Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) – Anaerobic reactor
Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic react...
Saved in:
Published in | Water research (Oxford) Vol. 47; no. 15; pp. 5719 - 5728 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.
[Display omitted]
•Fe(III) dosing enhanced anaerobic digestion.•Combining a MEC and Fe(III) enhanced anaerobic digestion of organics with respect to Fe(III) only.•The reduced Fe(II) combined electric field helped to improve EPS production.•Increased EPS and Fe(II) were favorable for the enrichment of bacteria in anode biofilm and R1.•Fe(III) dosing helped to enrich more bacterial and archaeal communities in R1. |
---|---|
AbstractList | Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)₃ (R1), an anaerobic reactor with dosing Fe(OH)₃ (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)₃ enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC – anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real – time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1. [Display omitted] •Fe(III) dosing enhanced anaerobic digestion.•Combining a MEC and Fe(III) enhanced anaerobic digestion of organics with respect to Fe(III) only.•The reduced Fe(II) combined electric field helped to improve EPS production.•Increased EPS and Fe(II) were favorable for the enrichment of bacteria in anode biofilm and R1.•Fe(III) dosing helped to enrich more bacterial and archaeal communities in R1. |
Author | Zhang, Jingxin Chen, Shuo Quan, Xie Zhang, Yaobin |
Author_xml | – sequence: 1 givenname: Jingxin surname: Zhang fullname: Zhang, Jingxin – sequence: 2 givenname: Yaobin surname: Zhang fullname: Zhang, Yaobin email: zhangyb@dlut.edu.cn, yaobinzhang@163.com – sequence: 3 givenname: Xie surname: Quan fullname: Quan, Xie – sequence: 4 givenname: Shuo surname: Chen fullname: Chen, Shuo |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27770358$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23886545$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-KFDEQxhtZcWdX30A0F2E9zFhJ-k96D8IyjH9gxYPuOVSnK5qhpzMmmZW5-QriG_okZphZFQ_uQiBQ_L76iqrvpDga_UhF8ZjDjAOvXyxnXzEFijMBXM6gnkFV3ysmXDXtVJSlOiomAKWcclmVx8VJjEsAEEK2D4pjIZWqq7KaFN8X1pJJkXnLLIXgDHPBjyy_9JkYjkjBd7marTCtaEy51rOVM7syDqxzvnfXFKJLW-ZGhsz4zXqgvxkaskXwwza6yAwNAzt7t5g_Zz-__WAXvx2ygUk-PCzuWxwiPTr8p8XVq8XH-Zvp5fvXb-cXl1NTKZ6mnCspLXayA7KiEqa1AgQvhe2aikzNG4XYW1n31KGoDTTYCkAlUHKUqpOnxdm-7zr4LxuKSa9c3A2HI_lN1LyuZe7S5u3eAQWQVdOIO6BlAxykhNvRUlaqElI0GX1yQDfdinq9Dm6FYatv7piBZwcAo8HBBhyNi3-4pmnygCpz53sunybGQFYblzA5P6aAbtAc9C5ceqn34dK7cGmodQ5XFpf_iG_63yJ7updZ9Bo_hTzX1YcMVDmP0CrYLe3lnqB872tHQUfjaDTUu5CTo3vv_m_xC4Jo9IE |
CODEN | WATRAG |
CitedBy_id | crossref_primary_10_1002_jctb_6099 crossref_primary_10_1002_ep_12868 crossref_primary_10_1039_C5EW00112A crossref_primary_10_1016_j_watres_2016_06_002 crossref_primary_10_1016_j_scitotenv_2018_03_008 crossref_primary_10_1186_s13068_018_1175_z crossref_primary_10_1039_C6RA02591A crossref_primary_10_1016_j_scitotenv_2018_03_255 crossref_primary_10_1016_j_scitotenv_2023_166082 crossref_primary_10_1016_j_chemosphere_2020_126259 crossref_primary_10_1016_j_scitotenv_2019_06_228 crossref_primary_10_1080_10643389_2017_1334457 crossref_primary_10_3390_fermentation4010002 crossref_primary_10_1016_j_renene_2019_06_050 crossref_primary_10_1016_j_scitotenv_2024_175013 crossref_primary_10_1039_C8RA08590K crossref_primary_10_1016_j_cej_2017_10_159 crossref_primary_10_1016_j_jhazmat_2020_123937 crossref_primary_10_1061__ASCE_EE_1943_7870_0001246 crossref_primary_10_4491_KSEE_2015_37_9_542 crossref_primary_10_1016_j_cej_2016_07_017 crossref_primary_10_1016_j_cej_2019_04_207 crossref_primary_10_1016_j_cej_2017_12_032 crossref_primary_10_1016_j_watres_2022_118119 crossref_primary_10_1186_s12866_016_0800_x crossref_primary_10_1016_j_cej_2018_05_066 crossref_primary_10_1016_j_psep_2015_09_009 crossref_primary_10_1007_s11783_022_1576_x crossref_primary_10_1016_j_egyr_2019_08_007 crossref_primary_10_1016_j_watres_2022_119270 crossref_primary_10_1016_j_biortech_2020_123127 crossref_primary_10_1016_j_biotechadv_2020_107610 crossref_primary_10_1016_j_ijhydene_2013_08_131 crossref_primary_10_1016_j_watres_2024_122359 crossref_primary_10_1016_j_jhazmat_2021_127015 crossref_primary_10_20964_2019_01_31 crossref_primary_10_1016_j_biortech_2020_123115 crossref_primary_10_1007_s00203_022_03253_6 crossref_primary_10_1016_j_cej_2017_06_181 crossref_primary_10_1016_j_chemosphere_2022_135410 crossref_primary_10_1039_C6RA02532C crossref_primary_10_1016_j_biortech_2020_123123 crossref_primary_10_1016_j_jwpe_2021_102379 crossref_primary_10_1016_j_jece_2020_104720 crossref_primary_10_1016_j_watres_2019_03_032 crossref_primary_10_3390_ijerph17030806 crossref_primary_10_1134_S0003683817020193 crossref_primary_10_1007_s11356_017_9047_9 crossref_primary_10_1016_j_scitotenv_2018_03_164 crossref_primary_10_1039_C5RA02362A crossref_primary_10_1016_j_biortech_2020_123077 crossref_primary_10_1007_s11783_022_1519_6 crossref_primary_10_1016_j_biortech_2014_11_102 crossref_primary_10_1016_j_ijhydene_2017_10_003 crossref_primary_10_1016_j_biortech_2018_05_071 crossref_primary_10_1021_acssuschemeng_6b01221 crossref_primary_10_1016_j_scitotenv_2023_167141 crossref_primary_10_1080_15567036_2020_1788675 crossref_primary_10_1016_j_jtice_2018_12_015 crossref_primary_10_1080_09593330_2018_1540664 crossref_primary_10_1016_j_biortech_2016_07_135 crossref_primary_10_1039_C6RA06868E crossref_primary_10_1016_j_watres_2018_08_045 crossref_primary_10_2139_ssrn_4165303 crossref_primary_10_1039_C5RA24134K crossref_primary_10_1016_j_energy_2016_10_004 crossref_primary_10_1038_s41598_017_10572_y crossref_primary_10_1016_j_jwpe_2024_105020 crossref_primary_10_1016_j_biortech_2018_09_112 crossref_primary_10_1016_j_renene_2022_02_028 crossref_primary_10_1039_C4RA15792C crossref_primary_10_1007_s11356_020_12031_0 crossref_primary_10_1016_j_jhazmat_2021_127622 crossref_primary_10_1016_j_biortech_2014_12_011 crossref_primary_10_1155_2022_5685178 crossref_primary_10_1016_j_scitotenv_2017_07_078 crossref_primary_10_1016_j_jenvman_2022_114731 crossref_primary_10_1016_j_watres_2022_118667 crossref_primary_10_1016_j_envint_2019_105020 crossref_primary_10_1080_19443994_2015_1065448 crossref_primary_10_3390_ijerph13121259 crossref_primary_10_1016_j_biortech_2017_06_010 crossref_primary_10_1016_j_wasman_2018_02_020 crossref_primary_10_1016_j_biortech_2016_07_037 crossref_primary_10_1016_j_biortech_2023_129089 crossref_primary_10_1016_j_cej_2023_141754 crossref_primary_10_1016_j_ijhydene_2015_10_097 crossref_primary_10_1016_j_biortech_2023_128835 crossref_primary_10_1016_j_scitotenv_2021_147049 crossref_primary_10_1016_j_jece_2022_107790 crossref_primary_10_5004_dwt_2019_24289 crossref_primary_10_1016_j_jes_2017_08_012 crossref_primary_10_1016_j_biortech_2016_02_092 crossref_primary_10_1016_j_jpowsour_2014_10_168 crossref_primary_10_1016_j_watres_2015_10_023 crossref_primary_10_1007_s42729_025_02270_w crossref_primary_10_3390_en15197042 crossref_primary_10_1016_j_wasman_2018_07_036 crossref_primary_10_1016_j_jhazmat_2022_130515 crossref_primary_10_1016_j_watres_2019_03_075 |
Cites_doi | 10.1016/j.watres.2011.05.028 10.1016/S0960-8524(01)00110-9 10.2166/wst.2009.379 10.1023/B:ABIM.0000033914.52026.e5 10.1016/0043-1354(94)00251-2 10.1016/j.biortech.2011.02.097 10.1016/S0043-1354(00)00345-6 10.1016/j.biortech.2009.12.076 10.1016/j.watres.2012.02.005 10.1016/j.biortech.2011.04.022 10.1038/nature04742 10.1016/j.watres.2009.04.026 10.1021/ja063526d 10.1016/S0021-9258(19)52451-6 10.1038/ismej.2008.48 10.1128/AEM.71.8.4728-4735.2005 10.1023/A:1015475425566 10.1007/BF00218466 10.1021/es0257164 10.1038/nature03959 10.1016/j.biortech.2009.03.070 10.1016/j.ijhydene.2009.05.112 10.1016/j.watres.2009.05.036 10.1016/j.watres.2012.03.059 10.1128/aem.52.5.1167-1172.1986 10.1016/j.watres.2005.12.026 10.1002/bit.20347 10.1016/j.bej.2012.01.008 10.1002/bit.260270514 10.1016/0043-1354(95)00323-1 10.1021/es050244p 10.1021/es702668w 10.1128/AEM.65.3.1280-1288.1999 10.1128/AEM.69.3.1548-1555.2003 10.1016/j.jclepro.2010.06.018 10.1111/j.1365-2958.2007.05778.x 10.1016/j.colsurfa.2011.08.056 10.1111/j.1462-2920.2010.02284.x |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QH 7ST 7T7 7U6 7UA 8FD C1K F1W FR3 H96 H97 L.G P64 SOI KR7 7S9 L.6 |
DOI | 10.1016/j.watres.2013.06.056 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aqualine Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Sustainability Science Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-2448 |
EndPage | 5728 |
ExternalDocumentID | 23886545 27770358 10_1016_j_watres_2013_06_056 US201500009802 S0043135413005599 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMA HMC HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK ABEFU ABPIF ABPTK ABTAH ACKIV ADMUD AEQTP AFFNX ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HVGLF H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QH 7ST 7T7 7U6 7UA 8FD C1K F1W FR3 H96 H97 L.G P64 SOI KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c581t-11833fab3b0ef252c9f202142fb75ec6178aadf36deba26c07a920a82a31a38b3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Thu Jul 10 19:02:08 EDT 2025 Fri Jul 11 00:32:28 EDT 2025 Fri Jul 11 08:04:21 EDT 2025 Fri Jul 11 02:45:39 EDT 2025 Mon Jul 21 05:17:44 EDT 2025 Wed Apr 02 08:10:25 EDT 2025 Tue Jul 01 03:53:38 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Wed Dec 27 19:11:51 EST 2023 Fri Feb 23 02:26:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Microbial electrolysis cell Fe(III) Pyrosequencing Anaerobic Organic matter Natural polymer Iron III Ions Biodiversity Anaerobic digestion Biochemical fuel cell Anaerobe Mineralization Biopolymer Volatile fatty acid Hydroxyl radicals Bacteria Oxidation Biological treatment Reactor Sequencing Organic compounds Iron II Archaea Denaturing gradient gel electrophoresis Volatile organic compound Extracellular Real time system Polymerase chain reaction Iron III Electric field DNA Biofilm Oside polymer |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-11833fab3b0ef252c9f202142fb75ec6178aadf36deba26c07a920a82a31a38b3 |
Notes | http://dx.doi.org/10.1016/j.watres.2013.06.056 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23886545 |
PQID | 1435852327 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1663617901 proquest_miscellaneous_1660035772 proquest_miscellaneous_1647010330 proquest_miscellaneous_1435852327 pubmed_primary_23886545 pascalfrancis_primary_27770358 crossref_citationtrail_10_1016_j_watres_2013_06_056 crossref_primary_10_1016_j_watres_2013_06_056 fao_agris_US201500009802 elsevier_sciencedirect_doi_10_1016_j_watres_2013_06_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Xiong, Shi, Chen, Mayer, Lower, Londer, Bose, Hochella, Fredrickson, Squier (bib36) 2006; 128 Connaughton, Collins, O’Flaherty (bib6) 2006; 40 Hwang, Song, Kim, Kim, Hwang (bib11) 2010; 101 Molina, Garcia, Roca, Lema, Molina, Castellano (bib21) 2009; 60 Gralnick, Newman (bib9) 2007; 65 Frolund, Palmgren, Keiding, Nielsen (bib8) 1996; 30 Wu, Zhou, Li, Zhang (bib35) 2009; 43 Liu, Grot, Logan (bib16) 2005; 39 Tilman, Reich, Knops (bib30) 2006; 441 Tugel, Hines, Jones (bib32) 1986; 52 Zhang, Zhang, Quan (bib41) 2012; 46 Stams, Oude Elferink, Westermann (bib27) 2003; 81 Zhang, Chen, Zhou (bib40) 2009; 43 Lowry, Rosebrough, Farr, Randall (bib18) 1951; 193 Lu, Xing, Ren (bib19) 2012; 46 Wrana, Sparling, Cicek, Levin (bib33) 2010; 18 Yu, Tay, Fang (bib38) 2001; 35 Margulies, Egholm, Altman, Attiya, Bader, Bemben, Berka, Braverman, Chen, Chen, Dewell, Du, Fierro, Gomes, Godwin, He, Helgesen, Ho, Irzyk, Jando, Alenquer, Jarvie, Jirage, Kim, Knight, Lanza, Leamon, Lefkowitz, Lei, Li, Lohman, Lu, Makhijani, McDade, McKenna, Myers, Nickerson, Nobile, Plant, Puc, Ronan, Roth, Sarkis, Simons, Simpson, Srinivasan, Tartaro, Tomasz, Vogt, Volkmer, Wang, Wang, Weiner, Yu, Begley, Rothberg (bib20) 2005; 437 Bryers (bib4) 1985; 27 Yu, Lee, Kim, Hwang (bib39) 2005; 89 Harms, Layton, Dionisi, Garrett, Hawkins, Robinson, Sayler (bib10) 2003; 37 Sekiguchi, Kamagata, Nakamura, Ohashi, Harada (bib26) 1999; 65 Thrash, Coates (bib29) 2008; 42 Ye, Shao, Zhang, Tong, Lok (bib37) 2011; 45 Ivanov, Stabnikova, Stabnikov, Kim, Zubair (bib12) 2002; 38 Toprak (bib31) 1995; 29 Wrighton, Agbo, Warnecke, Weber, Brodie, DeSantis, Hugenholtz, Andersen, Coates (bib34) 2008; 2 Ahring, Sandberg, Angelidaki (bib1) 1995; 43 Sasaki, Morita, Sasaki, Hirano, Matsumoto, Watanabe, Ohmura, Igarashi (bib24) 2011; 102 Ringeisen, Henderson, Wu, Pietron, Ray, Little, Biffinger, Stabnikov, Tay, Tay, Ivanov (bib22) 2004; 40 Zhang, Zhang, Quan, Li, Chen, Zhao, Wang (bib42) 2012; 63 Sasaki, Sasaki, Morita, Hirano, Matsumoto, Ohmura, Igarashi (bib23) 2010; 101 Fang, Liu (bib7) 2002; 82 Tartakovsky, Mehta, Bourque, Guiot (bib28) 2011; 102 Coates, Cole, Michaelidou, Patrick, Mcinerney, Achenbach (bib5) 2005; 71 Sasaki, Morita, Sasaki, Hirano, Matsumoto, Watanabe, Ohmura, Igarashi (bib25) 2011; 102 Kato, Nakamura, Kai, Watanabe, Hashimoto (bib14) 2010; 12 Ji, Jia, Wu, Bai, Ge, Gu (bib13) 2011; 390 Bond, Lovley (bib3) 2003; 69 APHA (bib2) 2005 Lalaurette, Thammannagowda, Mohagheghi, Maness, Logan (bib15) 2009; 34 Bond (10.1016/j.watres.2013.06.056_bib3) 2003; 69 APHA (10.1016/j.watres.2013.06.056_bib2) 2005 Yu (10.1016/j.watres.2013.06.056_bib38) 2001; 35 Harms (10.1016/j.watres.2013.06.056_bib10) 2003; 37 Sekiguchi (10.1016/j.watres.2013.06.056_bib26) 1999; 65 Wu (10.1016/j.watres.2013.06.056_bib35) 2009; 43 Ji (10.1016/j.watres.2013.06.056_bib13) 2011; 390 Lu (10.1016/j.watres.2013.06.056_bib19) 2012; 46 Gralnick (10.1016/j.watres.2013.06.056_bib9) 2007; 65 Tartakovsky (10.1016/j.watres.2013.06.056_bib28) 2011; 102 Xiong (10.1016/j.watres.2013.06.056_bib36) 2006; 128 Sasaki (10.1016/j.watres.2013.06.056_bib23) 2010; 101 Toprak (10.1016/j.watres.2013.06.056_bib31) 1995; 29 Ahring (10.1016/j.watres.2013.06.056_bib1) 1995; 43 Ringeisen (10.1016/j.watres.2013.06.056_bib22) 2004; 40 Liu (10.1016/j.watres.2013.06.056_bib16) 2005; 39 Lalaurette (10.1016/j.watres.2013.06.056_bib15) 2009; 34 Connaughton (10.1016/j.watres.2013.06.056_bib6) 2006; 40 Sasaki (10.1016/j.watres.2013.06.056_bib25) 2011; 102 Thrash (10.1016/j.watres.2013.06.056_bib29) 2008; 42 Kato (10.1016/j.watres.2013.06.056_bib14) 2010; 12 Ye (10.1016/j.watres.2013.06.056_bib37) 2011; 45 Frolund (10.1016/j.watres.2013.06.056_bib8) 1996; 30 Wrana (10.1016/j.watres.2013.06.056_bib33) 2010; 18 Wrighton (10.1016/j.watres.2013.06.056_bib34) 2008; 2 Coates (10.1016/j.watres.2013.06.056_bib5) 2005; 71 Hwang (10.1016/j.watres.2013.06.056_bib11) 2010; 101 Stams (10.1016/j.watres.2013.06.056_bib27) 2003; 81 Tugel (10.1016/j.watres.2013.06.056_bib32) 1986; 52 Tilman (10.1016/j.watres.2013.06.056_bib30) 2006; 441 Ivanov (10.1016/j.watres.2013.06.056_bib12) 2002; 38 Zhang (10.1016/j.watres.2013.06.056_bib42) 2012; 63 Sasaki (10.1016/j.watres.2013.06.056_bib24) 2011; 102 Zhang (10.1016/j.watres.2013.06.056_bib40) 2009; 43 Margulies (10.1016/j.watres.2013.06.056_bib20) 2005; 437 Zhang (10.1016/j.watres.2013.06.056_bib41) 2012; 46 Yu (10.1016/j.watres.2013.06.056_bib39) 2005; 89 Lowry (10.1016/j.watres.2013.06.056_bib18) 1951; 193 Fang (10.1016/j.watres.2013.06.056_bib7) 2002; 82 Molina (10.1016/j.watres.2013.06.056_bib21) 2009; 60 Bryers (10.1016/j.watres.2013.06.056_bib4) 1985; 27 |
References_xml | – volume: 12 start-page: 3114 year: 2010 end-page: 3123 ident: bib14 article-title: Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals publication-title: Environ. Microbiol. – year: 2005 ident: bib2 article-title: Standard Methods for the Examination on of Water and Wastewater – volume: 60 start-page: 615 year: 2009 end-page: 622 ident: bib21 article-title: Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes publication-title: Water Sci. Technol. – volume: 35 start-page: 1052 year: 2001 end-page: 1060 ident: bib38 article-title: The roles of calcium in sludge granulation during UASB reactor start-up publication-title: Water Res. – volume: 29 start-page: 1111 year: 1995 end-page: 1119 ident: bib31 article-title: Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond publication-title: Water Res. – volume: 63 start-page: 31 year: 2012 end-page: 37 ident: bib42 article-title: An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater treatment publication-title: Biochem. Eng. J. – volume: 30 start-page: 1749 year: 1996 end-page: 1758 ident: bib8 article-title: Extraction of extracellular polymers from activated sludge using a cation exchange resin publication-title: Water Res. – volume: 43 start-page: 3029 year: 2009 end-page: 3036 ident: bib35 article-title: Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor publication-title: Water Res. – volume: 46 start-page: 3535 year: 2012 end-page: 3543 ident: bib41 article-title: Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities publication-title: Water Res. – volume: 102 start-page: 6837 year: 2011 end-page: 6842 ident: bib25 article-title: A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry publication-title: Bioresour. Technol. – volume: 40 start-page: 376 year: 2004 end-page: 380 ident: bib22 article-title: Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge publication-title: Appl. Biochem. Microbiol. – volume: 45 start-page: 4390 year: 2011 end-page: 4398 ident: bib37 article-title: Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing publication-title: Water Res. – volume: 71 start-page: 4728 year: 2005 end-page: 4735 ident: bib5 article-title: Biological control of hog waste odor through stimulated microbial Fe(III) reduction publication-title: Appl. Environ. Microbiol. – volume: 390 start-page: 56 year: 2011 end-page: 61 ident: bib13 article-title: A layer-by-layer self-assembled Fe publication-title: Colloids Surf. A: Physicochem. Eng. Aspects – volume: 89 start-page: 670 year: 2005 end-page: 679 ident: bib39 article-title: Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction publication-title: Biotechnol. Bioeng. – volume: 65 start-page: 1 year: 2007 end-page: 11 ident: bib9 article-title: MicroReview: extracellular respiration publication-title: Mol. Microbiol. – volume: 38 start-page: 295 year: 2002 end-page: 299 ident: bib12 article-title: Effects of iron compounds on the treatment of fat-containing wastewaters publication-title: Appl. Biochem. Microbiol. – volume: 101 start-page: 3415 year: 2010 end-page: 3422 ident: bib23 article-title: Bioelectrochemical system stabilizes methane fermentation from garbage slurry publication-title: Bioresour. Technol. – volume: 2 start-page: 1146 year: 2008 end-page: 1156 ident: bib34 article-title: A novel ecological role of the publication-title: ISME J – volume: 46 start-page: 2425 year: 2012 end-page: 2434 ident: bib19 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H publication-title: Water Res. – volume: 65 start-page: 1280 year: 1999 end-page: 1288 ident: bib26 article-title: Fluorescene in situ hydridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules publication-title: Appl. Environ. Microbiol. – volume: 18 start-page: S105 year: 2010 end-page: S111 ident: bib33 article-title: Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis publication-title: J. Clean. Prod. – volume: 128 start-page: 13978 year: 2006 end-page: 13979 ident: bib36 article-title: High-affinity binding and direct electron transfer to solid metals by the publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 1548 year: 2003 end-page: 1555 ident: bib3 article-title: Electricity production by Geobacter sulfurreducens attached to electrodes publication-title: App. Environ. Microbiol. – volume: 101 start-page: S2 year: 2010 end-page: S6 ident: bib11 article-title: Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater publication-title: Bioresour. Technol. – volume: 27 start-page: 638 year: 1985 end-page: 649 ident: bib4 article-title: Structures modeling of the anaerobic digestion of biomass particulate publication-title: Biotechnol. Bioeng. – volume: 441 start-page: 629 year: 2006 end-page: 632 ident: bib30 article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment publication-title: Nature – volume: 81 start-page: 31 year: 2003 end-page: 56 ident: bib27 article-title: Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 102 start-page: 6837 year: 2011 end-page: 6842 ident: bib24 article-title: A bioelectrochemical reactor containing carbon fiber texiles enables efficient methane fermentation from garbage slurry publication-title: Bioresour. Technol. – volume: 34 start-page: 6201 year: 2009 end-page: 6210 ident: bib15 article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis publication-title: Int. J. of Hydrogen Energy – volume: 102 start-page: 5685 year: 2011 end-page: 5691 ident: bib28 article-title: Electrolysis-enhanced anaerobic digestion of wastewater publication-title: Bioresour. Technol. – volume: 437 start-page: 376 year: 2005 end-page: 380 ident: bib20 article-title: Genome sequencing in micro fabricated high-density picolitre reactors publication-title: Nature – volume: 43 start-page: 3735 year: 2009 end-page: 3742 ident: bib40 article-title: Waste activated sludge hydrolysis and short – chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH publication-title: Water Res. – volume: 82 start-page: 87 year: 2002 end-page: 93 ident: bib7 article-title: Effect of pH on hydrogen production from glucose by a mixed culture publication-title: Bioresour. Technol. – volume: 37 start-page: 343 year: 2003 end-page: 351 ident: bib10 article-title: Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant publication-title: Environ. Sci. Technol. – volume: 193 start-page: 265 year: 1951 end-page: 275 ident: bib18 article-title: Protein measurement with the folin phenol reagent publication-title: J. Biol. Chem. – volume: 43 start-page: 559 year: 1995 end-page: 565 ident: bib1 article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors publication-title: Appl. Microbiol. Biotechnol. – volume: 42 start-page: 3921 year: 2008 end-page: 3931 ident: bib29 article-title: Review: direct and indirect electrical stimulation of microbial metabolism publication-title: Environ. Sci. Technol. – volume: 52 start-page: 1167 year: 1986 end-page: 1172 ident: bib32 article-title: Microbial iron reduction by enrichment cultures isolated from estuarine sediments publication-title: Appl. Environ. Microbiol. – volume: 40 start-page: 1009 year: 2006 end-page: 1017 ident: bib6 article-title: Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18 °C publication-title: Water Res. – volume: 39 start-page: 4317 year: 2005 end-page: 4320 ident: bib16 article-title: Electrochemically assisted microbial production of hydrogen from acetate publication-title: Environ. Sci. Technol. – volume: 45 start-page: 4390 issue: 15 year: 2011 ident: 10.1016/j.watres.2013.06.056_bib37 article-title: Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing publication-title: Water Res. doi: 10.1016/j.watres.2011.05.028 – volume: 82 start-page: 87 issue: 1 year: 2002 ident: 10.1016/j.watres.2013.06.056_bib7 article-title: Effect of pH on hydrogen production from glucose by a mixed culture publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00110-9 – volume: 60 start-page: 615 issue: 3 year: 2009 ident: 10.1016/j.watres.2013.06.056_bib21 article-title: Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes publication-title: Water Sci. Technol. doi: 10.2166/wst.2009.379 – year: 2005 ident: 10.1016/j.watres.2013.06.056_bib2 – volume: 40 start-page: 376 issue: 4 year: 2004 ident: 10.1016/j.watres.2013.06.056_bib22 article-title: Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge publication-title: Appl. Biochem. Microbiol. doi: 10.1023/B:ABIM.0000033914.52026.e5 – volume: 81 start-page: 31 year: 2003 ident: 10.1016/j.watres.2013.06.056_bib27 article-title: Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 29 start-page: 1111 issue: 4 year: 1995 ident: 10.1016/j.watres.2013.06.056_bib31 article-title: Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond publication-title: Water Res. doi: 10.1016/0043-1354(94)00251-2 – volume: 102 start-page: 5685 issue: 10 year: 2011 ident: 10.1016/j.watres.2013.06.056_bib28 article-title: Electrolysis-enhanced anaerobic digestion of wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.097 – volume: 35 start-page: 1052 issue: 4 year: 2001 ident: 10.1016/j.watres.2013.06.056_bib38 article-title: The roles of calcium in sludge granulation during UASB reactor start-up publication-title: Water Res. doi: 10.1016/S0043-1354(00)00345-6 – volume: 101 start-page: 3415 issue: 10 year: 2010 ident: 10.1016/j.watres.2013.06.056_bib23 article-title: Bioelectrochemical system stabilizes methane fermentation from garbage slurry publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.12.076 – volume: 46 start-page: 2425 issue: 7 year: 2012 ident: 10.1016/j.watres.2013.06.056_bib19 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2012.02.005 – volume: 102 start-page: 6837 issue: 13 year: 2011 ident: 10.1016/j.watres.2013.06.056_bib25 article-title: A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.022 – volume: 441 start-page: 629 issue: 7093 year: 2006 ident: 10.1016/j.watres.2013.06.056_bib30 article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment publication-title: Nature doi: 10.1038/nature04742 – volume: 43 start-page: 3029 issue: 12 year: 2009 ident: 10.1016/j.watres.2013.06.056_bib35 article-title: Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor publication-title: Water Res. doi: 10.1016/j.watres.2009.04.026 – volume: 128 start-page: 13978 year: 2006 ident: 10.1016/j.watres.2013.06.056_bib36 article-title: High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063526d – volume: 193 start-page: 265 issue: 1 year: 1951 ident: 10.1016/j.watres.2013.06.056_bib18 article-title: Protein measurement with the folin phenol reagent publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)52451-6 – volume: 2 start-page: 1146 issue: 11 year: 2008 ident: 10.1016/j.watres.2013.06.056_bib34 article-title: A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells publication-title: ISME J doi: 10.1038/ismej.2008.48 – volume: 71 start-page: 4728 issue: 8 year: 2005 ident: 10.1016/j.watres.2013.06.056_bib5 article-title: Biological control of hog waste odor through stimulated microbial Fe(III) reduction publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.8.4728-4735.2005 – volume: 38 start-page: 295 issue: 3 year: 2002 ident: 10.1016/j.watres.2013.06.056_bib12 article-title: Effects of iron compounds on the treatment of fat-containing wastewaters publication-title: Appl. Biochem. Microbiol. doi: 10.1023/A:1015475425566 – volume: 43 start-page: 559 issue: 3 year: 1995 ident: 10.1016/j.watres.2013.06.056_bib1 article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00218466 – volume: 37 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.watres.2013.06.056_bib10 article-title: Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant publication-title: Environ. Sci. Technol. doi: 10.1021/es0257164 – volume: 437 start-page: 376 issue: 7057 year: 2005 ident: 10.1016/j.watres.2013.06.056_bib20 article-title: Genome sequencing in micro fabricated high-density picolitre reactors publication-title: Nature doi: 10.1038/nature03959 – volume: 101 start-page: S2 issue: 1 year: 2010 ident: 10.1016/j.watres.2013.06.056_bib11 article-title: Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.03.070 – volume: 34 start-page: 6201 issue: 15 year: 2009 ident: 10.1016/j.watres.2013.06.056_bib15 article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis publication-title: Int. J. of Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.112 – volume: 43 start-page: 3735 issue: 15 year: 2009 ident: 10.1016/j.watres.2013.06.056_bib40 article-title: Waste activated sludge hydrolysis and short – chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH publication-title: Water Res. doi: 10.1016/j.watres.2009.05.036 – volume: 46 start-page: 3535 issue: 11 year: 2012 ident: 10.1016/j.watres.2013.06.056_bib41 article-title: Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities publication-title: Water Res. doi: 10.1016/j.watres.2012.03.059 – volume: 102 start-page: 6837 issue: 13 year: 2011 ident: 10.1016/j.watres.2013.06.056_bib24 article-title: A bioelectrochemical reactor containing carbon fiber texiles enables efficient methane fermentation from garbage slurry publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.022 – volume: 52 start-page: 1167 issue: 5 year: 1986 ident: 10.1016/j.watres.2013.06.056_bib32 article-title: Microbial iron reduction by enrichment cultures isolated from estuarine sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.52.5.1167-1172.1986 – volume: 40 start-page: 1009 issue: 5 year: 2006 ident: 10.1016/j.watres.2013.06.056_bib6 article-title: Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18 °C publication-title: Water Res. doi: 10.1016/j.watres.2005.12.026 – volume: 89 start-page: 670 issue: 6 year: 2005 ident: 10.1016/j.watres.2013.06.056_bib39 article-title: Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20347 – volume: 63 start-page: 31 issue: 15 year: 2012 ident: 10.1016/j.watres.2013.06.056_bib42 article-title: An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater treatment publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2012.01.008 – volume: 27 start-page: 638 year: 1985 ident: 10.1016/j.watres.2013.06.056_bib4 article-title: Structures modeling of the anaerobic digestion of biomass particulate publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260270514 – volume: 30 start-page: 1749 issue: 8 year: 1996 ident: 10.1016/j.watres.2013.06.056_bib8 article-title: Extraction of extracellular polymers from activated sludge using a cation exchange resin publication-title: Water Res. doi: 10.1016/0043-1354(95)00323-1 – volume: 39 start-page: 4317 issue: 11 year: 2005 ident: 10.1016/j.watres.2013.06.056_bib16 article-title: Electrochemically assisted microbial production of hydrogen from acetate publication-title: Environ. Sci. Technol. doi: 10.1021/es050244p – volume: 42 start-page: 3921 issue: 11 year: 2008 ident: 10.1016/j.watres.2013.06.056_bib29 article-title: Review: direct and indirect electrical stimulation of microbial metabolism publication-title: Environ. Sci. Technol. doi: 10.1021/es702668w – volume: 65 start-page: 1280 issue: 3 year: 1999 ident: 10.1016/j.watres.2013.06.056_bib26 article-title: Fluorescene in situ hydridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.3.1280-1288.1999 – volume: 69 start-page: 1548 issue: 3 year: 2003 ident: 10.1016/j.watres.2013.06.056_bib3 article-title: Electricity production by Geobacter sulfurreducens attached to electrodes publication-title: App. Environ. Microbiol. doi: 10.1128/AEM.69.3.1548-1555.2003 – volume: 18 start-page: S105 issue: 1 year: 2010 ident: 10.1016/j.watres.2013.06.056_bib33 article-title: Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2010.06.018 – volume: 65 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.watres.2013.06.056_bib9 article-title: MicroReview: extracellular respiration publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05778.x – volume: 390 start-page: 56 year: 2011 ident: 10.1016/j.watres.2013.06.056_bib13 article-title: A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell publication-title: Colloids Surf. A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2011.08.056 – volume: 12 start-page: 3114 issue: 12 year: 2010 ident: 10.1016/j.watres.2013.06.056_bib14 article-title: Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02284.x |
SSID | ssj0002239 |
Score | 2.4505208 |
Snippet | Adding Fe(III) into a MEC – anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a... Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5719 |
SubjectTerms | Anaerobic Anaerobic digestion Anaerobic treatment Anaerobiosis Applied sciences Archaea Bacteria Biodiversity biofilm Biofilms Biofilms - drug effects Bioreactors Bioreactors - microbiology chemical oxygen demand denaturing gradient gel electrophoresis Dosage Dosing drug effects electric field electrodes electrolysis Electrolysis - methods Exact sciences and technology Fatty Acids, Volatile Fatty Acids, Volatile - metabolism Fe(III) Ferric Compounds Ferric Compounds - pharmacology iron metabolism methods Microbial electrolysis cell microbiology Microorganisms mineralization oxidation pharmacology Pollution polymerase chain reaction Pyrosequencing Reactors Real-Time Polymerase Chain Reaction sequence analysis volatile fatty acids Water treatment and pollution |
Title | Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) – Anaerobic reactor |
URI | https://dx.doi.org/10.1016/j.watres.2013.06.056 https://www.ncbi.nlm.nih.gov/pubmed/23886545 https://www.proquest.com/docview/1435852327 https://www.proquest.com/docview/1647010330 https://www.proquest.com/docview/1660035772 https://www.proquest.com/docview/1663617901 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKucABld8G2pWROMAh1GvHjnNcrVotoPYCK_Vm2Y6NgkqyYnfFDfEKiDfkSTqTn20rwVZCyiXRJLE8k5lx_M03hLwSIVjHsphiP8A041GmusxcyrUuYnBIWof_O07P1GyevT-X5ztkOtTCIKyy9_2dT2-9dX_lqJ_No0VVYY0vBD8h0Qsz5M3CCvYsRyt_--MK5gHhrxh2mVF6KJ9rMV7fLRZkIMBLtCye2Mb67-HpTrQN4ibtEqYudj0v_p2UtsHpZI886LNKOukG_pDshPoRuX-Na_Ax-dXxFC9pE2lEOkZPscKNwgE5ILW1DUjJ5OkGeg7XSvq1apma4OGuasoBxEGrmlrqm_XiIlyX6ZvqtDQnFPcE6OvT4-kb-ufnbzrZvAFegFsFT8j85PjTdJb2_RhSL_V4lcJaRIhonXAsRC65LyJvKduiy2XwWGxobRmFKoOzXHmW24Izq7kVYyu0E0_Jbt3UYZ9Qy7woMkjOYPWTFVpBTAwaVp8sYorj8oSIQQ3G92Tl2DPjwgyotC-mU55B5RkE50mVkHRz16Ij67hFPh80bG4YnYF4csud-2AQxn4GT2zmHzn-N8J0VTOekNENK9mMBKwe3KvUCXk5mI2BbxmVYevQrJcGc1ctIcfNt8ioLMfeHIJtk1G4QwwLp60yQiE92zghzzrbvRqp0FpBav38v-fnBbmHZx3q8YDsrr6twyFkbys3aj_PEbk7efdhdnYJaWRC-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9LDtMOxd79FpwA7bwagjWbZ8DIIW6drksgboTZAcafDQ2cGSoNf-hWH_cL9kpF9rgS0FBuTkULYg0uQni_wI8F44Z2wU-5D6AYYx9zJUi9iGXKnMO0ukdfS9YzpLJvP404W82IFxVwtDaZWt7298eu2t2yuH7WoeLouCanwx-AlJXjgi3qxd2CN2KjmAvdHJ6WTWO2SMgFl30EwDugq6Os3rylBNBuV4iZrIkzpZ_z1C7XpTUeqkWeHq-abtxb9xaR2fjh_BwxZYslEz98ew48on8OAG3eBT-NFQFa9Y5ZknRsacUZEbwx_CQGZK44iVKWd99jleW7BvRU3WhDe3RbXo8jhYUTLD8mqzvHQ3Zdq-OjXTCaNjAfZhejT-yH5d_2Sj_gn4ADoteAbz46Pz8SRsWzKEuVTDdYjbESG8scJGznPJ88zzmrXN21S6nOoNjVl4kSycNTzJo9RkPDKKGzE0QlnxHAZlVbp9YCbKRRYjPsMNUJypBMOiU7gBjTyhHJsGIDo16LzlK6e2GZe6S0z7qhvlaVKepvw8mQQQ9qOWDV_HHfJpp2F9y-40hpQ7Ru6jQWjzBZ2xnn_m9OmIEKuKeAAHt6yknwkaPnpYqQJ415mNxteZlGFKV21WmuCrkghz0y0ySZxSew4RbZNJ6JAY905bZURCDG3DAF40tvtnpkKpBNH1y_9en7dwb3I-PdNnJ7PTV3Cf_mmSIF_DYP19494gmFvbg_Zl_Q1YukWs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ferric+iron+on+the+anaerobic+treatment+and+microbial+biodiversity+in+a+coupled+microbial+electrolysis+cell+%28MEC%29+%E2%80%93+Anaerobic+reactor&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhang%2C+Jingxin&rft.au=Zhang%2C+Yaobin&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Shuo&rft.date=2013-10-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=47&rft.issue=15&rft.spage=5719&rft.epage=5728&rft_id=info:doi/10.1016%2Fj.watres.2013.06.056&rft.externalDocID=US201500009802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |