Mechanical strain stimulates COPII‐dependent secretory trafficking via Rac1

Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical s...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 41; no. 18; pp. e110596 - n/a
Main Authors Phuyal, Santosh, Djaerff, Elena, Le Roux, Anabel‐Lise, Baker, Martin J, Fankhauser, Daniela, Mahdizadeh, Sayyed Jalil, Reiterer, Veronika, Parizadeh, Amirabbas, Felder, Edward, Kahlhofer, Jennifer C, Teis, David, Kazanietz, Marcelo G, Geley, Stephan, Eriksson, Leif, Roca‐Cusachs, Pere, Farhan, Hesso
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.09.2022
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.15252/embj.2022110596

Cover

Loading…
Abstract Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Synopsis Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain. Graphical Abstract Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization.
AbstractList Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. image Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain.
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization.
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Synopsis Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain. Graphical Abstract Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization.
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER. Synopsis Whether and how mechanical signals regulate the endoplasmic reticulum (ER) is incompletely understood. Here, mechanical stress is found to increase ER exit site (ERES) numbers and secretory trafficking to respond with surface expansion. Mechanotransduction to ERES involves the small GTPase Rac1. Rac1 localizes to the ER where it forms a complex with Sar1. Rac1 stimulates the formation of COPII carriers. Blocking ERES renders cells more sensitive to mechanical strain. Mechanical strain regulates the number of endoplasmic reticulum exit sites through small GTPase heterodimerization.
Author Kahlhofer, Jennifer C
Fankhauser, Daniela
Eriksson, Leif
Djaerff, Elena
Geley, Stephan
Mahdizadeh, Sayyed Jalil
Reiterer, Veronika
Kazanietz, Marcelo G
Felder, Edward
Roca‐Cusachs, Pere
Teis, David
Farhan, Hesso
Phuyal, Santosh
Parizadeh, Amirabbas
Le Roux, Anabel‐Lise
Baker, Martin J
AuthorAffiliation 2 Institute for Bioengineering of Catalonia (IBEC) the Barcelona Institute of Technology (BIST) Barcelona Spain
5 Department of chemistry and molecular biology University of Gothenburg Gothenburg Sweden
8 Universitat de Barcelona Barcelona Spain
6 Institute of General Physiology University of Ulm Ulm Germany
3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
1 Institute of Basic Medical Sciences University of Oslo Oslo Norway
4 Institute of Pathophysiology Medical University of Innsbruck Innsbruck Austria
7 Institute of Cell Biology Medical University of Innsbruck Innsbruck Austria
AuthorAffiliation_xml – name: 6 Institute of General Physiology University of Ulm Ulm Germany
– name: 4 Institute of Pathophysiology Medical University of Innsbruck Innsbruck Austria
– name: 8 Universitat de Barcelona Barcelona Spain
– name: 1 Institute of Basic Medical Sciences University of Oslo Oslo Norway
– name: 7 Institute of Cell Biology Medical University of Innsbruck Innsbruck Austria
– name: 5 Department of chemistry and molecular biology University of Gothenburg Gothenburg Sweden
– name: 2 Institute for Bioengineering of Catalonia (IBEC) the Barcelona Institute of Technology (BIST) Barcelona Spain
– name: 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
Author_xml – sequence: 1
  givenname: Santosh
  orcidid: 0000-0002-1922-2098
  surname: Phuyal
  fullname: Phuyal, Santosh
  email: santosh.phuyal@medisin.uio.no
  organization: Institute of Basic Medical Sciences, University of Oslo
– sequence: 2
  givenname: Elena
  surname: Djaerff
  fullname: Djaerff, Elena
  organization: Institute of Basic Medical Sciences, University of Oslo
– sequence: 3
  givenname: Anabel‐Lise
  orcidid: 0000-0003-4152-5658
  surname: Le Roux
  fullname: Le Roux, Anabel‐Lise
  organization: Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST)
– sequence: 4
  givenname: Martin J
  orcidid: 0000-0002-9743-6294
  surname: Baker
  fullname: Baker, Martin J
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania
– sequence: 5
  givenname: Daniela
  surname: Fankhauser
  fullname: Fankhauser, Daniela
  organization: Institute of Pathophysiology, Medical University of Innsbruck
– sequence: 6
  givenname: Sayyed Jalil
  orcidid: 0000-0002-4844-6234
  surname: Mahdizadeh
  fullname: Mahdizadeh, Sayyed Jalil
  organization: Department of chemistry and molecular biology, University of Gothenburg
– sequence: 7
  givenname: Veronika
  surname: Reiterer
  fullname: Reiterer, Veronika
  organization: Institute of Pathophysiology, Medical University of Innsbruck
– sequence: 8
  givenname: Amirabbas
  surname: Parizadeh
  fullname: Parizadeh, Amirabbas
  organization: Institute of Pathophysiology, Medical University of Innsbruck
– sequence: 9
  givenname: Edward
  orcidid: 0000-0002-1831-2008
  surname: Felder
  fullname: Felder, Edward
  organization: Institute of General Physiology, University of Ulm
– sequence: 10
  givenname: Jennifer C
  surname: Kahlhofer
  fullname: Kahlhofer, Jennifer C
  organization: Institute of Cell Biology, Medical University of Innsbruck
– sequence: 11
  givenname: David
  orcidid: 0000-0002-8181-0253
  surname: Teis
  fullname: Teis, David
  organization: Institute of Cell Biology, Medical University of Innsbruck
– sequence: 12
  givenname: Marcelo G
  orcidid: 0000-0001-8779-017X
  surname: Kazanietz
  fullname: Kazanietz, Marcelo G
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania
– sequence: 13
  givenname: Stephan
  surname: Geley
  fullname: Geley, Stephan
  organization: Institute of Pathophysiology, Medical University of Innsbruck
– sequence: 14
  givenname: Leif
  orcidid: 0000-0001-5654-3109
  surname: Eriksson
  fullname: Eriksson, Leif
  organization: Department of chemistry and molecular biology, University of Gothenburg
– sequence: 15
  givenname: Pere
  orcidid: 0000-0001-6947-961X
  surname: Roca‐Cusachs
  fullname: Roca‐Cusachs, Pere
  email: proca@ibecbarcelona.eu
  organization: Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Universitat de Barcelona
– sequence: 16
  givenname: Hesso
  orcidid: 0000-0002-0889-8463
  surname: Farhan
  fullname: Farhan, Hesso
  email: hesso.farhan@i-med.ac.at
  organization: Institute of Basic Medical Sciences, University of Oslo, Institute of Pathophysiology, Medical University of Innsbruck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35938214$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/319252$$DView record from Swedish Publication Index
BookMark eNqFkstu1DAUhi1URKeFPSuIxIZNiq-JLaFKMCowqKMiBGvLcU5SDxlnsJNWs-MReEaeBJeZoUwlYHUk-_vP-c_lCB343gNCjwk-IYIK-gKW1eKEYkoJwUIV99CE8ALnFJfiAE0wLUjOiVSH6CjGBcZYyJI8QIdMKCYp4RM0n4O9NN5Z02VxCMb5FNxy7MwAMZtefJjNfnz7XsMKfA1-yCLYAEMf1lmCm8bZL8632ZUz2UdjyUN0vzFdhEfbeIw-vzn7NH2Xn1-8nU1fnedWSFLkTVOWNeW8UqIUkkrDJK4wthwIo1xRyRogHIMlmJmqFpyaRqoSJCGyKZVlxyjf5I3XsBorvQpuacJa98bpdlzp9NSOOoJmRKUxJf50wyd4CbVNnQTT7cn2f7y71G1_pRUvhRA4JXi6SWCDS_Px2vfBaIKloFpJpYpEPN-WCP3XEeKgly5a6DrjoR-jpoVKGBZMJfTZHXTRj8GngWlaEk4LxgRJ1JM_Pf82u9tdAoqdpz7GAI22bjCD629acF1yp38dib45En17JEmI7wh3uf8hebmRXLsO1v_l9dn89fs9OdnuKyl9C-G247-W_Aksmt9w
CitedBy_id crossref_primary_10_15252_embj_2022112349
crossref_primary_10_1016_j_tcb_2024_12_011
crossref_primary_10_3389_fimmu_2024_1464000
crossref_primary_10_3389_fmolb_2024_1352970
crossref_primary_10_15252_embj_2022112401
crossref_primary_10_1016_j_tcb_2023_05_001
crossref_primary_10_1007_s11010_024_05032_x
crossref_primary_10_1083_jcb_202403179
crossref_primary_10_3390_cells13171449
crossref_primary_10_1002_1873_3468_14595
crossref_primary_10_1038_s44318_024_00208_z
crossref_primary_10_1242_jcs_260783
crossref_primary_10_1242_jcs_263503
crossref_primary_10_1371_journal_pone_0317740
Cites_doi 10.1016/j.cell.2019.01.035
10.7554/eLife.19850
10.1016/j.cell.2006.06.044
10.1038/ncb1371
10.1074/jbc.RA120.013919
10.1002/1873-3468.13808
10.3389/fbioe.2020.597721
10.1093/cvr/cvq385
10.1074/jbc.M008720200
10.1016/j.cell.2008.05.034
10.1016/j.ymeth.2016.11.016
10.1074/jbc.M411091200
10.1083/jcb.200208074
10.1016/j.ceb.2013.04.010
10.1038/emboj.2008.136
10.1083/jcb.201907224
10.1038/emboj.2011.253
10.1038/nmeth.1928
10.1096/fj.04-2414com
10.1038/ncomms12471
10.1083/jcb.201703084
10.1073/pnas.0307512101
10.1038/ncomms8292
10.1038/nmeth.2019
10.1093/nar/gks493
10.1016/j.ceb.2018.04.009
10.1038/s41467-018-04404-4
10.1093/nar/gkn186
10.1038/s41467-018-07286-8
10.1038/nature21407
10.1083/jcb.201601090
10.1111/tra.12060
10.1083/jcb.200201105
10.1161/CIRCRESAHA.107.158329
10.1093/protein/9.11.1063
10.1002/prot.10389
10.1083/jcb.200912082
10.1152/ajplung.90218.2008
10.1016/j.cub.2015.11.033
10.3389/fcell.2019.00127
10.1016/j.bpj.2014.04.036
10.1038/nprot.2015.140
10.1093/bioinformatics/btg371
10.1016/S0092-8674(00)80607-8
10.1074/jbc.M609720200
10.1016/j.jmb.2014.08.023
10.1152/physrev.00013.2019
10.1016/j.cell.2021.03.035
10.1074/jbc.RA120.014597
10.1371/journal.pone.0024657
10.1093/nar/gki481
10.1126/scisignal.2004135
10.1242/jcs.157115
10.1126/scisignal.2004838
10.1093/bioinformatics/btu426
10.1083/jcb.202104062
10.1074/jbc.RA119.008422
10.1038/nmeth.1524
10.1038/nprot.2016.169
10.1126/science.1116995
10.1002/prot.21495
10.1016/0092-8674(95)90370-4
10.1083/jcb.201903068
10.1016/j.bbrc.2006.12.144
10.1002/1873-3468.13569
10.1021/acs.jcim.1c00301
ContentType Journal Article
Copyright The Author(s) 2022
2022 The Authors. Published under the terms of the CC BY 4.0 license
2022 The Authors. Published under the terms of the CC BY 4.0 license.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: The Author(s) 2022
– notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
3HK
5PM
ADTPV
AOWAS
F1U
DOI 10.15252/embj.2022110596
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Santosh Phuyal et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID oai_gup_ub_gu_se_319252
PMC9475550
10852_98996
35938214
10_15252_embj_2022110596
EMBJ2022110596
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC ¦ H2020 ¦ H2020 Priority Excellent Science ¦ H2020 Marie Skłodowska‐Curie Actions (MSCA)
  grantid: H2020‐MSCA‐ITN‐860035; H2020‐MSCA‐ITN‐859962
  funderid: 10.13039/100010665
– fundername: VINNOVA (Swedish Governmental Agency for Innovation Systems)
  grantid: 2019‐02205
  funderid: 10.13039/501100001858
– fundername: Kreftforeningen (NCS)
  grantid: 182815; 208015
  funderid: 10.13039/100008730
– fundername: Spanish Ministry of Science and Innovation
  grantid: PID2019‐110298GB‐I00PID2019‐110298GB‐I00
  funderid: 10.13039/501100004837
– fundername: Foundation for the National Institutes of Health (FNIH)
  grantid: ES026023
  funderid: 10.13039/100000009
– fundername: Norges Forskningsråd (Forskningsrådet)
  grantid: 302452
  funderid: 10.13039/501100005416
– fundername: Vetenskapsrådet (VR)
  grantid: 2018‐05973; 2019‐3684
  funderid: 10.13039/501100004359
– fundername: EC ¦ H2020 ¦ H2020 Excellent Science (H2020 Priority Excellent Science)
  grantid: H2020‐FETPROACT‐01‐2016‐731957
  funderid: 10.13039/100010662
– fundername: EC ¦ H2020 ¦ H2020 Excellent Science (H2020 Priority Excellent Science)
  funderid: H2020‐FETPROACT‐01‐2016‐731957
– fundername: EC ¦ H2020 ¦ H2020 Priority Excellent Science ¦ H2020 Marie Skłodowska‐Curie Actions (MSCA)
  funderid: H2020‐MSCA‐ITN‐860035; H2020‐MSCA‐ITN‐859962
– fundername: Spanish Ministry of Science and Innovation
  funderid: PID2019‐110298GB‐I00PID2019‐110298GB‐I00
– fundername: Kreftforeningen (NCS)
  funderid: 182815; 208015
– fundername: Norges Forskningsråd (Forskningsrådet)
  funderid: 302452
– fundername: Vetenskapsrådet (VR)
  funderid: 2018‐05973; 2019‐3684
– fundername: Foundation for the National Institutes of Health (FNIH)
  funderid: ES026023
– fundername: VINNOVA (Swedish Governmental Agency for Innovation Systems)
  funderid: 2019‐02205
– fundername: NIEHS NIH HHS
  grantid: R56 ES026023
– fundername: NIEHS NIH HHS
  grantid: R01 ES026023
– fundername: Austrian Science Fund FWF
  grantid: DOC 82
– fundername: ;
  grantid: 182815; 208015
– fundername: ;
  grantid: ES026023
– fundername: ;
  grantid: PID2019‐110298GB‐I00PID2019‐110298GB‐I00
– fundername: ;
  grantid: H2020‐FETPROACT‐01‐2016‐731957
– fundername: ;
  grantid: 2019‐02205
– fundername: ;
  grantid: 302452
– fundername: ;
  grantid: H2020‐MSCA‐ITN‐860035; H2020‐MSCA‐ITN‐859962
– fundername: ;
  grantid: 2018‐05973; 2019‐3684
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
-Q-
.55
3HK
3O-
3V.
4.4
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AASGY
ABUWG
ACBWZ
ACKIV
ACSMW
AFKRA
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
D1J
DWQXO
EJD
ESTFP
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M0L
M1P
M2O
M7P
PCBAR
PQQKQ
PROAC
PSQYO
RHF
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
5PM
AANHP
ACRPL
ACYXJ
ADNMO
ADTPV
AEUYN
AGQPQ
AOWAS
F1U
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ID FETCH-LOGICAL-c5816-ff77d244b9575828a380b00c4e13249283fe140ec103abd542af897e8118f79c3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 06:55:50 EDT 2025
Thu Aug 21 18:39:58 EDT 2025
Thu Aug 29 03:27:19 EDT 2024
Fri Jul 11 03:54:38 EDT 2025
Fri Jul 25 10:56:26 EDT 2025
Mon Jul 21 06:03:55 EDT 2025
Tue Jul 01 01:47:23 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Wed Jan 22 16:23:56 EST 2025
Fri Feb 21 02:37:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords mechanobiology
COPII
endoplasmic reticulum
Language English
License Attribution
2022 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5816-ff77d244b9575828a380b00c4e13249283fe140ec103abd542af897e8118f79c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4152-5658
0000-0002-9743-6294
0000-0001-6947-961X
0000-0002-1831-2008
0000-0002-8181-0253
0000-0002-4844-6234
0000-0001-8779-017X
0000-0001-5654-3109
0000-0002-0889-8463
0000-0002-1922-2098
OpenAccessLink https://doi.org/10.15252/embj.2022110596
PMID 35938214
PQID 2714263351
PQPubID 35985
PageCount 20
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_319252
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9475550
cristin_nora_10852_98996
proquest_miscellaneous_2699960539
proquest_journals_2714263351
pubmed_primary_35938214
crossref_citationtrail_10_15252_embj_2022110596
crossref_primary_10_15252_embj_2022110596
wiley_primary_10_15252_embj_2022110596_EMBJ2022110596
springer_journals_10_15252_embj_2022110596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2022
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 15 September 2022
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Payapilly, Malliri (CR49) 2018; 54
Albert, Schwarz (CR1) 2014; 106
Yamane, Matsuda, Ito, Fujio, Takahashi, Azuma (CR66) 2007; 353
Comeau, Gatchell, Vajda, Camacho (CR12) 2004; 20
Boncompain, Perez (CR7) 2012; Chapter 15
Cutrona, Beznoussenko, Fusella, Martella, Moral, Mironov (CR13) 2013; 14
CR39
Weigel, Chang, Shtengel, Xu, Hoffman, Freeman, Iyer, Aaron, Khuon, Bogovic (CR64) 2021; 184
Fritz, Letzelter, Reimann, Martin, Fusco, Ritsma, Ponsioen, Fluri, Schulte‐Merker, van Rheenen (CR22) 2013; 6
Kim, Hamamoto, Ravazzola, Orci, Schekman (CR33) 2005; 280
Schindelin, Arganda‐Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (CR57) 2012; 9
Zacharogianni, Kondylis, Tang, Farhan, Xanthakis, Fuchs, Boutros, Rabouille (CR67) 2011; 30
Zeuschner, Geerts, van Donselaar, Humbel, Slot, Koster, Klumperman (CR68) 2006; 8
Gao, Dickerson, Guo, Zheng, Zheng (CR23) 2004; 101
Phuyal, Baschieri (CR50) 2020; 8
Farhan, Reiterer, Korkhov, Schmid, Freissmuth, Sitte (CR19) 2007; 282
Shomron, Nevo‐Yassaf, Aviad, Yaffe, Zahavi, Dukhovny, Perlson, Brodsky, Yeheskel, Pasmanik‐Chor (CR59) 2021; 220
Chen, Li, Weng (CR10) 2003; 52
Desai, Chapman, Waters (CR15) 2008; 295
Krieger, Vriend (CR37) 2014; 30
Mashiach, Schneidman‐Duhovny, Andrusier, Nussinov, Wolfson (CR45) 2008; 36
Hariri, Bhattacharya, Johnson, Noble, Stagg (CR28) 2014; 426
Baker, Cooke, Kreider‐Letterman, Garcia‐Mata, Janmey, Kazanietz (CR5) 2020; 295
Verma, Lal, Golden, Gerilechaogetu, Smith, Guleria, Foster, Lu, Dostal (CR62) 2011; 90
Gustafsson, Culley, Ashdown, Owen, Pereira, Henriques (CR27) 2016; 7
Kosmalska, Casares, Elosegui‐Artola, Thottacherry, Moreno‐Vicente, Gonzalez‐Tarrago, Del Pozo, Mayor, Arroyo, Navajas (CR35) 2015; 6
Phuyal, Farhan (CR52) 2021; 220
Gilles, Dos Santos, Boudier, Bolte, Heck (CR24) 2017; 115
Gudipaty, Lindblom, Loftus, Redd, Edes, Davey, Krishnegowda, Rosenblatt (CR26) 2017; 543
Ko, Park, Heo, Seok (CR34) 2012; 40
Zhang, Gao, Moon, Zhang, Zheng (CR69) 2001; 276
Roca‐Cusachs, Sunyer, Trepat (CR54) 2013; 25
Janmey, Fletcher, Reinhart‐King (CR29) 2020; 100
Sakuma, Nakade, Sakane, Suzuki, Yamamoto (CR55) 2016; 11
Centonze, Farhan (CR9) 2019; 593
Woroniuk, Porter, White, Newman, Diamantopoulou, Waring, Rooney, Strathdee, Marston, Hahn (CR65) 2018; 9
Kelley, Gardner, Sutcliffe (CR31) 1996; 9
Pierce, Hourai, Weng (CR53) 2011; 6
Subramanian, Capalbo, Iyengar, Rizzo, di Campli, Di Martino, Lo Monte, Beccari, Yerudkar, Del Vecchio (CR60) 2019; 176
Diestelkoetter‐Bachert, Beck, Reckmann, Hellwig, Garcia‐Saez, Zelman‐Hopf, Hanke, Nunes Alves, Wade, Mayer (CR16) 2020; 594
Maeda, Katada, Saito (CR42) 2017; 216
Farhan, Wendeler, Mitrovic, Fava, Silberberg, Sharan, Zerial, Hauri (CR21) 2010; 189
Arya, Goswami, Rahaman (CR3) 2020; 296
Bae, Mui, Hsu, Liu, Cretu, Razinia, Xu, Pure, Assoian (CR4) 2014; 7
Andrusier, Nussinov, Wolfson (CR2) 2007; 69
Liu, Nelson, Tan, Chen (CR41) 2007; 101
Wales, Schuberth, Aufschnaiter, Fels, Garcia‐Aguilar, Janning, Dlugos, Schafer‐Herte, Klingner, Walte (CR63) 2016; 5
Kennedy, Hughes, Peteya, Schwartz, Ehlers, Tucker (CR32) 2010; 7
Mahdizadeh, Thomas, Eriksson (CR43) 2021; 61
Boncompain, Divoux, Gareil, de Forges, Lescure, Latreche, Mercanti, Jollivet, Raposo, Perez (CR6) 2012; 9
Gould, Yalcin, MacKay, Sauls, Norris, Kumar, Butcher (CR25) 2016; 26
Farhan, Weiss, Tani, Kaufman, Hauri (CR20) 2008; 27
Kumar, Murphy, Robinson, Wei, Boriek (CR38) 2004; 18
Nobes, Hall (CR46) 1995; 81
Engler, Sen, Sweeney, Discher (CR18) 2006; 126
Lin, Chung, Huang, Wang, Huang, Kaiser (CR40) 2019; 294
Discher, Janmey, Wang (CR17) 2005; 310
Phuyal, Farhan (CR51) 2019; 7
Centonze, Reiterer, Nalbach, Saito, Pawlowski, Behrends, Farhan (CR8) 2019; 218
Malkus, Jiang, Schekman (CR44) 2002; 159
Scharaw, Iskar, Ori, Boncompain, Laketa, Poser, Lundberg, Perez, Beck, Bork (CR56) 2016; 215
Choy, Chiu, Silletti, Feoktistov, Morimoto, Michaelson, Ivanov, Philips (CR11) 1999; 98
Ohashi, Fujiwara, Mizuno (CR47) 2017; 161
Katsumi, Milanini, Kiosses, del Pozo, Kaunas, Chien, Hahn, Schwartz (CR30) 2002; 158
Tillmann, Reiterer, Baschieri, Hoffmann, Millarte, Hauser, Mazza, Atias, Legler, Sharan (CR61) 2015; 128
Kozakov, Hall, Xia, Porter, Padhorny, Yueh, Beglov, Vajda (CR36) 2017; 12
Palamidessi, Frittoli, Garre, Faretta, Mione, Testa, Diaspro, Lanzetti, Scita, Di Fiore (CR48) 2008; 134
Schneidman‐Duhovny, Inbar, Nussinov, Wolfson (CR58) 2005; 33
de Beco, Vaidziulyte, Manzi, Dalier, di Federico, Cornilleau, Dahan, Coppey (CR14) 2018; 9
2007; 101
2004; 20
2013; 25
2002; 158
2010; 189
2008; 36
2002; 159
2003; 52
2013; 6
2017; 115
2020; 8
2012; Chapter 15
2018; 9
2013; 14
2020; 295
2020; 296
2008; 27
1999; 98
2017; 161
2006; 126
2014; 7
2010; 7
2005; 33
2007; 69
1996; 9
2019; 593
2004; 101
2019; 7
2015; 6
2007; 282
2005; 310
2011; 30
2006; 8
2021; 184
2020; 100
2015; 128
2021; 220
2011; 6
2017; 216
2016; 11
2014; 426
2001; 276
2016; 5
2005; 280
2014; 106
2016; 7
1995; 81
2004; 18
2020; 594
2021
2011; 90
2007; 353
2017; 12
2019; 218
2016; 215
2014; 30
2019; 294
2021; 61
2008; 134
2018; 54
2016; 26
2017; 543
2008; 295
2012; 9
2012; 40
2019; 176
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Ohashi K (e_1_2_9_48_1) 2017; 161
Boncompain G (e_1_2_9_8_1) 2012; 15
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Lanz MC (e_1_2_9_40_1) 2021
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_29_1
36121033 - EMBO J. 2022 Nov 2;41(21):e112349. doi: 10.15252/embj.2022112349.
References_xml – volume: 101
  start-page: 7618
  year: 2004
  end-page: 7623
  ident: CR23
  article-title: Rational design and characterization of a Rac GTPase‐specific small molecule inhibitor
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: rs12
  year: 2013
  ident: CR22
  article-title: A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space
  publication-title: Sci Signal
– volume: 69
  start-page: 139
  year: 2007
  end-page: 159
  ident: CR2
  article-title: FireDock: fast interaction refinement in molecular docking
  publication-title: Proteins
– volume: 276
  start-page: 8958
  year: 2001
  end-page: 8967
  ident: CR69
  article-title: Oligomerization of Rac1 gtpase mediated by the carboxyl‐terminal polybasic domain
  publication-title: J Biol Chem
– volume: 14
  start-page: 691
  year: 2013
  end-page: 708
  ident: CR13
  article-title: Silencing of mammalian Sar1 isoforms reveals COPII‐independent protein sorting and transport
  publication-title: Traffic
– ident: CR39
– volume: 18
  start-page: 1524
  year: 2004
  end-page: 1535
  ident: CR38
  article-title: Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac‐1 GTPase, and NF‐kappaB transcription factor
  publication-title: FASEB J
– volume: 159
  start-page: 915
  year: 2002
  end-page: 921
  ident: CR44
  article-title: Concentrative sorting of secretory cargo proteins into COPII‐coated vesicles
  publication-title: J Cell Biol
– volume: 98
  start-page: 69
  year: 1999
  end-page: 80
  ident: CR11
  article-title: Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi
  publication-title: Cell
– volume: 216
  start-page: 1731
  year: 2017
  end-page: 1743
  ident: CR42
  article-title: TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion
  publication-title: J Cell Biol
– volume: 26
  start-page: 27
  year: 2016
  end-page: 37
  ident: CR25
  article-title: Cyclic mechanical loading is essential for Rac1‐mediated elongation and remodeling of the embryonic mitral valve
  publication-title: Curr Biol
– volume: 7
  start-page: 127
  year: 2019
  ident: CR51
  article-title: Multifaceted rho GTPase signaling at the endomembranes
  publication-title: Front Cell Dev Biol
– volume: 296
  year: 2020
  ident: CR3
  article-title: Mechanotransduction via a TRPV4‐Rac1 signaling axis plays a role in multinucleated giant cell formation
  publication-title: J Biol Chem
– volume: 106
  start-page: 2340
  year: 2014
  end-page: 2352
  ident: CR1
  article-title: Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model
  publication-title: Biophys J
– volume: 189
  start-page: 997
  year: 2010
  end-page: 1011
  ident: CR21
  article-title: MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening
  publication-title: J Cell Biol
– volume: 5
  year: 2016
  ident: CR63
  article-title: Calcium‐mediated Actin reset (CaAR) mediates acute cell adaptations
  publication-title: Elife
– volume: 353
  start-page: 1023
  year: 2007
  end-page: 1027
  ident: CR66
  article-title: Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress
  publication-title: Biochem Biophys Res Commun
– volume: 594
  start-page: 2240
  year: 2020
  end-page: 2253
  ident: CR16
  article-title: Structural characterization of an Arf dimer interface: molecular mechanism of Arf‐dependent membrane scission
  publication-title: FEBS Lett
– volume: 215
  start-page: 543
  year: 2016
  end-page: 558
  ident: CR56
  article-title: The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR
  publication-title: J Cell Biol
– volume: 40
  start-page: W294
  year: 2012
  end-page: W297
  ident: CR34
  article-title: GalaxyWEB server for protein structure prediction and refinement
  publication-title: Nucleic Acids Res
– volume: 543
  start-page: 118
  year: 2017
  end-page: 121
  ident: CR26
  article-title: Mechanical stretch triggers rapid epithelial cell division through Piezo1
  publication-title: Nature
– volume: 126
  start-page: 677
  year: 2006
  end-page: 689
  ident: CR18
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
– volume: 30
  start-page: 2981
  year: 2014
  end-page: 2982
  ident: CR37
  article-title: YASARA view – molecular graphics for all devices – from smartphones to workstations
  publication-title: Bioinformatics
– volume: 27
  start-page: 2043
  year: 2008
  end-page: 2054
  ident: CR20
  article-title: Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load
  publication-title: EMBO J
– volume: 161
  start-page: 245
  year: 2017
  end-page: 254
  ident: CR47
  article-title: Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction
  publication-title: J Biochem
– volume: 176
  start-page: 1461
  year: 2019
  end-page: 1476.e23
  ident: CR60
  article-title: Auto‐regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum
  publication-title: Cell
– volume: 11
  start-page: 118
  year: 2016
  end-page: 133
  ident: CR55
  article-title: MMEJ‐assisted gene knock‐in using TALENs and CRISPR‐Cas9 with the PITCh systems
  publication-title: Nat Protoc
– volume: 220
  year: 2021
  ident: CR52
  article-title: Want to leave the ER? We offer vesicles, tubules, and tunnels
  publication-title: J Cell Biol
– volume: 7
  start-page: 12471
  year: 2016
  ident: CR27
  article-title: Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations
  publication-title: Nat Commun
– volume: 184
  start-page: 2412
  year: 2021
  end-page: 2429.e16
  ident: CR64
  article-title: ER‐to‐Golgi protein delivery through an interwoven, tubular network extending from ER
  publication-title: Cell
– volume: 8
  year: 2020
  ident: CR50
  article-title: Endomembranes: unsung heroes of mechanobiology?
  publication-title: Front Bioeng Biotechnol
– volume: 8
  start-page: 377
  year: 2006
  end-page: 383
  ident: CR68
  article-title: Immuno‐electron tomography of ER exit sites reveals the existence of free COPII‐coated transport carriers
  publication-title: Nat Cell Biol
– volume: Chapter 15
  year: 2012
  ident: CR7
  article-title: Synchronizing protein transport in the secretory pathway
  publication-title: Curr Protoc Cell Biol
– volume: 90
  start-page: 88
  year: 2011
  end-page: 96
  ident: CR62
  article-title: Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts
  publication-title: Cardiovasc Res
– volume: 218
  start-page: 2470
  year: 2019
  end-page: 2480
  ident: CR8
  article-title: LTK is an ER‐resident receptor tyrosine kinase that regulates secretion
  publication-title: J Cell Biol
– volume: 30
  start-page: 3684
  year: 2011
  end-page: 3700
  ident: CR67
  article-title: ERK7 is a negative regulator of protein secretion in response to amino‐acid starvation by modulating Sec16 membrane association
  publication-title: EMBO J
– volume: 295
  start-page: 13698
  year: 2020
  end-page: 13710
  ident: CR5
  article-title: Evaluation of active Rac1 levels in cancer cells: a case of misleading conclusions from immunofluorescence analysis
  publication-title: J Biol Chem
– volume: 310
  start-page: 1139
  year: 2005
  end-page: 1143
  ident: CR17
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
– volume: 7
  start-page: 973
  year: 2010
  end-page: 975
  ident: CR32
  article-title: Rapid blue‐light‐mediated induction of protein interactions in living cells
  publication-title: Nat Methods
– volume: 101
  start-page: e44
  year: 2007
  end-page: e52
  ident: CR41
  article-title: Cadherins, RhoA, and Rac1 are differentially required for stretch‐mediated proliferation in endothelial versus smooth muscle cells
  publication-title: Circ Res
– volume: 158
  start-page: 153
  year: 2002
  end-page: 164
  ident: CR30
  article-title: Effects of cell tension on the small GTPase Rac
  publication-title: J Cell Biol
– volume: 9
  start-page: 4816
  year: 2018
  ident: CR14
  article-title: Optogenetic dissection of Rac1 and Cdc42 gradient shaping
  publication-title: Nat Commun
– volume: 115
  start-page: 55
  year: 2017
  end-page: 64
  ident: CR24
  article-title: DiAna, an ImageJ tool for object‐based 3D co‐localization and distance analysis
  publication-title: Methods
– volume: 294
  start-page: 10877
  year: 2019
  end-page: 10885
  ident: CR40
  article-title: Microhomology‐based CRISPR tagging tools for protein tracking, purification, and depletion
  publication-title: J Biol Chem
– volume: 6
  year: 2011
  ident: CR53
  article-title: Accelerating protein docking in ZDOCK using an advanced 3D convolution library
  publication-title: PLoS One
– volume: 81
  start-page: 53
  year: 1995
  end-page: 62
  ident: CR46
  article-title: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with Actin stress fibers, lamellipodia, and filopodia
  publication-title: Cell
– volume: 282
  start-page: 7679
  year: 2007
  end-page: 7689
  ident: CR19
  article-title: Concentrative export from the endoplasmic reticulum of the gamma‐aminobutyric acid transporter 1 requires binding to SEC24D
  publication-title: J Biol Chem
– volume: 6
  start-page: 7292
  year: 2015
  ident: CR35
  article-title: Physical principles of membrane remodelling during cell mechanoadaptation
  publication-title: Nat Commun
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: CR57
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 54
  start-page: 50
  year: 2018
  end-page: 56
  ident: CR49
  article-title: Compartmentalisation of RAC1 signalling
  publication-title: Curr Opin Cell Biol
– volume: 280
  start-page: 7758
  year: 2005
  end-page: 7768
  ident: CR33
  article-title: Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles
  publication-title: J Biol Chem
– volume: 33
  start-page: W363
  year: 2005
  end-page: W367
  ident: CR58
  article-title: PatchDock and SymmDock: servers for rigid and symmetric docking
  publication-title: Nucleic Acids Res
– volume: 100
  start-page: 695
  year: 2020
  end-page: 724
  ident: CR29
  article-title: Stiffness sensing by cells
  publication-title: Physiol Rev
– volume: 25
  start-page: 543
  year: 2013
  end-page: 549
  ident: CR54
  article-title: Mechanical guidance of cell migration: lessons from chemotaxis
  publication-title: Curr Opin Cell Biol
– volume: 134
  start-page: 135
  year: 2008
  end-page: 147
  ident: CR48
  article-title: Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration
  publication-title: Cell
– volume: 593
  start-page: 2280
  year: 2019
  end-page: 2288
  ident: CR9
  article-title: Crosstalk of endoplasmic reticulum exit sites and cellular signaling
  publication-title: FEBS Lett
– volume: 20
  start-page: 45
  year: 2004
  end-page: 50
  ident: CR12
  article-title: ClusPro: an automated docking and discrimination method for the prediction of protein complexes
  publication-title: Bioinformatics
– volume: 9
  start-page: 493
  year: 2012
  end-page: 498
  ident: CR6
  article-title: Synchronization of secretory protein traffic in populations of cells
  publication-title: Nat Methods
– volume: 295
  start-page: L958
  year: 2008
  end-page: L965
  ident: CR15
  article-title: Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 36
  start-page: W229
  year: 2008
  end-page: W232
  ident: CR45
  article-title: FireDock: a web server for fast interaction refinement in molecular docking
  publication-title: Nucleic Acids Res
– volume: 220
  year: 2021
  ident: CR59
  article-title: COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers
  publication-title: J Cell Biol
– volume: 52
  start-page: 80
  year: 2003
  end-page: 87
  ident: CR10
  article-title: ZDOCK: an initial‐stage protein‐docking algorithm
  publication-title: Proteins
– volume: 128
  start-page: 670
  year: 2015
  end-page: 682
  ident: CR61
  article-title: Regulation of Sec16 levels and dynamics links proliferation and secretion
  publication-title: J Cell Sci
– volume: 426
  start-page: 3811
  year: 2014
  end-page: 3826
  ident: CR28
  article-title: Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway
  publication-title: J Mol Biol
– volume: 12
  start-page: 255
  year: 2017
  end-page: 278
  ident: CR36
  article-title: The ClusPro web server for protein‐protein docking
  publication-title: Nat Protoc
– volume: 61
  start-page: 3543
  year: 2021
  end-page: 3558
  ident: CR43
  article-title: Reconstruction of the Fas‐based death‐inducing signaling complex (DISC) using a protein‐protein docking meta‐approach
  publication-title: J Chem Inf Model
– volume: 9
  start-page: 2124
  year: 2018
  ident: CR65
  article-title: Stef/TIAM2‐mediated Rac1 activity at the nuclear envelope regulates the perinuclear Actin cap
  publication-title: Nat Commun
– volume: 7
  start-page: ra57
  year: 2014
  ident: CR4
  article-title: A FAK‐Cas‐Rac‐lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling
  publication-title: Sci Signal
– volume: 9
  start-page: 1063
  year: 1996
  end-page: 1065
  ident: CR31
  article-title: An automated approach for clustering an ensemble of NMR‐derived protein structures into conformationally related subfamilies
  publication-title: Protein Eng
– volume: 27
  start-page: 2043
  year: 2008
  end-page: 2054
  article-title: Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load
  publication-title: EMBO J
– volume: 81
  start-page: 53
  year: 1995
  end-page: 62
  article-title: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with Actin stress fibers, lamellipodia, and filopodia
  publication-title: Cell
– volume: 6
  year: 2011
  article-title: Accelerating protein docking in ZDOCK using an advanced 3D convolution library
  publication-title: PLoS One
– volume: 30
  start-page: 3684
  year: 2011
  end-page: 3700
  article-title: ERK7 is a negative regulator of protein secretion in response to amino‐acid starvation by modulating Sec16 membrane association
  publication-title: EMBO J
– volume: 61
  start-page: 3543
  year: 2021
  end-page: 3558
  article-title: Reconstruction of the Fas‐based death‐inducing signaling complex (DISC) using a protein‐protein docking meta‐approach
  publication-title: J Chem Inf Model
– volume: 8
  start-page: 377
  year: 2006
  end-page: 383
  article-title: Immuno‐electron tomography of ER exit sites reveals the existence of free COPII‐coated transport carriers
  publication-title: Nat Cell Biol
– volume: 7
  start-page: 12471
  year: 2016
  article-title: Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations
  publication-title: Nat Commun
– volume: 134
  start-page: 135
  year: 2008
  end-page: 147
  article-title: Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration
  publication-title: Cell
– volume: 20
  start-page: 45
  year: 2004
  end-page: 50
  article-title: ClusPro: an automated docking and discrimination method for the prediction of protein complexes
  publication-title: Bioinformatics
– volume: 220
  year: 2021
  article-title: Want to leave the ER? We offer vesicles, tubules, and tunnels
  publication-title: J Cell Biol
– volume: 12
  start-page: 255
  year: 2017
  end-page: 278
  article-title: The ClusPro web server for protein‐protein docking
  publication-title: Nat Protoc
– volume: 18
  start-page: 1524
  year: 2004
  end-page: 1535
  article-title: Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac‐1 GTPase, and NF‐kappaB transcription factor
  publication-title: FASEB J
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 216
  start-page: 1731
  year: 2017
  end-page: 1743
  article-title: TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion
  publication-title: J Cell Biol
– volume: 9
  start-page: 2124
  year: 2018
  article-title: Stef/TIAM2‐mediated Rac1 activity at the nuclear envelope regulates the perinuclear Actin cap
  publication-title: Nat Commun
– volume: 594
  start-page: 2240
  year: 2020
  end-page: 2253
  article-title: Structural characterization of an Arf dimer interface: molecular mechanism of Arf‐dependent membrane scission
  publication-title: FEBS Lett
– volume: 280
  start-page: 7758
  year: 2005
  end-page: 7768
  article-title: Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles
  publication-title: J Biol Chem
– volume: 30
  start-page: 2981
  year: 2014
  end-page: 2982
  article-title: YASARA view – molecular graphics for all devices – from smartphones to workstations
  publication-title: Bioinformatics
– volume: 176
  start-page: 1461
  year: 2019
  end-page: 1476.e23
  article-title: Auto‐regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum
  publication-title: Cell
– volume: 33
  start-page: W363
  year: 2005
  end-page: W367
  article-title: PatchDock and SymmDock: servers for rigid and symmetric docking
  publication-title: Nucleic Acids Res
– volume: 6
  start-page: rs12
  year: 2013
  article-title: A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space
  publication-title: Sci Signal
– volume: 128
  start-page: 670
  year: 2015
  end-page: 682
  article-title: Regulation of Sec16 levels and dynamics links proliferation and secretion
  publication-title: J Cell Sci
– volume: 353
  start-page: 1023
  year: 2007
  end-page: 1027
  article-title: Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress
  publication-title: Biochem Biophys Res Commun
– volume: 9
  start-page: 493
  year: 2012
  end-page: 498
  article-title: Synchronization of secretory protein traffic in populations of cells
  publication-title: Nat Methods
– volume: Chapter 15
  year: 2012
  article-title: Synchronizing protein transport in the secretory pathway
  publication-title: Curr Protoc Cell Biol
– volume: 276
  start-page: 8958
  year: 2001
  end-page: 8967
  article-title: Oligomerization of Rac1 gtpase mediated by the carboxyl‐terminal polybasic domain
  publication-title: J Biol Chem
– volume: 218
  start-page: 2470
  year: 2019
  end-page: 2480
  article-title: LTK is an ER‐resident receptor tyrosine kinase that regulates secretion
  publication-title: J Cell Biol
– volume: 7
  start-page: ra57
  year: 2014
  article-title: A FAK‐Cas‐Rac‐lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling
  publication-title: Sci Signal
– volume: 9
  start-page: 4816
  year: 2018
  article-title: Optogenetic dissection of Rac1 and Cdc42 gradient shaping
  publication-title: Nat Commun
– volume: 52
  start-page: 80
  year: 2003
  end-page: 87
  article-title: ZDOCK: an initial‐stage protein‐docking algorithm
  publication-title: Proteins
– volume: 90
  start-page: 88
  year: 2011
  end-page: 96
  article-title: Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts
  publication-title: Cardiovasc Res
– volume: 310
  start-page: 1139
  year: 2005
  end-page: 1143
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
– volume: 25
  start-page: 543
  year: 2013
  end-page: 549
  article-title: Mechanical guidance of cell migration: lessons from chemotaxis
  publication-title: Curr Opin Cell Biol
– volume: 7
  start-page: 973
  year: 2010
  end-page: 975
  article-title: Rapid blue‐light‐mediated induction of protein interactions in living cells
  publication-title: Nat Methods
– volume: 100
  start-page: 695
  year: 2020
  end-page: 724
  article-title: Stiffness sensing by cells
  publication-title: Physiol Rev
– volume: 7
  start-page: 127
  year: 2019
  article-title: Multifaceted rho GTPase signaling at the endomembranes
  publication-title: Front Cell Dev Biol
– volume: 26
  start-page: 27
  year: 2016
  end-page: 37
  article-title: Cyclic mechanical loading is essential for Rac1‐mediated elongation and remodeling of the embryonic mitral valve
  publication-title: Curr Biol
– volume: 8
  year: 2020
  article-title: Endomembranes: unsung heroes of mechanobiology?
  publication-title: Front Bioeng Biotechnol
– volume: 69
  start-page: 139
  year: 2007
  end-page: 159
  article-title: FireDock: fast interaction refinement in molecular docking
  publication-title: Proteins
– volume: 296
  year: 2020
  article-title: Mechanotransduction via a TRPV4‐Rac1 signaling axis plays a role in multinucleated giant cell formation
  publication-title: J Biol Chem
– volume: 282
  start-page: 7679
  year: 2007
  end-page: 7689
  article-title: Concentrative export from the endoplasmic reticulum of the gamma‐aminobutyric acid transporter 1 requires binding to SEC24D
  publication-title: J Biol Chem
– volume: 101
  start-page: e44
  year: 2007
  end-page: e52
  article-title: Cadherins, RhoA, and Rac1 are differentially required for stretch‐mediated proliferation in endothelial versus smooth muscle cells
  publication-title: Circ Res
– volume: 158
  start-page: 153
  year: 2002
  end-page: 164
  article-title: Effects of cell tension on the small GTPase Rac
  publication-title: J Cell Biol
– volume: 220
  year: 2021
  article-title: COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers
  publication-title: J Cell Biol
– volume: 115
  start-page: 55
  year: 2017
  end-page: 64
  article-title: DiAna, an ImageJ tool for object‐based 3D co‐localization and distance analysis
  publication-title: Methods
– volume: 215
  start-page: 543
  year: 2016
  end-page: 558
  article-title: The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR
  publication-title: J Cell Biol
– volume: 98
  start-page: 69
  year: 1999
  end-page: 80
  article-title: Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi
  publication-title: Cell
– volume: 295
  start-page: L958
  year: 2008
  end-page: L965
  article-title: Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 189
  start-page: 997
  year: 2010
  end-page: 1011
  article-title: MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening
  publication-title: J Cell Biol
– volume: 40
  start-page: W294
  year: 2012
  end-page: W297
  article-title: GalaxyWEB server for protein structure prediction and refinement
  publication-title: Nucleic Acids Res
– volume: 106
  start-page: 2340
  year: 2014
  end-page: 2352
  article-title: Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model
  publication-title: Biophys J
– volume: 543
  start-page: 118
  year: 2017
  end-page: 121
  article-title: Mechanical stretch triggers rapid epithelial cell division through Piezo1
  publication-title: Nature
– volume: 184
  start-page: 2412
  year: 2021
  end-page: 2429.e16
  article-title: ER‐to‐Golgi protein delivery through an interwoven, tubular network extending from ER
  publication-title: Cell
– volume: 426
  start-page: 3811
  year: 2014
  end-page: 3826
  article-title: Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway
  publication-title: J Mol Biol
– volume: 14
  start-page: 691
  year: 2013
  end-page: 708
  article-title: Silencing of mammalian Sar1 isoforms reveals COPII‐independent protein sorting and transport
  publication-title: Traffic
– volume: 54
  start-page: 50
  year: 2018
  end-page: 56
  article-title: Compartmentalisation of RAC1 signalling
  publication-title: Curr Opin Cell Biol
– volume: 295
  start-page: 13698
  year: 2020
  end-page: 13710
  article-title: Evaluation of active Rac1 levels in cancer cells: a case of misleading conclusions from immunofluorescence analysis
  publication-title: J Biol Chem
– volume: 101
  start-page: 7618
  year: 2004
  end-page: 7623
  article-title: Rational design and characterization of a Rac GTPase‐specific small molecule inhibitor
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 7292
  year: 2015
  article-title: Physical principles of membrane remodelling during cell mechanoadaptation
  publication-title: Nat Commun
– volume: 159
  start-page: 915
  year: 2002
  end-page: 921
  article-title: Concentrative sorting of secretory cargo proteins into COPII‐coated vesicles
  publication-title: J Cell Biol
– volume: 294
  start-page: 10877
  year: 2019
  end-page: 10885
  article-title: Microhomology‐based CRISPR tagging tools for protein tracking, purification, and depletion
  publication-title: J Biol Chem
– volume: 9
  start-page: 1063
  year: 1996
  end-page: 1065
  article-title: An automated approach for clustering an ensemble of NMR‐derived protein structures into conformationally related subfamilies
  publication-title: Protein Eng
– volume: 11
  start-page: 118
  year: 2016
  end-page: 133
  article-title: MMEJ‐assisted gene knock‐in using TALENs and CRISPR‐Cas9 with the PITCh systems
  publication-title: Nat Protoc
– volume: 5
  year: 2016
  article-title: Calcium‐mediated Actin reset (CaAR) mediates acute cell adaptations
  publication-title: Elife
– volume: 593
  start-page: 2280
  year: 2019
  end-page: 2288
  article-title: Crosstalk of endoplasmic reticulum exit sites and cellular signaling
  publication-title: FEBS Lett
– volume: 161
  start-page: 245
  year: 2017
  end-page: 254
  article-title: Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction
  publication-title: J Biochem
– volume: 36
  start-page: W229
  year: 2008
  end-page: W232
  article-title: FireDock: a web server for fast interaction refinement in molecular docking
  publication-title: Nucleic Acids Res
– volume: 126
  start-page: 677
  year: 2006
  end-page: 689
  article-title: Matrix elasticity directs stem cell lineage specification
  publication-title: Cell
– year: 2021
  article-title: Increasing cell size remodels the proteome and promotes senescence
  publication-title: bioRxiv
– ident: e_1_2_9_61_1
  doi: 10.1016/j.cell.2019.01.035
– ident: e_1_2_9_64_1
  doi: 10.7554/eLife.19850
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cell.2006.06.044
– ident: e_1_2_9_69_1
  doi: 10.1038/ncb1371
– ident: e_1_2_9_6_1
  doi: 10.1074/jbc.RA120.013919
– ident: e_1_2_9_17_1
  doi: 10.1002/1873-3468.13808
– ident: e_1_2_9_51_1
  doi: 10.3389/fbioe.2020.597721
– ident: e_1_2_9_63_1
  doi: 10.1093/cvr/cvq385
– ident: e_1_2_9_70_1
  doi: 10.1074/jbc.M008720200
– ident: e_1_2_9_49_1
  doi: 10.1016/j.cell.2008.05.034
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ymeth.2016.11.016
– ident: e_1_2_9_34_1
  doi: 10.1074/jbc.M411091200
– ident: e_1_2_9_45_1
  doi: 10.1083/jcb.200208074
– ident: e_1_2_9_55_1
  doi: 10.1016/j.ceb.2013.04.010
– ident: e_1_2_9_21_1
  doi: 10.1038/emboj.2008.136
– ident: e_1_2_9_60_1
  doi: 10.1083/jcb.201907224
– year: 2021
  ident: e_1_2_9_40_1
  article-title: Increasing cell size remodels the proteome and promotes senescence
  publication-title: bioRxiv
– ident: e_1_2_9_68_1
  doi: 10.1038/emboj.2011.253
– ident: e_1_2_9_7_1
  doi: 10.1038/nmeth.1928
– ident: e_1_2_9_39_1
  doi: 10.1096/fj.04-2414com
– ident: e_1_2_9_28_1
  doi: 10.1038/ncomms12471
– ident: e_1_2_9_43_1
  doi: 10.1083/jcb.201703084
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.0307512101
– ident: e_1_2_9_36_1
  doi: 10.1038/ncomms8292
– ident: e_1_2_9_58_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_9_35_1
  doi: 10.1093/nar/gks493
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ceb.2018.04.009
– ident: e_1_2_9_66_1
  doi: 10.1038/s41467-018-04404-4
– ident: e_1_2_9_46_1
  doi: 10.1093/nar/gkn186
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-018-07286-8
– ident: e_1_2_9_27_1
  doi: 10.1038/nature21407
– ident: e_1_2_9_57_1
  doi: 10.1083/jcb.201601090
– ident: e_1_2_9_14_1
  doi: 10.1111/tra.12060
– ident: e_1_2_9_31_1
  doi: 10.1083/jcb.200201105
– ident: e_1_2_9_42_1
  doi: 10.1161/CIRCRESAHA.107.158329
– ident: e_1_2_9_32_1
  doi: 10.1093/protein/9.11.1063
– volume: 15
  year: 2012
  ident: e_1_2_9_8_1
  article-title: Synchronizing protein transport in the secretory pathway
  publication-title: Curr Protoc Cell Biol
– ident: e_1_2_9_11_1
  doi: 10.1002/prot.10389
– ident: e_1_2_9_22_1
  doi: 10.1083/jcb.200912082
– ident: e_1_2_9_16_1
  doi: 10.1152/ajplung.90218.2008
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cub.2015.11.033
– ident: e_1_2_9_52_1
  doi: 10.3389/fcell.2019.00127
– ident: e_1_2_9_2_1
  doi: 10.1016/j.bpj.2014.04.036
– ident: e_1_2_9_56_1
  doi: 10.1038/nprot.2015.140
– ident: e_1_2_9_13_1
  doi: 10.1093/bioinformatics/btg371
– ident: e_1_2_9_12_1
  doi: 10.1016/S0092-8674(00)80607-8
– ident: e_1_2_9_20_1
  doi: 10.1074/jbc.M609720200
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jmb.2014.08.023
– ident: e_1_2_9_30_1
  doi: 10.1152/physrev.00013.2019
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cell.2021.03.035
– ident: e_1_2_9_4_1
  doi: 10.1074/jbc.RA120.014597
– ident: e_1_2_9_54_1
  doi: 10.1371/journal.pone.0024657
– ident: e_1_2_9_59_1
  doi: 10.1093/nar/gki481
– ident: e_1_2_9_23_1
  doi: 10.1126/scisignal.2004135
– ident: e_1_2_9_62_1
  doi: 10.1242/jcs.157115
– volume: 161
  start-page: 245
  year: 2017
  ident: e_1_2_9_48_1
  article-title: Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction
  publication-title: J Biochem
– ident: e_1_2_9_5_1
  doi: 10.1126/scisignal.2004838
– ident: e_1_2_9_38_1
  doi: 10.1093/bioinformatics/btu426
– ident: e_1_2_9_53_1
  doi: 10.1083/jcb.202104062
– ident: e_1_2_9_41_1
  doi: 10.1074/jbc.RA119.008422
– ident: e_1_2_9_33_1
  doi: 10.1038/nmeth.1524
– ident: e_1_2_9_37_1
  doi: 10.1038/nprot.2016.169
– ident: e_1_2_9_18_1
  doi: 10.1126/science.1116995
– ident: e_1_2_9_3_1
  doi: 10.1002/prot.21495
– ident: e_1_2_9_47_1
  doi: 10.1016/0092-8674(95)90370-4
– ident: e_1_2_9_9_1
  doi: 10.1083/jcb.201903068
– ident: e_1_2_9_67_1
  doi: 10.1016/j.bbrc.2006.12.144
– ident: e_1_2_9_10_1
  doi: 10.1002/1873-3468.13569
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.jcim.1c00301
– reference: 36121033 - EMBO J. 2022 Nov 2;41(21):e112349. doi: 10.15252/embj.2022112349.
SSID ssj0005871
Score 2.4725466
Snippet Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory...
SourceID swepub
pubmedcentral
cristin
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e110596
SubjectTerms Biochemistry & Molecular Biology
Biologi
Biological Sciences
Biological Transport
Cell Biology
cells
COP-Coated Vesicles - metabolism
COPII
Coupling
docking
EMBO20
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
fast interaction refinement
Golgi apparatus
Golgi Apparatus - metabolism
gtpase
Guanosine triphosphatases
Mechanical stimuli
mechanobiology
Mechanotransduction
Mechanotransduction, Cellular
Membrane & Trafficking
Monomeric GTP-Binding Proteins - metabolism
proliferation
protein
Protein Transport - physiology
Rac1 protein
reticulum exit sites
Strain
Trafficking
web server
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB-0IvoiWv90tcoKIigsvewmu8mjHi1t4bSIhb6FJJfUE7st7p3gmx_Bz-gncSb751yLCj4de5tkdzMzyfwyyW8AnnlZTqQReWaCLDOuZKAgocwmjhkuAwsqUinN3pT7x_zwRJz8cham5YcYFtzIMuJ4TQZubNNn7CHWUH9mPyLAywnCCFVehWt0wpZ0PedH620eMoKuuM7CmVRdqJLa2PmtBXSBXbSsejxJXfI8L2-gHKKoA-Po2NmNs9XebbjVuZnpq1Yv7sAVX2_C9Tbx5NdNuDHt87zdhdnM0-lfElbaxIwR-LM4o7Revkmnb48ODn58-94ny12mDTmaFJpPsTARUNBie_plYdJ3xrF7cLy3-366n3VJFjInJCuzEKpqjnO8Vei4IfwyhZygKTruEadyhd5H8AjCvGOTwti54DlKVVVeIjIJlXLFfdioz2u_BWlA74QHZ31pJVeBKyMKmwdl5jig5lYlsNX1r65Rv4mbVORaIeIrE9jpO1y7jpycvviTJpBCwtIkLL0WVgIvhhoXLTHHX8pu9zLUnYk2Oq8YkdUXgiXwdLiNfU8RE1P78xWWKQkP4jiF7_6gFfnwsEKoQuaMJ1CNlGEoQMTd4zv14kMk8Fa8EogME3jZq836tf78Dc9bxRq1f7q60PjX6Uo3XuNoihUTEFHx_tkrenf2-nB9-fA_6z2Cm3RBe2iY2IaN5eeVf4yO2tI-iZb4E_vqMWM
  priority: 102
  providerName: Wiley-Blackwell
Title Mechanical strain stimulates COPII‐dependent secretory trafficking via Rac1
URI https://link.springer.com/article/10.15252/embj.2022110596
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022110596
https://www.ncbi.nlm.nih.gov/pubmed/35938214
https://www.proquest.com/docview/2714263351
https://www.proquest.com/docview/2699960539
http://hdl.handle.net/10852/98996
https://pubmed.ncbi.nlm.nih.gov/PMC9475550
https://gup.ub.gu.se/publication/319252
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB3RIkRfEJRLA6UKEkICKerasR37EaJWbaWFClGpb5aTtcsimlbNLhJvfALfyJcwk9sSlYt4WmXjJI5nbJ_jcc4APPdaTbSTPHFBq0QYHShIqJNJyZzQgQXTSClN36qDE3F0Kk-79Q76FubX-L3kku_68-IT0jhOREUatQY3JUsVbd7KVb7azKEbatWspgimTReQ_N0dEOiWTf-pxlPRNXx5fZvkECsddEXHkLaZk_bvwp0OTMavW-vfgxu-2oRbbXrJr5twO--zud2H6dTTN75kkrhu8kLgz_ycknf5Os7fHR8e_vj2vU-Ju4hrgpMUgI-xMMlM0JJ6_GXu4veuZA_gZH_vQ36QdKkUklJqppIQsmyGM3lhEJ4hyXKpnmCHK4VHNioMYozgkWr5kk1SV8yk4Gg7k3mN_CNkpkwfwnp1UfktiANiEBHKwqtCCxOEcTIteDBuhsMmL0wEW1372gq9mBRIJbcGeZ2KYLdvcFt2EuT0xp8tUREyliVj2ZWxIng5XHHZym_8pex2b0PbdcTa8oyRJH0qWQTPhtPY9hQXcZW_WGIZRawPRyOs-6PW5MPDUmlSzZmIIBs5w1CA5LnHZ6r5x0am24hMIv-L4FXvNqtq_fkdXrSONbr_2fLS4l9nS1t7i2MmXhiBbBzvn61i96ZvjlaHj_-nNk9ggw5oewyT27C-uFr6p4jBFsUOrHFxvNN0wp-cMiaP
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB1BESovCMqlgQJBQkggRV07dmI_QtRqt3QLQq3UN8vJ2mVRm1bNLhJvfALfyJcwk9sSlYt4Wu3ayTqesX2OxzkD8MKpZKSs5JH1KomEVp6ChCoaFcwK5ZnXtZTS9CAZH4m9Y3nc7nfQuzC_xu8ll3zbneWfkcZxIipSJ9fhhkCeTCr5WZKtDnOomlrVuymCKd0GJH93BwS6RT1-yuFSdAVfXj0m2cdKe13RIaSt16TdO3C7BZPhm8b6d-GaKzfgZpNe8usGrGddNrd7MJ06eseXTBJWdV4I_JifUfIuV4XZ-w-TyY9v37uUuIuwIjhJAfgQK5PMBG2ph1_mNvxoC3YfjnZ3DrNx1KZSiAqpWBJ5n6YzXMlzjfAMSZaN1QgHXCEcslGhEWN4h1TLFWwU23wmBUfb6dQp5B8-1UX8ANbK89JtQugRgwhf5C7JldBeaCvjnHttZzht8lwHsNn2rynRi0mBVHKjkdclAWx3HW6KVoKcnvjUEBUhYxkyllkZK4BX_RUXjfzGX-pudTY07UCsDE8ZSdLHkgXwvC_Gvqe4iC3d-RLrJMT6cDbCtj9sTN7_WSx1rDgTAaQDZ-grkDz3sKScf6plurVIJfK_AF53brNq1p-f4WXjWIP7nywvDP50sjSVMzhn4oUByNrx_tkrZmf6dm_19dH_tOYZrI8Pp_tmf3Lw7jHcogI6KsPkFqwtLpfuCeKxRf60Hoo_Aal9KKU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CTbC9IBiXBQYECSGBFLVO7MR-LGXVWuiYgEl7s5zU3opYVi0tEm_8BH4jv4RzcquicRFPVRMncXyO7e_zcb4D8NzKuC-NCAPjZBxwJR0FCWXQz5jh0jGnSiml6WF8cMwnJ-KkXnArmt3uTUiy-qaBVJryZW8xc02-nrBnz9PPSO5Coi9Cxddhk56JHr45GEw-TtabPGRJucpVFs6kqgOVv7sHAuCs7Fd5d4q6gjuvbp9sY6it3mgX6pZz1eg23KpBpj-ovOIOXLP5Dtyo0k5-24GtYZPl7S5Mp5a-_SVT-UWZLwJ_5ueU1MsW_vD90Xj88_uPJlXu0i8IZlJg3sfCJD9BS-3-17nxP5iM3YPj0f6n4UFQp1gIMiFZHDiXJDOc4VOFsA3Jl4lkHztixi2yVK4QeziLFMxmrB-ZdCZ4iDZViZXIS1yisug-bOQXud0F3yE24S5LbZxKrhxXRkRp6JSZ4XAapsqD3bp9dY7eTcqkItQK-V7sQa9pcJ3V0uT0xl80URQyliZj6bWxPHjZXrGoZDn-UnavsaGuO2ihw4SRVH0kmAfP2tPY9hQvMbm9WGGZmNggjlJY9weVyduHRUJFMmTcg6TjDG0Bku3unsnnZ6V8t-KJQF7owavGbdbV-vM7vKgcq3P_09VC46HTlS6sxrEUL_RAlI73z1bR-9PXk_Xfh_9Tm6dw8-jNSL8bH759BNt0nHbQMLEHG8vLlX2MMG2ZPqn74i-ApzJT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+strain+stimulates+COPII-dependent+secretory+trafficking+via+Rac1&rft.jtitle=The+EMBO+journal&rft.au=Phuyal%2C+Santosh&rft.au=Djaerff%2C+Elena&rft.au=Le+Roux%2C+Anabel-Lise&rft.au=Baker%2C+Martin+J&rft.date=2022-09-15&rft.issn=0261-4189&rft_id=info:doi/10.15252%2Fembj.2022110596&rft.externalDBID=n%2Fa&rft.externalDocID=10852_98996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon