Ordered Hybrids from Template-Free Organosilane Self-Assembly
Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and...
Saved in:
Published in | Chemistry : a European journal Vol. 20; no. 7; pp. 1790 - 1806 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
10.02.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 1521-3765 |
DOI | 10.1002/chem.201303070 |
Cover
Abstract | Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.
A successful marriage: Periodically ordered hybrids represent the successful marriage of organosilane sol–gel polymerization and supramolecular chemistry. Their template‐free and single‐step synthesis procedure has no equivalent in polymer chemistry (see scheme) |
---|---|
AbstractList | Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. A successful marriage: Periodically ordered hybrids represent the successful marriage of organosilane sol-gel polymerization and supramolecular chemistry. Their template-free and single-step synthesis procedure has no equivalent in polymer chemistry (see scheme) Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. A successful marriage: Periodically ordered hybrids represent the successful marriage of organosilane sol–gel polymerization and supramolecular chemistry. Their template‐free and single‐step synthesis procedure has no equivalent in polymer chemistry (see scheme) Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three con-current processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. [PUBLICATION ABSTRACT] |
Author | Boury, Bruno Ni, Lingli Chemtob, Abraham Croutxé-Barghorn, Céline |
Author_xml | – sequence: 1 givenname: Abraham surname: Chemtob fullname: Chemtob, Abraham email: abraham.chemtob@uha.fr organization: Laboratory of Photochemistry and Macromolecular Engineering, ENSCMu, University of Haute-Alsace, 3 rue Alfred Werner 68093 Mulhouse Cedex (France), Fax: (+33) 389335014 – sequence: 2 givenname: Lingli surname: Ni fullname: Ni, Lingli organization: Laboratory of Photochemistry and Macromolecular Engineering, ENSCMu, University of Haute-Alsace, 3 rue Alfred Werner 68093 Mulhouse Cedex (France), Fax: (+33) 389335014 – sequence: 3 givenname: Céline surname: Croutxé-Barghorn fullname: Croutxé-Barghorn, Céline organization: Laboratory of Photochemistry and Macromolecular Engineering, ENSCMu, University of Haute-Alsace, 3 rue Alfred Werner 68093 Mulhouse Cedex (France), Fax: (+33) 389335014 – sequence: 4 givenname: Bruno surname: Boury fullname: Boury, Bruno organization: Institut Charles Gerhardt Montpellier, UMR5253 CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier (France) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24449381$$D View this record in MEDLINE/PubMed https://hal.science/hal-04383919$$DView record in HAL |
BookMark | eNqFkc1v0zAYxi00xLrClSOqxIUdUl5_xI4PHEpZV6RCDwxxtJz4DfPIR2enjP73JMpWoUloJ0vW7_fosZ8zctK0DRLymsKcArD3xTXWcwaUAwcFz8iEpowmXMn0hExAC5XIlOtTchbjDQBoyfkLcsqEEJpndEI-bIPDgG62PuTBuzgrQ1vPrrDeVbbDZBUQZ9vw0zZt9JVtcPYNqzJZxIh1Xh1ekuelrSK-uj-n5Pvq4mq5Tjbby8_LxSYp0oxCQnWaSeGkE0w5lufCcQVYpCLTOaWM2kIKK5hDxZgrdcmZTpVAV2TIaQbAp-R8zL22ldkFX9twMK31Zr3YmOEOBM-4pvo37dl3I7sL7e0eY2dqHwushvbtPhqqlNJaKsGeRoUWHCSoIfXtI_Sm3Yemf_RAcaEk6ztMyZt7ap_X6I5VH_67B8QIFKGNMWBpCt_ZzrdNF6yvDAUzzGqGWc1x1l6bP9Iekv8r6FG48xUenqDNcn3x5V83GV0fO_xzdG34ZaTiKjU_vl6aFf30MQO1Moz_BYZ9vys |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1007_s00396_017_4119_4 crossref_primary_10_3390_buildings14061756 crossref_primary_10_1021_acs_langmuir_6b01657 crossref_primary_10_1007_s00604_023_05669_3 crossref_primary_10_1080_15421406_2021_1924547 crossref_primary_10_1080_15421406_2020_1830351 crossref_primary_10_1002_anie_201705942 crossref_primary_10_1016_j_surfin_2024_103918 crossref_primary_10_1246_bcsj_20170410 crossref_primary_10_1016_j_ijhydene_2019_03_014 crossref_primary_10_1016_j_jiec_2018_10_007 crossref_primary_10_2109_jcersj2_22078 crossref_primary_10_1007_s11172_021_3071_0 crossref_primary_10_1002_anie_201411557 crossref_primary_10_1021_jacs_5b06172 crossref_primary_10_1021_acsami_5b08499 crossref_primary_10_1080_15421406_2020_1870029 crossref_primary_10_1039_C5TC00721F crossref_primary_10_1080_1539445X_2017_1308380 crossref_primary_10_1039_C4RA01709A crossref_primary_10_1007_s10971_021_05500_6 crossref_primary_10_1016_j_eurpolymj_2024_112956 crossref_primary_10_1039_C6RA13995G crossref_primary_10_1039_C6NR06862F crossref_primary_10_1016_j_comptc_2015_08_008 crossref_primary_10_1021_acsami_6b00878 crossref_primary_10_1016_j_coche_2016_01_008 crossref_primary_10_1039_C5CP02742J crossref_primary_10_1007_s11998_024_00969_6 crossref_primary_10_1002_er_5641 crossref_primary_10_1016_j_poly_2021_115413 crossref_primary_10_1002_asia_202400739 crossref_primary_10_1039_C5RA15871K crossref_primary_10_3390_polym13091415 crossref_primary_10_1016_j_lwt_2023_115026 crossref_primary_10_1039_C5NR03065J crossref_primary_10_1002_ange_201705942 crossref_primary_10_1007_s10971_017_4376_1 crossref_primary_10_1039_C5CP00433K crossref_primary_10_1021_acs_iecr_0c03368 crossref_primary_10_1021_la5023938 crossref_primary_10_2139_ssrn_4132975 crossref_primary_10_1016_j_bios_2021_113460 crossref_primary_10_1007_s10971_018_4774_z crossref_primary_10_1080_15421406_2020_1834907 crossref_primary_10_1021_acs_langmuir_0c00515 crossref_primary_10_1039_C5RA04300J crossref_primary_10_1002_jbm_b_34126 crossref_primary_10_1007_s10971_017_4482_0 crossref_primary_10_1016_j_colsurfa_2023_132135 crossref_primary_10_1002_admi_201601249 crossref_primary_10_1002_chin_201419254 crossref_primary_10_3390_polym11020205 crossref_primary_10_3390_polym13132082 crossref_primary_10_1002_tcr_201700096 crossref_primary_10_1039_D0CC03379K crossref_primary_10_1002_ejic_201402673 crossref_primary_10_1039_C5NR05649G crossref_primary_10_1002_slct_201700653 crossref_primary_10_1007_s10450_019_00075_9 crossref_primary_10_1021_acsbiomaterials_6b00585 crossref_primary_10_1002_ange_201411557 |
Cites_doi | 10.1246/bcsj.69.3667 10.1039/b516985b 10.1021/cm702271v 10.1021/jp0672712 10.1021/cm000550w 10.1023/B:JSST.0000047977.44966.53 10.1021/jp307274d 10.1023/A:1025779918534 10.1021/ja053795o 10.1039/b509017b 10.1002/smll.200400027 10.1007/s10971-011-2603-8 10.1039/b910345g 10.1039/a802120a 10.1021/la400293k 10.1016/j.jcis.2010.06.013 10.1039/C0CS00010H 10.1002/chem.200390183 10.1002/(SICI)1521-3757(19991102)111:21<3366::AID-ANGE3366>3.0.CO;2-2 10.1246/bcsj.70.2847 10.1002/anie.200352485 10.1016/j.crci.2009.06.001 10.1002/adfm.201100444 10.1016/S0022-328X(03)00721-6 10.1021/jp962937l 10.1016/S0022-328X(03)00619-3 10.1039/b510893d 10.1039/b508818f 10.1002/chem.200902454 10.1021/ja2046556 10.1039/c0cs00219d 10.1002/chem.200700943 10.1002/adma.200601435 10.1039/c0jm01044h 10.1002/1521-3773(20010803)40:15<2853::AID-ANIE2853>3.0.CO;2-J 10.1016/j.solidstatesciences.2005.02.003 10.1021/la9817866 10.1039/b504536n 10.1002/chem.200700739 10.1039/c0cs00136h 10.1039/b512450f 10.1039/c2nj20953e 10.1163/1568554053148735 10.1021/la902990v 10.1002/chem.200700914 10.1039/c2cp40250e 10.1021/ja058680z 10.1021/la000206d 10.1021/cm702804r 10.1021/cr900201r 10.1021/ja039146z 10.1039/B615027F 10.1021/cm990405m 10.1021/cm050275j 10.1021/am1004046 10.1021/ja982751v 10.1039/C0CS00076K 10.1002/tcr.20073 10.1021/cm030432j 10.1002/chem.200802748 10.1039/b618228c 10.1039/b714785f 10.1021/cm702100t 10.1039/b512482d 10.1021/ja025650c 10.1039/c0jm01248c 10.1021/cm701946w 10.1021/cm062660u 10.1021/ja980236r 10.1002/adfm.200600670 10.1021/ja963284p 10.1021/cm0350683 10.1038/416304a 10.1021/la202253v 10.1039/b303672n 10.1039/B603655D 10.1021/cm0495212 10.1021/cm960137h 10.1039/b001556n 10.1021/jp060975r 10.1002/smll.200800254 10.1021/la0515569 10.1002/smll.200500300 10.1021/cm060440a 10.1021/ja0611238 10.1002/ange.200503075 10.1021/ma102360t 10.1039/b504635a 10.1039/c3cs35345a 10.1016/j.solidstatesciences.2010.05.003 10.1002/anie.200503075 10.1021/ja053966p 10.1021/la980863u 10.1002/qua.21720 10.1021/ma062091b 10.1021/ja020975e 10.1016/j.polymer.2004.12.038 10.1002/pola.20571 10.1002/adfm.200700673 10.1021/cm0101125 10.1021/cm702141e 10.1021/cr00037a013 10.1021/ar6000318 10.1016/S1383-5866(01)00104-6 10.1039/c2ra00702a 10.1021/ja0541736 10.1021/la3011579 10.1021/ja027991w 10.1021/ja016053d 10.1002/adfm.200700299 10.1007/s10971-010-2224-7 10.1246/bcsj.82.1035 10.1021/cm0011458 10.1002/tcr.10056 10.1021/ja0342648 10.1002/1521-3757(20010316)113:6<1121::AID-ANGE11210>3.0.CO;2-A 10.1021/cr2002257 10.1039/a907804e 10.1021/ar0500923 10.1021/cm011008q 10.1126/science.1070821 10.1002/ejic.201101037 10.1039/C1JM13053F 10.1002/chem.200801106 10.1021/cm0498640 10.1021/ja00043a014 10.1002/ejic.201200616 10.1039/B920516K 10.1002/9780470552704 10.1021/cm9700615 10.1002/ange.200352485 10.1002/chem.200401012 10.1039/c0cc00341g 10.1021/cm034967o 10.1016/S1369-7021(11)70019-0 10.1002/0471670561 10.1021/ja808103h 10.1246/bcsj.63.2094 10.1002/adma.200802937 10.1021/ja066047n 10.1002/ange.200351419 10.1002/anie.200351419 10.1021/ja054103z 10.1021/cr9002819 10.1039/B305545K 10.1039/b813679c 10.1021/ja065434u 10.1002/1521-4095(20020805)14:15<1081::AID-ADMA1081>3.0.CO;2-2 10.1021/cr00037a012 10.1039/b719162f 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3 10.1021/cm00006a003 10.1021/cr9502357 10.1039/C39950000241 10.1021/cm0209665 10.1016/j.memsci.2007.12.044 10.1002/adma.200701927 10.1021/ar000109b 10.1039/c0dt00117a 10.1021/ja051518b 10.1002/9780470552704.ch18 10.1021/ja903176k 10.1039/b9nj00741e 10.1039/b512537e 10.1002/1521-3757(20010803)113:15<2946::AID-ANGE2946>3.0.CO;2-1 10.1021/ja0575732 10.1021/ja0499400 10.1021/jp2022902 10.1002/adma.201200422 10.1039/b506815k 10.1002/1521-4095(20020318)14:6<439::AID-ADMA439>3.0.CO;2-8 10.1039/b316089k 10.1039/B603555H 10.1039/b908641m 10.1126/science.1071063 10.1039/b419376h 10.1016/j.jssc.2004.02.026 10.1021/cm9035456 10.1021/cm950067z 10.1021/cm901771y 10.1039/B308703D 10.1021/cm000451i 10.1021/ja026799r 10.1021/nn100273m 10.1039/c0jm90087g 10.1039/B416157B 10.1021/la011016l 10.1039/b206516a 10.1002/adfm.200801387 10.1039/C1JM14231C |
ContentType | Journal Article |
Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 1XC |
DOI | 10.1002/chem.201303070 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 1806 |
ExternalDocumentID | oai_HAL_hal_04383919v1 3200517171 24449381 10_1002_chem_201303070 CHEM201303070 ark_67375_WNG_F1DB807F_2 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 1XC |
ID | FETCH-LOGICAL-c5810-195864d6d427d2bb4d370ec5489b1121ac64a42de722df9f329574edc8e318003 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri May 09 12:14:29 EDT 2025 Thu Jul 10 19:16:00 EDT 2025 Fri Jul 11 10:01:15 EDT 2025 Fri Jul 25 10:16:46 EDT 2025 Wed Feb 19 01:57:24 EST 2025 Thu Apr 24 23:04:39 EDT 2025 Tue Jul 01 03:34:44 EDT 2025 Wed Jan 22 16:17:57 EST 2025 Wed Oct 30 09:51:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | self-assembly hybrid materials organosilane nanostructures sol-gel processes Ordered hybrids |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5810-195864d6d427d2bb4d370ec5489b1121ac64a42de722df9f329574edc8e318003 |
Notes | ArticleID:CHEM201303070 istex:54B2082FA4975B47AA1CC981C4EA48B613DA0CC7 ark:/67375/WNG-F1DB807F-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4400-9096 0000-0003-4434-1870 |
PMID | 24449381 |
PQID | 1493476204 |
PQPubID | 986340 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_04383919v1 proquest_miscellaneous_1777996742 proquest_miscellaneous_1494306071 proquest_journals_1493476204 pubmed_primary_24449381 crossref_citationtrail_10_1002_chem_201303070 crossref_primary_10_1002_chem_201303070 wiley_primary_10_1002_chem_201303070_CHEM201303070 istex_primary_ark_67375_WNG_F1DB807F_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 10, 2014 |
PublicationDateYYYYMMDD | 2014-02-10 |
PublicationDate_xml | – month: 02 year: 2014 text: February 10, 2014 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | Y. Fukushima, M. Tani, Bull. Chem. Soc. Jpn. 1996, 69, 3667-3671. K. Fujii, T. Fujita, N. Iyi, H. Kodama, K. Kitamura, J. Mater. Sci. Lett. 2003, 22, 1459-1461. Angew. Chem. Int. Ed. 2003, 42, 4057-4060. M. Barboiu, C. Guizard, N. Hovnanian, L. Cot, Sep. Purif. Technol. 2001, 25, 211-218. M. J. Rosen in Surfactants and Interfacial Phenomena, 3rd ed., Wiley, Hoboken, New Jersey, 2004, pp. 217-301. A. Mehdi, J. Mater. Chem. 2010, 20, 9281-9286. N. T. Whilton, S. L. Burkett, S. Mann, J. Mater. Chem. 1998, 8, 1927-1932. C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 2011, 40, 696-753. H. W. Ro, E. S. Park, C. L. Soles, D. Y. Yoon, Chem. Mater. 2010, 22, 1330-1339. H. Tang, J. Sun, J. Jiang, X. Zhou, T. Hu, P. Xie, R. Zhang, J. Am. Chem. Soc. 2002, 124, 10482-10488. M. Fernandes, S. S. Nobre, X. Qinghong, C. Carcel, J. N. Cachia, X. Cattoen, J. M. Sousa, R. A. S. Ferreira, L. D. Carlos, C. V. Santilli, M. W. C. Man, V. de Zea Bermudez, J. Phys. Chem. B 2011, 115, 10877-10891. G. Arrachart, C. Carcel, J. J. E. Moreau, G. Hartmeyer, B. Alonso, D. Massiot, G. Creff, J.-L. Bantignies, P. Dieudonne, M. W. C. Man, G. Althoff, F. Babonneau, C. Bonhomme, J. Mater. Chem. 2008, 18, 392-399. K. Rurack, R. Martinez-Manez, The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, Wiley, Hoboken, New Jersey, 2010. F. Ben, B. Boury, R. J. P. Corriu, Adv. Mater. 2002, 14, 1081-1083. S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304-307. Q. P. Ke, W. Q. Fu, S. Wang, T. D. Tang, J. F. Zhang, ACS Appl. Mater. Interfaces 2010, 2, 2393-2398. F. Hoffmann, M. Froba, Chem. Soc. Rev. 2011, 40, 608-620. M. Barboiu, Chem. Commun. 2010, 46, 7466-7476. O. J. Dautel, M. Robitzer, J. P. Lere-Porte, F. Serein-Spirau, J. J. E. Moreau, J. Am. Chem. Soc. 2006, 128, 16213-16223. D. A. Loy, J. V. Beach, B. M. Baugher, R. A. Assink, K. J. Shea, J. Tran, J. H. Small, Chem. Mater. 1999, 11, 3333-3341. S. Mihai, A. Cazacu, C. Arnal-Herault, G. Nasr, A. Meffre, A. van der Lee, M. Barboiu, New J. Chem. 2009, 33, 2335-2343. K. J. Shea, D. A. Loy, Acc. Chem. Res. 2001, 34, 707-716 L. D. Carlos, V. d. Z. Bermudez, V. S. Amaral, S. C. Nunes, N. J. O. Silva, R. A. S. Ferreira, J. Rocha, C. V. Santilli, D. Ostrovskii, Adv. Mater. 2007, 19, 341-348 J. J. E. Moreau, L. Vellutini, C. Bied, M. W. C. Man, J. Sol-Gel Sci. Technol. 2004, 31, 151-156 D. J. Boday, R. J. Stover, B. Muriithi, D. A. Loy, J. Sol-Gel Sci. Technol. 2012, 61, 144-150. S. Mihai, Y. Le Duc, D. Cot, M. Barboiu, J. Mater. Chem. 2010, 20, 9443-9448. F. Ben, B. Boury, R. J. P. Corriu, V. Le Strat, Chem. Mater. 2000, 12, 3249-3252. A. Shimojima, M. Sakurai, K. Kuroda, T. Okubo, J. Colloid Interface Sci. 2010, 350, 155-160. M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000. R. Mouawia, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2008, 18, 2028-2035. K.-M. Kim, T. Ogoshi, Y. Chujo, J. Polym. Sci. Part A 2005, 43, 473-478 X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906-2910. B. P. Pichon, S. Scampini, C. Bied, J. J. E. Moreau, M. W. C. Man, Eur. J. Inorg. Chem. 2012, 5312-5322. A. Shimojima, Y. Sugahara, K. Kuroda, Bull. Chem. Soc. Jpn. 1997, 70, 2847-2853 L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, J. Phys. Chem. C 2012, 116, 24320-24330. R. M. Laine, M. F. Roll, Macromolecules 2011, 44, 1073-1109 T. Mizutani, Y. Fukushima, A. Okada, O. Kamigaito, Bull. Chem. Soc. Jpn. 1990, 63, 2094-2098. A. R. Al Derzi, A. Gregusova, K. Runge, R. J. Bartlett, Int. J. Quantum Chem. 2008, 108, 2088-2096. H. Muramatsu, R. J. P. Corriu, B. Boury, J. Am. Chem. Soc. 2003, 125, 854-855. T. Kishida, N. Fujita, K. Sada, S. Shinkai, Langmuir 2005, 21, 9432-9439. J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, Chem. Eur. J. 2003, 9, 1594-1599. O. J. Dautel, C. Borras, J.-D. Borras, J. J. E. Moreau, Actual. Chim. 2012, 29-35. N. Umeda, A. Shimojima, K. Kuroda, J. Organomet. Chem. 2003, 686, 223-227. B. Boury, R. J. P. Corriu, V. Le Strat, P. Delord, M. Nobili, Angew. Chem. 1999, 111, 3366-3370 Y. Kaneko, N. Iyi, K. Kurashima, T. Matsumoto, T. Fujita, K. Kitamura, Chem. Mater. 2004, 16, 3417-3423. Q. P. Ke, G. L. Li, Y. Liu, T. He, X. M. Li, Langmuir 2010, 26, 3579-3584 A. N. Parikh, M. A. Schivley, E. Koo, K. Seshadri, D. Aurentz, K. Mueller, D. L. Allara, J. Am. Chem. Soc. 1997, 119, 3135-3143. G. Cerveau, R. J. P. Corriu, E. Framery, Chem. Mater. 2001, 13, 3373-3388. J. H. Sim, S.-I. Lee, H.-J. Lee, R. Kasica, H.-M. Kim, C. L. Soles, K.-B. Kim, D. Y. Yoon, Chem. Mater. 2010, 22, 3021-3023 K. Fujii, S. Hayashi, H. Kodama, Chem. Mater. 2003, 15, 1189-1197 L. Yang, H. Peng, K. Huang, J. T. Mague, H. Li, Y. Lu, Adv. Funct. Mater. 2008, 18, 1526-1535. H. Peng, J. Tang, L. Yang, J. Pang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2006, 128, 5304-5305. J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, J. L. Bantignies, P. Dieudonne, J. L. Sauvajol, J. Am. Chem. Soc. 2001, 123, 7957-7958. C. Arnal-Hérault, M. Barboiu, A. Pasc, M. Michau, P. Perriat, A. van der Lee, Chem. Eur. J. 2007, 13, 6792-6800 D. Brandhuber, H. Peterlik, N. Husing, Small 2006, 2, 503-506 C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, C. R. Chim. 2010, 13, 3-39. A. Shimojima, R. Goto, N. Atsumi, K. Kuroda, Chem. Eur. J. 2008, 14, 8500-8506. J. J. E. Moreau, L. Vellutini, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, J.-L. Sauvajol, C. Bied, J. Mater. Chem. 2005, 15, 4943-4948. A. Mehdi, C. Reyé, R. J. P. Corriu, Chem. Soc. Rev. 2011, 40, 563-574. A. Shimojima, Y. Sugahara, K. Kuroda, J. Am. Chem. Soc. 1998, 120, 4528-4529 M. Khiterer, D. A. Loy, C. J. Cornelius, C. H. Fujimoto, J. H. Small, T. M. McIntire, K. J. Shea, Chem. Mater. 2006, 18, 3665-3673. M. Michau, M. Barboiu, R. Caraballo, C. Arnal-Hérault, P. Perriat, A. van der Lee, A. Pasc, Chem. Eur. J. 2008, 14, 1776-1783 S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891-908 X. Sallenave, O. J. Dautel, G. Wantz, P. Valvin, J.-P. Lère-Porte, J. J. E. Moreau, Adv. Funct. Mater. 2009, 19, 404-410 F. Lerouge, G. Cerveau, R. J. P. Corriu, New J. Chem. 2006, 30, 272-276. E. Besson, A. Mehdi, A. Van der Lee, H. Chollet, C. Reyé, R. Guilard, R. J. P. Corriu, Chem. Eur. J. 2010, 16, 10226-10233. S. C. Nunes, N. J. O. Silva, J. Hummer, R. A. S. Ferreira, P. Almeida, L. D. Carlos, V. d. Z. Bermudez, RSC Adv. 2012, 2, 2087-2099. B. Boury, F. Ben, R. J. P. Corriu, Angew. Chem. 2001, 113, 2946-2948 G. Creff, B. P. Pichon, C. Blanc, D. Maurin, J. L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Roy, J. R. Bartlett, M. W. C. Man, J. L. Bantignies, Langmuir 2013, 29, 5581-5588. D. R. Dunphy, B. Smarsly, C. J. Brinker in Supramolecular Chemistry of Organic-Inorganic Hybrid Materials (Eds.: K. Rurack, R. Martinez-Manez), Wiley, Hoboken, New Jersey, 2010, pp. 531-545 E. Besson, A. Mehdi, C. Reye, P. Gaveau, R. J. P. Corriu, Dalton Trans. 2010, 39, 7534-7539. L. Zhao, D. A. Loy, K. J. Shea, J. Am. Chem. Soc. 2006, 128, 14250-14251 J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Am. Chem. Soc. 2005, 127, 11204-11205. M. Barboiu, S. Cerneaux, A. van der Lee, G. Vaughan, J. Am. Chem. Soc. 2004, 126, 3545-3550. M. Ohashi, Y. Goto, N. Mizoshita, T. Ohsuna, T. Tani, S. Inagaki, Bull. Chem. Soc. Jpn. 2009, 82, 1035-1038. J. M. Lehn, Science 2002, 295, 2400-2403. J. J. E. Moreau, B. P. Pichon, G. Arrachart, M. W. C. Man, C. Bied, New J. Chem. 2005, 29, 653-658 A. Sayari, W. H. Wang, J. Am. Chem. Soc. 2005, 127, 12194-12195. C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990. B. Boury, R. J. P. Corriu, Chem. Rec. 2003, 3, 120-132 L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, Langmuir 2012, 28, 7129-7133. I. Karatchevtseva, D. J. Cassidy, M. Wong Chi Man, D. R. G. Mitchell, J. V. Hanna, C. Carcel, C. Bied, J. J. E. Moreau, J. R. Bartlett, Adv. Funct. Mater. 2007, 17, 3926-3932. A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2005, 127, 14108-14116. G. Creff, G. Arrachart, P. Hermet, H. Wadepohl, R. Almairac, D. Maurin, J.-L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, Phys. Chem. Chem. Phys. 2012, 14, 5672-5679. T. Suzuki, A. Shimojima, Y. Fujimoto, K. Kuroda, Chem. Eur. J. 2008, 14, 973-980. R. Goto, A. Shimojima, H. Kuge, K. Kuroda, Chem. Commun. 2008, 6152-6154. K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai, Chem. Soc. Rev. 2007, 36, 415-435. Y. Fukushima, M. Tani, J. Chem. Soc. Chem. Commun. 1995, 241-242 Y. Kaneko, N. Iyi, J. Mater. Chem. 2009, 19, 7106-7111. Y.-C. Liao, J. T. Roberts, J. Am. Chem. Soc. 2006, 128, 9061-9065. L. Zhao, M. Vaupel, D. A. Loy, K. J. Shea, Chem. Mater. 2008, 20, 1870-1876. J. Beckmann, S. Grabowsky, J. Phys. Chem. A 2007, 111, 2011-2019. J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2005, 15, 841-843. C. Triantafillidis, M. Elsaesser, N. Husing, Chem. Soc. Rev. 2013, 42, 3833-3846. J. Pang, L. Yang, D. A. Loy, H. Peng, H. S. Ashbaugh, J. Mague, C. J. Brinker, Y. Lu, Chem. Commun. 2006, 1545-1547. Q. H. Yang, M. P. Kapoor, S. Inagaki, J. Am. Chem. Soc. 2002, 124, 9694-9695. Angew. Chem. Int. Ed. 2006, 45, 3216-3251 J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, P. Dieudonne, J. L. Bantignies, J. L. Sauvajol, Chem. Eur. J. 2005, 11, 1527-1537. B. Menaa, M. Takahashi, P. Innocenzi, T. Yoko, Chem. Mater. 2007, 19, 1946-1953. A. Ulman, Chem. Rev. 1996, 96, 1533-1554. H. W. Ro, C. L. Soles, Mater. Today 2011, 14, 20-33 O. J. Dautel, J.-P. Lere-Porte, J. J. E. Moreau, M. W. C. Man, Chem. Commun. 2003, 2662-2663 E. Ruiz-Hitzky, S. Letaïef, V. Prévot, Adv. Mater. 2002, 14, 439-443. M. Takahashi, C. Figus, T. Kichob, S. Enzo, M. Casula, M. Valentini, P. Innocenzi, Adv. Mater. 2009, 21, 1732-1736. Angew. Chem. Int. Ed. 2001, 40, 2853-2856. J. T. Han, D. H. Lee, C. Y. Ryu, K. Cho, J. Am. Chem. Soc. 2004, 126, 4796-4797 J. Jiang, O. V. Lima, Y. Pei, X. C. Zeng, L. Tan, E. Forsythe, J 2011; 115 2002; 14 2006; 30 2010; 16 2002; 18 2010; 13 2004; 28 2009; 82 2006; 39 2008; 108 2011; 57 2012; 14 1997; 9 2006 2006; 118 45 1978 2010; 22 2004; 177 2010; 20 2004; 31 2010; 26 2000; 16 1990 2000; 12 2000; 10 1992; 114 2010; 110 2010; 350 2012; 28 2008; 20 1996; 69 2010; 2 2009; 19 2003; 686 2012; 24 2012; 22 2010; 4 2009; 15 2007; 17 2010; 34 2007; 19 1989; 1 2010; 39 1999 1999; 111 38 1996; 96 2006; 110 1995 2002; 416 2012; 36 2001; 25 2007; 13 2011; 133 2012; 112 2010; 46 2002; 124 2005; 127 2005; 7 2005; 1 2005; 15 2001; 34 2012; 116 2005; 17 2005; 11 2003; 22 1998; 8 2012; 61 2013; 29 2004; 126 1997; 119 2003; 13 1999; 121 2003; 15 2005; 21 2011; 13 2011; 14 2005; 29 2007; 36 2000 2001 2001; 113 40 1999; 15 1997; 101 2003; 9 2003; 3 1999; 11 2011; 21 2003; 125 2011; 27 2001; 13 2006; 128 1996; 8 1998; 120 1995; 95 2001; 123 2004 2004; 116 43 2009; 21 2012 2010 2002; 295 2008; 18 2006; 16 2011; 40 2013; 42 2008; 14 2008 2007 2006; 18 2006 2006; 6 2005; 43 2004 2003 2006; 2 2009; 131 2008; 321 2005; 46 2009; 33 1990; 63 2001; 113 2002; 26 2012; 2 2003 2003; 115 42 1997; 70 2004; 16 2007; 111 2011; 44 2007; 40 2009; 5 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_60_2 e_1_2_7_191_2 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_142_2 e_1_2_7_188_2 e_1_2_7_202_2 e_1_2_7_225_2 e_1_2_7_165_2 e_1_2_7_116_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_180_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_192_2 e_1_2_7_131_2 e_1_2_7_154_2 e_1_2_7_177_2 e_1_2_7_214_2 e_1_2_7_139_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_82_2 e_1_2_7_120_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_226_2 e_1_2_7_181_2 e_1_2_7_143_2 e_1_2_7_166_2 e_1_2_7_29_2 e_1_2_7_203_2 e_1_2_7_189_2 e_1_2_7_117_2 Brook M. A. (e_1_2_7_89_2) 2000 Brinker C. J. (e_1_2_7_9_2) 1990 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_32_2 e_1_2_7_55_2 e_1_2_7_170_2 e_1_2_7_215_2 e_1_2_7_78_2 e_1_2_7_193_2 e_1_2_7_132_2 e_1_2_7_155_2 e_1_2_7_178_2 e_1_2_7_230_2 e_1_2_7_129_2 e_1_2_7_106_2 e_1_2_7_121_2 e_1_2_7_81_2 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_204_2 e_1_2_7_227_2 e_1_2_7_66_2 e_1_2_7_182_2 e_1_2_7_28_2 e_1_2_7_144_2 e_1_2_7_167_2 e_1_2_7_118_2 e_1_2_7_110_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_171_2 e_1_2_7_194_2 e_1_2_7_216_2 e_1_2_7_77_2 e_1_2_7_171_3 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_179_2 e_1_2_7_231_2 e_1_2_7_156_2 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_122_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_160_2 e_1_2_7_183_2 e_1_2_7_88_2 e_1_2_7_228_2 e_1_2_7_27_2 e_1_2_7_145_2 e_1_2_7_168_2 e_1_2_7_145_3 e_1_2_7_220_2 e_1_2_7_119_2 e_1_2_7_111_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_53_2 e_1_2_7_99_2 e_1_2_7_172_2 e_1_2_7_217_2 e_1_2_7_38_2 e_1_2_7_134_2 e_1_2_7_157_2 e_1_2_7_232_2 e_1_2_7_108_2 e_1_2_7_123_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_64_2 e_1_2_7_184_2 e_1_2_7_206_2 e_1_2_7_229_2 e_1_2_7_161_2 e_1_2_7_26_2 e_1_2_7_49_2 Shea K. J. (e_1_2_7_205_2) 2004 e_1_2_7_146_2 e_1_2_7_221_2 e_1_2_7_169_2 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_150_2 e_1_2_7_173_2 e_1_2_7_218_2 e_1_2_7_37_2 e_1_2_7_196_2 e_1_2_7_135_2 e_1_2_7_210_2 e_1_2_7_158_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_162_2 e_1_2_7_207_2 Kickelbick G. (e_1_2_7_1_2) 2007 e_1_2_7_48_2 e_1_2_7_222_2 e_1_2_7_185_2 e_1_2_7_147_2 e_1_2_7_109_2 e_1_2_7_113_2 Dautel O. J. (e_1_2_7_195_2) 2012 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_219_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_36_2 e_1_2_7_151_2 e_1_2_7_59_2 e_1_2_7_174_2 e_1_2_7_211_2 e_1_2_7_197_2 e_1_2_7_136_2 e_1_2_7_159_2 e_1_2_7_5_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_208_2 e_1_2_7_62_2 e_1_2_7_85_2 e_1_2_7_47_2 e_1_2_7_140_2 Rurack K. (e_1_2_7_7_2) 2010 e_1_2_7_200_2 e_1_2_7_223_2 e_1_2_7_163_2 e_1_2_7_186_2 e_1_2_7_223_3 Gomez‐Romero P. (e_1_2_7_3_2) 2006 e_1_2_7_148_2 e_1_2_7_114_2 e_1_2_7_50_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_152_2 e_1_2_7_175_2 e_1_2_7_198_2 e_1_2_7_212_2 e_1_2_7_175_3 e_1_2_7_137_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_190_2 e_1_2_7_209_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_141_2 e_1_2_7_164_2 e_1_2_7_187_2 e_1_2_7_201_2 e_1_2_7_224_2 e_1_2_7_149_2 e_1_2_7_115_2 e_1_2_7_72_2 e_1_2_7_22_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_130_2 e_1_2_7_153_2 e_1_2_7_199_2 e_1_2_7_176_2 e_1_2_7_213_2 e_1_2_7_138_2 |
References_xml | – reference: E. Ruiz-Hitzky, S. Letaïef, V. Prévot, Adv. Mater. 2002, 14, 439-443. – reference: C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, C. R. Chim. 2010, 13, 3-39. – reference: J. J. E. Moreau, B. P. Pichon, M. W. C. Man, C. Bied, H. Pritzkow, J. L. Bantignies, P. Dieudonne, J. L. Sauvajol, Angew. Chem. 2004, 116, 205-208; – reference: S. Mihai, Y. Le Duc, D. Cot, M. Barboiu, J. Mater. Chem. 2010, 20, 9443-9448. – reference: G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421; – reference: R. M. Laine, M. F. Roll, Macromolecules 2011, 44, 1073-1109; – reference: J. M. Lehn, Science 2002, 295, 2400-2403. – reference: Angew. Chem. Int. Ed. 2003, 42, 4057-4060. – reference: A. Boullanger, G. Gracy, N. Bibent, S. Devautour-Vinot, S. Clément, A. Mehdi, Eur. J. Inorg. Chem. 2012, 143-150. – reference: D. A. Loy, K. J. Shea, Chem. Rev. 1995, 95, 1431-1442; – reference: T. Kishida, N. Fujita, K. Sada, S. Shinkai, Langmuir 2005, 21, 9432-9439. – reference: K. Tanaka, Y. Chujo, J. Mater. Chem. 2012, 22, 1733-1746; – reference: C. Arnal-Hérault, M. Barboiu, A. Pasc, M. Michau, P. Perriat, A. van der Lee, Chem. Eur. J. 2007, 13, 6792-6800; – reference: M. Michau, M. Barboiu, R. Caraballo, C. Arnal-Hérault, P. Perriat, A. van der Lee, A. Pasc, Chem. Eur. J. 2008, 14, 1776-1783; – reference: O. J. Dautel, G. Wantz, R. Almairac, D. Flot, L. Hirsch, J.-P. Lere-Porte, J.-P. Parneix, F. Serein-Spirau, L. Vignau, J. J. E. Moreau, J. Am. Chem. Soc. 2006, 128, 4892-4901. – reference: N. Liu, K. Yu, B. Smarsly, D. R. Dunphy, Y.-B. Jiang, C. J. Brinker, J. Am. Chem. Soc. 2002, 124, 14540-14541. – reference: Y. Kaneko, N. Iyi, J. Mater. Chem. 2009, 19, 7106-7111. – reference: H. Peng, Y. Lu, Adv. Mater. 2008, 20, 797-800; – reference: S. C. Nunes, N. J. O. Silva, J. Hummer, R. A. S. Ferreira, P. Almeida, L. D. Carlos, V. d. Z. Bermudez, RSC Adv. 2012, 2, 2087-2099. – reference: S. Sakamoto, A. Shimojima, K. Miyasaka, J. Ruan, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2009, 131, 9634-9635. – reference: H. W. Ro, E. S. Park, C. L. Soles, D. Y. Yoon, Chem. Mater. 2010, 22, 1330-1339. – reference: M. Barboiu, Chem. Commun. 2010, 46, 7466-7476. – reference: J. J. E. Moreau, L. Vellutini, C. Bied, M. W. C. Man, J. Sol-Gel Sci. Technol. 2004, 31, 151-156; – reference: K. J. Shea, J. J. E. Moreau, D. A. Loy, R. J. P. Corriu, B. Boury, in Functional Hydrid Materials (Eds.: P. Gomez-Romero, C. Sanchez), Wiley-VCH, Weinheim, 2004, pp. 50-85. – reference: M. G. da Fonseca, C. Airoldi, J. Mater. Chem. 2000, 10, 1457-1463; – reference: F. Lerouge, G. Cerveau, R. J. P. Corriu, J. Mater. Chem. 2006, 16, 90-95. – reference: M. George, R. G. Weiss, Acc. Chem. Res. 2006, 39, 489-497. – reference: J. Alauzun, E. Besson, A. Mehdi, C. Reye, R. J. P. Corriu, Chem. Mater. 2008, 20, 503-513. – reference: D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081-2173; – reference: A. R. Al Derzi, A. Gregusova, K. Runge, R. J. Bartlett, Int. J. Quantum Chem. 2008, 108, 2088-2096. – reference: Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147-1160. – reference: O. J. Dautel, M. Robitzer, J. P. Lere-Porte, F. Serein-Spirau, J. J. E. Moreau, J. Am. Chem. Soc. 2006, 128, 16213-16223. – reference: A. Shimojima, C.-W. Wu, K. Kuroda, J. Mater. Chem. 2007, 17, 658-663. – reference: R. W. Wang, G. Baran, S. L. Wunder, Langmuir 2000, 16, 6298-6305. – reference: D. A. Loy, J. V. Beach, B. M. Baugher, R. A. Assink, K. J. Shea, J. Tran, J. H. Small, Chem. Mater. 1999, 11, 3333-3341. – reference: J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, P. Dieudonne, J. L. Bantignies, J. L. Sauvajol, Chem. Eur. J. 2005, 11, 1527-1537. – reference: J. Jiang, O. V. Lima, Y. Pei, X. C. Zeng, L. Tan, E. Forsythe, J. Am. Chem. Soc. 2009, 131, 900-901. – reference: M. Jaber, J. Miehe-Brendle, M. Roux, J. Dentzer, R. Le Dred, J. L. Guth, New J. Chem. 2002, 26, 1597-1600. – reference: A. N. Parikh, M. A. Schivley, E. Koo, K. Seshadri, D. Aurentz, K. Mueller, D. L. Allara, J. Am. Chem. Soc. 1997, 119, 3135-3143. – reference: I. Karatchevtseva, D. J. Cassidy, M. Wong Chi Man, D. R. G. Mitchell, J. V. Hanna, C. Carcel, C. Bied, J. J. E. Moreau, J. R. Bartlett, Adv. Funct. Mater. 2007, 17, 3926-3932. – reference: J. T. Han, D. H. Lee, C. Y. Ryu, K. Cho, J. Am. Chem. Soc. 2004, 126, 4796-4797; – reference: K. Fujii, T. Fujita, N. Iyi, H. Kodama, K. Kitamura, J. Mater. Sci. Lett. 2003, 22, 1459-1461. – reference: G. Kickelbick, Hybrid Materials: Synthesis Characterization, and Applications, Wiley-VCH, Weinheim, 2007. – reference: B. Boury, R. J. P. Corriu, V. Le Strat, P. Delord, M. Nobili, Angew. Chem. 1999, 111, 3366-3370; – reference: R. M. Laine, J. Mater. Chem. 2005, 15, 3725-3744; – reference: B. Boury, R. J. P. Corriu, Chem. Rec. 2003, 3, 120-132; – reference: C. Sanchez, C. Boissière, D. Grosso, C. Laberty, L. Nicole, Chem. Mater. 2008, 20, 682-737; – reference: F. Lerouge, G. Cerveau, R. J. P. Corriu, New J. Chem. 2006, 30, 272-276. – reference: S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304-307. – reference: D. A. Loy, B. Mather, A. R. Straumanis, C. Baugher, D. A. Schneider, A. Sanchez, K. J. Shea, Chem. Mater. 2004, 16, 2041-2043. – reference: C. Blackledge, J. D. McDonald, Langmuir 1999, 15, 8119-8125. – reference: C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990. – reference: K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai, Chem. Soc. Rev. 2007, 36, 415-435. – reference: A. Chemtob, L. Ni, A. Demarest, C. Croutxe-Barghorn, L. Vidal, J. Brendlé, S. Rigolet, Langmuir 2011, 27, 12621-12629. – reference: Y. Fukushima, M. Tani, Bull. Chem. Soc. Jpn. 1996, 69, 3667-3671. – reference: M. Khiterer, D. A. Loy, C. J. Cornelius, C. H. Fujimoto, J. H. Small, T. M. McIntire, K. J. Shea, Chem. Mater. 2006, 18, 3665-3673. – reference: K. J. Shea, D. A. Loy, Acc. Chem. Res. 2001, 34, 707-716; – reference: B. P. Pichon, S. Scampini, C. Bied, J. J. E. Moreau, M. W. C. Man, Eur. J. Inorg. Chem. 2012, 5312-5322. – reference: D. Brandhuber, H. Peterlik, N. Husing, Small 2006, 2, 503-506; – reference: J. Beckmann, S. Grabowsky, J. Phys. Chem. A 2007, 111, 2011-2019. – reference: Q. P. Ke, G. L. Li, Y. Liu, T. He, X. M. Li, Langmuir 2010, 26, 3579-3584; – reference: Y. Kaneko, N. Iyi, T. Matsumoto, K. Fujii, K. Kurashima, T. Fujita, J. Mater. Chem. 2003, 13, 2058-2060. – reference: Angew. Chem. Int. Ed. 2001, 40, 2853-2856. – reference: K. Rurack, R. Martinez-Manez, The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, Wiley, Hoboken, New Jersey, 2010. – reference: K. Fujii, S. Hayashi, H. Kodama, Chem. Mater. 2003, 15, 1189-1197; – reference: K. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112, 1034-1054. – reference: A. Shimojima, Y. Sugahara, K. Kuroda, J. Am. Chem. Soc. 1998, 120, 4528-4529; – reference: H. Tang, J. Sun, J. Jiang, X. Zhou, T. Hu, P. Xie, R. Zhang, J. Am. Chem. Soc. 2002, 124, 10482-10488. – reference: Q. P. Ke, W. Q. Fu, S. Wang, T. D. Tang, J. F. Zhang, ACS Appl. Mater. Interfaces 2010, 2, 2393-2398. – reference: A. Shimojima, K. Kuroda, Chem. Rec. 2006, 6, 53-63; – reference: G. Creff, B. P. Pichon, C. Blanc, D. Maurin, J. L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Roy, J. R. Bartlett, M. W. C. Man, J. L. Bantignies, Langmuir 2013, 29, 5581-5588. – reference: O. J. Dautel, C. Borras, J.-D. Borras, J. J. E. Moreau, Actual. Chim. 2012, 29-35. – reference: J. L. Bantignies, L. Vellutini, D. Maurin, P. Hermet, P. Dieudonne, M. W. C. Man, J. R. Bartlett, C. Bied, J. L. Sauvajol, J. J. E. Moreau, J. Phys. Chem. B 2006, 110, 15797-15802; – reference: Angew. Chem. Int. Ed. 2006, 45, 3216-3251; – reference: X. Sallenave, O. J. Dautel, G. Wantz, P. Valvin, J.-P. Lère-Porte, J. J. E. Moreau, Adv. Funct. Mater. 2009, 19, 404-410; – reference: N. T. Whilton, S. L. Burkett, S. Mann, J. Mater. Chem. 1998, 8, 1927-1932. – reference: L. D. Carlos, V. d. Z. Bermudez, V. S. Amaral, S. C. Nunes, N. J. O. Silva, R. A. S. Ferreira, J. Rocha, C. V. Santilli, D. Ostrovskii, Adv. Mater. 2007, 19, 341-348; – reference: M. Ohashi, Y. Goto, N. Mizoshita, T. Ohsuna, T. Tani, S. Inagaki, Bull. Chem. Soc. Jpn. 2009, 82, 1035-1038. – reference: A. Sayari, W. H. Wang, J. Am. Chem. Soc. 2005, 127, 12194-12195. – reference: L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, J. Phys. Chem. C 2012, 116, 24320-24330. – reference: M. Michau, R. Caraballo, C. Arnal-Herault, M. Barboiu, J. Membr. Sci. 2008, 321, 22-30; – reference: A. Ulman, Chem. Rev. 1996, 96, 1533-1554. – reference: M. Barboiu, C. Guizard, N. Hovnanian, L. Cot, Sep. Purif. Technol. 2001, 25, 211-218. – reference: R. J. P. Corriu, A. Mehdi, C. Reyé, J. Mater. Chem. 2005, 15, 4285-4294; – reference: H. Fan, Z. Chen, C. J. Brinker, J. Clawson, T. Alam, J. Am. Chem. Soc. 2005, 127, 13746-13747; – reference: Y. Kaneko, N. Iyi, K. Kurashima, T. Matsumoto, T. Fujita, K. Kitamura, Chem. Mater. 2004, 16, 3417-3423. – reference: T. Mizutani, Y. Fukushima, A. Okada, O. Kamigaito, Bull. Chem. Soc. Jpn. 1990, 63, 2094-2098. – reference: N. Mizoshita, T. Tani, S. Inagaki, Adv. Funct. Mater. 2011, 21, 3291-3296. – reference: Y.-C. Liao, J. T. Roberts, J. Am. Chem. Soc. 2006, 128, 9061-9065. – reference: L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, Langmuir 2012, 28, 7129-7133. – reference: G. Cerveau, S. Chappellet, R. J. P. Corriu, J. Mater. Chem. 2003, 13, 1905-1909. – reference: J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, Chem. Eur. J. 2003, 9, 1594-1599. – reference: H. W. Ro, C. L. Soles, Mater. Today 2011, 14, 20-33; – reference: L. Yang, H. Peng, K. Huang, J. T. Mague, H. Li, Y. Lu, Adv. Funct. Mater. 2008, 18, 1526-1535. – reference: N. Umeda, A. Shimojima, K. Kuroda, J. Organomet. Chem. 2003, 686, 223-227. – reference: Y. Luo, J. Lin, H. Duan, J. Zhang, C. Lin, Chem. Mater. 2005, 17, 2234-2236; – reference: G. Creff, G. Arrachart, P. Hermet, H. Wadepohl, R. Almairac, D. Maurin, J.-L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, Phys. Chem. Chem. Phys. 2012, 14, 5672-5679. – reference: A. B. Bourlinos, S. R. Chowdhury, D. D. Jiang, Y.-U. An, Q. Zhang, L. A. Archer, E. P. Giannelis, Small 2005, 1, 80-82. – reference: A. Shimojima, N. Umeda, K. Kuroda, Chem. Mater. 2001, 13, 3610-3616; – reference: Angew. Chem. Int. Ed. 1999, 38, 3172-3175; – reference: J. J. E. Moreau, L. Vellutini, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, J.-L. Sauvajol, C. Bied, J. Mater. Chem. 2005, 15, 4943-4948. – reference: L.-C. Hu, K. J. Shea, Chem. Soc. Rev. 2011, 40, 688-695. – reference: B. P. Pichon, M. Wong Chi Man, P. Dieudonné, J. L. Bantignies, C. Bied, J. L. Sauvajol, J. J. E. Moreau, Adv. Funct. Mater. 2007, 17, 2349-2355. – reference: J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2005, 15, 841-843. – reference: H. Peng, J. Tang, J. Pang, D. Chen, L. yang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2005, 127, 12782-12783; – reference: Y. Fukushima, M. Tani, J. Chem. Soc. Chem. Commun. 1995, 241-242; – reference: R. Mouawia, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2008, 18, 2028-2035. – reference: G. Dubois, C. Reye, R. J. P. Corriu, S. Brandes, F. Denat, R. Guilard, Angew. Chem. 2001, 113, 1121-1124. – reference: E. Besson, A. Mehdi, A. Van der Lee, H. Chollet, C. Reyé, R. Guilard, R. J. P. Corriu, Chem. Eur. J. 2010, 16, 10226-10233. – reference: B. Boury, F. Ben, R. J. P. Corriu, Angew. Chem. 2001, 113, 2946-2948; – reference: J. Pang, L. Yang, D. A. Loy, H. Peng, H. S. Ashbaugh, J. Mague, C. J. Brinker, Y. Lu, Chem. Commun. 2006, 1545-1547. – reference: G. Arrachart, A. Bendjerriou, C. Carcel, J. J. E. Moreau, M. W. C. Man, New J. Chem. 2010, 34, 1436-1440. – reference: K. Kawahara, H. Tachibana, Y. Hagiwara, K. Kuroda, New J. Chem. 2012, 36, 1210-1217. – reference: T. Suzuki, A. Shimojima, Y. Fujimoto, K. Kuroda, Chem. Eur. J. 2008, 14, 973-980. – reference: A. Shimojima, K. Kuroda, Langmuir 2002, 18, 1144-1149. – reference: C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 2011, 40, 696-753. – reference: H. Muramatsu, R. J. P. Corriu, B. Boury, J. Am. Chem. Soc. 2003, 125, 854-855. – reference: M. J. Rosen in Surfactants and Interfacial Phenomena, 3rd ed., Wiley, Hoboken, New Jersey, 2004, pp. 217-301. – reference: F. Ben, B. Boury, R. J. P. Corriu, V. Le Strat, Chem. Mater. 2000, 12, 3249-3252. – reference: A. Shimojima, M. Sakurai, K. Kuroda, T. Okubo, J. Colloid Interface Sci. 2010, 350, 155-160. – reference: M. Richard-Plouet, S. Vilminot, M. Guillot, New J. Chem. 2004, 28, 1073-1082. – reference: P. Gomez-Romero, C. Sanchez, Functional Hybrid Materials, Wiley-VCH, Weinheim, 2006. – reference: X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906-2910. – reference: A. Shimojima, K. Kuroda, Angew. Chem. 2003, 115, 4191-4194; – reference: F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. 2006, 118, 3290-3328; – reference: M. Takahashi, C. Figus, T. Kichob, S. Enzo, M. Casula, M. Valentini, P. Innocenzi, Adv. Mater. 2009, 21, 1732-1736. – reference: S. Mihai, A. Cazacu, C. Arnal-Herault, G. Nasr, A. Meffre, A. van der Lee, M. Barboiu, New J. Chem. 2009, 33, 2335-2343. – reference: H. Peng, J. Tang, L. Yang, J. Pang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2006, 128, 5304-5305. – reference: D. R. Dunphy, B. Smarsly, C. J. Brinker in Supramolecular Chemistry of Organic-Inorganic Hybrid Materials (Eds.: K. Rurack, R. Martinez-Manez), Wiley, Hoboken, New Jersey, 2010, pp. 531-545; – reference: R. Goto, A. Shimojima, H. Kuge, K. Kuroda, Chem. Commun. 2008, 6152-6154. – reference: K. Okamoto, Y. Goto, S. Inagaki, J. Mater. Chem. 2005, 15, 4136-4140. – reference: M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000. – reference: D. W. Schaefer, G. Beaucage, D. A. Loy, K. J. Shea, J. S. Lin, Chem. Mater. 2004, 16, 1402-1410. – reference: P. Dieudonné, M. W. C. Man, B. P. Pichon, L. Vellutini, J.-L. Bantignies, C. Blanc, G. Creff, S. Finet, J.-L. Sauvajol, C. Bied, J. J. E. Moreau, Small 2009, 5, 503-510. – reference: J. J. E. Moreau, B. P. Pichon, G. Arrachart, M. W. C. Man, C. Bied, New J. Chem. 2005, 29, 653-658; – reference: R. Mouawia, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2007, 17, 616-618; – reference: Y. Fujimoto, M. Heishi, A. Shimojima, K. Kuroda, J. Mater. Chem. 2005, 15, 5151-5157. – reference: J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, Chem. Commun. 2006, 347-349; – reference: Y. Goto, T. Ohsuna, N. Mizoshita, T. Tani, S. Inagaki, Solid State Sci. 2011, 13, 729-735; – reference: A. Shimojima, H. Kuge, K. Kuroda, J. Sol-Gel Sci. Technol. 2011, 57, 263-268. – reference: N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789-800; – reference: F. Lerouge, G. Cerveau, R. J. P. Corriu, New J. Chem. 2006, 30, 1364-1376; – reference: D. A. Loy, G. M. Jamison, B. M. Baugher, S. A. Myers, R. A. Assink, K. J. Shea, Chem. Mater. 1996, 8, 656-663; – reference: W. Chaikittisilp, M. Kubo, T. Moteki, A. Sugawara-Narutaki, A. Shimojima, T. Okubo, J. Am. Chem. Soc. 2011, 133, 13832-13835. – reference: Q. H. Yang, M. P. Kapoor, S. Inagaki, J. Am. Chem. Soc. 2002, 124, 9694-9695. – reference: M. G. da Fonseca, C. R. Silva, C. Airoldi, Langmuir 1999, 15, 5048-5055; – reference: J. Jiang, O. V. Lima, Y. Pei, Z. Jiang, Z. Chen, C. Z. Yu, J. Wang, X. C. Zeng, E. Forsythe, L. Tan, ACS Nano 2010, 4, 3773-3780. – reference: A. Shimojima, Y. Sugahara, K. Kuroda, Bull. Chem. Soc. Jpn. 1997, 70, 2847-2853; – reference: L. Ni, A. Chemtob, C. Croutxe-Barghorn, L. Vidal, J. Brendlé, S. Rigolet, J. Mater. Chem. 2012, 22, 643-652. – reference: S. L. Burkett, A. Press, S. Mann, Chem. Mater. 1997, 9, 1071-1073; – reference: G. Arrachart, G. Creff, H. Wadepohl, C. Blanc, C. Bonhomme, F. Babonneau, B. Alonso, J. L. Bantignies, C. Carcel, J. J. E. Moreau, P. Dieudonne, J. L. Sauvajol, D. Massiot, M. W. C. Man, Chem. Eur. J. 2009, 15, 5002-5005; – reference: Y. Fujimoto, A. Shimojima, K. Kuroda, Chem. Mater. 2003, 15, 4768-4774. – reference: S. Bourg, J.-C. Broudic, O. Conocar, J. J. E. Moreau, M. Meyer, M. W. C. Man, Chem. Mater. 2001, 13, 491-499. – reference: J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Am. Chem. Soc. 2005, 127, 11204-11205. – reference: K. J. Shea, D. A. Loy, O. Webster, J. Am. Chem. Soc. 1992, 114, 6700-6710. – reference: A. Mehdi, J. Mater. Chem. 2010, 20, 9281-9286. – reference: A. Shimojima, R. Goto, N. Atsumi, K. Kuroda, Chem. Eur. J. 2008, 14, 8500-8506. – reference: Angew. Chem. Int. Ed. 2004, 43, 203-206. – reference: M. Llusar, C. Sanchez, Chem. Mater. 2008, 20, 782-820. – reference: H. E. Romeo, M. A. Fanovich, R. J. J. Williams, L. Matejka, J. Plestil, J. Brus, Macromolecules 2007, 40, 1435-1443. – reference: J. Minet, S. Abramson, B. Bresson, C. Sanchez, V. Montouillout, N. Lequeux, Chem. Mater. 2004, 16, 3955-3962; – reference: R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev. 1995, 95, 1409-1430. – reference: M. G. da Fonseca, E. C. da Silva, R. Junior, L. N. H. Arakaki, J. G. P. Espinola, C. Airoldi, J. Solid State Chem. 2004, 177, 2316-2322. – reference: A. Mehdi, C. Reyé, R. J. P. Corriu, Chem. Soc. Rev. 2011, 40, 563-574. – reference: Y. Kaneko, N. Iyi, T. Matsumoto, K. Kitamura, Polymer 2005, 46, 1828-1833. – reference: M. Fernandes, S. S. Nobre, X. Qinghong, C. Carcel, J. N. Cachia, X. Cattoen, J. M. Sousa, R. A. S. Ferreira, L. D. Carlos, C. V. Santilli, M. W. C. Man, V. de Zea Bermudez, J. Phys. Chem. B 2011, 115, 10877-10891. – reference: K. J. Shea, D. A. Loy, Chem. Mater. 1989, 1, 572-574; – reference: S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891-908; – reference: W. Volksen, R. D. Miller, G. Dubois, Chem. Rev. 2010, 110, 56-110. – reference: G. Cerveau, R. J. P. Corriu, E. Framery, Chem. Mater. 2001, 13, 3373-3388. – reference: S. D. Korkin, M. I. Buzin, E. V. Matukhina, L. N. Zherlitsyna, N. Auner, O. I. Shchegolikhina, J. Organomet. Chem. 2003, 686, 313-320. – reference: J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, J. L. Bantignies, P. Dieudonne, J. L. Sauvajol, J. Am. Chem. Soc. 2001, 123, 7957-7958. – reference: L. Ukrainczyk, R. A. Bellman, A. B. Anderson, J. Phys. Chem. B 1997, 101, 531-539; – reference: O. J. Dautel, J.-P. Lere-Porte, J. J. E. Moreau, M. W. C. Man, Chem. Commun. 2003, 2662-2663; – reference: D. A. Loy, B. M. Baugher, C. R. Baugher, D. A. Schneider, K. Rahimian, Chem. Mater. 2000, 12, 3624-3632; – reference: F. Hoffmann, M. Froba, Chem. Soc. Rev. 2011, 40, 608-620. – reference: D. J. Boday, R. J. Stover, B. Muriithi, D. A. Loy, J. Sol-Gel Sci. Technol. 2012, 61, 144-150. – reference: G. Arrachart, C. Carcel, J. J. E. Moreau, G. Hartmeyer, B. Alonso, D. Massiot, G. Creff, J.-L. Bantignies, P. Dieudonne, M. W. C. Man, G. Althoff, F. Babonneau, C. Bonhomme, J. Mater. Chem. 2008, 18, 392-399. – reference: K.-M. Kim, T. Ogoshi, Y. Chujo, J. Polym. Sci. Part A 2005, 43, 473-478; – reference: L. Zhao, M. Vaupel, D. A. Loy, K. J. Shea, Chem. Mater. 2008, 20, 1870-1876. – reference: B. Menaa, M. Takahashi, P. Innocenzi, T. Yoko, Chem. Mater. 2007, 19, 1946-1953. – reference: T. Ogoshi, Y. Chujo, Compos. Interfaces 2005, 11, 539-566. – reference: S. Hartmann, D. Brandhuber, N. Husing, Acc. Chem. Res. 2007, 40, 885-894. – reference: M. G. da Fonseca, C. R. Silva, J. S. Barone, C. Airoldi, J. Mater. Chem. 2000, 10, 789-795; – reference: M. Jaber, J. Miehe-Brendle, L. Delmotte, R. Le Dred, Solid State Sci. 2005, 7, 610-615; – reference: L. Zhao, D. A. Loy, K. J. Shea, J. Am. Chem. Soc. 2006, 128, 14250-14251; – reference: A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2005, 127, 14108-14116. – reference: J. H. Sim, S.-I. Lee, H.-J. Lee, R. Kasica, H.-M. Kim, C. L. Soles, K.-B. Kim, D. Y. Yoon, Chem. Mater. 2010, 22, 3021-3023; – reference: J. J. E. Moreau, B. P. Pichon, C. Bied, M. W. C. Man, J. Mater. Chem. 2005, 15, 3929-3936; – reference: G. Garnweitner, B. Smarsly, R. Assink, W. Ruland, E. Bond, C. J. Brinker, J. Am. Chem. Soc. 2003, 125, 5626-5627; – reference: E. Besson, A. Mehdi, C. Reye, P. Gaveau, R. J. P. Corriu, Dalton Trans. 2010, 39, 7534-7539. – reference: F. Ben, B. Boury, R. J. P. Corriu, Adv. Mater. 2002, 14, 1081-1083. – reference: C. Triantafillidis, M. Elsaesser, N. Husing, Chem. Soc. Rev. 2013, 42, 3833-3846. – reference: M. Barboiu, S. Cerneaux, A. van der Lee, G. Vaughan, J. Am. Chem. Soc. 2004, 126, 3545-3550. – reference: D. A. Loy, J. P. Carpenter, T. M. Alam, R. Shaltout, P. K. Dorhout, J. Greaves, J. H. Small, K. J. Shea, J. Am. Chem. Soc. 1999, 121, 5413-5425; – volume: 25 start-page: 211 year: 2001 end-page: 218 publication-title: Sep. Purif. Technol. – volume: 82 start-page: 1035 year: 2009 end-page: 1038 publication-title: Bull. Chem. Soc. Jpn. – volume: 119 start-page: 3135 year: 1997 end-page: 3143 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 789 year: 2011 end-page: 800 publication-title: Chem. Soc. Rev. – volume: 124 start-page: 9694 year: 2002 end-page: 9695 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 2335 year: 2009 end-page: 2343 publication-title: New J. Chem. – volume: 128 start-page: 16213 year: 2006 end-page: 16223 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 491 year: 2001 end-page: 499 publication-title: Chem. Mater. – volume: 27 start-page: 12621 year: 2011 end-page: 12629 publication-title: Langmuir – volume: 31 start-page: 151 year: 2004 end-page: 156 publication-title: J. Sol–Gel Sci. Technol. – volume: 14 start-page: 1776 year: 2008 end-page: 1783 publication-title: Chem. Eur. J. – volume: 28 start-page: 7129 year: 2012 end-page: 7133 publication-title: Langmuir – volume: 15 start-page: 3929 year: 2005 end-page: 3936 publication-title: J. Mater. Chem. – volume: 4 start-page: 3773 year: 2010 end-page: 3780 publication-title: ACS Nano – volume: 63 start-page: 2094 year: 1990 end-page: 2098 publication-title: Bull. Chem. Soc. Jpn. – volume: 9 start-page: 1594 year: 2003 end-page: 1599 publication-title: Chem. Eur. J. – volume: 17 start-page: 658 year: 2007 end-page: 663 publication-title: J. Mater. Chem. – volume: 22 start-page: 1330 year: 2010 end-page: 1339 publication-title: Chem. Mater. – volume: 113 start-page: 1121 year: 2001 end-page: 1124 publication-title: Angew. Chem. – year: 1990 – volume: 39 start-page: 489 year: 2006 end-page: 497 publication-title: Acc. Chem. Res. – volume: 16 start-page: 10226 year: 2010 end-page: 10233 publication-title: Chem. Eur. J. – volume: 9 start-page: 1071 year: 1997 end-page: 1073 publication-title: Chem. Mater. – volume: 5 start-page: 503 year: 2009 end-page: 510 publication-title: Small – volume: 14 start-page: 20 year: 2011 end-page: 33 publication-title: Mater. Today – volume: 2 start-page: 503 year: 2006 end-page: 506 publication-title: Small – volume: 20 start-page: 1870 year: 2008 end-page: 1876 publication-title: Chem. Mater. – volume: 36 start-page: 1210 year: 2012 end-page: 1217 publication-title: New J. Chem. – volume: 123 start-page: 7957 year: 2001 end-page: 7958 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 782 year: 2008 end-page: 820 publication-title: Chem. Mater. – volume: 128 start-page: 5304 year: 2006 end-page: 5305 publication-title: J. Am. Chem. Soc. – volume: 416 start-page: 304 year: 2002 end-page: 307 publication-title: Nature – volume: 108 start-page: 2088 year: 2008 end-page: 2096 publication-title: Int. J. Quantum Chem. – volume: 128 start-page: 4892 year: 2006 end-page: 4901 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 80 year: 2005 end-page: 82 publication-title: Small – volume: 40 start-page: 608 year: 2011 end-page: 620 publication-title: Chem. Soc. Rev. – volume: 30 start-page: 1364 year: 2006 end-page: 1376 publication-title: New J. Chem. – volume: 133 start-page: 13832 year: 2011 end-page: 13835 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 539 year: 2005 end-page: 566 publication-title: Compos. Interfaces – volume: 113 40 start-page: 2946 2853 year: 2001 2001 end-page: 2948 2856 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 686 start-page: 313 year: 2003 end-page: 320 publication-title: J. Organomet. Chem. – volume: 13 start-page: 3373 year: 2001 end-page: 3388 publication-title: Chem. Mater. – volume: 18 start-page: 1526 year: 2008 end-page: 1535 publication-title: Adv. Funct. Mater. – volume: 131 start-page: 900 year: 2009 end-page: 901 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 10482 year: 2002 end-page: 10488 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 707 year: 2001 end-page: 716 publication-title: Acc. Chem. Res. – volume: 61 start-page: 144 year: 2012 end-page: 150 publication-title: J. Sol–Gel Sci. Technol. – volume: 16 start-page: 3955 year: 2004 end-page: 3962 publication-title: Chem. Mater. – volume: 14 start-page: 439 year: 2002 end-page: 443 publication-title: Adv. Mater. – volume: 321 start-page: 22 year: 2008 end-page: 30 publication-title: J. Membr. Sci. – year: 2007 – volume: 15 start-page: 5048 year: 1999 end-page: 5055 publication-title: Langmuir – volume: 127 start-page: 11204 year: 2005 end-page: 11205 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 7466 year: 2010 end-page: 7476 publication-title: Chem. Commun. – volume: 128 start-page: 14250 year: 2006 end-page: 14251 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2349 year: 2007 end-page: 2355 publication-title: Adv. Funct. Mater. – volume: 110 start-page: 15797 year: 2006 end-page: 15802 publication-title: J. Phys. Chem. B – volume: 112 start-page: 1034 year: 2012 end-page: 1054 publication-title: Chem. Rev. – volume: 15 start-page: 4285 year: 2005 end-page: 4294 publication-title: J. Mater. Chem. – start-page: 1545 year: 2006 end-page: 1547 publication-title: Chem. Commun. – volume: 17 start-page: 3926 year: 2007 end-page: 3932 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 643 year: 2012 end-page: 652 publication-title: J. Mater. Chem. – volume: 46 start-page: 1828 year: 2005 end-page: 1833 publication-title: Polymer – volume: 114 start-page: 6700 year: 1992 end-page: 6710 publication-title: J. Am. Chem. Soc. – year: 2010 – volume: 18 start-page: 3665 year: 2006 end-page: 3673 publication-title: Chem. Mater. – volume: 18 start-page: 1144 year: 2002 end-page: 1149 publication-title: Langmuir – volume: 21 start-page: 9432 year: 2005 end-page: 9439 publication-title: Langmuir – volume: 29 start-page: 5581 year: 2013 end-page: 5588 publication-title: Langmuir – start-page: 6152 year: 2008 end-page: 6154 publication-title: Chem. Commun. – volume: 19 start-page: 7106 year: 2009 end-page: 7111 publication-title: J. Mater. Chem. – volume: 350 start-page: 155 year: 2010 end-page: 160 publication-title: J. Colloid Interface Sci. – volume: 110 start-page: 2081 year: 2010 end-page: 2173 publication-title: Chem. Rev. – start-page: 50 year: 2004 end-page: 85 – volume: 20 start-page: 682 year: 2008 end-page: 737 publication-title: Chem. Mater. – volume: 15 start-page: 841 year: 2005 end-page: 843 publication-title: J. Mater. Chem. – volume: 6 start-page: 53 year: 2006 end-page: 63 publication-title: Chem. Rec. – volume: 20 start-page: 503 year: 2008 end-page: 513 publication-title: Chem. Mater. – volume: 20 start-page: 797 year: 2008 end-page: 800 publication-title: Adv. Mater. – volume: 20 start-page: 891 year: 2008 end-page: 908 publication-title: Chem. Mater. – volume: 96 start-page: 1533 year: 1996 end-page: 1554 publication-title: Chem. Rev. – volume: 15 start-page: 5002 year: 2009 end-page: 5005 publication-title: Chem. Eur. J. – volume: 14 start-page: 8500 year: 2008 end-page: 8506 publication-title: Chem. Eur. J. – year: 1978 – volume: 40 start-page: 885 year: 2007 end-page: 894 publication-title: Acc. Chem. Res. – volume: 40 start-page: 696 year: 2011 end-page: 753 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 3624 year: 2000 end-page: 3632 publication-title: Chem. Mater. – volume: 295 start-page: 2418 year: 2002 end-page: 2421 publication-title: Science – volume: 115 start-page: 10877 year: 2011 end-page: 10891 publication-title: J. Phys. Chem. B – volume: 18 start-page: 392 year: 2008 end-page: 399 publication-title: J. Mater. Chem. – volume: 8 start-page: 1927 year: 1998 end-page: 1932 publication-title: J. Mater. Chem. – volume: 70 start-page: 2847 year: 1997 end-page: 2853 publication-title: Bull. Chem. Soc. Jpn. – volume: 7 start-page: 610 year: 2005 end-page: 615 publication-title: Solid State Sci. – volume: 127 start-page: 12194 year: 2005 end-page: 12195 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 415 year: 2007 end-page: 435 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 789 year: 2000 end-page: 795 publication-title: J. Mater. Chem. – volume: 8 start-page: 1147 year: 1996 end-page: 1160 publication-title: Chem. Mater. – volume: 125 start-page: 854 year: 2003 end-page: 855 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1081 year: 2002 end-page: 1083 publication-title: Adv. Mater. – volume: 131 start-page: 9634 year: 2009 end-page: 9635 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1732 year: 2009 end-page: 1736 publication-title: Adv. Mater. – volume: 8 start-page: 656 year: 1996 end-page: 663 publication-title: Chem. Mater. – volume: 111 start-page: 2011 year: 2007 end-page: 2019 publication-title: J. Phys. Chem. A – start-page: 347 year: 2006 end-page: 349 publication-title: Chem. Commun. – volume: 2 start-page: 2087 year: 2012 end-page: 2099 publication-title: RSC Adv. – volume: 101 start-page: 531 year: 1997 end-page: 539 publication-title: J. Phys. Chem. B – volume: 20 start-page: 9281 year: 2010 end-page: 9286 publication-title: J. Mater. Chem. – volume: 13 start-page: 3610 year: 2001 end-page: 3616 publication-title: Chem. Mater. – start-page: 143 year: 2012 end-page: 150 publication-title: Eur. J. Inorg. Chem. – volume: 43 start-page: 473 year: 2005 end-page: 478 publication-title: J. Polym. Sci. Part A – volume: 95 start-page: 1431 year: 1995 end-page: 1442 publication-title: Chem. Rev. – volume: 1 start-page: 572 year: 1989 end-page: 574 publication-title: Chem. Mater. – volume: 116 43 start-page: 205 203 year: 2004 2004 end-page: 208 206 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 20 start-page: 9443 year: 2010 end-page: 9448 publication-title: J. Mater. Chem. – volume: 21 start-page: 3291 year: 2011 end-page: 3296 publication-title: Adv. Funct. Mater. – start-page: 5312 year: 2012 end-page: 5322 publication-title: Eur. J. Inorg. Chem. – volume: 126 start-page: 4796 year: 2004 end-page: 4797 publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 3667 year: 1996 end-page: 3671 publication-title: Bull. Chem. Soc. Jpn. – volume: 16 start-page: 6298 year: 2000 end-page: 6305 publication-title: Langmuir – volume: 15 start-page: 3725 year: 2005 end-page: 3744 publication-title: J. Mater. Chem. – volume: 14 start-page: 973 year: 2008 end-page: 980 publication-title: Chem. Eur. J. – volume: 28 start-page: 1073 year: 2004 end-page: 1082 publication-title: New J. Chem. – volume: 125 start-page: 5626 year: 2003 end-page: 5627 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 7534 year: 2010 end-page: 7539 publication-title: Dalton Trans. – volume: 15 start-page: 1189 year: 2003 end-page: 1197 publication-title: Chem. Mater. – volume: 44 start-page: 1073 year: 2011 end-page: 1109 publication-title: Macromolecules – volume: 95 start-page: 1409 year: 1995 end-page: 1430 publication-title: Chem. Rev. – volume: 126 start-page: 3545 year: 2004 end-page: 3550 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 341 year: 2007 end-page: 348 publication-title: Adv. Mater. – volume: 110 start-page: 56 year: 2010 end-page: 110 publication-title: Chem. Rev. – volume: 177 start-page: 2316 year: 2004 end-page: 2322 publication-title: J. Solid State Chem. – volume: 13 start-page: 6792 year: 2007 end-page: 6800 publication-title: Chem. Eur. J. – volume: 120 start-page: 4528 year: 1998 end-page: 4529 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1905 year: 2003 end-page: 1909 publication-title: J. Mater. Chem. – volume: 127 start-page: 12782 year: 2005 end-page: 12783 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 5151 year: 2005 end-page: 5157 publication-title: J. Mater. Chem. – volume: 2 start-page: 2393 year: 2010 end-page: 2398 publication-title: ACS Appl. Mater. Interfaces – start-page: 241 year: 1995 end-page: 242 publication-title: J. Chem. Soc. Chem. Commun. – volume: 26 start-page: 1597 year: 2002 end-page: 1600 publication-title: New J. Chem. – volume: 34 start-page: 1436 year: 2010 end-page: 1440 publication-title: New J. Chem. – volume: 29 start-page: 653 year: 2005 end-page: 658 publication-title: New J. Chem. – volume: 22 start-page: 1459 year: 2003 end-page: 1461 publication-title: J. Mater. Sci. Lett. – volume: 18 start-page: 2028 year: 2008 end-page: 2035 publication-title: J. Mater. Chem. – start-page: 217 year: 2004 end-page: 301 – year: 2000 – volume: 16 start-page: 2041 year: 2004 end-page: 2043 publication-title: Chem. Mater. – volume: 15 start-page: 4136 year: 2005 end-page: 4140 publication-title: J. Mater. Chem. – volume: 111 38 start-page: 3366 3172 year: 1999 1999 end-page: 3370 3175 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 17 start-page: 2234 year: 2005 end-page: 2236 publication-title: Chem. Mater. – volume: 116 start-page: 24320 year: 2012 end-page: 24330 publication-title: J. Phys. Chem. C – volume: 57 start-page: 263 year: 2011 end-page: 268 publication-title: J. Sol–Gel Sci. Technol. – volume: 22 start-page: 1733 year: 2012 end-page: 1746 publication-title: J. Mater. Chem. – volume: 128 start-page: 9061 year: 2006 end-page: 9065 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2058 year: 2003 end-page: 2060 publication-title: J. Mater. Chem. – volume: 124 start-page: 14540 year: 2002 end-page: 14541 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 3833 year: 2013 end-page: 3846 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 1527 year: 2005 end-page: 1537 publication-title: Chem. Eur. J. – volume: 30 start-page: 272 year: 2006 end-page: 276 publication-title: New J. Chem. – volume: 19 start-page: 404 year: 2009 end-page: 410 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3333 year: 1999 end-page: 3341 publication-title: Chem. Mater. – volume: 3 start-page: 120 year: 2003 end-page: 132 publication-title: Chem. Rec. – volume: 118 45 start-page: 3290 3216 year: 2006 2006 end-page: 3328 3251 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 127 start-page: 13746 year: 2005 end-page: 13747 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3 year: 2010 end-page: 39 publication-title: C. R. Chim. – volume: 686 start-page: 223 year: 2003 end-page: 227 publication-title: J. Organomet. Chem. – volume: 16 start-page: 3417 year: 2004 end-page: 3423 publication-title: Chem. Mater. – volume: 16 start-page: 1402 year: 2004 end-page: 1410 publication-title: Chem. Mater. – volume: 15 start-page: 4943 year: 2005 end-page: 4948 publication-title: J. Mater. Chem. – volume: 15 start-page: 4768 year: 2003 end-page: 4774 publication-title: Chem. Mater. – volume: 10 start-page: 1457 year: 2000 end-page: 1463 publication-title: J. Mater. Chem. – year: 2006 – volume: 121 start-page: 5413 year: 1999 end-page: 5425 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 616 year: 2007 end-page: 618 publication-title: J. Mater. Chem. – volume: 12 start-page: 3249 year: 2000 end-page: 3252 publication-title: Chem. Mater. – start-page: 29 year: 2012 end-page: 35 publication-title: Actual. Chim. – volume: 127 start-page: 14108 year: 2005 end-page: 14116 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 729 year: 2011 end-page: 735 publication-title: Solid State Sci. – volume: 24 start-page: 2906 year: 2012 end-page: 2910 publication-title: Adv. Mater. – start-page: 531 year: 2010 end-page: 545 – volume: 40 start-page: 563 year: 2011 end-page: 574 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 3579 year: 2010 end-page: 3584 publication-title: Langmuir – volume: 40 start-page: 1435 year: 2007 end-page: 1443 publication-title: Macromolecules – volume: 19 start-page: 1946 year: 2007 end-page: 1953 publication-title: Chem. Mater. – volume: 14 start-page: 5672 year: 2012 end-page: 5679 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 8119 year: 1999 end-page: 8125 publication-title: Langmuir – start-page: 2662 year: 2003 end-page: 2663 publication-title: Chem. Commun. – volume: 22 start-page: 3021 year: 2010 end-page: 3023 publication-title: Chem. Mater. – volume: 16 start-page: 90 year: 2006 end-page: 95 publication-title: J. Mater. Chem. – volume: 115 42 start-page: 4191 4057 year: 2003 2003 end-page: 4194 4060 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 295 start-page: 2400 year: 2002 end-page: 2403 publication-title: Science – volume: 40 start-page: 688 year: 2011 end-page: 695 publication-title: Chem. Soc. Rev. – ident: e_1_2_7_128_2 doi: 10.1246/bcsj.69.3667 – ident: e_1_2_7_147_2 doi: 10.1039/b516985b – ident: e_1_2_7_26_2 doi: 10.1021/cm702271v – ident: e_1_2_7_52_2 doi: 10.1021/jp0672712 – ident: e_1_2_7_77_2 doi: 10.1021/cm000550w – ident: e_1_2_7_177_2 doi: 10.1023/B:JSST.0000047977.44966.53 – ident: e_1_2_7_32_2 – ident: e_1_2_7_96_2 doi: 10.1021/jp307274d – ident: e_1_2_7_122_2 doi: 10.1023/A:1025779918534 – ident: e_1_2_7_40_2 doi: 10.1021/ja053795o – ident: e_1_2_7_217_2 doi: 10.1039/b509017b – ident: e_1_2_7_90_2 doi: 10.1002/smll.200400027 – ident: e_1_2_7_166_2 doi: 10.1007/s10971-011-2603-8 – ident: e_1_2_7_104_2 – ident: e_1_2_7_124_2 doi: 10.1039/b910345g – ident: e_1_2_7_136_2 doi: 10.1039/a802120a – ident: e_1_2_7_184_2 doi: 10.1021/la400293k – ident: e_1_2_7_226_2 doi: 10.1016/j.jcis.2010.06.013 – volume-title: Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing year: 1990 ident: e_1_2_7_9_2 – ident: e_1_2_7_19_2 doi: 10.1039/C0CS00010H – ident: e_1_2_7_174_2 doi: 10.1002/chem.200390183 – ident: e_1_2_7_171_2 doi: 10.1002/(SICI)1521-3757(19991102)111:21<3366::AID-ANGE3366>3.0.CO;2-2 – ident: e_1_2_7_87_2 doi: 10.1246/bcsj.70.2847 – ident: e_1_2_7_175_3 doi: 10.1002/anie.200352485 – ident: e_1_2_7_8_2 doi: 10.1016/j.crci.2009.06.001 – volume-title: Functional Hybrid Materials year: 2006 ident: e_1_2_7_3_2 – ident: e_1_2_7_15_2 doi: 10.1002/adfm.201100444 – ident: e_1_2_7_116_2 doi: 10.1016/S0022-328X(03)00721-6 – ident: e_1_2_7_141_2 doi: 10.1021/jp962937l – ident: e_1_2_7_120_2 doi: 10.1016/S0022-328X(03)00619-3 – ident: e_1_2_7_197_2 – ident: e_1_2_7_185_2 doi: 10.1039/b510893d – ident: e_1_2_7_4_2 – ident: e_1_2_7_209_2 doi: 10.1039/b508818f – ident: e_1_2_7_68_2 doi: 10.1002/chem.200902454 – ident: e_1_2_7_231_2 doi: 10.1021/ja2046556 – ident: e_1_2_7_158_2 doi: 10.1039/c0cs00219d – ident: e_1_2_7_63_2 doi: 10.1002/chem.200700943 – ident: e_1_2_7_140_2 – ident: e_1_2_7_105_2 doi: 10.1002/adma.200601435 – ident: e_1_2_7_65_2 doi: 10.1039/c0jm01044h – ident: e_1_2_7_145_3 doi: 10.1002/1521-3773(20010803)40:15<2853::AID-ANIE2853>3.0.CO;2-J – ident: e_1_2_7_138_2 doi: 10.1016/j.solidstatesciences.2005.02.003 – ident: e_1_2_7_130_2 doi: 10.1021/la9817866 – ident: e_1_2_7_23_2 doi: 10.1039/b504536n – ident: e_1_2_7_114_2 doi: 10.1002/chem.200700739 – ident: e_1_2_7_2_2 doi: 10.1039/c0cs00136h – ident: e_1_2_7_215_2 doi: 10.1039/b512450f – ident: e_1_2_7_230_2 doi: 10.1039/c2nj20953e – ident: e_1_2_7_31_2 doi: 10.1163/1568554053148735 – ident: e_1_2_7_74_2 doi: 10.1021/la902990v – ident: e_1_2_7_51_2 doi: 10.1002/chem.200700914 – ident: e_1_2_7_188_2 doi: 10.1039/c2cp40250e – ident: e_1_2_7_71_2 doi: 10.1021/ja058680z – ident: e_1_2_7_91_2 doi: 10.1021/la000206d – ident: e_1_2_7_169_2 doi: 10.1021/cm702804r – ident: e_1_2_7_36_2 doi: 10.1021/cr900201r – ident: e_1_2_7_152_2 – volume-title: Silicon in Organic, Organometallic, and Polymer Chemistry year: 2000 ident: e_1_2_7_89_2 – ident: e_1_2_7_190_2 – ident: e_1_2_7_69_2 – ident: e_1_2_7_109_2 doi: 10.1021/ja039146z – ident: e_1_2_7_41_2 – ident: e_1_2_7_38_2 – ident: e_1_2_7_123_2 doi: 10.1039/B615027F – ident: e_1_2_7_165_2 doi: 10.1021/cm990405m – ident: e_1_2_7_198_2 doi: 10.1021/cm050275j – ident: e_1_2_7_72_2 – ident: e_1_2_7_75_2 doi: 10.1021/am1004046 – ident: e_1_2_7_161_2 doi: 10.1021/ja982751v – ident: e_1_2_7_11_2 doi: 10.1039/C0CS00076K – ident: e_1_2_7_24_2 doi: 10.1002/tcr.20073 – ident: e_1_2_7_88_2 doi: 10.1021/cm030432j – ident: e_1_2_7_192_2 doi: 10.1002/chem.200802748 – ident: e_1_2_7_101_2 doi: 10.1039/b618228c – ident: e_1_2_7_189_2 doi: 10.1039/b714785f – ident: e_1_2_7_18_2 doi: 10.1021/cm702100t – ident: e_1_2_7_42_2 – ident: e_1_2_7_113_2 – ident: e_1_2_7_213_2 doi: 10.1039/b512482d – ident: e_1_2_7_53_2 – ident: e_1_2_7_194_2 doi: 10.1021/ja025650c – ident: e_1_2_7_115_2 doi: 10.1039/c0jm01248c – ident: e_1_2_7_207_2 doi: 10.1021/cm701946w – ident: e_1_2_7_107_2 doi: 10.1021/cm062660u – ident: e_1_2_7_118_2 doi: 10.1021/ja980236r – ident: e_1_2_7_222_2 doi: 10.1002/adfm.200600670 – ident: e_1_2_7_10_2 doi: 10.1021/ja963284p – ident: e_1_2_7_86_2 – ident: e_1_2_7_164_2 doi: 10.1021/cm0350683 – ident: e_1_2_7_12_2 doi: 10.1038/416304a – ident: e_1_2_7_186_2 – ident: e_1_2_7_92_2 doi: 10.1021/la202253v – ident: e_1_2_7_146_2 doi: 10.1039/b303672n – ident: e_1_2_7_25_2 doi: 10.1039/B603655D – ident: e_1_2_7_98_2 doi: 10.1021/cm0495212 – start-page: 50 volume-title: Functional Hydrid Materials year: 2004 ident: e_1_2_7_205_2 – ident: e_1_2_7_85_2 doi: 10.1021/cm960137h – ident: e_1_2_7_176_2 – ident: e_1_2_7_131_2 doi: 10.1039/b001556n – ident: e_1_2_7_137_2 – ident: e_1_2_7_187_2 doi: 10.1021/jp060975r – ident: e_1_2_7_151_2 doi: 10.1002/smll.200800254 – ident: e_1_2_7_6_2 – ident: e_1_2_7_218_2 doi: 10.1021/la0515569 – ident: e_1_2_7_201_2 – ident: e_1_2_7_54_2 doi: 10.1002/smll.200500300 – ident: e_1_2_7_206_2 doi: 10.1021/cm060440a – ident: e_1_2_7_170_2 – ident: e_1_2_7_56_2 doi: 10.1021/ja0611238 – ident: e_1_2_7_17_2 doi: 10.1002/ange.200503075 – ident: e_1_2_7_34_2 doi: 10.1021/ma102360t – ident: e_1_2_7_181_2 doi: 10.1039/b504635a – ident: e_1_2_7_20_2 doi: 10.1039/c3cs35345a – ident: e_1_2_7_149_2 doi: 10.1016/j.solidstatesciences.2010.05.003 – ident: e_1_2_7_17_3 doi: 10.1002/anie.200503075 – ident: e_1_2_7_202_2 doi: 10.1021/ja053966p – ident: e_1_2_7_57_2 doi: 10.1021/la980863u – ident: e_1_2_7_61_2 doi: 10.1002/qua.21720 – ident: e_1_2_7_214_2 doi: 10.1021/ma062091b – ident: e_1_2_7_47_2 doi: 10.1021/ja020975e – ident: e_1_2_7_99_2 doi: 10.1016/j.polymer.2004.12.038 – ident: e_1_2_7_30_2 doi: 10.1002/pola.20571 – ident: e_1_2_7_199_2 doi: 10.1002/adfm.200700673 – ident: e_1_2_7_16_2 – ident: e_1_2_7_119_2 doi: 10.1021/cm0101125 – ident: e_1_2_7_50_2 doi: 10.1021/cm702141e – ident: e_1_2_7_156_2 doi: 10.1021/cr00037a013 – ident: e_1_2_7_134_2 – ident: e_1_2_7_55_2 doi: 10.1021/ar6000318 – ident: e_1_2_7_76_2 doi: 10.1016/S1383-5866(01)00104-6 – ident: e_1_2_7_106_2 doi: 10.1039/c2ra00702a – ident: e_1_2_7_224_2 doi: 10.1021/ja0541736 – ident: e_1_2_7_81_2 – ident: e_1_2_7_95_2 doi: 10.1021/la3011579 – ident: e_1_2_7_200_2 doi: 10.1021/ja027991w – ident: e_1_2_7_173_2 doi: 10.1021/ja016053d – ident: e_1_2_7_178_2 doi: 10.1002/adfm.200700299 – ident: e_1_2_7_62_2 – ident: e_1_2_7_180_2 – ident: e_1_2_7_228_2 doi: 10.1007/s10971-010-2224-7 – ident: e_1_2_7_150_2 doi: 10.1246/bcsj.82.1035 – ident: e_1_2_7_172_2 doi: 10.1021/cm0011458 – ident: e_1_2_7_22_2 doi: 10.1002/tcr.10056 – ident: e_1_2_7_29_2 doi: 10.1021/ja0342648 – ident: e_1_2_7_216_2 doi: 10.1002/1521-3757(20010316)113:6<1121::AID-ANGE11210>3.0.CO;2-A – ident: e_1_2_7_60_2 doi: 10.1021/cr2002257 – ident: e_1_2_7_132_2 doi: 10.1039/a907804e – ident: e_1_2_7_49_2 doi: 10.1021/ar0500923 – ident: e_1_2_7_78_2 – ident: e_1_2_7_148_2 – ident: e_1_2_7_58_2 doi: 10.1021/cm011008q – ident: e_1_2_7_43_2 doi: 10.1126/science.1070821 – ident: e_1_2_7_167_2 – ident: e_1_2_7_232_2 doi: 10.1002/ejic.201101037 – start-page: 29 year: 2012 ident: e_1_2_7_195_2 publication-title: Actual. Chim. – ident: e_1_2_7_129_2 – ident: e_1_2_7_66_2 – ident: e_1_2_7_94_2 doi: 10.1039/C1JM13053F – ident: e_1_2_7_227_2 doi: 10.1002/chem.200801106 – ident: e_1_2_7_163_2 doi: 10.1021/cm0498640 – ident: e_1_2_7_154_2 doi: 10.1021/ja00043a014 – ident: e_1_2_7_183_2 doi: 10.1002/ejic.201200616 – ident: e_1_2_7_27_2 doi: 10.1039/B920516K – volume-title: The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials year: 2010 ident: e_1_2_7_7_2 doi: 10.1002/9780470552704 – ident: e_1_2_7_135_2 doi: 10.1021/cm9700615 – ident: e_1_2_7_175_2 doi: 10.1002/ange.200352485 – ident: e_1_2_7_179_2 doi: 10.1002/chem.200401012 – volume-title: Hybrid Materials: Synthesis Characterization, and Applications year: 2007 ident: e_1_2_7_1_2 – ident: e_1_2_7_155_2 – ident: e_1_2_7_64_2 doi: 10.1039/c0cc00341g – ident: e_1_2_7_143_2 doi: 10.1021/cm034967o – ident: e_1_2_7_82_2 doi: 10.1016/S1369-7021(11)70019-0 – ident: e_1_2_7_45_2 doi: 10.1002/0471670561 – ident: e_1_2_7_28_2 – ident: e_1_2_7_108_2 doi: 10.1021/ja808103h – ident: e_1_2_7_117_2 – ident: e_1_2_7_125_2 doi: 10.1246/bcsj.63.2094 – ident: e_1_2_7_126_2 – ident: e_1_2_7_80_2 doi: 10.1002/adma.200802937 – ident: e_1_2_7_168_2 doi: 10.1021/ja066047n – ident: e_1_2_7_223_2 doi: 10.1002/ange.200351419 – ident: e_1_2_7_223_3 doi: 10.1002/anie.200351419 – ident: e_1_2_7_211_2 doi: 10.1021/ja054103z – ident: e_1_2_7_84_2 doi: 10.1021/cr9002819 – ident: e_1_2_7_97_2 doi: 10.1039/B305545K – ident: e_1_2_7_229_2 doi: 10.1039/b813679c – ident: e_1_2_7_196_2 doi: 10.1021/ja065434u – ident: e_1_2_7_208_2 doi: 10.1002/1521-4095(20020805)14:15<1081::AID-ADMA1081>3.0.CO;2-2 – ident: e_1_2_7_14_2 doi: 10.1021/cr00037a012 – ident: e_1_2_7_102_2 doi: 10.1039/b719162f – ident: e_1_2_7_171_3 doi: 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3 – ident: e_1_2_7_153_2 doi: 10.1021/cm00006a003 – ident: e_1_2_7_13_2 doi: 10.1021/cr9502357 – ident: e_1_2_7_110_2 – ident: e_1_2_7_127_2 doi: 10.1039/C39950000241 – ident: e_1_2_7_142_2 doi: 10.1021/cm0209665 – ident: e_1_2_7_111_2 doi: 10.1016/j.memsci.2007.12.044 – ident: e_1_2_7_220_2 doi: 10.1002/adma.200701927 – ident: e_1_2_7_157_2 doi: 10.1021/ar000109b – ident: e_1_2_7_159_2 – ident: e_1_2_7_103_2 doi: 10.1039/c0dt00117a – ident: e_1_2_7_204_2 doi: 10.1021/ja051518b – ident: e_1_2_7_39_2 doi: 10.1002/9780470552704.ch18 – ident: e_1_2_7_225_2 doi: 10.1021/ja903176k – ident: e_1_2_7_193_2 doi: 10.1039/b9nj00741e – ident: e_1_2_7_21_2 – ident: e_1_2_7_67_2 doi: 10.1039/b512537e – ident: e_1_2_7_145_2 doi: 10.1002/1521-3757(20010803)113:15<2946::AID-ANGE2946>3.0.CO;2-1 – ident: e_1_2_7_203_2 doi: 10.1021/ja0575732 – ident: e_1_2_7_73_2 doi: 10.1021/ja0499400 – ident: e_1_2_7_182_2 doi: 10.1021/jp2022902 – ident: e_1_2_7_221_2 doi: 10.1002/adma.201200422 – ident: e_1_2_7_35_2 doi: 10.1039/b506815k – ident: e_1_2_7_59_2 doi: 10.1002/1521-4095(20020318)14:6<439::AID-ADMA439>3.0.CO;2-8 – ident: e_1_2_7_144_2 doi: 10.1039/b316089k – ident: e_1_2_7_48_2 doi: 10.1039/B603555H – ident: e_1_2_7_112_2 doi: 10.1039/b908641m – ident: e_1_2_7_44_2 doi: 10.1126/science.1071063 – ident: e_1_2_7_191_2 doi: 10.1039/b419376h – ident: e_1_2_7_133_2 doi: 10.1016/j.jssc.2004.02.026 – ident: e_1_2_7_83_2 doi: 10.1021/cm9035456 – ident: e_1_2_7_160_2 doi: 10.1021/cm950067z – ident: e_1_2_7_37_2 doi: 10.1021/cm901771y – ident: e_1_2_7_70_2 doi: 10.1039/B308703D – ident: e_1_2_7_162_2 doi: 10.1021/cm000451i – ident: e_1_2_7_210_2 doi: 10.1021/ja026799r – ident: e_1_2_7_219_2 – ident: e_1_2_7_46_2 doi: 10.1021/nn100273m – ident: e_1_2_7_5_2 doi: 10.1039/c0jm90087g – ident: e_1_2_7_93_2 – ident: e_1_2_7_100_2 – ident: e_1_2_7_212_2 doi: 10.1039/B416157B – ident: e_1_2_7_121_2 doi: 10.1021/la011016l – ident: e_1_2_7_139_2 doi: 10.1039/b206516a – ident: e_1_2_7_79_2 doi: 10.1002/adfm.200801387 – ident: e_1_2_7_33_2 doi: 10.1039/C1JM14231C |
SSID | ssj0009633 |
Score | 2.372589 |
SecondaryResourceType | review_article |
Snippet | Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of... Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of... |
SourceID | hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1790 |
SubjectTerms | Amorphous materials Catalysis Chemical Sciences Chemistry Crosslinking hybrid materials Hybrids Long range order nanostructures Nanotechnology organosilane Other Polymerization Self assembly Sol gel process sol-gel processes Synthesis Synthesis (chemistry) |
Title | Ordered Hybrids from Template-Free Organosilane Self-Assembly |
URI | https://api.istex.fr/ark:/67375/WNG-F1DB807F-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201303070 https://www.ncbi.nlm.nih.gov/pubmed/24449381 https://www.proquest.com/docview/1493476204 https://www.proquest.com/docview/1494306071 https://www.proquest.com/docview/1777996742 https://hal.science/hal-04383919 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPcAFKI8SKFVACE5pHceJ7eNut2GFUJGgFb1Z8SMCdbtb7QNRTv0J_Y38EmacTcoiHhLckngsx_Z4PGPPfEPI88xzCrLRJmDPsoTLvE4UZTZJa6q8MYXlPjjIHhTDI_76OD_-IYq_wYfoDtxwZQR5jQu8MrPdK9BQ6BNGkqMMBrYFIZxmBYLnD95d4UcBdzW55LlIEIO1RW2kbHe1-squdP0j-kSu4zB_-ZXiuarHho2ovE2qtguN_8nJzmJuduzXn9Ad_6ePd8itpZYa9xq22iDX_PguubHXJoe7R3pvpyHLZzw8x5CvWYxhKvGhPz0bgfL67eKynHofh0DPyewTOtTG7_2ohgK8ZT41o_P75KjcP9wbJstsDInNJbpwqFwW3BWOM-GYMdxlgnoLFo8yoLSllS14xZnzgjFXqzpjKhfcOyvxmBWExwOyNp6M_UMSZ0o6mqnK5rXilZGGC1M7ar2qhTVCRiRpZ0PbJVQ5ZswY6QZkmWkcGN0NTERedvRnDUjHbymfweR2RIitPey90fgtgLaqVH1OI_IizH1HVk1P0P9N5PrDwStdpoO-pKLULCJbLXPo5dKfgS2lMi4Q5j8iT7timB68iYHhniwCDQdbDdS7P9AIIcAYFRya2WwYr_sh0MmgFQm1WWCfv_RaI7xG9_boXyo9JjfhmaO_ekq3yNp8uvBPQB2bm22y3usP-uV2WHrfAfEZKjQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R9lAuUN6BAgEhOKVNHCeOj0tLCLAsEmwFNyt2HIG63a32gSin_oT-xv4SZpxNqkU8JDjGGcuxPXa-sWe-AXgSWx7i3mgCtGdZwLOkDmTITBDVobRap4Zb5yA7SIsD_vpT0noTUixMww_RHbjRynD7NS1wOpDevWANxU5RKDltwqi3a7DBEW2Q_bX__oJBCvWrySbPRUAsrC1vY8h2V-uv_JfWPpNX5AYN9LdfQc9VJOt-RflV0G0nGg-Uw53FXO-Y7z_xO_5XL7fgyhKo-r1Gs67BJTu-Dpt7bX64G9B7N3WJPv3ihKK-Zj5FqvhDe3Q8Qvx6fnqWT631XaznZPaFfGr9D3ZU4wu6aD7So5ObcJC_GO4VwTIhQ2CSjLw4ZJKlvEorzkTFtOZVLEJr0OiRGnFbVJqUl5xVVjBW1bKOmUwEt5XJ6KQV949bsD6ejO0d8GOZVWEsS5PUkpc601zougqNlbUwWmQeBO10KLNkK6ekGSPV8CwzRQOjuoHx4Fknf9zwdPxW8jHObidE9NpFr6-ozPG2ykh-jTx46ia_Eyunh-QCJxL1cfBS5dH-8ywUuWIebLfaoZarf4bmlIy5IKZ_Dx51r3F66DIGh3uycDIczTVEeH-QEUKgPSo4NnO70bzugxCWYSsZ1mZOf_7Sa0UMG93T3X-p9BA2i-Hbvuq_Gry5B5exnJP7ehRuw_p8urD3EZ3N9QO3_n4AN1Qs4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVgIuvB-BAgEhOKVNHCeOj0tLWKBaELSiNyt-RKBud1f7QJQTP4HfyC9hxtmkLOIhwTHxWMnYY_ubZOYbgIep4zHujSZCf5ZFvMjqSMbMREkdS6d1brjzAbKDvH_AXxxmhz9k8Tf8EN0HN1oZfr-mBT6x9fYpaSjqRJnktAej2a7BBs8RThAsenNKIIXm1RST5yIiEtaWtjFm26v9V46ltfcUFLlB4_zpV8hzFcj6k6i8CFWrQxOAcrS1mOst8_knesf_UfISXFjC1LDX2NVlOONGV-DcTlsd7ir0Xk19mc-wf0I5X7OQ8lTCfXc8GSJ6_fblazl1LvSZnuPZB4qoDd-6YY0N9Jv5WA9PrsFB-XR_px8tyzFEJisohkNmRc5tbjkTlmnNbSpiZ9DlkRpRW1KZnFecWScYs7WsUyYzwZ01BX1nxd3jOqyPxiN3E8JUFjZOZWWyWvJKF5oLXdvYOFkLo0URQNTOhjJLrnIqmTFUDcsyUzQwqhuYAB538pOGpeO3kg9wcjshItfu9_YU3fOsrTKRH5MAHvm578Sq6REFwIlMvRs8U2Wy-6SIRalYAJutcajl2p-hMyVTLojnP4D7XTNOD_2KweEeL7wMR2cN8d0fZIQQ6I0Kjo-50Rhe90IIyvApBfZm3nz-orUifo3u6ta_dLoHZ1_vlmrv-eDlbTiPtznFrifxJqzPpwt3B6HZXN_1q-87f3IrkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordered+Hybrids+from+Template-Free+Organosilane+Self-Assembly&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chemtob%2C+Abraham&rft.au=Ni%2C+Lingli&rft.au=Croutxe-Barghorn%2C+C%C3%A9line&rft.au=Boury%2C+Bruno&rft.date=2014-02-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=7&rft.spage=1790&rft_id=info:doi/10.1002%2Fchem.201303070&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3200517171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |