Mechanical strain stimulates COPII‐dependent secretory trafficking via Rac1
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical s...
Saved in:
Published in | The EMBO journal Vol. 41; no. 18; pp. e110596 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.09.2022
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.2022110596 |
Cover
Loading…
Abstract | Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.
Synopsis
Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion.
Mechanotransduction to ERES involves the small GTPase Rac1.
Rac1 localizes to the ER where it forms a complex with Sar1.
Rac1 stimulates the formation of COPII carriers.
Blocking ERES renders cells more sensitive to mechanical strain.
Graphical Abstract
Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization. |
---|---|
AbstractList | Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. image Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain. Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization. Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Synopsis Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain. Graphical Abstract Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization. Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Synopsis Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain. Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization. |
Author | Kahlhofer, Jennifer C Fankhauser, Daniela Eriksson, Leif Djaerff, Elena Geley, Stephan Mahdizadeh, Sayyed Jalil Reiterer, Veronika Kazanietz, Marcelo G Felder, Edward Roca‐Cusachs, Pere Teis, David Farhan, Hesso Phuyal, Santosh Parizadeh, Amirabbas Le Roux, Anabel‐Lise Baker, Martin J |
AuthorAffiliation | 2 Institute for Bioengineering of Catalonia (IBEC) the Barcelona Institute of Technology (BIST) Barcelona Spain 5 Department of chemistry and molecular biology University of Gothenburg Gothenburg Sweden 8 Universitat de Barcelona Barcelona Spain 6 Institute of General Physiology University of Ulm Ulm Germany 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA 1 Institute of Basic Medical Sciences University of Oslo Oslo Norway 4 Institute of Pathophysiology Medical University of Innsbruck Innsbruck Austria 7 Institute of Cell Biology Medical University of Innsbruck Innsbruck Austria |
AuthorAffiliation_xml | – name: 6 Institute of General Physiology University of Ulm Ulm Germany – name: 4 Institute of Pathophysiology Medical University of Innsbruck Innsbruck Austria – name: 8 Universitat de Barcelona Barcelona Spain – name: 1 Institute of Basic Medical Sciences University of Oslo Oslo Norway – name: 7 Institute of Cell Biology Medical University of Innsbruck Innsbruck Austria – name: 5 Department of chemistry and molecular biology University of Gothenburg Gothenburg Sweden – name: 2 Institute for Bioengineering of Catalonia (IBEC) the Barcelona Institute of Technology (BIST) Barcelona Spain – name: 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA |
Author_xml | – sequence: 1 givenname: Santosh orcidid: 0000-0002-1922-2098 surname: Phuyal fullname: Phuyal, Santosh email: santosh.phuyal@medisin.uio.no organization: Institute of Basic Medical Sciences, University of Oslo – sequence: 2 givenname: Elena surname: Djaerff fullname: Djaerff, Elena organization: Institute of Basic Medical Sciences, University of Oslo – sequence: 3 givenname: Anabel‐Lise orcidid: 0000-0003-4152-5658 surname: Le Roux fullname: Le Roux, Anabel‐Lise organization: Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST) – sequence: 4 givenname: Martin J orcidid: 0000-0002-9743-6294 surname: Baker fullname: Baker, Martin J organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania – sequence: 5 givenname: Daniela surname: Fankhauser fullname: Fankhauser, Daniela organization: Institute of Pathophysiology, Medical University of Innsbruck – sequence: 6 givenname: Sayyed Jalil orcidid: 0000-0002-4844-6234 surname: Mahdizadeh fullname: Mahdizadeh, Sayyed Jalil organization: Department of chemistry and molecular biology, University of Gothenburg – sequence: 7 givenname: Veronika surname: Reiterer fullname: Reiterer, Veronika organization: Institute of Pathophysiology, Medical University of Innsbruck – sequence: 8 givenname: Amirabbas surname: Parizadeh fullname: Parizadeh, Amirabbas organization: Institute of Pathophysiology, Medical University of Innsbruck – sequence: 9 givenname: Edward orcidid: 0000-0002-1831-2008 surname: Felder fullname: Felder, Edward organization: Institute of General Physiology, University of Ulm – sequence: 10 givenname: Jennifer C surname: Kahlhofer fullname: Kahlhofer, Jennifer C organization: Institute of Cell Biology, Medical University of Innsbruck – sequence: 11 givenname: David orcidid: 0000-0002-8181-0253 surname: Teis fullname: Teis, David organization: Institute of Cell Biology, Medical University of Innsbruck – sequence: 12 givenname: Marcelo G orcidid: 0000-0001-8779-017X surname: Kazanietz fullname: Kazanietz, Marcelo G organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania – sequence: 13 givenname: Stephan surname: Geley fullname: Geley, Stephan organization: Institute of Pathophysiology, Medical University of Innsbruck – sequence: 14 givenname: Leif orcidid: 0000-0001-5654-3109 surname: Eriksson fullname: Eriksson, Leif organization: Department of chemistry and molecular biology, University of Gothenburg – sequence: 15 givenname: Pere orcidid: 0000-0001-6947-961X surname: Roca‐Cusachs fullname: Roca‐Cusachs, Pere email: proca@ibecbarcelona.eu organization: Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Universitat de Barcelona – sequence: 16 givenname: Hesso orcidid: 0000-0002-0889-8463 surname: Farhan fullname: Farhan, Hesso email: hesso.farhan@i-med.ac.at organization: Institute of Basic Medical Sciences, University of Oslo, Institute of Pathophysiology, Medical University of Innsbruck |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35938214$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/319252$$DView record from Swedish Publication Index |
BookMark | eNqFkstu1DAUhi1URKeFPSuIxIZNiq-JLaFKMCowqKMiBGvLcU5SDxlnsJNWs-MReEaeBJeZoUwlYHUk-_vP-c_lCB343gNCjwk-IYIK-gKW1eKEYkoJwUIV99CE8ALnFJfiAE0wLUjOiVSH6CjGBcZYyJI8QIdMKCYp4RM0n4O9NN5Z02VxCMb5FNxy7MwAMZtefJjNfnz7XsMKfA1-yCLYAEMf1lmCm8bZL8632ZUz2UdjyUN0vzFdhEfbeIw-vzn7NH2Xn1-8nU1fnedWSFLkTVOWNeW8UqIUkkrDJK4wthwIo1xRyRogHIMlmJmqFpyaRqoSJCGyKZVlxyjf5I3XsBorvQpuacJa98bpdlzp9NSOOoJmRKUxJf50wyd4CbVNnQTT7cn2f7y71G1_pRUvhRA4JXi6SWCDS_Px2vfBaIKloFpJpYpEPN-WCP3XEeKgly5a6DrjoR-jpoVKGBZMJfTZHXTRj8GngWlaEk4LxgRJ1JM_Pf82u9tdAoqdpz7GAI22bjCD629acF1yp38dib45En17JEmI7wh3uf8hebmRXLsO1v_l9dn89fs9OdnuKyl9C-G247-W_Aksmt9w |
CitedBy_id | crossref_primary_10_15252_embj_2022112349 crossref_primary_10_1016_j_tcb_2024_12_011 crossref_primary_10_3389_fimmu_2024_1464000 crossref_primary_10_3389_fmolb_2024_1352970 crossref_primary_10_15252_embj_2022112401 crossref_primary_10_1016_j_tcb_2023_05_001 crossref_primary_10_1007_s11010_024_05032_x crossref_primary_10_1083_jcb_202403179 crossref_primary_10_3390_cells13171449 crossref_primary_10_1002_1873_3468_14595 crossref_primary_10_1038_s44318_024_00208_z crossref_primary_10_1242_jcs_260783 crossref_primary_10_1242_jcs_263503 crossref_primary_10_1371_journal_pone_0317740 |
Cites_doi | 10.1016/j.cell.2019.01.035 10.7554/eLife.19850 10.1016/j.cell.2006.06.044 10.1038/ncb1371 10.1074/jbc.RA120.013919 10.1002/1873-3468.13808 10.3389/fbioe.2020.597721 10.1093/cvr/cvq385 10.1074/jbc.M008720200 10.1016/j.cell.2008.05.034 10.1016/j.ymeth.2016.11.016 10.1074/jbc.M411091200 10.1083/jcb.200208074 10.1016/j.ceb.2013.04.010 10.1038/emboj.2008.136 10.1083/jcb.201907224 10.1038/emboj.2011.253 10.1038/nmeth.1928 10.1096/fj.04-2414com 10.1038/ncomms12471 10.1083/jcb.201703084 10.1073/pnas.0307512101 10.1038/ncomms8292 10.1038/nmeth.2019 10.1093/nar/gks493 10.1016/j.ceb.2018.04.009 10.1038/s41467-018-04404-4 10.1093/nar/gkn186 10.1038/s41467-018-07286-8 10.1038/nature21407 10.1083/jcb.201601090 10.1111/tra.12060 10.1083/jcb.200201105 10.1161/CIRCRESAHA.107.158329 10.1093/protein/9.11.1063 10.1002/prot.10389 10.1083/jcb.200912082 10.1152/ajplung.90218.2008 10.1016/j.cub.2015.11.033 10.3389/fcell.2019.00127 10.1016/j.bpj.2014.04.036 10.1038/nprot.2015.140 10.1093/bioinformatics/btg371 10.1016/S0092-8674(00)80607-8 10.1074/jbc.M609720200 10.1016/j.jmb.2014.08.023 10.1152/physrev.00013.2019 10.1016/j.cell.2021.03.035 10.1074/jbc.RA120.014597 10.1371/journal.pone.0024657 10.1093/nar/gki481 10.1126/scisignal.2004135 10.1242/jcs.157115 10.1126/scisignal.2004838 10.1093/bioinformatics/btu426 10.1083/jcb.202104062 10.1074/jbc.RA119.008422 10.1038/nmeth.1524 10.1038/nprot.2016.169 10.1126/science.1116995 10.1002/prot.21495 10.1016/0092-8674(95)90370-4 10.1083/jcb.201903068 10.1016/j.bbrc.2006.12.144 10.1002/1873-3468.13569 10.1021/acs.jcim.1c00301 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022 The Authors. Published under the terms of the CC BY 4.0 license 2022 The Authors. Published under the terms of the CC BY 4.0 license. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 3HK 5PM ADTPV AOWAS F1U |
DOI | 10.15252/embj.2022110596 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Göteborgs universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Santosh Phuyal et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | oai_gup_ub_gu_se_319252 PMC9475550 10852_98996 35938214 10_15252_embj_2022110596 EMBJ2022110596 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EC ¦ H2020 ¦ H2020 Priority Excellent Science ¦ H2020 Marie Skłodowska‐Curie Actions (MSCA) grantid: H2020‐MSCA‐ITN‐860035; H2020‐MSCA‐ITN‐859962 funderid: 10.13039/100010665 – fundername: VINNOVA (Swedish Governmental Agency for Innovation Systems) grantid: 2019‐02205 funderid: 10.13039/501100001858 – fundername: Kreftforeningen (NCS) grantid: 182815; 208015 funderid: 10.13039/100008730 – fundername: Spanish Ministry of Science and Innovation grantid: PID2019‐110298GB‐I00PID2019‐110298GB‐I00 funderid: 10.13039/501100004837 – fundername: Foundation for the National Institutes of Health (FNIH) grantid: ES026023 funderid: 10.13039/100000009 – fundername: Norges Forskningsråd (Forskningsrådet) grantid: 302452 funderid: 10.13039/501100005416 – fundername: Vetenskapsrådet (VR) grantid: 2018‐05973; 2019‐3684 funderid: 10.13039/501100004359 – fundername: EC ¦ H2020 ¦ H2020 Excellent Science (H2020 Priority Excellent Science) grantid: H2020‐FETPROACT‐01‐2016‐731957 funderid: 10.13039/100010662 – fundername: EC ¦ H2020 ¦ H2020 Excellent Science (H2020 Priority Excellent Science) funderid: H2020‐FETPROACT‐01‐2016‐731957 – fundername: EC ¦ H2020 ¦ H2020 Priority Excellent Science ¦ H2020 Marie Skłodowska‐Curie Actions (MSCA) funderid: H2020‐MSCA‐ITN‐860035; H2020‐MSCA‐ITN‐859962 – fundername: Spanish Ministry of Science and Innovation funderid: PID2019‐110298GB‐I00PID2019‐110298GB‐I00 – fundername: Kreftforeningen (NCS) funderid: 182815; 208015 – fundername: Norges Forskningsråd (Forskningsrådet) funderid: 302452 – fundername: Vetenskapsrådet (VR) funderid: 2018‐05973; 2019‐3684 – fundername: Foundation for the National Institutes of Health (FNIH) funderid: ES026023 – fundername: VINNOVA (Swedish Governmental Agency for Innovation Systems) funderid: 2019‐02205 – fundername: NIEHS NIH HHS grantid: R56 ES026023 – fundername: NIEHS NIH HHS grantid: R01 ES026023 – fundername: Austrian Science Fund FWF grantid: DOC 82 – fundername: ; grantid: 182815; 208015 – fundername: ; grantid: ES026023 – fundername: ; grantid: PID2019‐110298GB‐I00PID2019‐110298GB‐I00 – fundername: ; grantid: H2020‐FETPROACT‐01‐2016‐731957 – fundername: ; grantid: 2019‐02205 – fundername: ; grantid: 302452 – fundername: ; grantid: H2020‐MSCA‐ITN‐860035; H2020‐MSCA‐ITN‐859962 – fundername: ; grantid: 2018‐05973; 2019‐3684 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 -Q- .55 3HK 3O- 3V. 4.4 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AASGY ABUWG ACBWZ ACKIV ACSMW AFKRA AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU COF D1J DWQXO EJD ESTFP FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M0L M1P M2O M7P PCBAR PQQKQ PROAC PSQYO RHF RIG RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP 5PM AANHP ACRPL ACYXJ ADNMO ADTPV AEUYN AGQPQ AOWAS F1U PHGZM PHGZT PJZUB PPXIY PQGLB |
ID | FETCH-LOGICAL-c5816-ff77d244b9575828a380b00c4e13249283fe140ec103abd542af897e8118f79c3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 06:55:50 EDT 2025 Thu Aug 21 18:39:58 EDT 2025 Thu Aug 29 03:27:19 EDT 2024 Fri Jul 11 03:54:38 EDT 2025 Fri Jul 25 10:56:26 EDT 2025 Mon Jul 21 06:03:55 EDT 2025 Tue Jul 01 01:47:23 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Wed Jan 22 16:23:56 EST 2025 Fri Feb 21 02:37:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | mechanobiology COPII endoplasmic reticulum |
Language | English |
License | Attribution 2022 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5816-ff77d244b9575828a380b00c4e13249283fe140ec103abd542af897e8118f79c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4152-5658 0000-0002-9743-6294 0000-0001-6947-961X 0000-0002-1831-2008 0000-0002-8181-0253 0000-0002-4844-6234 0000-0001-8779-017X 0000-0001-5654-3109 0000-0002-0889-8463 0000-0002-1922-2098 |
OpenAccessLink | https://doi.org/10.15252/embj.2022110596 |
PMID | 35938214 |
PQID | 2714263351 |
PQPubID | 35985 |
PageCount | 20 |
ParticipantIDs | swepub_primary_oai_gup_ub_gu_se_319252 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9475550 cristin_nora_10852_98996 proquest_miscellaneous_2699960539 proquest_journals_2714263351 pubmed_primary_35938214 crossref_citationtrail_10_15252_embj_2022110596 crossref_primary_10_15252_embj_2022110596 wiley_primary_10_15252_embj_2022110596_EMBJ2022110596 springer_journals_10_15252_embj_2022110596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2022 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 15 September 2022 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Payapilly, Malliri (CR49) 2018; 54 Albert, Schwarz (CR1) 2014; 106 Yamane, Matsuda, Ito, Fujio, Takahashi, Azuma (CR66) 2007; 353 Comeau, Gatchell, Vajda, Camacho (CR12) 2004; 20 Boncompain, Perez (CR7) 2012; Chapter 15 Cutrona, Beznoussenko, Fusella, Martella, Moral, Mironov (CR13) 2013; 14 CR39 Weigel, Chang, Shtengel, Xu, Hoffman, Freeman, Iyer, Aaron, Khuon, Bogovic (CR64) 2021; 184 Fritz, Letzelter, Reimann, Martin, Fusco, Ritsma, Ponsioen, Fluri, Schulte‐Merker, van Rheenen (CR22) 2013; 6 Kim, Hamamoto, Ravazzola, Orci, Schekman (CR33) 2005; 280 Schindelin, Arganda‐Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (CR57) 2012; 9 Zacharogianni, Kondylis, Tang, Farhan, Xanthakis, Fuchs, Boutros, Rabouille (CR67) 2011; 30 Zeuschner, Geerts, van Donselaar, Humbel, Slot, Koster, Klumperman (CR68) 2006; 8 Gao, Dickerson, Guo, Zheng, Zheng (CR23) 2004; 101 Phuyal, Baschieri (CR50) 2020; 8 Farhan, Reiterer, Korkhov, Schmid, Freissmuth, Sitte (CR19) 2007; 282 Shomron, Nevo‐Yassaf, Aviad, Yaffe, Zahavi, Dukhovny, Perlson, Brodsky, Yeheskel, Pasmanik‐Chor (CR59) 2021; 220 Chen, Li, Weng (CR10) 2003; 52 Desai, Chapman, Waters (CR15) 2008; 295 Krieger, Vriend (CR37) 2014; 30 Mashiach, Schneidman‐Duhovny, Andrusier, Nussinov, Wolfson (CR45) 2008; 36 Hariri, Bhattacharya, Johnson, Noble, Stagg (CR28) 2014; 426 Baker, Cooke, Kreider‐Letterman, Garcia‐Mata, Janmey, Kazanietz (CR5) 2020; 295 Verma, Lal, Golden, Gerilechaogetu, Smith, Guleria, Foster, Lu, Dostal (CR62) 2011; 90 Gustafsson, Culley, Ashdown, Owen, Pereira, Henriques (CR27) 2016; 7 Kosmalska, Casares, Elosegui‐Artola, Thottacherry, Moreno‐Vicente, Gonzalez‐Tarrago, Del Pozo, Mayor, Arroyo, Navajas (CR35) 2015; 6 Phuyal, Farhan (CR52) 2021; 220 Gilles, Dos Santos, Boudier, Bolte, Heck (CR24) 2017; 115 Gudipaty, Lindblom, Loftus, Redd, Edes, Davey, Krishnegowda, Rosenblatt (CR26) 2017; 543 Ko, Park, Heo, Seok (CR34) 2012; 40 Zhang, Gao, Moon, Zhang, Zheng (CR69) 2001; 276 Roca‐Cusachs, Sunyer, Trepat (CR54) 2013; 25 Janmey, Fletcher, Reinhart‐King (CR29) 2020; 100 Sakuma, Nakade, Sakane, Suzuki, Yamamoto (CR55) 2016; 11 Centonze, Farhan (CR9) 2019; 593 Woroniuk, Porter, White, Newman, Diamantopoulou, Waring, Rooney, Strathdee, Marston, Hahn (CR65) 2018; 9 Kelley, Gardner, Sutcliffe (CR31) 1996; 9 Pierce, Hourai, Weng (CR53) 2011; 6 Subramanian, Capalbo, Iyengar, Rizzo, di Campli, Di Martino, Lo Monte, Beccari, Yerudkar, Del Vecchio (CR60) 2019; 176 Diestelkoetter‐Bachert, Beck, Reckmann, Hellwig, Garcia‐Saez, Zelman‐Hopf, Hanke, Nunes Alves, Wade, Mayer (CR16) 2020; 594 Maeda, Katada, Saito (CR42) 2017; 216 Farhan, Wendeler, Mitrovic, Fava, Silberberg, Sharan, Zerial, Hauri (CR21) 2010; 189 Arya, Goswami, Rahaman (CR3) 2020; 296 Bae, Mui, Hsu, Liu, Cretu, Razinia, Xu, Pure, Assoian (CR4) 2014; 7 Andrusier, Nussinov, Wolfson (CR2) 2007; 69 Liu, Nelson, Tan, Chen (CR41) 2007; 101 Wales, Schuberth, Aufschnaiter, Fels, Garcia‐Aguilar, Janning, Dlugos, Schafer‐Herte, Klingner, Walte (CR63) 2016; 5 Kennedy, Hughes, Peteya, Schwartz, Ehlers, Tucker (CR32) 2010; 7 Mahdizadeh, Thomas, Eriksson (CR43) 2021; 61 Boncompain, Divoux, Gareil, de Forges, Lescure, Latreche, Mercanti, Jollivet, Raposo, Perez (CR6) 2012; 9 Gould, Yalcin, MacKay, Sauls, Norris, Kumar, Butcher (CR25) 2016; 26 Farhan, Weiss, Tani, Kaufman, Hauri (CR20) 2008; 27 Kumar, Murphy, Robinson, Wei, Boriek (CR38) 2004; 18 Nobes, Hall (CR46) 1995; 81 Engler, Sen, Sweeney, Discher (CR18) 2006; 126 Lin, Chung, Huang, Wang, Huang, Kaiser (CR40) 2019; 294 Discher, Janmey, Wang (CR17) 2005; 310 Phuyal, Farhan (CR51) 2019; 7 Centonze, Reiterer, Nalbach, Saito, Pawlowski, Behrends, Farhan (CR8) 2019; 218 Malkus, Jiang, Schekman (CR44) 2002; 159 Scharaw, Iskar, Ori, Boncompain, Laketa, Poser, Lundberg, Perez, Beck, Bork (CR56) 2016; 215 Choy, Chiu, Silletti, Feoktistov, Morimoto, Michaelson, Ivanov, Philips (CR11) 1999; 98 Ohashi, Fujiwara, Mizuno (CR47) 2017; 161 Katsumi, Milanini, Kiosses, del Pozo, Kaunas, Chien, Hahn, Schwartz (CR30) 2002; 158 Tillmann, Reiterer, Baschieri, Hoffmann, Millarte, Hauser, Mazza, Atias, Legler, Sharan (CR61) 2015; 128 Kozakov, Hall, Xia, Porter, Padhorny, Yueh, Beglov, Vajda (CR36) 2017; 12 Palamidessi, Frittoli, Garre, Faretta, Mione, Testa, Diaspro, Lanzetti, Scita, Di Fiore (CR48) 2008; 134 Schneidman‐Duhovny, Inbar, Nussinov, Wolfson (CR58) 2005; 33 de Beco, Vaidziulyte, Manzi, Dalier, di Federico, Cornilleau, Dahan, Coppey (CR14) 2018; 9 2007; 101 2004; 20 2013; 25 2002; 158 2010; 189 2008; 36 2002; 159 2003; 52 2013; 6 2017; 115 2020; 8 2012; Chapter 15 2018; 9 2013; 14 2020; 295 2020; 296 2008; 27 1999; 98 2017; 161 2006; 126 2014; 7 2010; 7 2005; 33 2007; 69 1996; 9 2019; 593 2004; 101 2019; 7 2015; 6 2007; 282 2005; 310 2011; 30 2006; 8 2021; 184 2020; 100 2015; 128 2021; 220 2011; 6 2017; 216 2016; 11 2014; 426 2001; 276 2016; 5 2005; 280 2014; 106 2016; 7 1995; 81 2004; 18 2020; 594 2021 2011; 90 2007; 353 2017; 12 2019; 218 2016; 215 2014; 30 2019; 294 2021; 61 2008; 134 2018; 54 2016; 26 2017; 543 2008; 295 2012; 9 2012; 40 2019; 176 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Ohashi K (e_1_2_9_48_1) 2017; 161 Boncompain G (e_1_2_9_8_1) 2012; 15 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Lanz MC (e_1_2_9_40_1) 2021 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 36121033 - EMBO J. 2022 Nov 2;41(21):e112349. doi: 10.15252/embj.2022112349. |
References_xml | – volume: 101 start-page: 7618 year: 2004 end-page: 7623 ident: CR23 article-title: Rational design and characterization of a Rac GTPase‐specific small molecule inhibitor publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: rs12 year: 2013 ident: CR22 article-title: A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space publication-title: Sci Signal – volume: 69 start-page: 139 year: 2007 end-page: 159 ident: CR2 article-title: FireDock: fast interaction refinement in molecular docking publication-title: Proteins – volume: 276 start-page: 8958 year: 2001 end-page: 8967 ident: CR69 article-title: Oligomerization of Rac1 gtpase mediated by the carboxyl‐terminal polybasic domain publication-title: J Biol Chem – volume: 14 start-page: 691 year: 2013 end-page: 708 ident: CR13 article-title: Silencing of mammalian Sar1 isoforms reveals COPII‐independent protein sorting and transport publication-title: Traffic – ident: CR39 – volume: 18 start-page: 1524 year: 2004 end-page: 1535 ident: CR38 article-title: Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac‐1 GTPase, and NF‐kappaB transcription factor publication-title: FASEB J – volume: 159 start-page: 915 year: 2002 end-page: 921 ident: CR44 article-title: Concentrative sorting of secretory cargo proteins into COPII‐coated vesicles publication-title: J Cell Biol – volume: 98 start-page: 69 year: 1999 end-page: 80 ident: CR11 article-title: Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi publication-title: Cell – volume: 216 start-page: 1731 year: 2017 end-page: 1743 ident: CR42 article-title: TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion publication-title: J Cell Biol – volume: 26 start-page: 27 year: 2016 end-page: 37 ident: CR25 article-title: Cyclic mechanical loading is essential for Rac1‐mediated elongation and remodeling of the embryonic mitral valve publication-title: Curr Biol – volume: 7 start-page: 127 year: 2019 ident: CR51 article-title: Multifaceted rho GTPase signaling at the endomembranes publication-title: Front Cell Dev Biol – volume: 296 year: 2020 ident: CR3 article-title: Mechanotransduction via a TRPV4‐Rac1 signaling axis plays a role in multinucleated giant cell formation publication-title: J Biol Chem – volume: 106 start-page: 2340 year: 2014 end-page: 2352 ident: CR1 article-title: Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model publication-title: Biophys J – volume: 189 start-page: 997 year: 2010 end-page: 1011 ident: CR21 article-title: MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening publication-title: J Cell Biol – volume: 5 year: 2016 ident: CR63 article-title: Calcium‐mediated Actin reset (CaAR) mediates acute cell adaptations publication-title: Elife – volume: 353 start-page: 1023 year: 2007 end-page: 1027 ident: CR66 article-title: Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress publication-title: Biochem Biophys Res Commun – volume: 594 start-page: 2240 year: 2020 end-page: 2253 ident: CR16 article-title: Structural characterization of an Arf dimer interface: molecular mechanism of Arf‐dependent membrane scission publication-title: FEBS Lett – volume: 215 start-page: 543 year: 2016 end-page: 558 ident: CR56 article-title: The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR publication-title: J Cell Biol – volume: 40 start-page: W294 year: 2012 end-page: W297 ident: CR34 article-title: GalaxyWEB server for protein structure prediction and refinement publication-title: Nucleic Acids Res – volume: 543 start-page: 118 year: 2017 end-page: 121 ident: CR26 article-title: Mechanical stretch triggers rapid epithelial cell division through Piezo1 publication-title: Nature – volume: 126 start-page: 677 year: 2006 end-page: 689 ident: CR18 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell – volume: 30 start-page: 2981 year: 2014 end-page: 2982 ident: CR37 article-title: YASARA view – molecular graphics for all devices – from smartphones to workstations publication-title: Bioinformatics – volume: 27 start-page: 2043 year: 2008 end-page: 2054 ident: CR20 article-title: Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load publication-title: EMBO J – volume: 161 start-page: 245 year: 2017 end-page: 254 ident: CR47 article-title: Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction publication-title: J Biochem – volume: 176 start-page: 1461 year: 2019 end-page: 1476.e23 ident: CR60 article-title: Auto‐regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum publication-title: Cell – volume: 11 start-page: 118 year: 2016 end-page: 133 ident: CR55 article-title: MMEJ‐assisted gene knock‐in using TALENs and CRISPR‐Cas9 with the PITCh systems publication-title: Nat Protoc – volume: 220 year: 2021 ident: CR52 article-title: Want to leave the ER? We offer vesicles, tubules, and tunnels publication-title: J Cell Biol – volume: 7 start-page: 12471 year: 2016 ident: CR27 article-title: Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations publication-title: Nat Commun – volume: 184 start-page: 2412 year: 2021 end-page: 2429.e16 ident: CR64 article-title: ER‐to‐Golgi protein delivery through an interwoven, tubular network extending from ER publication-title: Cell – volume: 8 year: 2020 ident: CR50 article-title: Endomembranes: unsung heroes of mechanobiology? publication-title: Front Bioeng Biotechnol – volume: 8 start-page: 377 year: 2006 end-page: 383 ident: CR68 article-title: Immuno‐electron tomography of ER exit sites reveals the existence of free COPII‐coated transport carriers publication-title: Nat Cell Biol – volume: Chapter 15 year: 2012 ident: CR7 article-title: Synchronizing protein transport in the secretory pathway publication-title: Curr Protoc Cell Biol – volume: 90 start-page: 88 year: 2011 end-page: 96 ident: CR62 article-title: Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts publication-title: Cardiovasc Res – volume: 218 start-page: 2470 year: 2019 end-page: 2480 ident: CR8 article-title: LTK is an ER‐resident receptor tyrosine kinase that regulates secretion publication-title: J Cell Biol – volume: 30 start-page: 3684 year: 2011 end-page: 3700 ident: CR67 article-title: ERK7 is a negative regulator of protein secretion in response to amino‐acid starvation by modulating Sec16 membrane association publication-title: EMBO J – volume: 295 start-page: 13698 year: 2020 end-page: 13710 ident: CR5 article-title: Evaluation of active Rac1 levels in cancer cells: a case of misleading conclusions from immunofluorescence analysis publication-title: J Biol Chem – volume: 310 start-page: 1139 year: 2005 end-page: 1143 ident: CR17 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science – volume: 7 start-page: 973 year: 2010 end-page: 975 ident: CR32 article-title: Rapid blue‐light‐mediated induction of protein interactions in living cells publication-title: Nat Methods – volume: 101 start-page: e44 year: 2007 end-page: e52 ident: CR41 article-title: Cadherins, RhoA, and Rac1 are differentially required for stretch‐mediated proliferation in endothelial versus smooth muscle cells publication-title: Circ Res – volume: 158 start-page: 153 year: 2002 end-page: 164 ident: CR30 article-title: Effects of cell tension on the small GTPase Rac publication-title: J Cell Biol – volume: 9 start-page: 4816 year: 2018 ident: CR14 article-title: Optogenetic dissection of Rac1 and Cdc42 gradient shaping publication-title: Nat Commun – volume: 115 start-page: 55 year: 2017 end-page: 64 ident: CR24 article-title: DiAna, an ImageJ tool for object‐based 3D co‐localization and distance analysis publication-title: Methods – volume: 294 start-page: 10877 year: 2019 end-page: 10885 ident: CR40 article-title: Microhomology‐based CRISPR tagging tools for protein tracking, purification, and depletion publication-title: J Biol Chem – volume: 6 year: 2011 ident: CR53 article-title: Accelerating protein docking in ZDOCK using an advanced 3D convolution library publication-title: PLoS One – volume: 81 start-page: 53 year: 1995 end-page: 62 ident: CR46 article-title: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with Actin stress fibers, lamellipodia, and filopodia publication-title: Cell – volume: 282 start-page: 7679 year: 2007 end-page: 7689 ident: CR19 article-title: Concentrative export from the endoplasmic reticulum of the gamma‐aminobutyric acid transporter 1 requires binding to SEC24D publication-title: J Biol Chem – volume: 6 start-page: 7292 year: 2015 ident: CR35 article-title: Physical principles of membrane remodelling during cell mechanoadaptation publication-title: Nat Commun – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: CR57 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nat Methods – volume: 54 start-page: 50 year: 2018 end-page: 56 ident: CR49 article-title: Compartmentalisation of RAC1 signalling publication-title: Curr Opin Cell Biol – volume: 280 start-page: 7758 year: 2005 end-page: 7768 ident: CR33 article-title: Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles publication-title: J Biol Chem – volume: 33 start-page: W363 year: 2005 end-page: W367 ident: CR58 article-title: PatchDock and SymmDock: servers for rigid and symmetric docking publication-title: Nucleic Acids Res – volume: 100 start-page: 695 year: 2020 end-page: 724 ident: CR29 article-title: Stiffness sensing by cells publication-title: Physiol Rev – volume: 25 start-page: 543 year: 2013 end-page: 549 ident: CR54 article-title: Mechanical guidance of cell migration: lessons from chemotaxis publication-title: Curr Opin Cell Biol – volume: 134 start-page: 135 year: 2008 end-page: 147 ident: CR48 article-title: Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration publication-title: Cell – volume: 593 start-page: 2280 year: 2019 end-page: 2288 ident: CR9 article-title: Crosstalk of endoplasmic reticulum exit sites and cellular signaling publication-title: FEBS Lett – volume: 20 start-page: 45 year: 2004 end-page: 50 ident: CR12 article-title: ClusPro: an automated docking and discrimination method for the prediction of protein complexes publication-title: Bioinformatics – volume: 9 start-page: 493 year: 2012 end-page: 498 ident: CR6 article-title: Synchronization of secretory protein traffic in populations of cells publication-title: Nat Methods – volume: 295 start-page: L958 year: 2008 end-page: L965 ident: CR15 article-title: Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1 publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 36 start-page: W229 year: 2008 end-page: W232 ident: CR45 article-title: FireDock: a web server for fast interaction refinement in molecular docking publication-title: Nucleic Acids Res – volume: 220 year: 2021 ident: CR59 article-title: COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers publication-title: J Cell Biol – volume: 52 start-page: 80 year: 2003 end-page: 87 ident: CR10 article-title: ZDOCK: an initial‐stage protein‐docking algorithm publication-title: Proteins – volume: 128 start-page: 670 year: 2015 end-page: 682 ident: CR61 article-title: Regulation of Sec16 levels and dynamics links proliferation and secretion publication-title: J Cell Sci – volume: 426 start-page: 3811 year: 2014 end-page: 3826 ident: CR28 article-title: Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway publication-title: J Mol Biol – volume: 12 start-page: 255 year: 2017 end-page: 278 ident: CR36 article-title: The ClusPro web server for protein‐protein docking publication-title: Nat Protoc – volume: 61 start-page: 3543 year: 2021 end-page: 3558 ident: CR43 article-title: Reconstruction of the Fas‐based death‐inducing signaling complex (DISC) using a protein‐protein docking meta‐approach publication-title: J Chem Inf Model – volume: 9 start-page: 2124 year: 2018 ident: CR65 article-title: Stef/TIAM2‐mediated Rac1 activity at the nuclear envelope regulates the perinuclear Actin cap publication-title: Nat Commun – volume: 7 start-page: ra57 year: 2014 ident: CR4 article-title: A FAK‐Cas‐Rac‐lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling publication-title: Sci Signal – volume: 9 start-page: 1063 year: 1996 end-page: 1065 ident: CR31 article-title: An automated approach for clustering an ensemble of NMR‐derived protein structures into conformationally related subfamilies publication-title: Protein Eng – volume: 27 start-page: 2043 year: 2008 end-page: 2054 article-title: Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load publication-title: EMBO J – volume: 81 start-page: 53 year: 1995 end-page: 62 article-title: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with Actin stress fibers, lamellipodia, and filopodia publication-title: Cell – volume: 6 year: 2011 article-title: Accelerating protein docking in ZDOCK using an advanced 3D convolution library publication-title: PLoS One – volume: 30 start-page: 3684 year: 2011 end-page: 3700 article-title: ERK7 is a negative regulator of protein secretion in response to amino‐acid starvation by modulating Sec16 membrane association publication-title: EMBO J – volume: 61 start-page: 3543 year: 2021 end-page: 3558 article-title: Reconstruction of the Fas‐based death‐inducing signaling complex (DISC) using a protein‐protein docking meta‐approach publication-title: J Chem Inf Model – volume: 8 start-page: 377 year: 2006 end-page: 383 article-title: Immuno‐electron tomography of ER exit sites reveals the existence of free COPII‐coated transport carriers publication-title: Nat Cell Biol – volume: 7 start-page: 12471 year: 2016 article-title: Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations publication-title: Nat Commun – volume: 134 start-page: 135 year: 2008 end-page: 147 article-title: Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration publication-title: Cell – volume: 20 start-page: 45 year: 2004 end-page: 50 article-title: ClusPro: an automated docking and discrimination method for the prediction of protein complexes publication-title: Bioinformatics – volume: 220 year: 2021 article-title: Want to leave the ER? We offer vesicles, tubules, and tunnels publication-title: J Cell Biol – volume: 12 start-page: 255 year: 2017 end-page: 278 article-title: The ClusPro web server for protein‐protein docking publication-title: Nat Protoc – volume: 18 start-page: 1524 year: 2004 end-page: 1535 article-title: Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac‐1 GTPase, and NF‐kappaB transcription factor publication-title: FASEB J – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nat Methods – volume: 216 start-page: 1731 year: 2017 end-page: 1743 article-title: TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion publication-title: J Cell Biol – volume: 9 start-page: 2124 year: 2018 article-title: Stef/TIAM2‐mediated Rac1 activity at the nuclear envelope regulates the perinuclear Actin cap publication-title: Nat Commun – volume: 594 start-page: 2240 year: 2020 end-page: 2253 article-title: Structural characterization of an Arf dimer interface: molecular mechanism of Arf‐dependent membrane scission publication-title: FEBS Lett – volume: 280 start-page: 7758 year: 2005 end-page: 7768 article-title: Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles publication-title: J Biol Chem – volume: 30 start-page: 2981 year: 2014 end-page: 2982 article-title: YASARA view – molecular graphics for all devices – from smartphones to workstations publication-title: Bioinformatics – volume: 176 start-page: 1461 year: 2019 end-page: 1476.e23 article-title: Auto‐regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum publication-title: Cell – volume: 33 start-page: W363 year: 2005 end-page: W367 article-title: PatchDock and SymmDock: servers for rigid and symmetric docking publication-title: Nucleic Acids Res – volume: 6 start-page: rs12 year: 2013 article-title: A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space publication-title: Sci Signal – volume: 128 start-page: 670 year: 2015 end-page: 682 article-title: Regulation of Sec16 levels and dynamics links proliferation and secretion publication-title: J Cell Sci – volume: 353 start-page: 1023 year: 2007 end-page: 1027 article-title: Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress publication-title: Biochem Biophys Res Commun – volume: 9 start-page: 493 year: 2012 end-page: 498 article-title: Synchronization of secretory protein traffic in populations of cells publication-title: Nat Methods – volume: Chapter 15 year: 2012 article-title: Synchronizing protein transport in the secretory pathway publication-title: Curr Protoc Cell Biol – volume: 276 start-page: 8958 year: 2001 end-page: 8967 article-title: Oligomerization of Rac1 gtpase mediated by the carboxyl‐terminal polybasic domain publication-title: J Biol Chem – volume: 218 start-page: 2470 year: 2019 end-page: 2480 article-title: LTK is an ER‐resident receptor tyrosine kinase that regulates secretion publication-title: J Cell Biol – volume: 7 start-page: ra57 year: 2014 article-title: A FAK‐Cas‐Rac‐lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling publication-title: Sci Signal – volume: 9 start-page: 4816 year: 2018 article-title: Optogenetic dissection of Rac1 and Cdc42 gradient shaping publication-title: Nat Commun – volume: 52 start-page: 80 year: 2003 end-page: 87 article-title: ZDOCK: an initial‐stage protein‐docking algorithm publication-title: Proteins – volume: 90 start-page: 88 year: 2011 end-page: 96 article-title: Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts publication-title: Cardiovasc Res – volume: 310 start-page: 1139 year: 2005 end-page: 1143 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science – volume: 25 start-page: 543 year: 2013 end-page: 549 article-title: Mechanical guidance of cell migration: lessons from chemotaxis publication-title: Curr Opin Cell Biol – volume: 7 start-page: 973 year: 2010 end-page: 975 article-title: Rapid blue‐light‐mediated induction of protein interactions in living cells publication-title: Nat Methods – volume: 100 start-page: 695 year: 2020 end-page: 724 article-title: Stiffness sensing by cells publication-title: Physiol Rev – volume: 7 start-page: 127 year: 2019 article-title: Multifaceted rho GTPase signaling at the endomembranes publication-title: Front Cell Dev Biol – volume: 26 start-page: 27 year: 2016 end-page: 37 article-title: Cyclic mechanical loading is essential for Rac1‐mediated elongation and remodeling of the embryonic mitral valve publication-title: Curr Biol – volume: 8 year: 2020 article-title: Endomembranes: unsung heroes of mechanobiology? publication-title: Front Bioeng Biotechnol – volume: 69 start-page: 139 year: 2007 end-page: 159 article-title: FireDock: fast interaction refinement in molecular docking publication-title: Proteins – volume: 296 year: 2020 article-title: Mechanotransduction via a TRPV4‐Rac1 signaling axis plays a role in multinucleated giant cell formation publication-title: J Biol Chem – volume: 282 start-page: 7679 year: 2007 end-page: 7689 article-title: Concentrative export from the endoplasmic reticulum of the gamma‐aminobutyric acid transporter 1 requires binding to SEC24D publication-title: J Biol Chem – volume: 101 start-page: e44 year: 2007 end-page: e52 article-title: Cadherins, RhoA, and Rac1 are differentially required for stretch‐mediated proliferation in endothelial versus smooth muscle cells publication-title: Circ Res – volume: 158 start-page: 153 year: 2002 end-page: 164 article-title: Effects of cell tension on the small GTPase Rac publication-title: J Cell Biol – volume: 220 year: 2021 article-title: COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers publication-title: J Cell Biol – volume: 115 start-page: 55 year: 2017 end-page: 64 article-title: DiAna, an ImageJ tool for object‐based 3D co‐localization and distance analysis publication-title: Methods – volume: 215 start-page: 543 year: 2016 end-page: 558 article-title: The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR publication-title: J Cell Biol – volume: 98 start-page: 69 year: 1999 end-page: 80 article-title: Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi publication-title: Cell – volume: 295 start-page: L958 year: 2008 end-page: L965 article-title: Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1 publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 189 start-page: 997 year: 2010 end-page: 1011 article-title: MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening publication-title: J Cell Biol – volume: 40 start-page: W294 year: 2012 end-page: W297 article-title: GalaxyWEB server for protein structure prediction and refinement publication-title: Nucleic Acids Res – volume: 106 start-page: 2340 year: 2014 end-page: 2352 article-title: Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model publication-title: Biophys J – volume: 543 start-page: 118 year: 2017 end-page: 121 article-title: Mechanical stretch triggers rapid epithelial cell division through Piezo1 publication-title: Nature – volume: 184 start-page: 2412 year: 2021 end-page: 2429.e16 article-title: ER‐to‐Golgi protein delivery through an interwoven, tubular network extending from ER publication-title: Cell – volume: 426 start-page: 3811 year: 2014 end-page: 3826 article-title: Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway publication-title: J Mol Biol – volume: 14 start-page: 691 year: 2013 end-page: 708 article-title: Silencing of mammalian Sar1 isoforms reveals COPII‐independent protein sorting and transport publication-title: Traffic – volume: 54 start-page: 50 year: 2018 end-page: 56 article-title: Compartmentalisation of RAC1 signalling publication-title: Curr Opin Cell Biol – volume: 295 start-page: 13698 year: 2020 end-page: 13710 article-title: Evaluation of active Rac1 levels in cancer cells: a case of misleading conclusions from immunofluorescence analysis publication-title: J Biol Chem – volume: 101 start-page: 7618 year: 2004 end-page: 7623 article-title: Rational design and characterization of a Rac GTPase‐specific small molecule inhibitor publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 7292 year: 2015 article-title: Physical principles of membrane remodelling during cell mechanoadaptation publication-title: Nat Commun – volume: 159 start-page: 915 year: 2002 end-page: 921 article-title: Concentrative sorting of secretory cargo proteins into COPII‐coated vesicles publication-title: J Cell Biol – volume: 294 start-page: 10877 year: 2019 end-page: 10885 article-title: Microhomology‐based CRISPR tagging tools for protein tracking, purification, and depletion publication-title: J Biol Chem – volume: 9 start-page: 1063 year: 1996 end-page: 1065 article-title: An automated approach for clustering an ensemble of NMR‐derived protein structures into conformationally related subfamilies publication-title: Protein Eng – volume: 11 start-page: 118 year: 2016 end-page: 133 article-title: MMEJ‐assisted gene knock‐in using TALENs and CRISPR‐Cas9 with the PITCh systems publication-title: Nat Protoc – volume: 5 year: 2016 article-title: Calcium‐mediated Actin reset (CaAR) mediates acute cell adaptations publication-title: Elife – volume: 593 start-page: 2280 year: 2019 end-page: 2288 article-title: Crosstalk of endoplasmic reticulum exit sites and cellular signaling publication-title: FEBS Lett – volume: 161 start-page: 245 year: 2017 end-page: 254 article-title: Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction publication-title: J Biochem – volume: 36 start-page: W229 year: 2008 end-page: W232 article-title: FireDock: a web server for fast interaction refinement in molecular docking publication-title: Nucleic Acids Res – volume: 126 start-page: 677 year: 2006 end-page: 689 article-title: Matrix elasticity directs stem cell lineage specification publication-title: Cell – year: 2021 article-title: Increasing cell size remodels the proteome and promotes senescence publication-title: bioRxiv – ident: e_1_2_9_61_1 doi: 10.1016/j.cell.2019.01.035 – ident: e_1_2_9_64_1 doi: 10.7554/eLife.19850 – ident: e_1_2_9_19_1 doi: 10.1016/j.cell.2006.06.044 – ident: e_1_2_9_69_1 doi: 10.1038/ncb1371 – ident: e_1_2_9_6_1 doi: 10.1074/jbc.RA120.013919 – ident: e_1_2_9_17_1 doi: 10.1002/1873-3468.13808 – ident: e_1_2_9_51_1 doi: 10.3389/fbioe.2020.597721 – ident: e_1_2_9_63_1 doi: 10.1093/cvr/cvq385 – ident: e_1_2_9_70_1 doi: 10.1074/jbc.M008720200 – ident: e_1_2_9_49_1 doi: 10.1016/j.cell.2008.05.034 – ident: e_1_2_9_25_1 doi: 10.1016/j.ymeth.2016.11.016 – ident: e_1_2_9_34_1 doi: 10.1074/jbc.M411091200 – ident: e_1_2_9_45_1 doi: 10.1083/jcb.200208074 – ident: e_1_2_9_55_1 doi: 10.1016/j.ceb.2013.04.010 – ident: e_1_2_9_21_1 doi: 10.1038/emboj.2008.136 – ident: e_1_2_9_60_1 doi: 10.1083/jcb.201907224 – year: 2021 ident: e_1_2_9_40_1 article-title: Increasing cell size remodels the proteome and promotes senescence publication-title: bioRxiv – ident: e_1_2_9_68_1 doi: 10.1038/emboj.2011.253 – ident: e_1_2_9_7_1 doi: 10.1038/nmeth.1928 – ident: e_1_2_9_39_1 doi: 10.1096/fj.04-2414com – ident: e_1_2_9_28_1 doi: 10.1038/ncomms12471 – ident: e_1_2_9_43_1 doi: 10.1083/jcb.201703084 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.0307512101 – ident: e_1_2_9_36_1 doi: 10.1038/ncomms8292 – ident: e_1_2_9_58_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_9_35_1 doi: 10.1093/nar/gks493 – ident: e_1_2_9_50_1 doi: 10.1016/j.ceb.2018.04.009 – ident: e_1_2_9_66_1 doi: 10.1038/s41467-018-04404-4 – ident: e_1_2_9_46_1 doi: 10.1093/nar/gkn186 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-018-07286-8 – ident: e_1_2_9_27_1 doi: 10.1038/nature21407 – ident: e_1_2_9_57_1 doi: 10.1083/jcb.201601090 – ident: e_1_2_9_14_1 doi: 10.1111/tra.12060 – ident: e_1_2_9_31_1 doi: 10.1083/jcb.200201105 – ident: e_1_2_9_42_1 doi: 10.1161/CIRCRESAHA.107.158329 – ident: e_1_2_9_32_1 doi: 10.1093/protein/9.11.1063 – volume: 15 year: 2012 ident: e_1_2_9_8_1 article-title: Synchronizing protein transport in the secretory pathway publication-title: Curr Protoc Cell Biol – ident: e_1_2_9_11_1 doi: 10.1002/prot.10389 – ident: e_1_2_9_22_1 doi: 10.1083/jcb.200912082 – ident: e_1_2_9_16_1 doi: 10.1152/ajplung.90218.2008 – ident: e_1_2_9_26_1 doi: 10.1016/j.cub.2015.11.033 – ident: e_1_2_9_52_1 doi: 10.3389/fcell.2019.00127 – ident: e_1_2_9_2_1 doi: 10.1016/j.bpj.2014.04.036 – ident: e_1_2_9_56_1 doi: 10.1038/nprot.2015.140 – ident: e_1_2_9_13_1 doi: 10.1093/bioinformatics/btg371 – ident: e_1_2_9_12_1 doi: 10.1016/S0092-8674(00)80607-8 – ident: e_1_2_9_20_1 doi: 10.1074/jbc.M609720200 – ident: e_1_2_9_29_1 doi: 10.1016/j.jmb.2014.08.023 – ident: e_1_2_9_30_1 doi: 10.1152/physrev.00013.2019 – ident: e_1_2_9_65_1 doi: 10.1016/j.cell.2021.03.035 – ident: e_1_2_9_4_1 doi: 10.1074/jbc.RA120.014597 – ident: e_1_2_9_54_1 doi: 10.1371/journal.pone.0024657 – ident: e_1_2_9_59_1 doi: 10.1093/nar/gki481 – ident: e_1_2_9_23_1 doi: 10.1126/scisignal.2004135 – ident: e_1_2_9_62_1 doi: 10.1242/jcs.157115 – volume: 161 start-page: 245 year: 2017 ident: e_1_2_9_48_1 article-title: Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction publication-title: J Biochem – ident: e_1_2_9_5_1 doi: 10.1126/scisignal.2004838 – ident: e_1_2_9_38_1 doi: 10.1093/bioinformatics/btu426 – ident: e_1_2_9_53_1 doi: 10.1083/jcb.202104062 – ident: e_1_2_9_41_1 doi: 10.1074/jbc.RA119.008422 – ident: e_1_2_9_33_1 doi: 10.1038/nmeth.1524 – ident: e_1_2_9_37_1 doi: 10.1038/nprot.2016.169 – ident: e_1_2_9_18_1 doi: 10.1126/science.1116995 – ident: e_1_2_9_3_1 doi: 10.1002/prot.21495 – ident: e_1_2_9_47_1 doi: 10.1016/0092-8674(95)90370-4 – ident: e_1_2_9_9_1 doi: 10.1083/jcb.201903068 – ident: e_1_2_9_67_1 doi: 10.1016/j.bbrc.2006.12.144 – ident: e_1_2_9_10_1 doi: 10.1002/1873-3468.13569 – ident: e_1_2_9_44_1 doi: 10.1021/acs.jcim.1c00301 – reference: 36121033 - EMBO J. 2022 Nov 2;41(21):e112349. doi: 10.15252/embj.2022112349. |
SSID | ssj0005871 |
Score | 2.4725466 |
Snippet | Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory... |
SourceID | swepub pubmedcentral cristin proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e110596 |
SubjectTerms | Biochemistry & Molecular Biology Biologi Biological Sciences Biological Transport Cell Biology cells COP-Coated Vesicles - metabolism COPII Coupling docking EMBO20 Endoplasmic reticulum Endoplasmic Reticulum - metabolism fast interaction refinement Golgi apparatus Golgi Apparatus - metabolism gtpase Guanosine triphosphatases Mechanical stimuli mechanobiology Mechanotransduction Mechanotransduction, Cellular Membrane & Trafficking Monomeric GTP-Binding Proteins - metabolism proliferation protein Protein Transport - physiology Rac1 protein reticulum exit sites Strain Trafficking web server |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB-0IvoiWv90tcoKIigsvewmu8mjHi1t4bSIhb6FJJfUE7st7p3gmx_Bz-gncSb751yLCj4de5tkdzMzyfwyyW8AnnlZTqQReWaCLDOuZKAgocwmjhkuAwsqUinN3pT7x_zwRJz8cham5YcYFtzIMuJ4TQZubNNn7CHWUH9mPyLAywnCCFVehWt0wpZ0PedH620eMoKuuM7CmVRdqJLa2PmtBXSBXbSsejxJXfI8L2-gHKKoA-Po2NmNs9XebbjVuZnpq1Yv7sAVX2_C9Tbx5NdNuDHt87zdhdnM0-lfElbaxIwR-LM4o7Revkmnb48ODn58-94ny12mDTmaFJpPsTARUNBie_plYdJ3xrF7cLy3-366n3VJFjInJCuzEKpqjnO8Vei4IfwyhZygKTruEadyhd5H8AjCvGOTwti54DlKVVVeIjIJlXLFfdioz2u_BWlA74QHZ31pJVeBKyMKmwdl5jig5lYlsNX1r65Rv4mbVORaIeIrE9jpO1y7jpycvviTJpBCwtIkLL0WVgIvhhoXLTHHX8pu9zLUnYk2Oq8YkdUXgiXwdLiNfU8RE1P78xWWKQkP4jiF7_6gFfnwsEKoQuaMJ1CNlGEoQMTd4zv14kMk8Fa8EogME3jZq836tf78Dc9bxRq1f7q60PjX6Uo3XuNoihUTEFHx_tkrenf2-nB9-fA_6z2Cm3RBe2iY2IaN5eeVf4yO2tI-iZb4E_vqMWM priority: 102 providerName: Wiley-Blackwell |
Title | Mechanical strain stimulates COPII‐dependent secretory trafficking via Rac1 |
URI | https://link.springer.com/article/10.15252/embj.2022110596 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022110596 https://www.ncbi.nlm.nih.gov/pubmed/35938214 https://www.proquest.com/docview/2714263351 https://www.proquest.com/docview/2699960539 http://hdl.handle.net/10852/98996 https://pubmed.ncbi.nlm.nih.gov/PMC9475550 https://gup.ub.gu.se/publication/319252 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB3RIkRfEJRLA6UKEkICKerasR37EaJWbaWFClGpb5aTtcsimlbNLhJvfALfyJcwk9sSlYt4WmXjJI5nbJ_jcc4APPdaTbSTPHFBq0QYHShIqJNJyZzQgQXTSClN36qDE3F0Kk-79Q76FubX-L3kku_68-IT0jhOREUatQY3JUsVbd7KVb7azKEbatWspgimTReQ_N0dEOiWTf-pxlPRNXx5fZvkECsddEXHkLaZk_bvwp0OTMavW-vfgxu-2oRbbXrJr5twO--zud2H6dTTN75kkrhu8kLgz_ycknf5Os7fHR8e_vj2vU-Ju4hrgpMUgI-xMMlM0JJ6_GXu4veuZA_gZH_vQ36QdKkUklJqppIQsmyGM3lhEJ4hyXKpnmCHK4VHNioMYozgkWr5kk1SV8yk4Gg7k3mN_CNkpkwfwnp1UfktiANiEBHKwqtCCxOEcTIteDBuhsMmL0wEW1372gq9mBRIJbcGeZ2KYLdvcFt2EuT0xp8tUREyliVj2ZWxIng5XHHZym_8pex2b0PbdcTa8oyRJH0qWQTPhtPY9hQXcZW_WGIZRawPRyOs-6PW5MPDUmlSzZmIIBs5w1CA5LnHZ6r5x0am24hMIv-L4FXvNqtq_fkdXrSONbr_2fLS4l9nS1t7i2MmXhiBbBzvn61i96ZvjlaHj_-nNk9ggw5oewyT27C-uFr6p4jBFsUOrHFxvNN0wp-cMiaP |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB1BESovCMqlgQJBQkggRV07dmI_QtRqt3QLQq3UN8vJ2mVRm1bNLhJvfALfyJcwk9sSlYt4Wu3ayTqesX2OxzkD8MKpZKSs5JH1KomEVp6ChCoaFcwK5ZnXtZTS9CAZH4m9Y3nc7nfQuzC_xu8ll3zbneWfkcZxIipSJ9fhhkCeTCr5WZKtDnOomlrVuymCKd0GJH93BwS6RT1-yuFSdAVfXj0m2cdKe13RIaSt16TdO3C7BZPhm8b6d-GaKzfgZpNe8usGrGddNrd7MJ06eseXTBJWdV4I_JifUfIuV4XZ-w-TyY9v37uUuIuwIjhJAfgQK5PMBG2ph1_mNvxoC3YfjnZ3DrNx1KZSiAqpWBJ5n6YzXMlzjfAMSZaN1QgHXCEcslGhEWN4h1TLFWwU23wmBUfb6dQp5B8-1UX8ANbK89JtQugRgwhf5C7JldBeaCvjnHttZzht8lwHsNn2rynRi0mBVHKjkdclAWx3HW6KVoKcnvjUEBUhYxkyllkZK4BX_RUXjfzGX-pudTY07UCsDE8ZSdLHkgXwvC_Gvqe4iC3d-RLrJMT6cDbCtj9sTN7_WSx1rDgTAaQDZ-grkDz3sKScf6plurVIJfK_AF53brNq1p-f4WXjWIP7nywvDP50sjSVMzhn4oUByNrx_tkrZmf6dm_19dH_tOYZrI8Pp_tmf3Lw7jHcogI6KsPkFqwtLpfuCeKxRf60Hoo_Aal9KKU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CTbC9IBiXBQYECSGBFLVO7MR-LGXVWuiYgEl7s5zU3opYVi0tEm_8BH4jv4RzcquicRFPVRMncXyO7e_zcb4D8NzKuC-NCAPjZBxwJR0FCWXQz5jh0jGnSiml6WF8cMwnJ-KkXnArmt3uTUiy-qaBVJryZW8xc02-nrBnz9PPSO5Coi9Cxddhk56JHr45GEw-TtabPGRJucpVFs6kqgOVv7sHAuCs7Fd5d4q6gjuvbp9sY6it3mgX6pZz1eg23KpBpj-ovOIOXLP5Dtyo0k5-24GtYZPl7S5Mp5a-_SVT-UWZLwJ_5ueU1MsW_vD90Xj88_uPJlXu0i8IZlJg3sfCJD9BS-3-17nxP5iM3YPj0f6n4UFQp1gIMiFZHDiXJDOc4VOFsA3Jl4lkHztixi2yVK4QeziLFMxmrB-ZdCZ4iDZViZXIS1yisug-bOQXud0F3yE24S5LbZxKrhxXRkRp6JSZ4XAapsqD3bp9dY7eTcqkItQK-V7sQa9pcJ3V0uT0xl80URQyliZj6bWxPHjZXrGoZDn-UnavsaGuO2ihw4SRVH0kmAfP2tPY9hQvMbm9WGGZmNggjlJY9weVyduHRUJFMmTcg6TjDG0Bku3unsnnZ6V8t-KJQF7owavGbdbV-vM7vKgcq3P_09VC46HTlS6sxrEUL_RAlI73z1bR-9PXk_Xfh_9Tm6dw8-jNSL8bH759BNt0nHbQMLEHG8vLlX2MMG2ZPqn74i-ApzJT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+strain+stimulates+COPII-dependent+secretory+trafficking+via+Rac1&rft.jtitle=The+EMBO+journal&rft.au=Phuyal%2C+Santosh&rft.au=Djaerff%2C+Elena&rft.au=Le+Roux%2C+Anabel-Lise&rft.au=Baker%2C+Martin+J&rft.date=2022-09-15&rft.issn=0261-4189&rft_id=info:doi/10.15252%2Fembj.2022110596&rft.externalDBID=n%2Fa&rft.externalDocID=10852_98996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |