Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus

Summary Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incid...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 16; no. 11; pp. 1918 - 1927
Main Authors Macovei, Anca, Sevilla, Neah R., Cantos, Christian, Jonson, Gilda B., Slamet‐Loedin, Inez, Čermák, Tomáš, Voytas, Daniel F., Choi, Il‐Ryong, Chadha‐Mohanty, Prabhjit
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.11.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties.
AbstractList Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus . RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y 1059 V 1060 V 1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties.
Summary Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties.
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y[sup.1059]V[sup.1060]V[sup.1061] residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y¹⁰⁵⁹V¹⁰⁶⁰V¹⁰⁶¹ residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties.
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y V V residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties.
Audience Academic
Author Macovei, Anca
Slamet‐Loedin, Inez
Cantos, Christian
Voytas, Daniel F.
Čermák, Tomáš
Chadha‐Mohanty, Prabhjit
Sevilla, Neah R.
Jonson, Gilda B.
Choi, Il‐Ryong
AuthorAffiliation 1 Genetics and Biotechnology Division International Rice Research Institute (IRRI) Metro Manila Philippines
2 Department of Genetics Cell Biology & Development and Center for Genome Engineering University of Minnesota Minneapolis MN USA
4 Present address: Huck Institute of the Life Sciences Pennsylvania State University University Park PA USA
3 Present address: Department of Biology and Biotechnology ‘L. Spallanzani’ University of Pavia Pavia Italy
AuthorAffiliation_xml – name: 4 Present address: Huck Institute of the Life Sciences Pennsylvania State University University Park PA USA
– name: 1 Genetics and Biotechnology Division International Rice Research Institute (IRRI) Metro Manila Philippines
– name: 3 Present address: Department of Biology and Biotechnology ‘L. Spallanzani’ University of Pavia Pavia Italy
– name: 2 Department of Genetics Cell Biology & Development and Center for Genome Engineering University of Minnesota Minneapolis MN USA
Author_xml – sequence: 1
  givenname: Anca
  surname: Macovei
  fullname: Macovei, Anca
  organization: International Rice Research Institute (IRRI)
– sequence: 2
  givenname: Neah R.
  surname: Sevilla
  fullname: Sevilla, Neah R.
  organization: International Rice Research Institute (IRRI)
– sequence: 3
  givenname: Christian
  surname: Cantos
  fullname: Cantos, Christian
  organization: International Rice Research Institute (IRRI)
– sequence: 4
  givenname: Gilda B.
  surname: Jonson
  fullname: Jonson, Gilda B.
  organization: International Rice Research Institute (IRRI)
– sequence: 5
  givenname: Inez
  surname: Slamet‐Loedin
  fullname: Slamet‐Loedin, Inez
  organization: International Rice Research Institute (IRRI)
– sequence: 6
  givenname: Tomáš
  surname: Čermák
  fullname: Čermák, Tomáš
  organization: University of Minnesota
– sequence: 7
  givenname: Daniel F.
  surname: Voytas
  fullname: Voytas, Daniel F.
  organization: University of Minnesota
– sequence: 8
  givenname: Il‐Ryong
  surname: Choi
  fullname: Choi, Il‐Ryong
  organization: International Rice Research Institute (IRRI)
– sequence: 9
  givenname: Prabhjit
  orcidid: 0000-0002-7044-1851
  surname: Chadha‐Mohanty
  fullname: Chadha‐Mohanty, Prabhjit
  email: pchadhamohanty@gmail.com
  organization: International Rice Research Institute (IRRI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29604159$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC-w4AWQJTZ0MTO249jJBqmMaBmpgmqAteU4J6krjz21k0EjdcEj8Iw8CQ5TRlAJsBe-nO_8Orfj7MB5B1n2nOApSWu2rs2U0IqKR9kRYVxMBC_owf7O2GF2HOMNxpTwgj_JDmnFMSNFdZTdvfcbsEhZCxYi8i0KRgOCxTm7QB04CKqHBtVbNF8uPl4tZ3MVq-9fv_UqdDBaVkOvRi6aiLR3LQQUxkevXNLpPVqOev3guuBRXF9D0lcWbUwY4tPscatshGf350n2-fztp_m7yeWHi8X87HKii5KIScGbhijMKa4U0BJyzqocBC10xaluRKuaOq-A1TXFbaEpY21VsrYBUmIgjc5Pstc73fVQr6DR4PqgrFwHs1JhK70y8k-LM9ey8xvJSUkoKZPAq3uB4G8HiL1cmajBWuXAD1HSgjJaCpZX_0cxxawUPOcJffkAvfFDcKkSkhIiykIQUSRquqM6ZUEa1_oUok67gZVJFYfWpP8zkeeU5amtyeHF79nu0_zV9ASc7gAdfIwB2j1CsBwHSqaBkj8HKrGzB6w2veqNHwtl7L88vqS4tn-XlldvFjuPH2aQ3QA
CitedBy_id crossref_primary_10_3389_fsufs_2021_685801
crossref_primary_10_3390_ijms23084454
crossref_primary_10_1094_PHYTO_07_19_0267_IA
crossref_primary_10_1007_s11033_021_06926_5
crossref_primary_10_1016_j_biotechadv_2023_108248
crossref_primary_10_1016_j_plaphy_2019_12_022
crossref_primary_10_1016_j_pbi_2019_03_011
crossref_primary_10_2174_1874070701913010173
crossref_primary_10_3390_plants10091914
crossref_primary_10_1007_s10725_021_00742_4
crossref_primary_10_1038_s41598_022_23413_4
crossref_primary_10_1016_j_jenvman_2023_117382
crossref_primary_10_7717_peerj_17402
crossref_primary_10_3389_fgene_2021_735489
crossref_primary_10_1079_cabireviews_2023_0008
crossref_primary_10_3390_agronomy13041000
crossref_primary_10_1093_hr_uhad078
crossref_primary_10_1371_journal_ppat_1011417
crossref_primary_10_3389_fpls_2023_1143813
crossref_primary_10_1002_biot_202300298
crossref_primary_10_1080_21645698_2021_2021724
crossref_primary_10_1007_s11248_019_00181_y
crossref_primary_10_3389_fgeed_2022_875243
crossref_primary_10_1080_21645698_2023_2219111
crossref_primary_10_1080_21645698_2020_1831729
crossref_primary_10_1186_s13750_019_0171_5
crossref_primary_10_3389_fgeed_2022_876697
crossref_primary_10_3390_ijms22031292
crossref_primary_10_3390_plants13141884
crossref_primary_10_3390_ijms22073327
crossref_primary_10_1094_PHYTO_11_20_0498_R
crossref_primary_10_1016_j_pbi_2020_101987
crossref_primary_10_1016_j_sajb_2024_01_029
crossref_primary_10_3389_fpls_2020_00264
crossref_primary_10_3389_fpls_2018_02008
crossref_primary_10_3390_ijms20164045
crossref_primary_10_1080_07388551_2023_2270581
crossref_primary_10_2478_mjhr_2020_0002
crossref_primary_10_1007_s12355_023_01252_5
crossref_primary_10_1002_fes3_168
crossref_primary_10_3389_fmicb_2020_609784
crossref_primary_10_3389_fgeed_2020_00005
crossref_primary_10_1079_PAVSNNR202116047
crossref_primary_10_1094_PHYTO_01_23_0002_V
crossref_primary_10_2222_jsv_70_61
crossref_primary_10_2174_1389202921999200712135131
crossref_primary_10_1007_s13562_022_00767_4
crossref_primary_10_1007_s00425_021_03716_y
crossref_primary_10_3389_fpls_2023_1275854
crossref_primary_10_1080_07060661_2023_2215212
crossref_primary_10_3390_agronomy10071033
crossref_primary_10_3390_ijms242417598
crossref_primary_10_3389_fpls_2022_1055529
crossref_primary_10_3389_fgene_2022_866121
crossref_primary_10_1094_PHYTO_05_22_0167_RVW
crossref_primary_10_1021_acs_jafc_1c02653
crossref_primary_10_3390_encyclopedia2010036
crossref_primary_10_1186_s42483_024_00302_4
crossref_primary_10_1080_03235408_2021_1910415
crossref_primary_10_1007_s11248_021_00262_x
crossref_primary_10_1016_j_pmpp_2024_102402
crossref_primary_10_3389_fgene_2021_786140
crossref_primary_10_3390_cells11182902
crossref_primary_10_3390_plants12091736
crossref_primary_10_1007_s11032_021_01214_3
crossref_primary_10_3389_fpls_2022_843575
crossref_primary_10_1270_jsbbs_21019
crossref_primary_10_3389_fpls_2023_1231013
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1007_s13237_024_00472_8
crossref_primary_10_1016_j_gene_2023_147334
crossref_primary_10_3389_fmicb_2020_564310
crossref_primary_10_1007_s13562_021_00746_1
crossref_primary_10_3390_ijms22010397
crossref_primary_10_1002_fes3_258
crossref_primary_10_1080_07388551_2018_1554621
crossref_primary_10_31590_ejosat_765369
crossref_primary_10_3389_frsus_2024_1378712
crossref_primary_10_1016_j_isci_2020_101478
crossref_primary_10_1111_mpp_13434
crossref_primary_10_3389_fgeed_2024_1415244
crossref_primary_10_1080_07388551_2021_2007842
crossref_primary_10_3390_ijms231810442
crossref_primary_10_1186_s13059_020_02204_y
crossref_primary_10_3390_ijms19102856
crossref_primary_10_1007_s44279_024_00124_0
crossref_primary_10_3390_agronomy14102442
crossref_primary_10_1007_s11033_022_07741_2
crossref_primary_10_1007_s00425_021_03660_x
crossref_primary_10_1007_s13562_023_00862_0
crossref_primary_10_3389_fpls_2023_1247014
crossref_primary_10_1007_s11033_021_06975_w
crossref_primary_10_1007_s11033_022_07523_w
crossref_primary_10_1038_s41437_022_00513_5
crossref_primary_10_1016_j_jbiotec_2020_09_013
crossref_primary_10_3390_cimb46100659
crossref_primary_10_3390_plants10071347
crossref_primary_10_3390_v13102100
crossref_primary_10_1007_s11248_021_00259_6
crossref_primary_10_3389_fpls_2023_1134653
crossref_primary_10_3390_agronomy11071359
crossref_primary_10_1016_j_jenvman_2024_120326
crossref_primary_10_3390_cells13211782
crossref_primary_10_9787_KJBS_2022_54_4_331
crossref_primary_10_1111_mpp_13252
crossref_primary_10_1007_s00438_025_02231_z
crossref_primary_10_3389_fmicb_2021_635917
crossref_primary_10_1007_s12374_023_09383_8
crossref_primary_10_20965_jaciii_2023_p0333
crossref_primary_10_3390_plants10010082
crossref_primary_10_3389_fpls_2020_01098
crossref_primary_10_1007_s10327_024_01189_x
crossref_primary_10_1016_j_rsci_2021_01_003
crossref_primary_10_1007_s00425_022_04023_w
crossref_primary_10_1080_23311932_2024_2381600
crossref_primary_10_2174_1389202921999200716110853
crossref_primary_10_1080_08974438_2021_2011526
crossref_primary_10_1111_pbi_13394
crossref_primary_10_1016_j_jgg_2023_07_009
crossref_primary_10_1007_s13237_021_00353_4
crossref_primary_10_3390_ijms21114040
crossref_primary_10_1094_PHYTO_08_20_0322_IA
crossref_primary_10_1186_s12863_020_00857_z
crossref_primary_10_1186_s12870_019_2047_9
crossref_primary_10_3389_fpls_2019_00550
crossref_primary_10_3389_fpls_2022_1027828
crossref_primary_10_3390_agronomy12030565
crossref_primary_10_1021_acsomega_9b02634
crossref_primary_10_3389_fgeed_2024_1399051
crossref_primary_10_3390_microorganisms13020233
crossref_primary_10_1007_s43538_022_00100_6
crossref_primary_10_1016_j_cj_2021_03_004
crossref_primary_10_1002_fes3_330
crossref_primary_10_1186_s42397_023_00140_3
crossref_primary_10_1016_j_stress_2022_100056
crossref_primary_10_3390_plants10071264
crossref_primary_10_9787_KJBS_2019_51_3_161
crossref_primary_10_1016_j_plantsci_2022_111376
crossref_primary_10_1016_j_semcdb_2019_03_010
crossref_primary_10_3389_fmicb_2020_609376
crossref_primary_10_1111_pbi_14266
crossref_primary_10_3389_fpls_2020_00307
crossref_primary_10_5897_AJB2021_17344
crossref_primary_10_3390_biology12071037
crossref_primary_10_1007_s00299_025_03440_x
crossref_primary_10_1111_nph_18002
crossref_primary_10_18699_VJGB_22_83
crossref_primary_10_3390_ijms22115585
crossref_primary_10_1093_plphys_kiab220
crossref_primary_10_3390_plants12132454
crossref_primary_10_3389_fgene_2022_866976
crossref_primary_10_3389_fpls_2021_688980
crossref_primary_10_3390_v14102258
crossref_primary_10_1016_j_fcr_2021_108121
crossref_primary_10_3390_ijms23042303
crossref_primary_10_1002_wrna_1597
crossref_primary_10_1021_acsagscitech_1c00279
crossref_primary_10_3389_fpls_2024_1369416
crossref_primary_10_3389_fgeed_2022_987817
crossref_primary_10_1071_FP24092
crossref_primary_10_1007_s44297_023_00020_x
crossref_primary_10_1016_j_pmpp_2023_102191
crossref_primary_10_1007_s13562_021_00765_y
crossref_primary_10_1071_FP24101
crossref_primary_10_1007_s11427_019_9722_2
crossref_primary_10_1016_j_coviro_2020_04_005
crossref_primary_10_1080_07352689_2021_1883826
crossref_primary_10_3390_ijms25021308
crossref_primary_10_1007_s00425_021_03796_w
crossref_primary_10_1111_pbi_14442
crossref_primary_10_1007_s10142_023_01133_w
crossref_primary_10_3389_fpls_2022_885128
crossref_primary_10_1002_tpg2_20220
crossref_primary_10_3389_fpls_2021_773656
crossref_primary_10_3390_cimb46040233
crossref_primary_10_1016_j_semcdb_2019_04_008
crossref_primary_10_1016_j_pmpp_2024_102482
crossref_primary_10_1146_annurev_arplant_050718_100049
crossref_primary_10_1038_s41598_022_18923_0
crossref_primary_10_1007_s11033_023_08440_2
crossref_primary_10_1016_j_virol_2025_110449
crossref_primary_10_3390_microorganisms7080269
crossref_primary_10_1016_j_pbi_2020_05_003
crossref_primary_10_1111_pbi_13125
crossref_primary_10_3390_agronomy12010164
crossref_primary_10_3390_plants13212972
crossref_primary_10_3389_fpls_2018_01361
crossref_primary_10_3390_plants13233313
crossref_primary_10_1007_s11816_018_0509_4
crossref_primary_10_3389_fpls_2018_01245
crossref_primary_10_1038_s41598_019_53710_4
crossref_primary_10_1002_jcp_29052
crossref_primary_10_1186_s42483_020_00060_z
crossref_primary_10_3389_fpls_2022_904829
crossref_primary_10_3390_cimb43030135
crossref_primary_10_3389_fpls_2019_01326
crossref_primary_10_3390_cells11233928
crossref_primary_10_5010_JPB_2018_45_3_155
crossref_primary_10_1186_s12870_024_04786_2
crossref_primary_10_1016_j_coviro_2021_01_002
crossref_primary_10_3390_plants11192625
crossref_primary_10_1016_j_cpb_2021_100211
crossref_primary_10_1016_j_pmpp_2025_102640
crossref_primary_10_3390_v13010141
crossref_primary_10_1007_s00425_023_04110_6
crossref_primary_10_1088_1755_1315_1192_1_012018
crossref_primary_10_3389_fmicb_2020_593700
crossref_primary_10_1007_s00299_021_02664_x
crossref_primary_10_3390_ijms22115423
crossref_primary_10_1016_j_tplants_2019_09_006
crossref_primary_10_1073_pnas_2018799118
crossref_primary_10_1007_s11105_021_01286_7
crossref_primary_10_3390_agronomy8070114
crossref_primary_10_1111_pbi_14472
crossref_primary_10_47836_pjtas_44_3_06
crossref_primary_10_3389_fpls_2019_00801
Cites_doi 10.1007/s12571-012-0168-1
10.1038/srep11491
10.1105/tpc.16.00922
10.1111/j.1365-313X.2006.02792.x
10.1094/Phyto-86-25
10.1111/pbi.12465
10.1016/j.pbi.2016.11.011
10.1016/S0968-0004(00)01628-5
10.1094/PDIS-91-11-1386
10.1111/pbi.12448
10.1094/PD-72-0843
10.1128/MCB.15.9.4990
10.1038/hortres.2015.19
10.1371/journal.pbio.1001878
10.1094/PD-74-0923
10.1093/mp/ssu044
10.1007/978-1-62703-715-0_21
10.3389/fpls.2016.00765
10.1038/ng.3484
10.1093/nar/gkw1135
10.1186/1746-4811-9-39
10.1038/srep19675
10.1016/j.cell.2009.01.042
10.1038/srep21451
10.2135/cropsci2007.03.0127
10.1111/mpp.12417
10.1023/A:1012605218343
10.1093/nar/16.20.9877
10.1094/MPMI-22-10-1268
10.1038/nmeth.2812
10.1186/s12284-015-0069-y
10.1038/nbt.2650
10.1094/Phyto-77-473
10.1146/annurev.phyto.34.1.275
10.1111/mpp.12375
10.3390/v7072778
10.1371/journal.pbio.1001877
10.1038/cr.2013.123
10.1016/S0065-3527(06)66001-6
10.1094/PDIS.2002.86.2.88
10.1094/Phyto-85-77
10.1094/MPMI-23-1-0029
10.1038/srep24765
10.1094/MPMI-03-10-0073
10.1111/pbi.12200
10.3389/fpls.2016.01673
10.1016/j.virusres.2005.10.010
10.1016/j.molp.2016.12.001
10.1073/pnas.1400822111
10.1016/j.tplants.2016.08.009
10.1016/j.virol.2005.09.031
ContentType Journal Article
Copyright 2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
COPYRIGHT 2018 John Wiley & Sons, Inc.
2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2018 John Wiley & Sons, Inc.
– notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.12927
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database (subscription)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

AGRICOLA
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Anca Macovei et al
EISSN 1467-7652
EndPage 1927
ExternalDocumentID PMC6181218
A733243604
29604159
10_1111_pbi_12927
PBI12927
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Asia
GeographicLocations_xml – name: Asia
GrantInformation_xml – fundername: Global Rice Science Partnership (GRiSP)
– fundername: Temperate Rice Research Consortium of IRRI, and Rural Development Administration of Korea
– fundername: U.S. Agency for International Development (USAID‐Linkage)
– fundername: U.S. Agency for International Development (USAID-Linkage)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
NPM
PMFND
7QO
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5817-56dd1a06209ae28e36493e725c962cd7fadb39e4bb20f5c244f984fde180e1dc3
IEDL.DBID BENPR
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 14:00:41 EDT 2025
Fri Jul 11 18:26:57 EDT 2025
Tue Aug 05 10:18:02 EDT 2025
Wed Aug 13 10:44:00 EDT 2025
Tue Jun 10 20:15:50 EDT 2025
Thu Apr 03 07:05:46 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 02:34:42 EDT 2025
Wed Jan 22 16:35:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords rice tungro spherical virus
CRISPR/Cas9
eIF4G
rice
mutagenesis
Language English
License Attribution
2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5817-56dd1a06209ae28e36493e725c962cd7fadb39e4bb20f5c244f984fde180e1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AM and NRS contributed equally to the work.
ORCID 0000-0002-7044-1851
OpenAccessLink https://www.proquest.com/docview/2117857175?pq-origsite=%requestingapplication%
PMID 29604159
PQID 2117857175
PQPubID 1096352
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181218
proquest_miscellaneous_2524287439
proquest_miscellaneous_2020487636
proquest_journals_2117857175
gale_infotracacademiconefile_A733243604
pubmed_primary_29604159
crossref_primary_10_1111_pbi_12927
crossref_citationtrail_10_1111_pbi_12927
wiley_primary_10_1111_pbi_12927_PBI12927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 1987; 77
2017; 4
2013; 23
1988; 72
1996; 34
2010; 23
2013; 11
2002; 86
2000
2017; 36
2006; 66
2004; 36
2014; 7
2016; 48
2003; 85
2014; 12
2014; 11
2001; 122
2015; 2
2009; 22
1990; 74
2006; 119
2015; 19
2016; 19
2000; 25
1995; 15
2017; 22
1988; 16
2007; 91
1994
2017; 29
2016; 17
2014; 111
2015; 8
2015; 7
2016; 14
2009; 136
1999
1980; 17
1995; 85
1993; 14
2016; 6
2016; 7
1994; 19
2017; 10
2006; 47
2013; 31
2008; 48
2014; 1099
2016; 27
2012; 4
1996; 86
2006; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
Rao G.M. (e_1_2_8_43_1) 1980; 17
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
Muralidharan K. (e_1_2_8_38_1) 2003; 85
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Cabunagan R.C. (e_1_2_8_10_1) 1999
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
Stewart C.N. (e_1_2_8_52_1) 1993; 14
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Anjaneyulu A. (e_1_2_8_3_1) 1994
Ebron L.A. (e_1_2_8_15_1) 1994; 19
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Azzam O. (e_1_2_8_5_1) 2000
Khush G.S. (e_1_2_8_26_1) 2004; 36
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 122
  start-page: 91
  year: 2001
  end-page: 97
  article-title: Inheritance of resistance to rice tungro spherical virus in a near‐isogenic line derived from Utri Merah and in rice cultivar TKM6
  publication-title: Euphytica
– volume: 25
  start-page: 423
  year: 2000
  end-page: 426
  article-title: Novel eIF4G domain homologues linking mRNA translation with nonsense‐mediated mRNA decay
  publication-title: Trends Biochem. Sci.
– volume: 17
  start-page: 1140
  year: 2016
  end-page: 1153
  article-title: Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology
  publication-title: Mol. Plant Pathol.
– start-page: 40
  year: 2000
– volume: 34
  start-page: 275
  year: 1996
  end-page: 297
  article-title: Molecular biology of rice tungro viruses
  publication-title: Annu. Rev. Phytopathol.
– volume: 6
  start-page: 24765
  year: 2016
  article-title: CRISPR/Cas9‐mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations
  publication-title: Sci. Rep.
– volume: 36
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Applying CRISPR/Cas for genome engineering in plants: the best is yet to come
  publication-title: Curr. Opin. Plant Biol.
– volume: 7
  start-page: 765
  year: 2016
  article-title: An overview of CRISPR‐based tools and their implementations: new opportunities in understanding plant‐pathogen interactions for better crop production
  publication-title: Front. Plant Sci.
– volume: 17
  start-page: 1276
  year: 2016
  end-page: 1288
  article-title: Engineering of CRISPR/Cas9‐ mediated potyvirus resistance in transgene‐free plants
  publication-title: Mol. Plant Pathol.
– volume: 7
  start-page: 1494
  year: 2014
  end-page: 1496
  article-title: CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants
  publication-title: Mol. Plant
– volume: 77
  start-page: 473
  year: 1987
  end-page: 476
  article-title: Infectivity neutralization of rice tungro associated viruses acquired by vector leafhoppers
  publication-title: Phytopathology
– volume: 14
  start-page: 448
  year: 2016
  end-page: 462
  article-title: Designed nucleases for targeted genome editing
  publication-title: Plant Biotechnol. J.
– volume: 47
  start-page: 417
  year: 2006
  end-page: 426
  article-title: Mutations in the eIF(iso)4G translation initiation factor confer high resistance to rice yellow mottle virus
  publication-title: Plant J.
– volume: 8
  start-page: 34
  year: 2015
  article-title: Allele mining and enhanced genetic recombination for rice breeding
  publication-title: Rice
– volume: 11
  start-page: 39
  year: 2013
  article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system
  publication-title: Plant Methods
– volume: 22
  start-page: 1268
  year: 2009
  end-page: 1281
  article-title: Suppression of two tungro viruses in rice by separable traits originating from cultivar Utri Merah
  publication-title: Mol. Plant‐Microbe
– volume: 16
  start-page: 9877
  year: 1988
  article-title: Storage of competent cells for transformation
  publication-title: Nucleic Acids Res.
– volume: 48
  start-page: 480
  year: 2008
  end-page: 486
  article-title: Characterization of a putative rice mutant for reaction to rice tungro disease
  publication-title: Crop Sci.
– year: 1994
– volume: 72
  start-page: 843
  year: 1988
  end-page: 847
  article-title: Resistance to rice tungro spherical virus in rice
  publication-title: Plant Dis.
– volume: 48
  start-page: 109
  year: 2016
  end-page: 111
  article-title: A proposed regulatory framework for genome‐edited crops
  publication-title: Nat. Genet.
– volume: 86
  start-page: 25
  year: 1996
  end-page: 30
  article-title: Molecular mapping of resistance to rice tungro spherical virus and green leafhopper
  publication-title: Phytopathology
– volume: 31
  start-page: 686
  year: 2013
  end-page: 688
  article-title: Targeted genome modification of crop plants using a CRISPR‐Cas system
  publication-title: Nat. Biotechnol.
– volume: 344
  start-page: 185
  year: 2006
  end-page: 197
  article-title: Translational control in positive strand RNA viruses
  publication-title: Virology
– volume: 27
  start-page: 19675
  year: 2016
  article-title: Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system
  publication-title: Sci. Rep.
– volume: 14
  start-page: 483
  year: 2016
  end-page: 495
  article-title: Use of designer nucleases for targeted gene and genome editing in plants
  publication-title: Plant Biotechnol. J.
– start-page: 45
  year: 1999
  end-page: 55
– volume: 136
  start-page: 731
  year: 2009
  end-page: 745
  article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets
  publication-title: Cell
– volume: 11
  start-page: 122
  year: 2014
  end-page: 123
  article-title: E‐CRISP: fast CRISPR target site identification
  publication-title: Nat. Methods
– volume: 23
  start-page: 1233
  year: 2013
  end-page: 1236
  article-title: Targeted mutagenesis in rice using CRISPR‐Cas system
  publication-title: Cell Res.
– volume: 12
  start-page: e1001878
  year: 2014
  article-title: Lab to farm: applying research on plant genetics and genomics to crop improvement
  publication-title: PLoS Biol.
– volume: 4
  start-page: 7
  year: 2012
  end-page: 24
  article-title: Crops that feed the world 7: rice
  publication-title: Food Sec.
– volume: 23
  start-page: 1506
  year: 2010
  end-page: 1513
  article-title: Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF(iso)4G1 factor correlates with rice susceptibility and RYMV virulence
  publication-title: Mol. Plant‐Microbe Interact.
– volume: 85
  start-page: 77
  year: 1995
  end-page: 81
  article-title: Biological variants of rice tungro viruses in the Philippines
  publication-title: Phytopathology
– volume: 10
  start-page: 526
  year: 2017
  end-page: 529
  article-title: Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system
  publication-title: Mol. Plant
– volume: 2
  start-page: 15019
  year: 2015
  article-title: Genome‐editing technologies and their potential application in horticultural crop breeding
  publication-title: Hortic. Res.
– volume: 17
  start-page: 210
  year: 1980
  end-page: 214
  article-title: Estimation of yield losses due to tungro virus infection in rice cultivars
  publication-title: Oryza
– volume: 15
  start-page: 4990
  year: 1995
  end-page: 4997
  article-title: The translation initiation factor eIF‐4E binds to a common motif shared by the translation factor eIF‐4 gamma and the translational repressors 4E‐binding proteins
  publication-title: Mol. Cell. Biol.
– volume: 1099
  start-page: 261
  year: 2014
  end-page: 271
  article-title: mediated transformation: rice transformation
  publication-title: Methods Mol. Biol.
– volume: 36
  start-page: 101
  year: 2004
  end-page: 106
  article-title: Breeding rice for resistance to tungro virus at IRRI
  publication-title: SABRAO J. Breed. Genet.
– volume: 29
  start-page: 1196
  year: 2017
  end-page: 1217
  article-title: A multipurpose toolkit to enable advanced genome engineering in plants
  publication-title: Plant Cell
– volume: 19
  start-page: 10
  year: 1994
  end-page: 11
  article-title: Inheritance of resistance to rice tungro spherical virus in some rice cultivars
  publication-title: Int. Rice Res. Notes
– volume: 119
  start-page: 63
  year: 2006
  end-page: 75
  article-title: Cap‐independent translation of plant viral RNAs
  publication-title: Virus Res.
– volume: 12
  start-page: 797
  year: 2014
  end-page: 807
  article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
  publication-title: Plant Biotechnol. J.
– volume: 7
  start-page: 3392
  year: 2015
  end-page: 3419
  article-title: Plant translation factors and virus resistance
  publication-title: Viruses
– volume: 91
  start-page: 1386
  year: 2007
  end-page: 1391
  article-title: Characterization of ‐derived resistance to tungro disease in rice
  publication-title: Plant Dis.
– volume: 86
  start-page: 88
  year: 2002
  end-page: 100
  article-title: The biology, epidemiology, and management of rice tungro disease in Asia
  publication-title: Plant Dis.
– volume: 111
  start-page: 4632
  year: 2014
  end-page: 4637
  article-title: Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas‐induced gene modifications in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 66
  start-page: 1
  year: 2006
  end-page: 29
  article-title: Spread of plant virus disease to new plantings: a case study of rice tungro disease
  publication-title: Adv. Virus Res.
– volume: 19
  start-page: 11491
  year: 2015
  article-title: Generation of inheritable and “transgene clean” targeted genome‐modified rice in later generations using the CRISPR/Cas9 system
  publication-title: Sci. Rep.
– volume: 4
  start-page: D1075
  year: 2017
  end-page: D1081
  article-title: Rice SNP‐seek database update: new SNPs, indels, and queries
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 38
  year: 2017
  end-page: 52
  article-title: Characteristics of genome editing mutations in cereal crops
  publication-title: Trends Plant Sci.
– volume: 19
  start-page: 21451
  year: 2016
  article-title: Selection of highly efficient sgRNAs for CRISPR/Cas9‐based plant genome editing
  publication-title: Sci. Rep.
– volume: 12
  start-page: e1001877
  year: 2014
  article-title: Precision genome engineering and agriculture: opportunities and regulatory challenges
  publication-title: PLoS Biol.
– volume: 23
  start-page: 29
  year: 2010
  end-page: 38
  article-title: Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice ( ) associated with resistance to rice tungro spherical virus
  publication-title: Mol. Plant‐Microbe Interact.
– volume: 74
  start-page: 923
  year: 1990
  end-page: 926
  article-title: Resistances in rice to tungro‐associated viruses
  publication-title: Plant Dis.
– volume: 85
  start-page: 1143
  year: 2003
  end-page: 1147
  article-title: Tungro epidemic and yield losses in paddy fields in India
  publication-title: Curr. Sci.
– volume: 14
  start-page: 748
  year: 1993
  end-page: 750
  article-title: A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications
  publication-title: Biotechniques
– volume: 7
  start-page: 1673
  year: 2016
  article-title: Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance
  publication-title: Front. Plant Sci.
– ident: e_1_2_8_47_1
  doi: 10.1007/s12571-012-0168-1
– ident: e_1_2_8_56_1
  doi: 10.1038/srep11491
– ident: e_1_2_8_11_1
  doi: 10.1105/tpc.16.00922
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365-313X.2006.02792.x
– ident: e_1_2_8_46_1
  doi: 10.1094/Phyto-86-25
– ident: e_1_2_8_29_1
  doi: 10.1111/pbi.12465
– ident: e_1_2_8_41_1
  doi: 10.1016/j.pbi.2016.11.011
– volume: 14
  start-page: 748
  year: 1993
  ident: e_1_2_8_52_1
  article-title: A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications
  publication-title: Biotechniques
– ident: e_1_2_8_40_1
  doi: 10.1016/S0968-0004(00)01628-5
– ident: e_1_2_8_49_1
  doi: 10.1094/PDIS-91-11-1386
– ident: e_1_2_8_54_1
  doi: 10.1111/pbi.12448
– ident: e_1_2_8_21_1
  doi: 10.1094/PD-72-0843
– ident: e_1_2_8_35_1
  doi: 10.1128/MCB.15.9.4990
– ident: e_1_2_8_55_1
  doi: 10.1038/hortres.2015.19
– ident: e_1_2_8_44_1
  doi: 10.1371/journal.pbio.1001878
– ident: e_1_2_8_22_1
  doi: 10.1094/PD-74-0923
– ident: e_1_2_8_30_1
  doi: 10.1093/mp/ssu044
– volume: 19
  start-page: 10
  year: 1994
  ident: e_1_2_8_15_1
  article-title: Inheritance of resistance to rice tungro spherical virus in some rice cultivars
  publication-title: Int. Rice Res. Notes
– ident: e_1_2_8_50_1
  doi: 10.1007/978-1-62703-715-0_21
– ident: e_1_2_8_7_1
  doi: 10.3389/fpls.2016.00765
– ident: e_1_2_8_24_1
  doi: 10.1038/ng.3484
– ident: e_1_2_8_36_1
  doi: 10.1093/nar/gkw1135
– ident: e_1_2_8_8_1
  doi: 10.1186/1746-4811-9-39
– ident: e_1_2_8_34_1
  doi: 10.1038/srep19675
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cell.2009.01.042
– ident: e_1_2_8_33_1
  doi: 10.1038/srep21451
– ident: e_1_2_8_58_1
  doi: 10.2135/cropsci2007.03.0127
– volume-title: Rice Tungro
  year: 1994
  ident: e_1_2_8_3_1
– ident: e_1_2_8_42_1
  doi: 10.1111/mpp.12417
– ident: e_1_2_8_6_1
  doi: 10.1023/A:1012605218343
– start-page: 40
  volume-title: Methods for Evaluating Resistance to Rice Tungro Disease
  year: 2000
  ident: e_1_2_8_5_1
– ident: e_1_2_8_23_1
  doi: 10.1093/nar/16.20.9877
– ident: e_1_2_8_16_1
  doi: 10.1094/MPMI-22-10-1268
– ident: e_1_2_8_19_1
  doi: 10.1038/nmeth.2812
– ident: e_1_2_8_31_1
  doi: 10.1186/s12284-015-0069-y
– ident: e_1_2_8_48_1
  doi: 10.1038/nbt.2650
– ident: e_1_2_8_20_1
  doi: 10.1094/Phyto-77-473
– ident: e_1_2_8_25_1
  doi: 10.1146/annurev.phyto.34.1.275
– ident: e_1_2_8_13_1
  doi: 10.1111/mpp.12375
– ident: e_1_2_8_45_1
  doi: 10.3390/v7072778
– ident: e_1_2_8_53_1
  doi: 10.1371/journal.pbio.1001877
– ident: e_1_2_8_37_1
  doi: 10.1038/cr.2013.123
– volume: 85
  start-page: 1143
  year: 2003
  ident: e_1_2_8_38_1
  article-title: Tungro epidemic and yield losses in paddy fields in India
  publication-title: Curr. Sci.
– ident: e_1_2_8_12_1
  doi: 10.1016/S0065-3527(06)66001-6
– ident: e_1_2_8_4_1
  doi: 10.1094/PDIS.2002.86.2.88
– volume: 36
  start-page: 101
  year: 2004
  ident: e_1_2_8_26_1
  article-title: Breeding rice for resistance to tungro virus at IRRI
  publication-title: SABRAO J. Breed. Genet.
– ident: e_1_2_8_9_1
  doi: 10.1094/Phyto-85-77
– start-page: 45
  volume-title: Rice Tungro Disease Management
  year: 1999
  ident: e_1_2_8_10_1
– ident: e_1_2_8_28_1
  doi: 10.1094/MPMI-23-1-0029
– ident: e_1_2_8_39_1
  doi: 10.1038/srep24765
– ident: e_1_2_8_18_1
  doi: 10.1094/MPMI-03-10-0073
– ident: e_1_2_8_59_1
  doi: 10.1111/pbi.12200
– ident: e_1_2_8_57_1
  doi: 10.3389/fpls.2016.01673
– ident: e_1_2_8_27_1
  doi: 10.1016/j.virusres.2005.10.010
– ident: e_1_2_8_32_1
  doi: 10.1016/j.molp.2016.12.001
– volume: 17
  start-page: 210
  year: 1980
  ident: e_1_2_8_43_1
  article-title: Estimation of yield losses due to tungro virus infection in rice cultivars
  publication-title: Oryza
– ident: e_1_2_8_17_1
  doi: 10.1073/pnas.1400822111
– ident: e_1_2_8_60_1
  doi: 10.1016/j.tplants.2016.08.009
– ident: e_1_2_8_14_1
  doi: 10.1016/j.virol.2005.09.031
SSID ssj0021656
Score 2.6434774
Snippet Summary Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro...
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus...
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1918
SubjectTerms Alleles
Allelomorphism
Asia
biotechnology
CRISPR
CRISPR-Cas systems
CRISPR/Cas9
Crop production
Cultivars
Disease resistance
eIF4G
greenhouses
homozygosity
Initiation factor eIF-4G
mutagenesis
Mutation
Mutation rates
Oryza
Residues
Rice
Rice tungro bacilliform virus
Rice tungro spherical virus
Site-directed mutagenesis
Tungro
Viruses
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WPenB9yO6SiuCXjImnXQ6wdM4OO4ILsvowh6E0Ol01sExWfJYUDz4E_yN_hKr8mJmUBFvM3RNJul81fVVUvU1wBPhKAwimcK0hEvbNyKwoyQzNmZDmVGKp9ql3uG3R8Hhif_mVJzuwYuhF6bThxgfuJFntOs1ObhKqg0nP09WEwxWnDrJqVaLCNFylI7ipCrTdRZJW2LQ71WFqIpn_OVWLNpdkTdC0m655CaNbePQ_Cp8GK6gKz_5NGnqZKK_7og7_uclXoMrPT9l0w5Q12HP5Dfg8vSs7DU6zE34dlRcmDWjTVjWpmJFxkiYiJnF3H_NzloZa6SxLPnCZsvFu-Pl85mqop_ff3RF5zjyuakV2VWrium245CV9KUmBLK6YEs6Xo3LUFmwinQPCEnsYlU21S04mb96Pzu0-00cbC1CjIAiSFNXOQF3ImV4aLzAjzwjudBRwHUqM5UmXmT8JOFOJjSyjSwK_Sw1bugYN9XebdjPi9zcBcaVpzw3TQVJCHmKI9MwiDOpItKc96QFz4bbGete4Zw22ljHQ6aDExq3E2rB49H0vJP1-J3RU8JETK6Ox9Gq71jAsyHRrHgqPfrfwPEtOBhgE_drQBVjai1DgemysODROIzeS69kVG6KBm2oN5lEAYO_2AhOeS0yRwvudEgcz5mTtg4yUgvkFkZHA1IP3x7JVx9bFfGAuJ0b4qS1EPzzNMTHLxfth3v_bnofLiGzDLumzQPYr8vGPED2VicPWzf9BSBrQlw
  priority: 102
  providerName: Wiley-Blackwell
Title Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12927
https://www.ncbi.nlm.nih.gov/pubmed/29604159
https://www.proquest.com/docview/2117857175
https://www.proquest.com/docview/2020487636
https://www.proquest.com/docview/2524287439
https://pubmed.ncbi.nlm.nih.gov/PMC6181218
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdY9wIPiP8ERmUQEryEJU4cJ0-oq9atSFRVYdLeIsd2RqWSlCSdhMQDH4HPyCfhLnFDN8FeolY-panvfPc7x_c7Ql5zT0IQySWkJUy4oeGRm2S5cSEbyo2UTCsfa4c_zqLTs_DDOT-3G261PVa59Ymto9alwj3yQ0hURMwh-eDv199c7BqFb1dtC409sg8uOI4HZP_oeDZf9CkXcst09UXCFRD6LbcQnuVZZ8t3EOywncxORLrul3cC0_VDk7tgto1Gk3vkroWRdNTp_T65ZYoH5M7oorJUGuYh-TErL82KYq-UlalpmVPkD6JmOglP6EXLNg1ok2bf6Xgx_TRfHI5lnfz--as7Gw4jXzeNRLl6WVPVFgbSCr80aCi0KekC79eAt6hKWiM9ASqcXi6rTf2InE2OP49PXdtrwVU8hkDFI6196UXMS6RhsQmiMAmMYFwlEVNa5FJnQWLCLGNezhWAgjyJw1wbP_aMr1XwmAyKsjBPCWUykIGvNUemn0AyAAQGzEHIBKnhA-GQt9v5TpUlIsd-GKt0m5CAatJWNQ551YuuO_aNfwm9QaWluCLhPkrawgJ4GuS2SkciwN-NvNAhB1u9pnap1ulfw3LIy34YFhm-OZGFKTcggyXEyN0X3SDDGaafAPAc8qQzlf6ZGVLgAHB0iLhiRL0AknxfHSmWX1qy7wghmB_DpLXm9v9pSOdH0_bDs5v_5XNyG0Bf3NVTHpBBU23MCwBWTTYkeyycwzWenAztShq2mxR4XbA_cVUnUg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VcgAOiH8MBRYEgotbe-31zwGhEEgT2kZVaKXezNpet5FSO9hOUSUOPAJPwkPxJMz4j7SC3npztKO1szM784298w3AS2FIDCKJxLSEu7qthKP7YaJ0zIYSJSWPI5Nqh3fGznDf_nQgDlbgV1sLQ8cqW59YOeo4i-gd-QYmKq4nMPkQ7-ZfdeoaRV9X2xYatVlsqdNvmLIVb0cfUL-vOB983OsP9aargB4JD12ycOLYlIbDDV8q7inLsX1LuVxEvsOj2E1kHFq-ssOQG4mIMPwlvmcnsTI9Q5lxZOG8V-CqbWEkp8r0wWaX4BGTTV3N5OouAo2GyYhODs3D6TqGVmpesxT_zkeBpTB4_ojmMnSuYt_gFtxsQCvr1VZ2G1ZUegdu9A7zhrhD3YXv4-xEzRh1ZpmpgmUJI7YipkYDe5MdVtzWiG1ZeMr6k9Hn3clGXxb-7x8_65PoOHK8KCXJFdOCRVUZIsvpR0lmycqMTWi-En1TnrGCyBDIvNjJNF8U92D_UnRwH1bTLFUPgXFpScuMY0G8QpbkCD8UGp8rfSKit1wN3rTrHUQN7Tl135gFbfqDqgkq1WjwohOd11wf_xJ6TUoLaP_jPJFsyhjwaYhJK-i5Ft3XMWwN1lq9Bo1jKIK_ZqzB824YtzR9p5GpyhYoQwXLxBToXCAjOCW7CCc1eFCbSvfMnAh3EKZq4J4xok6AKMXPjqTTo4pa3CHAZ3q4aJW5_X8Zgt33o-ri0cX_8hlcG-7tbAfbo_HWY7iOcNOrKznXYLXMF-oJQroyfFrtIwZfLnvj_gGweF9P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEL0gPjHUGBBILiY2Guv1z4glKYNDYUoCq3Um1nb6zZSiEPsFFXiwCPwPDwOT8KMf0JaQW-9OdrR2tmZnfnG3vkG4LmwFAaRVGFawqXpauGZQZRqE7OhVCvFk9im2uGPA2_3wH1_KA7X4FdTC0PHKhufWDrqJIvpHXkbExXpC0w-RDutj0UMt3tvZ19N6iBFX1qbdhqViezp02-YvuVv-tuo6xec93b2u7tm3WHAjIWP7ll4SWIry-NWoDT3teO5gaMlF3Hg8TiRqUoiJ9BuFHErFTGGwjTw3TTRtm9pO4kdnPcKrEvKilqwvrUzGI6W6R7x2lS1TdKUCDtqXiM6RzSLxq8x0FIrm5VoeD4mrATF8wc2V4F0GQl7N-B6DWFZp7K5m7Cmp7dgo3M0r2k89G34PshO9IRRn5aJzlmWMuIuYrrfc9-xo5LpGpEui05Zd9T_NBy1uyoPfv_4WZ1Lx5Evi0KRXD7OWVwWJbI5_SjISFmRsRHNV6CnmmcsJ2oEMjZ2Mp4v8jtwcClauAutaTbV94Fx5SjHThJBLEOO4ghGNJqiVAHR0jvSgFfNeodxTYJOvTgmYZMMoWrCUjUGPFuKzirmj38JvSSlheQNcJ5Y1UUN-DTEqxV2pEP39SzXgM1Gr2HtJvLwr1Eb8HQ5jBucvtqoqc4WKEPly8Qb6F0gIzilvgguDbhXmcrymTnR7yBoNUCeMaKlABGMnx2Zjo9LonGP4J_t46KV5vb_ZQiHW_3y4sHF__IJXMVNG37oD_YewjXEnn5V1rkJrWK-0I8Q3xXR43ojMfh82Xv3D9_6ZOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+alleles+of+rice+eIF4G+generated+by+CRISPR%2FCas9-targeted+mutagenesis+confer+resistance+to+Rice+tungro+spherical+virus&rft.jtitle=Plant+biotechnology+journal&rft.au=Macovei%2C+Anca&rft.au=Sevilla%2C+Neah+R&rft.au=Cantos%2C+Christian&rft.au=Jonson%2C+Gilda+B&rft.date=2018-11-01&rft.issn=1467-7652&rft.eissn=1467-7652&rft.volume=16&rft.issue=11&rft.spage=1918&rft_id=info:doi/10.1111%2Fpbi.12927&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon