Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus
Summary Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incid...
Saved in:
Published in | Plant biotechnology journal Vol. 16; no. 11; pp. 1918 - 1927 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.11.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties. |
---|---|
AbstractList | Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between
Rice tungro spherical virus
(RTSV) and
Rice tungro bacilliform virus
. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y
1059
V
1060
V
1061
residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in
eIF4G
were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated
eIF4G
alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that
eIF4G
is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel
eIF4G
alleles represent a valuable material to develop more diverse RTSV‐resistant varieties. Summary Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties. Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties. Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y[sup.1059]V[sup.1060]V[sup.1061] residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties. Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y¹⁰⁵⁹V¹⁰⁶⁰V¹⁰⁶¹ residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties. Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y V V residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties. Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties. |
Audience | Academic |
Author | Macovei, Anca Slamet‐Loedin, Inez Cantos, Christian Voytas, Daniel F. Čermák, Tomáš Chadha‐Mohanty, Prabhjit Sevilla, Neah R. Jonson, Gilda B. Choi, Il‐Ryong |
AuthorAffiliation | 1 Genetics and Biotechnology Division International Rice Research Institute (IRRI) Metro Manila Philippines 2 Department of Genetics Cell Biology & Development and Center for Genome Engineering University of Minnesota Minneapolis MN USA 4 Present address: Huck Institute of the Life Sciences Pennsylvania State University University Park PA USA 3 Present address: Department of Biology and Biotechnology ‘L. Spallanzani’ University of Pavia Pavia Italy |
AuthorAffiliation_xml | – name: 4 Present address: Huck Institute of the Life Sciences Pennsylvania State University University Park PA USA – name: 1 Genetics and Biotechnology Division International Rice Research Institute (IRRI) Metro Manila Philippines – name: 3 Present address: Department of Biology and Biotechnology ‘L. Spallanzani’ University of Pavia Pavia Italy – name: 2 Department of Genetics Cell Biology & Development and Center for Genome Engineering University of Minnesota Minneapolis MN USA |
Author_xml | – sequence: 1 givenname: Anca surname: Macovei fullname: Macovei, Anca organization: International Rice Research Institute (IRRI) – sequence: 2 givenname: Neah R. surname: Sevilla fullname: Sevilla, Neah R. organization: International Rice Research Institute (IRRI) – sequence: 3 givenname: Christian surname: Cantos fullname: Cantos, Christian organization: International Rice Research Institute (IRRI) – sequence: 4 givenname: Gilda B. surname: Jonson fullname: Jonson, Gilda B. organization: International Rice Research Institute (IRRI) – sequence: 5 givenname: Inez surname: Slamet‐Loedin fullname: Slamet‐Loedin, Inez organization: International Rice Research Institute (IRRI) – sequence: 6 givenname: Tomáš surname: Čermák fullname: Čermák, Tomáš organization: University of Minnesota – sequence: 7 givenname: Daniel F. surname: Voytas fullname: Voytas, Daniel F. organization: University of Minnesota – sequence: 8 givenname: Il‐Ryong surname: Choi fullname: Choi, Il‐Ryong organization: International Rice Research Institute (IRRI) – sequence: 9 givenname: Prabhjit orcidid: 0000-0002-7044-1851 surname: Chadha‐Mohanty fullname: Chadha‐Mohanty, Prabhjit email: pchadhamohanty@gmail.com organization: International Rice Research Institute (IRRI) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29604159$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURC-w4AWQJTZ0MTO249jJBqmMaBmpgmqAteU4J6krjz21k0EjdcEj8Iw8CQ5TRlAJsBe-nO_8Orfj7MB5B1n2nOApSWu2rs2U0IqKR9kRYVxMBC_owf7O2GF2HOMNxpTwgj_JDmnFMSNFdZTdvfcbsEhZCxYi8i0KRgOCxTm7QB04CKqHBtVbNF8uPl4tZ3MVq-9fv_UqdDBaVkOvRi6aiLR3LQQUxkevXNLpPVqOev3guuBRXF9D0lcWbUwY4tPscatshGf350n2-fztp_m7yeWHi8X87HKii5KIScGbhijMKa4U0BJyzqocBC10xaluRKuaOq-A1TXFbaEpY21VsrYBUmIgjc5Pstc73fVQr6DR4PqgrFwHs1JhK70y8k-LM9ey8xvJSUkoKZPAq3uB4G8HiL1cmajBWuXAD1HSgjJaCpZX_0cxxawUPOcJffkAvfFDcKkSkhIiykIQUSRquqM6ZUEa1_oUok67gZVJFYfWpP8zkeeU5amtyeHF79nu0_zV9ASc7gAdfIwB2j1CsBwHSqaBkj8HKrGzB6w2veqNHwtl7L88vqS4tn-XlldvFjuPH2aQ3QA |
CitedBy_id | crossref_primary_10_3389_fsufs_2021_685801 crossref_primary_10_3390_ijms23084454 crossref_primary_10_1094_PHYTO_07_19_0267_IA crossref_primary_10_1007_s11033_021_06926_5 crossref_primary_10_1016_j_biotechadv_2023_108248 crossref_primary_10_1016_j_plaphy_2019_12_022 crossref_primary_10_1016_j_pbi_2019_03_011 crossref_primary_10_2174_1874070701913010173 crossref_primary_10_3390_plants10091914 crossref_primary_10_1007_s10725_021_00742_4 crossref_primary_10_1038_s41598_022_23413_4 crossref_primary_10_1016_j_jenvman_2023_117382 crossref_primary_10_7717_peerj_17402 crossref_primary_10_3389_fgene_2021_735489 crossref_primary_10_1079_cabireviews_2023_0008 crossref_primary_10_3390_agronomy13041000 crossref_primary_10_1093_hr_uhad078 crossref_primary_10_1371_journal_ppat_1011417 crossref_primary_10_3389_fpls_2023_1143813 crossref_primary_10_1002_biot_202300298 crossref_primary_10_1080_21645698_2021_2021724 crossref_primary_10_1007_s11248_019_00181_y crossref_primary_10_3389_fgeed_2022_875243 crossref_primary_10_1080_21645698_2023_2219111 crossref_primary_10_1080_21645698_2020_1831729 crossref_primary_10_1186_s13750_019_0171_5 crossref_primary_10_3389_fgeed_2022_876697 crossref_primary_10_3390_ijms22031292 crossref_primary_10_3390_plants13141884 crossref_primary_10_3390_ijms22073327 crossref_primary_10_1094_PHYTO_11_20_0498_R crossref_primary_10_1016_j_pbi_2020_101987 crossref_primary_10_1016_j_sajb_2024_01_029 crossref_primary_10_3389_fpls_2020_00264 crossref_primary_10_3389_fpls_2018_02008 crossref_primary_10_3390_ijms20164045 crossref_primary_10_1080_07388551_2023_2270581 crossref_primary_10_2478_mjhr_2020_0002 crossref_primary_10_1007_s12355_023_01252_5 crossref_primary_10_1002_fes3_168 crossref_primary_10_3389_fmicb_2020_609784 crossref_primary_10_3389_fgeed_2020_00005 crossref_primary_10_1079_PAVSNNR202116047 crossref_primary_10_1094_PHYTO_01_23_0002_V crossref_primary_10_2222_jsv_70_61 crossref_primary_10_2174_1389202921999200712135131 crossref_primary_10_1007_s13562_022_00767_4 crossref_primary_10_1007_s00425_021_03716_y crossref_primary_10_3389_fpls_2023_1275854 crossref_primary_10_1080_07060661_2023_2215212 crossref_primary_10_3390_agronomy10071033 crossref_primary_10_3390_ijms242417598 crossref_primary_10_3389_fpls_2022_1055529 crossref_primary_10_3389_fgene_2022_866121 crossref_primary_10_1094_PHYTO_05_22_0167_RVW crossref_primary_10_1021_acs_jafc_1c02653 crossref_primary_10_3390_encyclopedia2010036 crossref_primary_10_1186_s42483_024_00302_4 crossref_primary_10_1080_03235408_2021_1910415 crossref_primary_10_1007_s11248_021_00262_x crossref_primary_10_1016_j_pmpp_2024_102402 crossref_primary_10_3389_fgene_2021_786140 crossref_primary_10_3390_cells11182902 crossref_primary_10_3390_plants12091736 crossref_primary_10_1007_s11032_021_01214_3 crossref_primary_10_3389_fpls_2022_843575 crossref_primary_10_1270_jsbbs_21019 crossref_primary_10_3389_fpls_2023_1231013 crossref_primary_10_3389_fgene_2022_876987 crossref_primary_10_1007_s13237_024_00472_8 crossref_primary_10_1016_j_gene_2023_147334 crossref_primary_10_3389_fmicb_2020_564310 crossref_primary_10_1007_s13562_021_00746_1 crossref_primary_10_3390_ijms22010397 crossref_primary_10_1002_fes3_258 crossref_primary_10_1080_07388551_2018_1554621 crossref_primary_10_31590_ejosat_765369 crossref_primary_10_3389_frsus_2024_1378712 crossref_primary_10_1016_j_isci_2020_101478 crossref_primary_10_1111_mpp_13434 crossref_primary_10_3389_fgeed_2024_1415244 crossref_primary_10_1080_07388551_2021_2007842 crossref_primary_10_3390_ijms231810442 crossref_primary_10_1186_s13059_020_02204_y crossref_primary_10_3390_ijms19102856 crossref_primary_10_1007_s44279_024_00124_0 crossref_primary_10_3390_agronomy14102442 crossref_primary_10_1007_s11033_022_07741_2 crossref_primary_10_1007_s00425_021_03660_x crossref_primary_10_1007_s13562_023_00862_0 crossref_primary_10_3389_fpls_2023_1247014 crossref_primary_10_1007_s11033_021_06975_w crossref_primary_10_1007_s11033_022_07523_w crossref_primary_10_1038_s41437_022_00513_5 crossref_primary_10_1016_j_jbiotec_2020_09_013 crossref_primary_10_3390_cimb46100659 crossref_primary_10_3390_plants10071347 crossref_primary_10_3390_v13102100 crossref_primary_10_1007_s11248_021_00259_6 crossref_primary_10_3389_fpls_2023_1134653 crossref_primary_10_3390_agronomy11071359 crossref_primary_10_1016_j_jenvman_2024_120326 crossref_primary_10_3390_cells13211782 crossref_primary_10_9787_KJBS_2022_54_4_331 crossref_primary_10_1111_mpp_13252 crossref_primary_10_1007_s00438_025_02231_z crossref_primary_10_3389_fmicb_2021_635917 crossref_primary_10_1007_s12374_023_09383_8 crossref_primary_10_20965_jaciii_2023_p0333 crossref_primary_10_3390_plants10010082 crossref_primary_10_3389_fpls_2020_01098 crossref_primary_10_1007_s10327_024_01189_x crossref_primary_10_1016_j_rsci_2021_01_003 crossref_primary_10_1007_s00425_022_04023_w crossref_primary_10_1080_23311932_2024_2381600 crossref_primary_10_2174_1389202921999200716110853 crossref_primary_10_1080_08974438_2021_2011526 crossref_primary_10_1111_pbi_13394 crossref_primary_10_1016_j_jgg_2023_07_009 crossref_primary_10_1007_s13237_021_00353_4 crossref_primary_10_3390_ijms21114040 crossref_primary_10_1094_PHYTO_08_20_0322_IA crossref_primary_10_1186_s12863_020_00857_z crossref_primary_10_1186_s12870_019_2047_9 crossref_primary_10_3389_fpls_2019_00550 crossref_primary_10_3389_fpls_2022_1027828 crossref_primary_10_3390_agronomy12030565 crossref_primary_10_1021_acsomega_9b02634 crossref_primary_10_3389_fgeed_2024_1399051 crossref_primary_10_3390_microorganisms13020233 crossref_primary_10_1007_s43538_022_00100_6 crossref_primary_10_1016_j_cj_2021_03_004 crossref_primary_10_1002_fes3_330 crossref_primary_10_1186_s42397_023_00140_3 crossref_primary_10_1016_j_stress_2022_100056 crossref_primary_10_3390_plants10071264 crossref_primary_10_9787_KJBS_2019_51_3_161 crossref_primary_10_1016_j_plantsci_2022_111376 crossref_primary_10_1016_j_semcdb_2019_03_010 crossref_primary_10_3389_fmicb_2020_609376 crossref_primary_10_1111_pbi_14266 crossref_primary_10_3389_fpls_2020_00307 crossref_primary_10_5897_AJB2021_17344 crossref_primary_10_3390_biology12071037 crossref_primary_10_1007_s00299_025_03440_x crossref_primary_10_1111_nph_18002 crossref_primary_10_18699_VJGB_22_83 crossref_primary_10_3390_ijms22115585 crossref_primary_10_1093_plphys_kiab220 crossref_primary_10_3390_plants12132454 crossref_primary_10_3389_fgene_2022_866976 crossref_primary_10_3389_fpls_2021_688980 crossref_primary_10_3390_v14102258 crossref_primary_10_1016_j_fcr_2021_108121 crossref_primary_10_3390_ijms23042303 crossref_primary_10_1002_wrna_1597 crossref_primary_10_1021_acsagscitech_1c00279 crossref_primary_10_3389_fpls_2024_1369416 crossref_primary_10_3389_fgeed_2022_987817 crossref_primary_10_1071_FP24092 crossref_primary_10_1007_s44297_023_00020_x crossref_primary_10_1016_j_pmpp_2023_102191 crossref_primary_10_1007_s13562_021_00765_y crossref_primary_10_1071_FP24101 crossref_primary_10_1007_s11427_019_9722_2 crossref_primary_10_1016_j_coviro_2020_04_005 crossref_primary_10_1080_07352689_2021_1883826 crossref_primary_10_3390_ijms25021308 crossref_primary_10_1007_s00425_021_03796_w crossref_primary_10_1111_pbi_14442 crossref_primary_10_1007_s10142_023_01133_w crossref_primary_10_3389_fpls_2022_885128 crossref_primary_10_1002_tpg2_20220 crossref_primary_10_3389_fpls_2021_773656 crossref_primary_10_3390_cimb46040233 crossref_primary_10_1016_j_semcdb_2019_04_008 crossref_primary_10_1016_j_pmpp_2024_102482 crossref_primary_10_1146_annurev_arplant_050718_100049 crossref_primary_10_1038_s41598_022_18923_0 crossref_primary_10_1007_s11033_023_08440_2 crossref_primary_10_1016_j_virol_2025_110449 crossref_primary_10_3390_microorganisms7080269 crossref_primary_10_1016_j_pbi_2020_05_003 crossref_primary_10_1111_pbi_13125 crossref_primary_10_3390_agronomy12010164 crossref_primary_10_3390_plants13212972 crossref_primary_10_3389_fpls_2018_01361 crossref_primary_10_3390_plants13233313 crossref_primary_10_1007_s11816_018_0509_4 crossref_primary_10_3389_fpls_2018_01245 crossref_primary_10_1038_s41598_019_53710_4 crossref_primary_10_1002_jcp_29052 crossref_primary_10_1186_s42483_020_00060_z crossref_primary_10_3389_fpls_2022_904829 crossref_primary_10_3390_cimb43030135 crossref_primary_10_3389_fpls_2019_01326 crossref_primary_10_3390_cells11233928 crossref_primary_10_5010_JPB_2018_45_3_155 crossref_primary_10_1186_s12870_024_04786_2 crossref_primary_10_1016_j_coviro_2021_01_002 crossref_primary_10_3390_plants11192625 crossref_primary_10_1016_j_cpb_2021_100211 crossref_primary_10_1016_j_pmpp_2025_102640 crossref_primary_10_3390_v13010141 crossref_primary_10_1007_s00425_023_04110_6 crossref_primary_10_1088_1755_1315_1192_1_012018 crossref_primary_10_3389_fmicb_2020_593700 crossref_primary_10_1007_s00299_021_02664_x crossref_primary_10_3390_ijms22115423 crossref_primary_10_1016_j_tplants_2019_09_006 crossref_primary_10_1073_pnas_2018799118 crossref_primary_10_1007_s11105_021_01286_7 crossref_primary_10_3390_agronomy8070114 crossref_primary_10_1111_pbi_14472 crossref_primary_10_47836_pjtas_44_3_06 crossref_primary_10_3389_fpls_2019_00801 |
Cites_doi | 10.1007/s12571-012-0168-1 10.1038/srep11491 10.1105/tpc.16.00922 10.1111/j.1365-313X.2006.02792.x 10.1094/Phyto-86-25 10.1111/pbi.12465 10.1016/j.pbi.2016.11.011 10.1016/S0968-0004(00)01628-5 10.1094/PDIS-91-11-1386 10.1111/pbi.12448 10.1094/PD-72-0843 10.1128/MCB.15.9.4990 10.1038/hortres.2015.19 10.1371/journal.pbio.1001878 10.1094/PD-74-0923 10.1093/mp/ssu044 10.1007/978-1-62703-715-0_21 10.3389/fpls.2016.00765 10.1038/ng.3484 10.1093/nar/gkw1135 10.1186/1746-4811-9-39 10.1038/srep19675 10.1016/j.cell.2009.01.042 10.1038/srep21451 10.2135/cropsci2007.03.0127 10.1111/mpp.12417 10.1023/A:1012605218343 10.1093/nar/16.20.9877 10.1094/MPMI-22-10-1268 10.1038/nmeth.2812 10.1186/s12284-015-0069-y 10.1038/nbt.2650 10.1094/Phyto-77-473 10.1146/annurev.phyto.34.1.275 10.1111/mpp.12375 10.3390/v7072778 10.1371/journal.pbio.1001877 10.1038/cr.2013.123 10.1016/S0065-3527(06)66001-6 10.1094/PDIS.2002.86.2.88 10.1094/Phyto-85-77 10.1094/MPMI-23-1-0029 10.1038/srep24765 10.1094/MPMI-03-10-0073 10.1111/pbi.12200 10.3389/fpls.2016.01673 10.1016/j.virusres.2005.10.010 10.1016/j.molp.2016.12.001 10.1073/pnas.1400822111 10.1016/j.tplants.2016.08.009 10.1016/j.virol.2005.09.031 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. COPYRIGHT 2018 John Wiley & Sons, Inc. 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: COPYRIGHT 2018 John Wiley & Sons, Inc. – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.12927 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database (subscription) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Anca Macovei et al |
EISSN | 1467-7652 |
EndPage | 1927 |
ExternalDocumentID | PMC6181218 A733243604 29604159 10_1111_pbi_12927 PBI12927 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Asia |
GeographicLocations_xml | – name: Asia |
GrantInformation_xml | – fundername: Global Rice Science Partnership (GRiSP) – fundername: Temperate Rice Research Consortium of IRRI, and Rural Development Administration of Korea – fundername: U.S. Agency for International Development (USAID‐Linkage) – fundername: U.S. Agency for International Development (USAID-Linkage) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT NPM PMFND 7QO 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5817-56dd1a06209ae28e36493e725c962cd7fadb39e4bb20f5c244f984fde180e1dc3 |
IEDL.DBID | BENPR |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 14:00:41 EDT 2025 Fri Jul 11 18:26:57 EDT 2025 Tue Aug 05 10:18:02 EDT 2025 Wed Aug 13 10:44:00 EDT 2025 Tue Jun 10 20:15:50 EDT 2025 Thu Apr 03 07:05:46 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 02:34:42 EDT 2025 Wed Jan 22 16:35:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | rice tungro spherical virus CRISPR/Cas9 eIF4G rice mutagenesis |
Language | English |
License | Attribution 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5817-56dd1a06209ae28e36493e725c962cd7fadb39e4bb20f5c244f984fde180e1dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AM and NRS contributed equally to the work. |
ORCID | 0000-0002-7044-1851 |
OpenAccessLink | https://www.proquest.com/docview/2117857175?pq-origsite=%requestingapplication% |
PMID | 29604159 |
PQID | 2117857175 |
PQPubID | 1096352 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181218 proquest_miscellaneous_2524287439 proquest_miscellaneous_2020487636 proquest_journals_2117857175 gale_infotracacademiconefile_A733243604 pubmed_primary_29604159 crossref_primary_10_1111_pbi_12927 crossref_citationtrail_10_1111_pbi_12927 wiley_primary_10_1111_pbi_12927_PBI12927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 1987; 77 2017; 4 2013; 23 1988; 72 1996; 34 2010; 23 2013; 11 2002; 86 2000 2017; 36 2006; 66 2004; 36 2014; 7 2016; 48 2003; 85 2014; 12 2014; 11 2001; 122 2015; 2 2009; 22 1990; 74 2006; 119 2015; 19 2016; 19 2000; 25 1995; 15 2017; 22 1988; 16 2007; 91 1994 2017; 29 2016; 17 2014; 111 2015; 8 2015; 7 2016; 14 2009; 136 1999 1980; 17 1995; 85 1993; 14 2016; 6 2016; 7 1994; 19 2017; 10 2006; 47 2013; 31 2008; 48 2014; 1099 2016; 27 2012; 4 1996; 86 2006; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 Rao G.M. (e_1_2_8_43_1) 1980; 17 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 Muralidharan K. (e_1_2_8_38_1) 2003; 85 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Cabunagan R.C. (e_1_2_8_10_1) 1999 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 Stewart C.N. (e_1_2_8_52_1) 1993; 14 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Anjaneyulu A. (e_1_2_8_3_1) 1994 Ebron L.A. (e_1_2_8_15_1) 1994; 19 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Azzam O. (e_1_2_8_5_1) 2000 Khush G.S. (e_1_2_8_26_1) 2004; 36 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 122 start-page: 91 year: 2001 end-page: 97 article-title: Inheritance of resistance to rice tungro spherical virus in a near‐isogenic line derived from Utri Merah and in rice cultivar TKM6 publication-title: Euphytica – volume: 25 start-page: 423 year: 2000 end-page: 426 article-title: Novel eIF4G domain homologues linking mRNA translation with nonsense‐mediated mRNA decay publication-title: Trends Biochem. Sci. – volume: 17 start-page: 1140 year: 2016 end-page: 1153 article-title: Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology publication-title: Mol. Plant Pathol. – start-page: 40 year: 2000 – volume: 34 start-page: 275 year: 1996 end-page: 297 article-title: Molecular biology of rice tungro viruses publication-title: Annu. Rev. Phytopathol. – volume: 6 start-page: 24765 year: 2016 article-title: CRISPR/Cas9‐mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations publication-title: Sci. Rep. – volume: 36 start-page: 1 year: 2017 end-page: 8 article-title: Applying CRISPR/Cas for genome engineering in plants: the best is yet to come publication-title: Curr. Opin. Plant Biol. – volume: 7 start-page: 765 year: 2016 article-title: An overview of CRISPR‐based tools and their implementations: new opportunities in understanding plant‐pathogen interactions for better crop production publication-title: Front. Plant Sci. – volume: 17 start-page: 1276 year: 2016 end-page: 1288 article-title: Engineering of CRISPR/Cas9‐ mediated potyvirus resistance in transgene‐free plants publication-title: Mol. Plant Pathol. – volume: 7 start-page: 1494 year: 2014 end-page: 1496 article-title: CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants publication-title: Mol. Plant – volume: 77 start-page: 473 year: 1987 end-page: 476 article-title: Infectivity neutralization of rice tungro associated viruses acquired by vector leafhoppers publication-title: Phytopathology – volume: 14 start-page: 448 year: 2016 end-page: 462 article-title: Designed nucleases for targeted genome editing publication-title: Plant Biotechnol. J. – volume: 47 start-page: 417 year: 2006 end-page: 426 article-title: Mutations in the eIF(iso)4G translation initiation factor confer high resistance to rice yellow mottle virus publication-title: Plant J. – volume: 8 start-page: 34 year: 2015 article-title: Allele mining and enhanced genetic recombination for rice breeding publication-title: Rice – volume: 11 start-page: 39 year: 2013 article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system publication-title: Plant Methods – volume: 22 start-page: 1268 year: 2009 end-page: 1281 article-title: Suppression of two tungro viruses in rice by separable traits originating from cultivar Utri Merah publication-title: Mol. Plant‐Microbe – volume: 16 start-page: 9877 year: 1988 article-title: Storage of competent cells for transformation publication-title: Nucleic Acids Res. – volume: 48 start-page: 480 year: 2008 end-page: 486 article-title: Characterization of a putative rice mutant for reaction to rice tungro disease publication-title: Crop Sci. – year: 1994 – volume: 72 start-page: 843 year: 1988 end-page: 847 article-title: Resistance to rice tungro spherical virus in rice publication-title: Plant Dis. – volume: 48 start-page: 109 year: 2016 end-page: 111 article-title: A proposed regulatory framework for genome‐edited crops publication-title: Nat. Genet. – volume: 86 start-page: 25 year: 1996 end-page: 30 article-title: Molecular mapping of resistance to rice tungro spherical virus and green leafhopper publication-title: Phytopathology – volume: 31 start-page: 686 year: 2013 end-page: 688 article-title: Targeted genome modification of crop plants using a CRISPR‐Cas system publication-title: Nat. Biotechnol. – volume: 344 start-page: 185 year: 2006 end-page: 197 article-title: Translational control in positive strand RNA viruses publication-title: Virology – volume: 27 start-page: 19675 year: 2016 article-title: Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system publication-title: Sci. Rep. – volume: 14 start-page: 483 year: 2016 end-page: 495 article-title: Use of designer nucleases for targeted gene and genome editing in plants publication-title: Plant Biotechnol. J. – start-page: 45 year: 1999 end-page: 55 – volume: 136 start-page: 731 year: 2009 end-page: 745 article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets publication-title: Cell – volume: 11 start-page: 122 year: 2014 end-page: 123 article-title: E‐CRISP: fast CRISPR target site identification publication-title: Nat. Methods – volume: 23 start-page: 1233 year: 2013 end-page: 1236 article-title: Targeted mutagenesis in rice using CRISPR‐Cas system publication-title: Cell Res. – volume: 12 start-page: e1001878 year: 2014 article-title: Lab to farm: applying research on plant genetics and genomics to crop improvement publication-title: PLoS Biol. – volume: 4 start-page: 7 year: 2012 end-page: 24 article-title: Crops that feed the world 7: rice publication-title: Food Sec. – volume: 23 start-page: 1506 year: 2010 end-page: 1513 article-title: Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF(iso)4G1 factor correlates with rice susceptibility and RYMV virulence publication-title: Mol. Plant‐Microbe Interact. – volume: 85 start-page: 77 year: 1995 end-page: 81 article-title: Biological variants of rice tungro viruses in the Philippines publication-title: Phytopathology – volume: 10 start-page: 526 year: 2017 end-page: 529 article-title: Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system publication-title: Mol. Plant – volume: 2 start-page: 15019 year: 2015 article-title: Genome‐editing technologies and their potential application in horticultural crop breeding publication-title: Hortic. Res. – volume: 17 start-page: 210 year: 1980 end-page: 214 article-title: Estimation of yield losses due to tungro virus infection in rice cultivars publication-title: Oryza – volume: 15 start-page: 4990 year: 1995 end-page: 4997 article-title: The translation initiation factor eIF‐4E binds to a common motif shared by the translation factor eIF‐4 gamma and the translational repressors 4E‐binding proteins publication-title: Mol. Cell. Biol. – volume: 1099 start-page: 261 year: 2014 end-page: 271 article-title: mediated transformation: rice transformation publication-title: Methods Mol. Biol. – volume: 36 start-page: 101 year: 2004 end-page: 106 article-title: Breeding rice for resistance to tungro virus at IRRI publication-title: SABRAO J. Breed. Genet. – volume: 29 start-page: 1196 year: 2017 end-page: 1217 article-title: A multipurpose toolkit to enable advanced genome engineering in plants publication-title: Plant Cell – volume: 19 start-page: 10 year: 1994 end-page: 11 article-title: Inheritance of resistance to rice tungro spherical virus in some rice cultivars publication-title: Int. Rice Res. Notes – volume: 119 start-page: 63 year: 2006 end-page: 75 article-title: Cap‐independent translation of plant viral RNAs publication-title: Virus Res. – volume: 12 start-page: 797 year: 2014 end-page: 807 article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation publication-title: Plant Biotechnol. J. – volume: 7 start-page: 3392 year: 2015 end-page: 3419 article-title: Plant translation factors and virus resistance publication-title: Viruses – volume: 91 start-page: 1386 year: 2007 end-page: 1391 article-title: Characterization of ‐derived resistance to tungro disease in rice publication-title: Plant Dis. – volume: 86 start-page: 88 year: 2002 end-page: 100 article-title: The biology, epidemiology, and management of rice tungro disease in Asia publication-title: Plant Dis. – volume: 111 start-page: 4632 year: 2014 end-page: 4637 article-title: Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas‐induced gene modifications in publication-title: Proc. Natl Acad. Sci. USA – volume: 66 start-page: 1 year: 2006 end-page: 29 article-title: Spread of plant virus disease to new plantings: a case study of rice tungro disease publication-title: Adv. Virus Res. – volume: 19 start-page: 11491 year: 2015 article-title: Generation of inheritable and “transgene clean” targeted genome‐modified rice in later generations using the CRISPR/Cas9 system publication-title: Sci. Rep. – volume: 4 start-page: D1075 year: 2017 end-page: D1081 article-title: Rice SNP‐seek database update: new SNPs, indels, and queries publication-title: Nucleic Acids Res. – volume: 22 start-page: 38 year: 2017 end-page: 52 article-title: Characteristics of genome editing mutations in cereal crops publication-title: Trends Plant Sci. – volume: 19 start-page: 21451 year: 2016 article-title: Selection of highly efficient sgRNAs for CRISPR/Cas9‐based plant genome editing publication-title: Sci. Rep. – volume: 12 start-page: e1001877 year: 2014 article-title: Precision genome engineering and agriculture: opportunities and regulatory challenges publication-title: PLoS Biol. – volume: 23 start-page: 29 year: 2010 end-page: 38 article-title: Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice ( ) associated with resistance to rice tungro spherical virus publication-title: Mol. Plant‐Microbe Interact. – volume: 74 start-page: 923 year: 1990 end-page: 926 article-title: Resistances in rice to tungro‐associated viruses publication-title: Plant Dis. – volume: 85 start-page: 1143 year: 2003 end-page: 1147 article-title: Tungro epidemic and yield losses in paddy fields in India publication-title: Curr. Sci. – volume: 14 start-page: 748 year: 1993 end-page: 750 article-title: A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications publication-title: Biotechniques – volume: 7 start-page: 1673 year: 2016 article-title: Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance publication-title: Front. Plant Sci. – ident: e_1_2_8_47_1 doi: 10.1007/s12571-012-0168-1 – ident: e_1_2_8_56_1 doi: 10.1038/srep11491 – ident: e_1_2_8_11_1 doi: 10.1105/tpc.16.00922 – ident: e_1_2_8_2_1 doi: 10.1111/j.1365-313X.2006.02792.x – ident: e_1_2_8_46_1 doi: 10.1094/Phyto-86-25 – ident: e_1_2_8_29_1 doi: 10.1111/pbi.12465 – ident: e_1_2_8_41_1 doi: 10.1016/j.pbi.2016.11.011 – volume: 14 start-page: 748 year: 1993 ident: e_1_2_8_52_1 article-title: A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications publication-title: Biotechniques – ident: e_1_2_8_40_1 doi: 10.1016/S0968-0004(00)01628-5 – ident: e_1_2_8_49_1 doi: 10.1094/PDIS-91-11-1386 – ident: e_1_2_8_54_1 doi: 10.1111/pbi.12448 – ident: e_1_2_8_21_1 doi: 10.1094/PD-72-0843 – ident: e_1_2_8_35_1 doi: 10.1128/MCB.15.9.4990 – ident: e_1_2_8_55_1 doi: 10.1038/hortres.2015.19 – ident: e_1_2_8_44_1 doi: 10.1371/journal.pbio.1001878 – ident: e_1_2_8_22_1 doi: 10.1094/PD-74-0923 – ident: e_1_2_8_30_1 doi: 10.1093/mp/ssu044 – volume: 19 start-page: 10 year: 1994 ident: e_1_2_8_15_1 article-title: Inheritance of resistance to rice tungro spherical virus in some rice cultivars publication-title: Int. Rice Res. Notes – ident: e_1_2_8_50_1 doi: 10.1007/978-1-62703-715-0_21 – ident: e_1_2_8_7_1 doi: 10.3389/fpls.2016.00765 – ident: e_1_2_8_24_1 doi: 10.1038/ng.3484 – ident: e_1_2_8_36_1 doi: 10.1093/nar/gkw1135 – ident: e_1_2_8_8_1 doi: 10.1186/1746-4811-9-39 – ident: e_1_2_8_34_1 doi: 10.1038/srep19675 – ident: e_1_2_8_51_1 doi: 10.1016/j.cell.2009.01.042 – ident: e_1_2_8_33_1 doi: 10.1038/srep21451 – ident: e_1_2_8_58_1 doi: 10.2135/cropsci2007.03.0127 – volume-title: Rice Tungro year: 1994 ident: e_1_2_8_3_1 – ident: e_1_2_8_42_1 doi: 10.1111/mpp.12417 – ident: e_1_2_8_6_1 doi: 10.1023/A:1012605218343 – start-page: 40 volume-title: Methods for Evaluating Resistance to Rice Tungro Disease year: 2000 ident: e_1_2_8_5_1 – ident: e_1_2_8_23_1 doi: 10.1093/nar/16.20.9877 – ident: e_1_2_8_16_1 doi: 10.1094/MPMI-22-10-1268 – ident: e_1_2_8_19_1 doi: 10.1038/nmeth.2812 – ident: e_1_2_8_31_1 doi: 10.1186/s12284-015-0069-y – ident: e_1_2_8_48_1 doi: 10.1038/nbt.2650 – ident: e_1_2_8_20_1 doi: 10.1094/Phyto-77-473 – ident: e_1_2_8_25_1 doi: 10.1146/annurev.phyto.34.1.275 – ident: e_1_2_8_13_1 doi: 10.1111/mpp.12375 – ident: e_1_2_8_45_1 doi: 10.3390/v7072778 – ident: e_1_2_8_53_1 doi: 10.1371/journal.pbio.1001877 – ident: e_1_2_8_37_1 doi: 10.1038/cr.2013.123 – volume: 85 start-page: 1143 year: 2003 ident: e_1_2_8_38_1 article-title: Tungro epidemic and yield losses in paddy fields in India publication-title: Curr. Sci. – ident: e_1_2_8_12_1 doi: 10.1016/S0065-3527(06)66001-6 – ident: e_1_2_8_4_1 doi: 10.1094/PDIS.2002.86.2.88 – volume: 36 start-page: 101 year: 2004 ident: e_1_2_8_26_1 article-title: Breeding rice for resistance to tungro virus at IRRI publication-title: SABRAO J. Breed. Genet. – ident: e_1_2_8_9_1 doi: 10.1094/Phyto-85-77 – start-page: 45 volume-title: Rice Tungro Disease Management year: 1999 ident: e_1_2_8_10_1 – ident: e_1_2_8_28_1 doi: 10.1094/MPMI-23-1-0029 – ident: e_1_2_8_39_1 doi: 10.1038/srep24765 – ident: e_1_2_8_18_1 doi: 10.1094/MPMI-03-10-0073 – ident: e_1_2_8_59_1 doi: 10.1111/pbi.12200 – ident: e_1_2_8_57_1 doi: 10.3389/fpls.2016.01673 – ident: e_1_2_8_27_1 doi: 10.1016/j.virusres.2005.10.010 – ident: e_1_2_8_32_1 doi: 10.1016/j.molp.2016.12.001 – volume: 17 start-page: 210 year: 1980 ident: e_1_2_8_43_1 article-title: Estimation of yield losses due to tungro virus infection in rice cultivars publication-title: Oryza – ident: e_1_2_8_17_1 doi: 10.1073/pnas.1400822111 – ident: e_1_2_8_60_1 doi: 10.1016/j.tplants.2016.08.009 – ident: e_1_2_8_14_1 doi: 10.1016/j.virol.2005.09.031 |
SSID | ssj0021656 |
Score | 2.6434774 |
Snippet | Summary
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro... Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus... Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1918 |
SubjectTerms | Alleles Allelomorphism Asia biotechnology CRISPR CRISPR-Cas systems CRISPR/Cas9 Crop production Cultivars Disease resistance eIF4G greenhouses homozygosity Initiation factor eIF-4G mutagenesis Mutation Mutation rates Oryza Residues Rice Rice tungro bacilliform virus Rice tungro spherical virus Site-directed mutagenesis Tungro Viruses |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WPenB9yO6SiuCXjImnXQ6wdM4OO4ILsvowh6E0Ol01sExWfJYUDz4E_yN_hKr8mJmUBFvM3RNJul81fVVUvU1wBPhKAwimcK0hEvbNyKwoyQzNmZDmVGKp9ql3uG3R8Hhif_mVJzuwYuhF6bThxgfuJFntOs1ObhKqg0nP09WEwxWnDrJqVaLCNFylI7ipCrTdRZJW2LQ71WFqIpn_OVWLNpdkTdC0m655CaNbePQ_Cp8GK6gKz_5NGnqZKK_7og7_uclXoMrPT9l0w5Q12HP5Dfg8vSs7DU6zE34dlRcmDWjTVjWpmJFxkiYiJnF3H_NzloZa6SxLPnCZsvFu-Pl85mqop_ff3RF5zjyuakV2VWrium245CV9KUmBLK6YEs6Xo3LUFmwinQPCEnsYlU21S04mb96Pzu0-00cbC1CjIAiSFNXOQF3ImV4aLzAjzwjudBRwHUqM5UmXmT8JOFOJjSyjSwK_Sw1bugYN9XebdjPi9zcBcaVpzw3TQVJCHmKI9MwiDOpItKc96QFz4bbGete4Zw22ljHQ6aDExq3E2rB49H0vJP1-J3RU8JETK6Ox9Gq71jAsyHRrHgqPfrfwPEtOBhgE_drQBVjai1DgemysODROIzeS69kVG6KBm2oN5lEAYO_2AhOeS0yRwvudEgcz5mTtg4yUgvkFkZHA1IP3x7JVx9bFfGAuJ0b4qS1EPzzNMTHLxfth3v_bnofLiGzDLumzQPYr8vGPED2VicPWzf9BSBrQlw priority: 102 providerName: Wiley-Blackwell |
Title | Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12927 https://www.ncbi.nlm.nih.gov/pubmed/29604159 https://www.proquest.com/docview/2117857175 https://www.proquest.com/docview/2020487636 https://www.proquest.com/docview/2524287439 https://pubmed.ncbi.nlm.nih.gov/PMC6181218 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdY9wIPiP8ERmUQEryEJU4cJ0-oq9atSFRVYdLeIsd2RqWSlCSdhMQDH4HPyCfhLnFDN8FeolY-panvfPc7x_c7Ql5zT0IQySWkJUy4oeGRm2S5cSEbyo2UTCsfa4c_zqLTs_DDOT-3G261PVa59Ymto9alwj3yQ0hURMwh-eDv199c7BqFb1dtC409sg8uOI4HZP_oeDZf9CkXcst09UXCFRD6LbcQnuVZZ8t3EOywncxORLrul3cC0_VDk7tgto1Gk3vkroWRdNTp_T65ZYoH5M7oorJUGuYh-TErL82KYq-UlalpmVPkD6JmOglP6EXLNg1ok2bf6Xgx_TRfHI5lnfz--as7Gw4jXzeNRLl6WVPVFgbSCr80aCi0KekC79eAt6hKWiM9ASqcXi6rTf2InE2OP49PXdtrwVU8hkDFI6196UXMS6RhsQmiMAmMYFwlEVNa5FJnQWLCLGNezhWAgjyJw1wbP_aMr1XwmAyKsjBPCWUykIGvNUemn0AyAAQGzEHIBKnhA-GQt9v5TpUlIsd-GKt0m5CAatJWNQ551YuuO_aNfwm9QaWluCLhPkrawgJ4GuS2SkciwN-NvNAhB1u9pnap1ulfw3LIy34YFhm-OZGFKTcggyXEyN0X3SDDGaafAPAc8qQzlf6ZGVLgAHB0iLhiRL0AknxfHSmWX1qy7wghmB_DpLXm9v9pSOdH0_bDs5v_5XNyG0Bf3NVTHpBBU23MCwBWTTYkeyycwzWenAztShq2mxR4XbA_cVUnUg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VcgAOiH8MBRYEgotbe-31zwGhEEgT2kZVaKXezNpet5FSO9hOUSUOPAJPwkPxJMz4j7SC3npztKO1szM784298w3AS2FIDCKJxLSEu7qthKP7YaJ0zIYSJSWPI5Nqh3fGznDf_nQgDlbgV1sLQ8cqW59YOeo4i-gd-QYmKq4nMPkQ7-ZfdeoaRV9X2xYatVlsqdNvmLIVb0cfUL-vOB983OsP9aargB4JD12ycOLYlIbDDV8q7inLsX1LuVxEvsOj2E1kHFq-ssOQG4mIMPwlvmcnsTI9Q5lxZOG8V-CqbWEkp8r0wWaX4BGTTV3N5OouAo2GyYhODs3D6TqGVmpesxT_zkeBpTB4_ojmMnSuYt_gFtxsQCvr1VZ2G1ZUegdu9A7zhrhD3YXv4-xEzRh1ZpmpgmUJI7YipkYDe5MdVtzWiG1ZeMr6k9Hn3clGXxb-7x8_65PoOHK8KCXJFdOCRVUZIsvpR0lmycqMTWi-En1TnrGCyBDIvNjJNF8U92D_UnRwH1bTLFUPgXFpScuMY0G8QpbkCD8UGp8rfSKit1wN3rTrHUQN7Tl135gFbfqDqgkq1WjwohOd11wf_xJ6TUoLaP_jPJFsyhjwaYhJK-i5Ft3XMWwN1lq9Bo1jKIK_ZqzB824YtzR9p5GpyhYoQwXLxBToXCAjOCW7CCc1eFCbSvfMnAh3EKZq4J4xok6AKMXPjqTTo4pa3CHAZ3q4aJW5_X8Zgt33o-ri0cX_8hlcG-7tbAfbo_HWY7iOcNOrKznXYLXMF-oJQroyfFrtIwZfLnvj_gGweF9P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEL0gPjHUGBBILiY2Guv1z4glKYNDYUoCq3Um1nb6zZSiEPsFFXiwCPwPDwOT8KMf0JaQW-9OdrR2tmZnfnG3vkG4LmwFAaRVGFawqXpauGZQZRqE7OhVCvFk9im2uGPA2_3wH1_KA7X4FdTC0PHKhufWDrqJIvpHXkbExXpC0w-RDutj0UMt3tvZ19N6iBFX1qbdhqViezp02-YvuVv-tuo6xec93b2u7tm3WHAjIWP7ll4SWIry-NWoDT3teO5gaMlF3Hg8TiRqUoiJ9BuFHErFTGGwjTw3TTRtm9pO4kdnPcKrEvKilqwvrUzGI6W6R7x2lS1TdKUCDtqXiM6RzSLxq8x0FIrm5VoeD4mrATF8wc2V4F0GQl7N-B6DWFZp7K5m7Cmp7dgo3M0r2k89G34PshO9IRRn5aJzlmWMuIuYrrfc9-xo5LpGpEui05Zd9T_NBy1uyoPfv_4WZ1Lx5Evi0KRXD7OWVwWJbI5_SjISFmRsRHNV6CnmmcsJ2oEMjZ2Mp4v8jtwcClauAutaTbV94Fx5SjHThJBLEOO4ghGNJqiVAHR0jvSgFfNeodxTYJOvTgmYZMMoWrCUjUGPFuKzirmj38JvSSlheQNcJ5Y1UUN-DTEqxV2pEP39SzXgM1Gr2HtJvLwr1Eb8HQ5jBucvtqoqc4WKEPly8Qb6F0gIzilvgguDbhXmcrymTnR7yBoNUCeMaKlABGMnx2Zjo9LonGP4J_t46KV5vb_ZQiHW_3y4sHF__IJXMVNG37oD_YewjXEnn5V1rkJrWK-0I8Q3xXR43ojMfh82Xv3D9_6ZOE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+alleles+of+rice+eIF4G+generated+by+CRISPR%2FCas9-targeted+mutagenesis+confer+resistance+to+Rice+tungro+spherical+virus&rft.jtitle=Plant+biotechnology+journal&rft.au=Macovei%2C+Anca&rft.au=Sevilla%2C+Neah+R&rft.au=Cantos%2C+Christian&rft.au=Jonson%2C+Gilda+B&rft.date=2018-11-01&rft.issn=1467-7652&rft.eissn=1467-7652&rft.volume=16&rft.issue=11&rft.spage=1918&rft_id=info:doi/10.1111%2Fpbi.12927&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |