
– volume: 60
  start-page: 615
  issue: 3
  year: 2009
  ident: 10.1016/j.watres.2013.06.056_bib21
  article-title: Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2009.379
– year: 2005
  ident: 10.1016/j.watres.2013.06.056_bib2
– volume: 40
  start-page: 376
  issue: 4
  year: 2004
  ident: 10.1016/j.watres.2013.06.056_bib22
  article-title: Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1023/B:ABIM.0000033914.52026.e5
– volume: 81
  start-page: 31
  year: 2003
  ident: 10.1016/j.watres.2013.06.056_bib27
  article-title: Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 29
  start-page: 1111
  issue: 4
  year: 1995
  ident: 10.1016/j.watres.2013.06.056_bib31
  article-title: Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)00251-2
– volume: 102
  start-page: 5685
  issue: 10
  year: 2011
  ident: 10.1016/j.watres.2013.06.056_bib28
  article-title: Electrolysis-enhanced anaerobic digestion of wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.02.097
– volume: 35
  start-page: 1052
  issue: 4
  year: 2001
  ident: 10.1016/j.watres.2013.06.056_bib38
  article-title: The roles of calcium in sludge granulation during UASB reactor start-up
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00345-6
– volume: 101
  start-page: 3415
  issue: 10
  year: 2010
  ident: 10.1016/j.watres.2013.06.056_bib23
  article-title: Bioelectrochemical system stabilizes methane fermentation from garbage slurry
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.12.076
– volume: 46
  start-page: 2425
  issue: 7
  year: 2012
  ident: 10.1016/j.watres.2013.06.056_bib19
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.02.005
– volume: 102
  start-page: 6837
  issue: 13
  year: 2011
  ident: 10.1016/j.watres.2013.06.056_bib25
  article-title: A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.04.022
– volume: 441
  start-page: 629
  issue: 7093
  year: 2006
  ident: 10.1016/j.watres.2013.06.056_bib30
  article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment
  publication-title: Nature
  doi: 10.1038/nature04742
– volume: 43
  start-page: 3029
  issue: 12
  year: 2009
  ident: 10.1016/j.watres.2013.06.056_bib35
  article-title: Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.04.026
– volume: 128
  start-page: 13978
  year: 2006
  ident: 10.1016/j.watres.2013.06.056_bib36
  article-title: High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063526d
– volume: 193
  start-page: 265
  issue: 1
  year: 1951
  ident: 10.1016/j.watres.2013.06.056_bib18
  article-title: Protein measurement with the folin phenol reagent
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)52451-6
– volume: 2
  start-page: 1146
  issue: 11
  year: 2008
  ident: 10.1016/j.watres.2013.06.056_bib34
  article-title: A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells
  publication-title: ISME J
  doi: 10.1038/ismej.2008.48
– volume: 71
  start-page: 4728
  issue: 8
  year: 2005
  ident: 10.1016/j.watres.2013.06.056_bib5
  article-title: Biological control of hog waste odor through stimulated microbial Fe(III) reduction
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.8.4728-4735.2005
– volume: 38
  start-page: 295
  issue: 3
  year: 2002
  ident: 10.1016/j.watres.2013.06.056_bib12
  article-title: Effects of iron compounds on the treatment of fat-containing wastewaters
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1023/A:1015475425566
– volume: 43
  start-page: 559
  issue: 3
  year: 1995
  ident: 10.1016/j.watres.2013.06.056_bib1
  article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00218466
– volume: 37
  start-page: 343
  issue: 2
  year: 2003
  ident: 10.1016/j.watres.2013.06.056_bib10
  article-title: Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0257164
– volume: 437
  start-page: 376
  issue: 7057
  year: 2005
  ident: 10.1016/j.watres.2013.06.056_bib20
  article-title: Genome sequencing in micro fabricated high-density picolitre reactors
  publication-title: Nature
  doi: 10.1038/nature03959
– volume: 101
  start-page: S2
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2013.06.056_bib11
  article-title: Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.03.070
– volume: 34
  start-page: 6201
  issue: 15
  year: 2009
  ident: 10.1016/j.watres.2013.06.056_bib15
  article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
  publication-title: Int. J. of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.112
– volume: 43
  start-page: 3735
  issue: 15
  year: 2009
  ident: 10.1016/j.watres.2013.06.056_bib40
  article-title: Waste activated sludge hydrolysis and short – chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.05.036
– volume: 46
  start-page: 3535
  issue: 11
  year: 2012
  ident: 10.1016/j.watres.2013.06.056_bib41
  article-title: Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.03.059
– volume: 102
  start-page: 6837
  issue: 13
  year: 2011
  ident: 10.1016/j.watres.2013.06.056_bib24
  article-title: A bioelectrochemical reactor containing carbon fiber texiles enables efficient methane fermentation from garbage slurry
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.04.022
– volume: 52
  start-page: 1167
  issue: 5
  year: 1986
  ident: 10.1016/j.watres.2013.06.056_bib32
  article-title: Microbial iron reduction by enrichment cultures isolated from estuarine sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.52.5.1167-1172.1986
– volume: 40
  start-page: 1009
  issue: 5
  year: 2006
  ident: 10.1016/j.watres.2013.06.056_bib6
  article-title: Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18 °C
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.12.026
– volume: 89
  start-page: 670
  issue: 6
  year: 2005
  ident: 10.1016/j.watres.2013.06.056_bib39
  article-title: Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20347
– volume: 63
  start-page: 31
  issue: 15
  year: 2012
  ident: 10.1016/j.watres.2013.06.056_bib42
  article-title: An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater treatment
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2012.01.008
– volume: 27
  start-page: 638
  year: 1985
  ident: 10.1016/j.watres.2013.06.056_bib4
  article-title: Structures modeling of the anaerobic digestion of biomass particulate
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260270514
– volume: 30
  start-page: 1749
  issue: 8
  year: 1996
  ident: 10.1016/j.watres.2013.06.056_bib8
  article-title: Extraction of extracellular polymers from activated sludge using a cation exchange resin
  publication-title: Water Res.
  doi: 10.1016/0043-1354(95)00323-1
– volume: 39
  start-page: 4317
  issue: 11
  year: 2005
  ident: 10.1016/j.watres.2013.06.056_bib16
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050244p
– volume: 42
  start-page: 3921
  issue: 11
  year: 2008
  ident: 10.1016/j.watres.2013.06.056_bib29
  article-title: Review: direct and indirect electrical stimulation of microbial metabolism
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702668w
– volume: 65
  start-page: 1280
  issue: 3
  year: 1999
  ident: 10.1016/j.watres.2013.06.056_bib26
  article-title: Fluorescene in situ hydridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.3.1280-1288.1999
– volume: 69
  start-page: 1548
  issue: 3
  year: 2003
  ident: 10.1016/j.watres.2013.06.056_bib3
  article-title: Electricity production by Geobacter sulfurreducens attached to electrodes
  publication-title: App. Environ. Microbiol.
  doi: 10.1128/AEM.69.3.1548-1555.2003
– volume: 18
  start-page: S105
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2013.06.056_bib33
  article-title: Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2010.06.018
– volume: 65
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.watres.2013.06.056_bib9
  article-title: MicroReview: extracellular respiration
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05778.x
– volume: 390
  start-page: 56
  year: 2011
  ident: 10.1016/j.watres.2013.06.056_bib13
  article-title: A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2011.08.056
– volume: 12
  start-page: 3114
  issue: 12
  year: 2010
  ident: 10.1016/j.watres.2013.06.056_bib14
  article-title: Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02284.x
SSID ssj0002239
Score 2.4505208
Snippet Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a...
Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5719
SubjectTerms Anaerobic
Anaerobic digestion
Anaerobic treatment
Anaerobiosis
Applied sciences
Archaea
Bacteria
Biodiversity
biofilm
Biofilms
Biofilms - drug effects
Bioreactors
Bioreactors - microbiology
chemical oxygen demand
denaturing gradient gel electrophoresis
Dosage
Dosing
drug effects
electric field
electrodes
electrolysis
Electrolysis - methods
Exact sciences and technology
Fatty Acids, Volatile
Fatty Acids, Volatile - metabolism
Fe(III)
Ferric Compounds
Ferric Compounds - pharmacology
iron
metabolism
methods
Microbial electrolysis cell
microbiology
Microorganisms
mineralization
oxidation
pharmacology
Pollution
polymerase chain reaction
Pyrosequencing
Reactors
Real-Time Polymerase Chain Reaction
sequence analysis
volatile fatty acids
Water treatment and pollution
Title Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) – Anaerobic reactor
URI https://dx.doi.org/10.1016/j.watres.2013.06.056
https://www.ncbi.nlm.nih.gov/pubmed/23886545
https://www.proquest.com/docview/1435852327
https://www.proquest.com/docview/1647010330
https://www.proquest.com/docview/1660035772
https://www.proquest.com/docview/1663617901
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKucABld8G2pWROMAh1GvHjnNcrVotoPYCK_Vm2Y6NgkqyYnfFDfEKiDfkSTqTn20rwVZCyiXRJLE8k5lx_M03hLwSIVjHsphiP8A041GmusxcyrUuYnBIWof_O07P1GyevT-X5ztkOtTCIKyy9_2dT2-9dX_lqJ_No0VVYY0vBD8h0Qsz5M3CCvYsRyt_--MK5gHhrxh2mVF6KJ9rMV7fLRZkIMBLtCye2Mb67-HpTrQN4ibtEqYudj0v_p2UtsHpZI886LNKOukG_pDshPoRuX-Na_Ax-dXxFC9pE2lEOkZPscKNwgE5ILW1DUjJ5OkGeg7XSvq1apma4OGuasoBxEGrmlrqm_XiIlyX6ZvqtDQnFPcE6OvT4-kb-ufnbzrZvAFegFsFT8j85PjTdJb2_RhSL_V4lcJaRIhonXAsRC65LyJvKduiy2XwWGxobRmFKoOzXHmW24Izq7kVYyu0E0_Jbt3UYZ9Qy7woMkjOYPWTFVpBTAwaVp8sYorj8oSIQQ3G92Tl2DPjwgyotC-mU55B5RkE50mVkHRz16Ij67hFPh80bG4YnYF4csud-2AQxn4GT2zmHzn-N8J0VTOekNENK9mMBKwe3KvUCXk5mI2BbxmVYevQrJcGc1ctIcfNt8ioLMfeHIJtk1G4QwwLp60yQiE92zghzzrbvRqp0FpBav38v-fnBbmHZx3q8YDsrr6twyFkbys3aj_PEbk7efdhdnYJaWRC-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9LDtMOxd79FpwA7bwagjWbZ8DIIW6drksgboTZAcafDQ2cGSoNf-hWH_cL9kpF9rgS0FBuTkULYg0uQni_wI8F44Z2wU-5D6AYYx9zJUi9iGXKnMO0ukdfS9YzpLJvP404W82IFxVwtDaZWt7298eu2t2yuH7WoeLouCanwx-AlJXjgi3qxd2CN2KjmAvdHJ6WTWO2SMgFl30EwDugq6Os3rylBNBuV4iZrIkzpZ_z1C7XpTUeqkWeHq-abtxb9xaR2fjh_BwxZYslEz98ew48on8OAG3eBT-NFQFa9Y5ZknRsacUZEbwx_CQGZK44iVKWd99jleW7BvRU3WhDe3RbXo8jhYUTLD8mqzvHQ3Zdq-OjXTCaNjAfZhejT-yH5d_2Sj_gn4ADoteAbz46Pz8SRsWzKEuVTDdYjbESG8scJGznPJ88zzmrXN21S6nOoNjVl4kSycNTzJo9RkPDKKGzE0QlnxHAZlVbp9YCbKRRYjPsMNUJypBMOiU7gBjTyhHJsGIDo16LzlK6e2GZe6S0z7qhvlaVKepvw8mQQQ9qOWDV_HHfJpp2F9y-40hpQ7Ru6jQWjzBZ2xnn_m9OmIEKuKeAAHt6yknwkaPnpYqQJ415mNxteZlGFKV21WmuCrkghz0y0ySZxSew4RbZNJ6JAY905bZURCDG3DAF40tvtnpkKpBNH1y_9en7dwb3I-PdNnJ7PTV3Cf_mmSIF_DYP19494gmFvbg_Zl_Q1YukWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ferric+iron+on+the+anaerobic+treatment+and+microbial+biodiversity+in+a+coupled+microbial+electrolysis+cell+%28MEC%29+%E2%80%93+Anaerobic+reactor&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhang%2C+Jingxin&rft.au=Zhang%2C+Yaobin&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Shuo&rft.date=2013-10-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=47&rft.issue=15&rft.spage=5719&rft.epage=5728&rft_id=info:doi/10.1016%2Fj.watres.2013.06.056&rft.externalDocID=US201500009802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon