Ordered Hybrids from Template-Free Organosilane Self-Assembly

Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 20; no. 7; pp. 1790 - 1806
Main Authors Chemtob, Abraham, Ni, Lingli, Croutxé-Barghorn, Céline, Boury, Bruno
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 10.02.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.201303070

Cover

Abstract Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. A successful marriage: Periodically ordered hybrids represent the successful marriage of organosilane sol–gel polymerization and supramolecular chemistry. Their template‐free and single‐step synthesis procedure has no equivalent in polymer chemistry (see scheme)
AbstractList Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. A successful marriage: Periodically ordered hybrids represent the successful marriage of organosilane sol-gel polymerization and supramolecular chemistry. Their template-free and single-step synthesis procedure has no equivalent in polymer chemistry (see scheme)
Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.
Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.
Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. A successful marriage: Periodically ordered hybrids represent the successful marriage of organosilane sol–gel polymerization and supramolecular chemistry. Their template‐free and single‐step synthesis procedure has no equivalent in polymer chemistry (see scheme)
Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three con-current processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.
Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self-assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well-established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono-, bis-, or multisilylated organosilane building blocks self-assembling into hybrid mesostructures or superstructures, subsequently cross-linked by siloxane Si-O-Si condensation. The general synthesis procedure is template-free and one-step. However, three concurrent processes underlie the generation of self-organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self-assembly, and kinetically controlled sol-gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long-range order. Since the first developments in the mid-1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. [PUBLICATION ABSTRACT]
Author Boury, Bruno
Ni, Lingli
Chemtob, Abraham
Croutxé-Barghorn, Céline
Author_xml – sequence: 1
  givenname: Abraham
  surname: Chemtob
  fullname: Chemtob, Abraham
  email: abraham.chemtob@uha.fr
  organization: Laboratory of Photochemistry and Macromolecular Engineering, ENSCMu, University of Haute-Alsace, 3 rue Alfred Werner 68093 Mulhouse Cedex (France), Fax: (+33) 389335014
– sequence: 2
  givenname: Lingli
  surname: Ni
  fullname: Ni, Lingli
  organization: Laboratory of Photochemistry and Macromolecular Engineering, ENSCMu, University of Haute-Alsace, 3 rue Alfred Werner 68093 Mulhouse Cedex (France), Fax: (+33) 389335014
– sequence: 3
  givenname: Céline
  surname: Croutxé-Barghorn
  fullname: Croutxé-Barghorn, Céline
  organization: Laboratory of Photochemistry and Macromolecular Engineering, ENSCMu, University of Haute-Alsace, 3 rue Alfred Werner 68093 Mulhouse Cedex (France), Fax: (+33) 389335014
– sequence: 4
  givenname: Bruno
  surname: Boury
  fullname: Boury, Bruno
  organization: Institut Charles Gerhardt Montpellier, UMR5253 CNRS-UM2-ENSCM-UM1, Université Montpellier 2, Montpellier (France)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24449381$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04383919$$DView record in HAL
BookMark eNqFkc1v0zAYxi00xLrClSOqxIUdUl5_xI4PHEpZV6RCDwxxtJz4DfPIR2enjP73JMpWoUloJ0vW7_fosZ8zctK0DRLymsKcArD3xTXWcwaUAwcFz8iEpowmXMn0hExAC5XIlOtTchbjDQBoyfkLcsqEEJpndEI-bIPDgG62PuTBuzgrQ1vPrrDeVbbDZBUQZ9vw0zZt9JVtcPYNqzJZxIh1Xh1ekuelrSK-uj-n5Pvq4mq5Tjbby8_LxSYp0oxCQnWaSeGkE0w5lufCcQVYpCLTOaWM2kIKK5hDxZgrdcmZTpVAV2TIaQbAp-R8zL22ldkFX9twMK31Zr3YmOEOBM-4pvo37dl3I7sL7e0eY2dqHwushvbtPhqqlNJaKsGeRoUWHCSoIfXtI_Sm3Yemf_RAcaEk6ztMyZt7ap_X6I5VH_67B8QIFKGNMWBpCt_ZzrdNF6yvDAUzzGqGWc1x1l6bP9Iekv8r6FG48xUenqDNcn3x5V83GV0fO_xzdG34ZaTiKjU_vl6aFf30MQO1Moz_BYZ9vys
CODEN CEUJED
CitedBy_id crossref_primary_10_1007_s00396_017_4119_4
crossref_primary_10_3390_buildings14061756
crossref_primary_10_1021_acs_langmuir_6b01657
crossref_primary_10_1007_s00604_023_05669_3
crossref_primary_10_1080_15421406_2021_1924547
crossref_primary_10_1080_15421406_2020_1830351
crossref_primary_10_1002_anie_201705942
crossref_primary_10_1016_j_surfin_2024_103918
crossref_primary_10_1246_bcsj_20170410
crossref_primary_10_1016_j_ijhydene_2019_03_014
crossref_primary_10_1016_j_jiec_2018_10_007
crossref_primary_10_2109_jcersj2_22078
crossref_primary_10_1007_s11172_021_3071_0
crossref_primary_10_1002_anie_201411557
crossref_primary_10_1021_jacs_5b06172
crossref_primary_10_1021_acsami_5b08499
crossref_primary_10_1080_15421406_2020_1870029
crossref_primary_10_1039_C5TC00721F
crossref_primary_10_1080_1539445X_2017_1308380
crossref_primary_10_1039_C4RA01709A
crossref_primary_10_1007_s10971_021_05500_6
crossref_primary_10_1016_j_eurpolymj_2024_112956
crossref_primary_10_1039_C6RA13995G
crossref_primary_10_1039_C6NR06862F
crossref_primary_10_1016_j_comptc_2015_08_008
crossref_primary_10_1021_acsami_6b00878
crossref_primary_10_1016_j_coche_2016_01_008
crossref_primary_10_1039_C5CP02742J
crossref_primary_10_1007_s11998_024_00969_6
crossref_primary_10_1002_er_5641
crossref_primary_10_1016_j_poly_2021_115413
crossref_primary_10_1002_asia_202400739
crossref_primary_10_1039_C5RA15871K
crossref_primary_10_3390_polym13091415
crossref_primary_10_1016_j_lwt_2023_115026
crossref_primary_10_1039_C5NR03065J
crossref_primary_10_1002_ange_201705942
crossref_primary_10_1007_s10971_017_4376_1
crossref_primary_10_1039_C5CP00433K
crossref_primary_10_1021_acs_iecr_0c03368
crossref_primary_10_1021_la5023938
crossref_primary_10_2139_ssrn_4132975
crossref_primary_10_1016_j_bios_2021_113460
crossref_primary_10_1007_s10971_018_4774_z
crossref_primary_10_1080_15421406_2020_1834907
crossref_primary_10_1021_acs_langmuir_0c00515
crossref_primary_10_1039_C5RA04300J
crossref_primary_10_1002_jbm_b_34126
crossref_primary_10_1007_s10971_017_4482_0
crossref_primary_10_1016_j_colsurfa_2023_132135
crossref_primary_10_1002_admi_201601249
crossref_primary_10_1002_chin_201419254
crossref_primary_10_3390_polym11020205
crossref_primary_10_3390_polym13132082
crossref_primary_10_1002_tcr_201700096
crossref_primary_10_1039_D0CC03379K
crossref_primary_10_1002_ejic_201402673
crossref_primary_10_1039_C5NR05649G
crossref_primary_10_1002_slct_201700653
crossref_primary_10_1007_s10450_019_00075_9
crossref_primary_10_1021_acsbiomaterials_6b00585
crossref_primary_10_1002_ange_201411557
Cites_doi 10.1246/bcsj.69.3667
10.1039/b516985b
10.1021/cm702271v
10.1021/jp0672712
10.1021/cm000550w
10.1023/B:JSST.0000047977.44966.53
10.1021/jp307274d
10.1023/A:1025779918534
10.1021/ja053795o
10.1039/b509017b
10.1002/smll.200400027
10.1007/s10971-011-2603-8
10.1039/b910345g
10.1039/a802120a
10.1021/la400293k
10.1016/j.jcis.2010.06.013
10.1039/C0CS00010H
10.1002/chem.200390183
10.1002/(SICI)1521-3757(19991102)111:21<3366::AID-ANGE3366>3.0.CO;2-2
10.1246/bcsj.70.2847
10.1002/anie.200352485
10.1016/j.crci.2009.06.001
10.1002/adfm.201100444
10.1016/S0022-328X(03)00721-6
10.1021/jp962937l
10.1016/S0022-328X(03)00619-3
10.1039/b510893d
10.1039/b508818f
10.1002/chem.200902454
10.1021/ja2046556
10.1039/c0cs00219d
10.1002/chem.200700943
10.1002/adma.200601435
10.1039/c0jm01044h
10.1002/1521-3773(20010803)40:15<2853::AID-ANIE2853>3.0.CO;2-J
10.1016/j.solidstatesciences.2005.02.003
10.1021/la9817866
10.1039/b504536n
10.1002/chem.200700739
10.1039/c0cs00136h
10.1039/b512450f
10.1039/c2nj20953e
10.1163/1568554053148735
10.1021/la902990v
10.1002/chem.200700914
10.1039/c2cp40250e
10.1021/ja058680z
10.1021/la000206d
10.1021/cm702804r
10.1021/cr900201r
10.1021/ja039146z
10.1039/B615027F
10.1021/cm990405m
10.1021/cm050275j
10.1021/am1004046
10.1021/ja982751v
10.1039/C0CS00076K
10.1002/tcr.20073
10.1021/cm030432j
10.1002/chem.200802748
10.1039/b618228c
10.1039/b714785f
10.1021/cm702100t
10.1039/b512482d
10.1021/ja025650c
10.1039/c0jm01248c
10.1021/cm701946w
10.1021/cm062660u
10.1021/ja980236r
10.1002/adfm.200600670
10.1021/ja963284p
10.1021/cm0350683
10.1038/416304a
10.1021/la202253v
10.1039/b303672n
10.1039/B603655D
10.1021/cm0495212
10.1021/cm960137h
10.1039/b001556n
10.1021/jp060975r
10.1002/smll.200800254
10.1021/la0515569
10.1002/smll.200500300
10.1021/cm060440a
10.1021/ja0611238
10.1002/ange.200503075
10.1021/ma102360t
10.1039/b504635a
10.1039/c3cs35345a
10.1016/j.solidstatesciences.2010.05.003
10.1002/anie.200503075
10.1021/ja053966p
10.1021/la980863u
10.1002/qua.21720
10.1021/ma062091b
10.1021/ja020975e
10.1016/j.polymer.2004.12.038
10.1002/pola.20571
10.1002/adfm.200700673
10.1021/cm0101125
10.1021/cm702141e
10.1021/cr00037a013
10.1021/ar6000318
10.1016/S1383-5866(01)00104-6
10.1039/c2ra00702a
10.1021/ja0541736
10.1021/la3011579
10.1021/ja027991w
10.1021/ja016053d
10.1002/adfm.200700299
10.1007/s10971-010-2224-7
10.1246/bcsj.82.1035
10.1021/cm0011458
10.1002/tcr.10056
10.1021/ja0342648
10.1002/1521-3757(20010316)113:6<1121::AID-ANGE11210>3.0.CO;2-A
10.1021/cr2002257
10.1039/a907804e
10.1021/ar0500923
10.1021/cm011008q
10.1126/science.1070821
10.1002/ejic.201101037
10.1039/C1JM13053F
10.1002/chem.200801106
10.1021/cm0498640
10.1021/ja00043a014
10.1002/ejic.201200616
10.1039/B920516K
10.1002/9780470552704
10.1021/cm9700615
10.1002/ange.200352485
10.1002/chem.200401012
10.1039/c0cc00341g
10.1021/cm034967o
10.1016/S1369-7021(11)70019-0
10.1002/0471670561
10.1021/ja808103h
10.1246/bcsj.63.2094
10.1002/adma.200802937
10.1021/ja066047n
10.1002/ange.200351419
10.1002/anie.200351419
10.1021/ja054103z
10.1021/cr9002819
10.1039/B305545K
10.1039/b813679c
10.1021/ja065434u
10.1002/1521-4095(20020805)14:15<1081::AID-ADMA1081>3.0.CO;2-2
10.1021/cr00037a012
10.1039/b719162f
10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3
10.1021/cm00006a003
10.1021/cr9502357
10.1039/C39950000241
10.1021/cm0209665
10.1016/j.memsci.2007.12.044
10.1002/adma.200701927
10.1021/ar000109b
10.1039/c0dt00117a
10.1021/ja051518b
10.1002/9780470552704.ch18
10.1021/ja903176k
10.1039/b9nj00741e
10.1039/b512537e
10.1002/1521-3757(20010803)113:15<2946::AID-ANGE2946>3.0.CO;2-1
10.1021/ja0575732
10.1021/ja0499400
10.1021/jp2022902
10.1002/adma.201200422
10.1039/b506815k
10.1002/1521-4095(20020318)14:6<439::AID-ADMA439>3.0.CO;2-8
10.1039/b316089k
10.1039/B603555H
10.1039/b908641m
10.1126/science.1071063
10.1039/b419376h
10.1016/j.jssc.2004.02.026
10.1021/cm9035456
10.1021/cm950067z
10.1021/cm901771y
10.1039/B308703D
10.1021/cm000451i
10.1021/ja026799r
10.1021/nn100273m
10.1039/c0jm90087g
10.1039/B416157B
10.1021/la011016l
10.1039/b206516a
10.1002/adfm.200801387
10.1039/C1JM14231C
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
1XC
DOI 10.1002/chem.201303070
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
CrossRef


Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 1806
ExternalDocumentID oai_HAL_hal_04383919v1
3200517171
24449381
10_1002_chem_201303070
CHEM201303070
ark_67375_WNG_F1DB807F_2
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
1XC
ID FETCH-LOGICAL-c5810-195864d6d427d2bb4d370ec5489b1121ac64a42de722df9f329574edc8e318003
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri May 09 12:14:29 EDT 2025
Thu Jul 10 19:16:00 EDT 2025
Fri Jul 11 10:01:15 EDT 2025
Fri Jul 25 10:16:46 EDT 2025
Wed Feb 19 01:57:24 EST 2025
Thu Apr 24 23:04:39 EDT 2025
Tue Jul 01 03:34:44 EDT 2025
Wed Jan 22 16:17:57 EST 2025
Wed Oct 30 09:51:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords self-assembly
hybrid materials
organosilane
nanostructures
sol-gel processes
Ordered hybrids
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5810-195864d6d427d2bb4d370ec5489b1121ac64a42de722df9f329574edc8e318003
Notes ArticleID:CHEM201303070
istex:54B2082FA4975B47AA1CC981C4EA48B613DA0CC7
ark:/67375/WNG-F1DB807F-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4400-9096
0000-0003-4434-1870
PMID 24449381
PQID 1493476204
PQPubID 986340
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_04383919v1
proquest_miscellaneous_1777996742
proquest_miscellaneous_1494306071
proquest_journals_1493476204
pubmed_primary_24449381
crossref_citationtrail_10_1002_chem_201303070
crossref_primary_10_1002_chem_201303070
wiley_primary_10_1002_chem_201303070_CHEM201303070
istex_primary_ark_67375_WNG_F1DB807F_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 10, 2014
PublicationDateYYYYMMDD 2014-02-10
PublicationDate_xml – month: 02
  year: 2014
  text: February 10, 2014
  day: 10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References Y. Fukushima, M. Tani, Bull. Chem. Soc. Jpn. 1996, 69, 3667-3671.
K. Fujii, T. Fujita, N. Iyi, H. Kodama, K. Kitamura, J. Mater. Sci. Lett. 2003, 22, 1459-1461.
Angew. Chem. Int. Ed. 2003, 42, 4057-4060.
M. Barboiu, C. Guizard, N. Hovnanian, L. Cot, Sep. Purif. Technol. 2001, 25, 211-218.
M. J. Rosen in Surfactants and Interfacial Phenomena, 3rd ed., Wiley, Hoboken, New Jersey, 2004, pp. 217-301.
A. Mehdi, J. Mater. Chem. 2010, 20, 9281-9286.
N. T. Whilton, S. L. Burkett, S. Mann, J. Mater. Chem. 1998, 8, 1927-1932.
C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 2011, 40, 696-753.
H. W. Ro, E. S. Park, C. L. Soles, D. Y. Yoon, Chem. Mater. 2010, 22, 1330-1339.
H. Tang, J. Sun, J. Jiang, X. Zhou, T. Hu, P. Xie, R. Zhang, J. Am. Chem. Soc. 2002, 124, 10482-10488.
M. Fernandes, S. S. Nobre, X. Qinghong, C. Carcel, J. N. Cachia, X. Cattoen, J. M. Sousa, R. A. S. Ferreira, L. D. Carlos, C. V. Santilli, M. W. C. Man, V. de Zea Bermudez, J. Phys. Chem. B 2011, 115, 10877-10891.
G. Arrachart, C. Carcel, J. J. E. Moreau, G. Hartmeyer, B. Alonso, D. Massiot, G. Creff, J.-L. Bantignies, P. Dieudonne, M. W. C. Man, G. Althoff, F. Babonneau, C. Bonhomme, J. Mater. Chem. 2008, 18, 392-399.
K. Rurack, R. Martinez-Manez, The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, Wiley, Hoboken, New Jersey, 2010.
F. Ben, B. Boury, R. J. P. Corriu, Adv. Mater. 2002, 14, 1081-1083.
S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304-307.
Q. P. Ke, W. Q. Fu, S. Wang, T. D. Tang, J. F. Zhang, ACS Appl. Mater. Interfaces 2010, 2, 2393-2398.
F. Hoffmann, M. Froba, Chem. Soc. Rev. 2011, 40, 608-620.
M. Barboiu, Chem. Commun. 2010, 46, 7466-7476.
O. J. Dautel, M. Robitzer, J. P. Lere-Porte, F. Serein-Spirau, J. J. E. Moreau, J. Am. Chem. Soc. 2006, 128, 16213-16223.
D. A. Loy, J. V. Beach, B. M. Baugher, R. A. Assink, K. J. Shea, J. Tran, J. H. Small, Chem. Mater. 1999, 11, 3333-3341.
S. Mihai, A. Cazacu, C. Arnal-Herault, G. Nasr, A. Meffre, A. van der Lee, M. Barboiu, New J. Chem. 2009, 33, 2335-2343.
K. J. Shea, D. A. Loy, Acc. Chem. Res. 2001, 34, 707-716
L. D. Carlos, V. d. Z. Bermudez, V. S. Amaral, S. C. Nunes, N. J. O. Silva, R. A. S. Ferreira, J. Rocha, C. V. Santilli, D. Ostrovskii, Adv. Mater. 2007, 19, 341-348
J. J. E. Moreau, L. Vellutini, C. Bied, M. W. C. Man, J. Sol-Gel Sci. Technol. 2004, 31, 151-156
D. J. Boday, R. J. Stover, B. Muriithi, D. A. Loy, J. Sol-Gel Sci. Technol. 2012, 61, 144-150.
S. Mihai, Y. Le Duc, D. Cot, M. Barboiu, J. Mater. Chem. 2010, 20, 9443-9448.
F. Ben, B. Boury, R. J. P. Corriu, V. Le Strat, Chem. Mater. 2000, 12, 3249-3252.
A. Shimojima, M. Sakurai, K. Kuroda, T. Okubo, J. Colloid Interface Sci. 2010, 350, 155-160.
M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000.
R. Mouawia, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2008, 18, 2028-2035.
K.-M. Kim, T. Ogoshi, Y. Chujo, J. Polym. Sci. Part A 2005, 43, 473-478
X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906-2910.
B. P. Pichon, S. Scampini, C. Bied, J. J. E. Moreau, M. W. C. Man, Eur. J. Inorg. Chem. 2012, 5312-5322.
A. Shimojima, Y. Sugahara, K. Kuroda, Bull. Chem. Soc. Jpn. 1997, 70, 2847-2853
L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, J. Phys. Chem. C 2012, 116, 24320-24330.
R. M. Laine, M. F. Roll, Macromolecules 2011, 44, 1073-1109
T. Mizutani, Y. Fukushima, A. Okada, O. Kamigaito, Bull. Chem. Soc. Jpn. 1990, 63, 2094-2098.
A. R. Al Derzi, A. Gregusova, K. Runge, R. J. Bartlett, Int. J. Quantum Chem. 2008, 108, 2088-2096.
H. Muramatsu, R. J. P. Corriu, B. Boury, J. Am. Chem. Soc. 2003, 125, 854-855.
T. Kishida, N. Fujita, K. Sada, S. Shinkai, Langmuir 2005, 21, 9432-9439.
J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, Chem. Eur. J. 2003, 9, 1594-1599.
O. J. Dautel, C. Borras, J.-D. Borras, J. J. E. Moreau, Actual. Chim. 2012, 29-35.
N. Umeda, A. Shimojima, K. Kuroda, J. Organomet. Chem. 2003, 686, 223-227.
B. Boury, R. J. P. Corriu, V. Le Strat, P. Delord, M. Nobili, Angew. Chem. 1999, 111, 3366-3370
Y. Kaneko, N. Iyi, K. Kurashima, T. Matsumoto, T. Fujita, K. Kitamura, Chem. Mater. 2004, 16, 3417-3423.
Q. P. Ke, G. L. Li, Y. Liu, T. He, X. M. Li, Langmuir 2010, 26, 3579-3584
A. N. Parikh, M. A. Schivley, E. Koo, K. Seshadri, D. Aurentz, K. Mueller, D. L. Allara, J. Am. Chem. Soc. 1997, 119, 3135-3143.
G. Cerveau, R. J. P. Corriu, E. Framery, Chem. Mater. 2001, 13, 3373-3388.
J. H. Sim, S.-I. Lee, H.-J. Lee, R. Kasica, H.-M. Kim, C. L. Soles, K.-B. Kim, D. Y. Yoon, Chem. Mater. 2010, 22, 3021-3023
K. Fujii, S. Hayashi, H. Kodama, Chem. Mater. 2003, 15, 1189-1197
L. Yang, H. Peng, K. Huang, J. T. Mague, H. Li, Y. Lu, Adv. Funct. Mater. 2008, 18, 1526-1535.
H. Peng, J. Tang, L. Yang, J. Pang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2006, 128, 5304-5305.
J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, J. L. Bantignies, P. Dieudonne, J. L. Sauvajol, J. Am. Chem. Soc. 2001, 123, 7957-7958.
C. Arnal-Hérault, M. Barboiu, A. Pasc, M. Michau, P. Perriat, A. van der Lee, Chem. Eur. J. 2007, 13, 6792-6800
D. Brandhuber, H. Peterlik, N. Husing, Small 2006, 2, 503-506
C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, C. R. Chim. 2010, 13, 3-39.
A. Shimojima, R. Goto, N. Atsumi, K. Kuroda, Chem. Eur. J. 2008, 14, 8500-8506.
J. J. E. Moreau, L. Vellutini, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, J.-L. Sauvajol, C. Bied, J. Mater. Chem. 2005, 15, 4943-4948.
A. Mehdi, C. Reyé, R. J. P. Corriu, Chem. Soc. Rev. 2011, 40, 563-574.
A. Shimojima, Y. Sugahara, K. Kuroda, J. Am. Chem. Soc. 1998, 120, 4528-4529
M. Khiterer, D. A. Loy, C. J. Cornelius, C. H. Fujimoto, J. H. Small, T. M. McIntire, K. J. Shea, Chem. Mater. 2006, 18, 3665-3673.
M. Michau, M. Barboiu, R. Caraballo, C. Arnal-Hérault, P. Perriat, A. van der Lee, A. Pasc, Chem. Eur. J. 2008, 14, 1776-1783
S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891-908
X. Sallenave, O. J. Dautel, G. Wantz, P. Valvin, J.-P. Lère-Porte, J. J. E. Moreau, Adv. Funct. Mater. 2009, 19, 404-410
F. Lerouge, G. Cerveau, R. J. P. Corriu, New J. Chem. 2006, 30, 272-276.
E. Besson, A. Mehdi, A. Van der Lee, H. Chollet, C. Reyé, R. Guilard, R. J. P. Corriu, Chem. Eur. J. 2010, 16, 10226-10233.
S. C. Nunes, N. J. O. Silva, J. Hummer, R. A. S. Ferreira, P. Almeida, L. D. Carlos, V. d. Z. Bermudez, RSC Adv. 2012, 2, 2087-2099.
B. Boury, F. Ben, R. J. P. Corriu, Angew. Chem. 2001, 113, 2946-2948
G. Creff, B. P. Pichon, C. Blanc, D. Maurin, J. L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Roy, J. R. Bartlett, M. W. C. Man, J. L. Bantignies, Langmuir 2013, 29, 5581-5588.
D. R. Dunphy, B. Smarsly, C. J. Brinker in Supramolecular Chemistry of Organic-Inorganic Hybrid Materials (Eds.: K. Rurack, R. Martinez-Manez), Wiley, Hoboken, New Jersey, 2010, pp. 531-545
E. Besson, A. Mehdi, C. Reye, P. Gaveau, R. J. P. Corriu, Dalton Trans. 2010, 39, 7534-7539.
L. Zhao, D. A. Loy, K. J. Shea, J. Am. Chem. Soc. 2006, 128, 14250-14251
J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Am. Chem. Soc. 2005, 127, 11204-11205.
M. Barboiu, S. Cerneaux, A. van der Lee, G. Vaughan, J. Am. Chem. Soc. 2004, 126, 3545-3550.
M. Ohashi, Y. Goto, N. Mizoshita, T. Ohsuna, T. Tani, S. Inagaki, Bull. Chem. Soc. Jpn. 2009, 82, 1035-1038.
J. M. Lehn, Science 2002, 295, 2400-2403.
J. J. E. Moreau, B. P. Pichon, G. Arrachart, M. W. C. Man, C. Bied, New J. Chem. 2005, 29, 653-658
A. Sayari, W. H. Wang, J. Am. Chem. Soc. 2005, 127, 12194-12195.
C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.
B. Boury, R. J. P. Corriu, Chem. Rec. 2003, 3, 120-132
L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, Langmuir 2012, 28, 7129-7133.
I. Karatchevtseva, D. J. Cassidy, M. Wong Chi Man, D. R. G. Mitchell, J. V. Hanna, C. Carcel, C. Bied, J. J. E. Moreau, J. R. Bartlett, Adv. Funct. Mater. 2007, 17, 3926-3932.
A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2005, 127, 14108-14116.
G. Creff, G. Arrachart, P. Hermet, H. Wadepohl, R. Almairac, D. Maurin, J.-L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, Phys. Chem. Chem. Phys. 2012, 14, 5672-5679.
T. Suzuki, A. Shimojima, Y. Fujimoto, K. Kuroda, Chem. Eur. J. 2008, 14, 973-980.
R. Goto, A. Shimojima, H. Kuge, K. Kuroda, Chem. Commun. 2008, 6152-6154.
K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai, Chem. Soc. Rev. 2007, 36, 415-435.
Y. Fukushima, M. Tani, J. Chem. Soc. Chem. Commun. 1995, 241-242
Y. Kaneko, N. Iyi, J. Mater. Chem. 2009, 19, 7106-7111.
Y.-C. Liao, J. T. Roberts, J. Am. Chem. Soc. 2006, 128, 9061-9065.
L. Zhao, M. Vaupel, D. A. Loy, K. J. Shea, Chem. Mater. 2008, 20, 1870-1876.
J. Beckmann, S. Grabowsky, J. Phys. Chem. A 2007, 111, 2011-2019.
J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2005, 15, 841-843.
C. Triantafillidis, M. Elsaesser, N. Husing, Chem. Soc. Rev. 2013, 42, 3833-3846.
J. Pang, L. Yang, D. A. Loy, H. Peng, H. S. Ashbaugh, J. Mague, C. J. Brinker, Y. Lu, Chem. Commun. 2006, 1545-1547.
Q. H. Yang, M. P. Kapoor, S. Inagaki, J. Am. Chem. Soc. 2002, 124, 9694-9695.
Angew. Chem. Int. Ed. 2006, 45, 3216-3251
J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, P. Dieudonne, J. L. Bantignies, J. L. Sauvajol, Chem. Eur. J. 2005, 11, 1527-1537.
B. Menaa, M. Takahashi, P. Innocenzi, T. Yoko, Chem. Mater. 2007, 19, 1946-1953.
A. Ulman, Chem. Rev. 1996, 96, 1533-1554.
H. W. Ro, C. L. Soles, Mater. Today 2011, 14, 20-33
O. J. Dautel, J.-P. Lere-Porte, J. J. E. Moreau, M. W. C. Man, Chem. Commun. 2003, 2662-2663
E. Ruiz-Hitzky, S. Letaïef, V. Prévot, Adv. Mater. 2002, 14, 439-443.
M. Takahashi, C. Figus, T. Kichob, S. Enzo, M. Casula, M. Valentini, P. Innocenzi, Adv. Mater. 2009, 21, 1732-1736.
Angew. Chem. Int. Ed. 2001, 40, 2853-2856.
J. T. Han, D. H. Lee, C. Y. Ryu, K. Cho, J. Am. Chem. Soc. 2004, 126, 4796-4797
J. Jiang, O. V. Lima, Y. Pei, X. C. Zeng, L. Tan, E. Forsythe, J
2011; 115
2002; 14
2006; 30
2010; 16
2002; 18
2010; 13
2004; 28
2009; 82
2006; 39
2008; 108
2011; 57
2012; 14
1997; 9
2006 2006; 118 45
1978
2010; 22
2004; 177
2010; 20
2004; 31
2010; 26
2000; 16
1990
2000; 12
2000; 10
1992; 114
2010; 110
2010; 350
2012; 28
2008; 20
1996; 69
2010; 2
2009; 19
2003; 686
2012; 24
2012; 22
2010; 4
2009; 15
2007; 17
2010; 34
2007; 19
1989; 1
2010; 39
1999 1999; 111 38
1996; 96
2006; 110
1995
2002; 416
2012; 36
2001; 25
2007; 13
2011; 133
2012; 112
2010; 46
2002; 124
2005; 127
2005; 7
2005; 1
2005; 15
2001; 34
2012; 116
2005; 17
2005; 11
2003; 22
1998; 8
2012; 61
2013; 29
2004; 126
1997; 119
2003; 13
1999; 121
2003; 15
2005; 21
2011; 13
2011; 14
2005; 29
2007; 36
2000
2001 2001; 113 40
1999; 15
1997; 101
2003; 9
2003; 3
1999; 11
2011; 21
2003; 125
2011; 27
2001; 13
2006; 128
1996; 8
1998; 120
1995; 95
2001; 123
2004 2004; 116 43
2009; 21
2012
2010
2002; 295
2008; 18
2006; 16
2011; 40
2013; 42
2008; 14
2008
2007
2006; 18
2006
2006; 6
2005; 43
2004
2003
2006; 2
2009; 131
2008; 321
2005; 46
2009; 33
1990; 63
2001; 113
2002; 26
2012; 2
2003 2003; 115 42
1997; 70
2004; 16
2007; 111
2011; 44
2007; 40
2009; 5
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_60_2
e_1_2_7_191_2
e_1_2_7_11_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_142_2
e_1_2_7_188_2
e_1_2_7_202_2
e_1_2_7_225_2
e_1_2_7_165_2
e_1_2_7_116_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_180_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_192_2
e_1_2_7_131_2
e_1_2_7_154_2
e_1_2_7_177_2
e_1_2_7_214_2
e_1_2_7_139_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_128_2
e_1_2_7_82_2
e_1_2_7_120_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_226_2
e_1_2_7_181_2
e_1_2_7_143_2
e_1_2_7_166_2
e_1_2_7_29_2
e_1_2_7_203_2
e_1_2_7_189_2
e_1_2_7_117_2
Brook M. A. (e_1_2_7_89_2) 2000
Brinker C. J. (e_1_2_7_9_2) 1990
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_32_2
e_1_2_7_55_2
e_1_2_7_170_2
e_1_2_7_215_2
e_1_2_7_78_2
e_1_2_7_193_2
e_1_2_7_132_2
e_1_2_7_155_2
e_1_2_7_178_2
e_1_2_7_230_2
e_1_2_7_129_2
e_1_2_7_106_2
e_1_2_7_121_2
e_1_2_7_81_2
e_1_2_7_13_2
e_1_2_7_43_2
e_1_2_7_204_2
e_1_2_7_227_2
e_1_2_7_66_2
e_1_2_7_182_2
e_1_2_7_28_2
e_1_2_7_144_2
e_1_2_7_167_2
e_1_2_7_118_2
e_1_2_7_110_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_171_2
e_1_2_7_194_2
e_1_2_7_216_2
e_1_2_7_77_2
e_1_2_7_171_3
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_179_2
e_1_2_7_231_2
e_1_2_7_156_2
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_122_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_160_2
e_1_2_7_183_2
e_1_2_7_88_2
e_1_2_7_228_2
e_1_2_7_27_2
e_1_2_7_145_2
e_1_2_7_168_2
e_1_2_7_145_3
e_1_2_7_220_2
e_1_2_7_119_2
e_1_2_7_111_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_53_2
e_1_2_7_99_2
e_1_2_7_172_2
e_1_2_7_217_2
e_1_2_7_38_2
e_1_2_7_134_2
e_1_2_7_157_2
e_1_2_7_232_2
e_1_2_7_108_2
e_1_2_7_123_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_64_2
e_1_2_7_184_2
e_1_2_7_206_2
e_1_2_7_229_2
e_1_2_7_161_2
e_1_2_7_26_2
e_1_2_7_49_2
Shea K. J. (e_1_2_7_205_2) 2004
e_1_2_7_146_2
e_1_2_7_221_2
e_1_2_7_169_2
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_150_2
e_1_2_7_173_2
e_1_2_7_218_2
e_1_2_7_37_2
e_1_2_7_196_2
e_1_2_7_135_2
e_1_2_7_210_2
e_1_2_7_158_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_162_2
e_1_2_7_207_2
Kickelbick G. (e_1_2_7_1_2) 2007
e_1_2_7_48_2
e_1_2_7_222_2
e_1_2_7_185_2
e_1_2_7_147_2
e_1_2_7_109_2
e_1_2_7_113_2
Dautel O. J. (e_1_2_7_195_2) 2012
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_219_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_36_2
e_1_2_7_151_2
e_1_2_7_59_2
e_1_2_7_174_2
e_1_2_7_211_2
e_1_2_7_197_2
e_1_2_7_136_2
e_1_2_7_159_2
e_1_2_7_5_2
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_208_2
e_1_2_7_62_2
e_1_2_7_85_2
e_1_2_7_47_2
e_1_2_7_140_2
Rurack K. (e_1_2_7_7_2) 2010
e_1_2_7_200_2
e_1_2_7_223_2
e_1_2_7_163_2
e_1_2_7_186_2
e_1_2_7_223_3
Gomez‐Romero P. (e_1_2_7_3_2) 2006
e_1_2_7_148_2
e_1_2_7_114_2
e_1_2_7_50_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_152_2
e_1_2_7_175_2
e_1_2_7_198_2
e_1_2_7_212_2
e_1_2_7_175_3
e_1_2_7_137_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_190_2
e_1_2_7_209_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_141_2
e_1_2_7_164_2
e_1_2_7_187_2
e_1_2_7_201_2
e_1_2_7_224_2
e_1_2_7_149_2
e_1_2_7_115_2
e_1_2_7_72_2
e_1_2_7_22_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_130_2
e_1_2_7_153_2
e_1_2_7_199_2
e_1_2_7_176_2
e_1_2_7_213_2
e_1_2_7_138_2
References_xml – reference: E. Ruiz-Hitzky, S. Letaïef, V. Prévot, Adv. Mater. 2002, 14, 439-443.
– reference: C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, C. R. Chim. 2010, 13, 3-39.
– reference: J. J. E. Moreau, B. P. Pichon, M. W. C. Man, C. Bied, H. Pritzkow, J. L. Bantignies, P. Dieudonne, J. L. Sauvajol, Angew. Chem. 2004, 116, 205-208;
– reference: S. Mihai, Y. Le Duc, D. Cot, M. Barboiu, J. Mater. Chem. 2010, 20, 9443-9448.
– reference: G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421;
– reference: R. M. Laine, M. F. Roll, Macromolecules 2011, 44, 1073-1109;
– reference: J. M. Lehn, Science 2002, 295, 2400-2403.
– reference: Angew. Chem. Int. Ed. 2003, 42, 4057-4060.
– reference: A. Boullanger, G. Gracy, N. Bibent, S. Devautour-Vinot, S. Clément, A. Mehdi, Eur. J. Inorg. Chem. 2012, 143-150.
– reference: D. A. Loy, K. J. Shea, Chem. Rev. 1995, 95, 1431-1442;
– reference: T. Kishida, N. Fujita, K. Sada, S. Shinkai, Langmuir 2005, 21, 9432-9439.
– reference: K. Tanaka, Y. Chujo, J. Mater. Chem. 2012, 22, 1733-1746;
– reference: C. Arnal-Hérault, M. Barboiu, A. Pasc, M. Michau, P. Perriat, A. van der Lee, Chem. Eur. J. 2007, 13, 6792-6800;
– reference: M. Michau, M. Barboiu, R. Caraballo, C. Arnal-Hérault, P. Perriat, A. van der Lee, A. Pasc, Chem. Eur. J. 2008, 14, 1776-1783;
– reference: O. J. Dautel, G. Wantz, R. Almairac, D. Flot, L. Hirsch, J.-P. Lere-Porte, J.-P. Parneix, F. Serein-Spirau, L. Vignau, J. J. E. Moreau, J. Am. Chem. Soc. 2006, 128, 4892-4901.
– reference: N. Liu, K. Yu, B. Smarsly, D. R. Dunphy, Y.-B. Jiang, C. J. Brinker, J. Am. Chem. Soc. 2002, 124, 14540-14541.
– reference: Y. Kaneko, N. Iyi, J. Mater. Chem. 2009, 19, 7106-7111.
– reference: H. Peng, Y. Lu, Adv. Mater. 2008, 20, 797-800;
– reference: S. C. Nunes, N. J. O. Silva, J. Hummer, R. A. S. Ferreira, P. Almeida, L. D. Carlos, V. d. Z. Bermudez, RSC Adv. 2012, 2, 2087-2099.
– reference: S. Sakamoto, A. Shimojima, K. Miyasaka, J. Ruan, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2009, 131, 9634-9635.
– reference: H. W. Ro, E. S. Park, C. L. Soles, D. Y. Yoon, Chem. Mater. 2010, 22, 1330-1339.
– reference: M. Barboiu, Chem. Commun. 2010, 46, 7466-7476.
– reference: J. J. E. Moreau, L. Vellutini, C. Bied, M. W. C. Man, J. Sol-Gel Sci. Technol. 2004, 31, 151-156;
– reference: K. J. Shea, J. J. E. Moreau, D. A. Loy, R. J. P. Corriu, B. Boury, in Functional Hydrid Materials (Eds.: P. Gomez-Romero, C. Sanchez), Wiley-VCH, Weinheim, 2004, pp. 50-85.
– reference: M. G. da Fonseca, C. Airoldi, J. Mater. Chem. 2000, 10, 1457-1463;
– reference: F. Lerouge, G. Cerveau, R. J. P. Corriu, J. Mater. Chem. 2006, 16, 90-95.
– reference: M. George, R. G. Weiss, Acc. Chem. Res. 2006, 39, 489-497.
– reference: J. Alauzun, E. Besson, A. Mehdi, C. Reye, R. J. P. Corriu, Chem. Mater. 2008, 20, 503-513.
– reference: D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081-2173;
– reference: A. R. Al Derzi, A. Gregusova, K. Runge, R. J. Bartlett, Int. J. Quantum Chem. 2008, 108, 2088-2096.
– reference: Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147-1160.
– reference: O. J. Dautel, M. Robitzer, J. P. Lere-Porte, F. Serein-Spirau, J. J. E. Moreau, J. Am. Chem. Soc. 2006, 128, 16213-16223.
– reference: A. Shimojima, C.-W. Wu, K. Kuroda, J. Mater. Chem. 2007, 17, 658-663.
– reference: R. W. Wang, G. Baran, S. L. Wunder, Langmuir 2000, 16, 6298-6305.
– reference: D. A. Loy, J. V. Beach, B. M. Baugher, R. A. Assink, K. J. Shea, J. Tran, J. H. Small, Chem. Mater. 1999, 11, 3333-3341.
– reference: J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, P. Dieudonne, J. L. Bantignies, J. L. Sauvajol, Chem. Eur. J. 2005, 11, 1527-1537.
– reference: J. Jiang, O. V. Lima, Y. Pei, X. C. Zeng, L. Tan, E. Forsythe, J. Am. Chem. Soc. 2009, 131, 900-901.
– reference: M. Jaber, J. Miehe-Brendle, M. Roux, J. Dentzer, R. Le Dred, J. L. Guth, New J. Chem. 2002, 26, 1597-1600.
– reference: A. N. Parikh, M. A. Schivley, E. Koo, K. Seshadri, D. Aurentz, K. Mueller, D. L. Allara, J. Am. Chem. Soc. 1997, 119, 3135-3143.
– reference: I. Karatchevtseva, D. J. Cassidy, M. Wong Chi Man, D. R. G. Mitchell, J. V. Hanna, C. Carcel, C. Bied, J. J. E. Moreau, J. R. Bartlett, Adv. Funct. Mater. 2007, 17, 3926-3932.
– reference: J. T. Han, D. H. Lee, C. Y. Ryu, K. Cho, J. Am. Chem. Soc. 2004, 126, 4796-4797;
– reference: K. Fujii, T. Fujita, N. Iyi, H. Kodama, K. Kitamura, J. Mater. Sci. Lett. 2003, 22, 1459-1461.
– reference: G. Kickelbick, Hybrid Materials: Synthesis Characterization, and Applications, Wiley-VCH, Weinheim, 2007.
– reference: B. Boury, R. J. P. Corriu, V. Le Strat, P. Delord, M. Nobili, Angew. Chem. 1999, 111, 3366-3370;
– reference: R. M. Laine, J. Mater. Chem. 2005, 15, 3725-3744;
– reference: B. Boury, R. J. P. Corriu, Chem. Rec. 2003, 3, 120-132;
– reference: C. Sanchez, C. Boissière, D. Grosso, C. Laberty, L. Nicole, Chem. Mater. 2008, 20, 682-737;
– reference: F. Lerouge, G. Cerveau, R. J. P. Corriu, New J. Chem. 2006, 30, 272-276.
– reference: S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304-307.
– reference: D. A. Loy, B. Mather, A. R. Straumanis, C. Baugher, D. A. Schneider, A. Sanchez, K. J. Shea, Chem. Mater. 2004, 16, 2041-2043.
– reference: C. Blackledge, J. D. McDonald, Langmuir 1999, 15, 8119-8125.
– reference: C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.
– reference: K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai, Chem. Soc. Rev. 2007, 36, 415-435.
– reference: A. Chemtob, L. Ni, A. Demarest, C. Croutxe-Barghorn, L. Vidal, J. Brendlé, S. Rigolet, Langmuir 2011, 27, 12621-12629.
– reference: Y. Fukushima, M. Tani, Bull. Chem. Soc. Jpn. 1996, 69, 3667-3671.
– reference: M. Khiterer, D. A. Loy, C. J. Cornelius, C. H. Fujimoto, J. H. Small, T. M. McIntire, K. J. Shea, Chem. Mater. 2006, 18, 3665-3673.
– reference: K. J. Shea, D. A. Loy, Acc. Chem. Res. 2001, 34, 707-716;
– reference: B. P. Pichon, S. Scampini, C. Bied, J. J. E. Moreau, M. W. C. Man, Eur. J. Inorg. Chem. 2012, 5312-5322.
– reference: D. Brandhuber, H. Peterlik, N. Husing, Small 2006, 2, 503-506;
– reference: J. Beckmann, S. Grabowsky, J. Phys. Chem. A 2007, 111, 2011-2019.
– reference: Q. P. Ke, G. L. Li, Y. Liu, T. He, X. M. Li, Langmuir 2010, 26, 3579-3584;
– reference: Y. Kaneko, N. Iyi, T. Matsumoto, K. Fujii, K. Kurashima, T. Fujita, J. Mater. Chem. 2003, 13, 2058-2060.
– reference: Angew. Chem. Int. Ed. 2001, 40, 2853-2856.
– reference: K. Rurack, R. Martinez-Manez, The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, Wiley, Hoboken, New Jersey, 2010.
– reference: K. Fujii, S. Hayashi, H. Kodama, Chem. Mater. 2003, 15, 1189-1197;
– reference: K. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112, 1034-1054.
– reference: A. Shimojima, Y. Sugahara, K. Kuroda, J. Am. Chem. Soc. 1998, 120, 4528-4529;
– reference: H. Tang, J. Sun, J. Jiang, X. Zhou, T. Hu, P. Xie, R. Zhang, J. Am. Chem. Soc. 2002, 124, 10482-10488.
– reference: Q. P. Ke, W. Q. Fu, S. Wang, T. D. Tang, J. F. Zhang, ACS Appl. Mater. Interfaces 2010, 2, 2393-2398.
– reference: A. Shimojima, K. Kuroda, Chem. Rec. 2006, 6, 53-63;
– reference: G. Creff, B. P. Pichon, C. Blanc, D. Maurin, J. L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Roy, J. R. Bartlett, M. W. C. Man, J. L. Bantignies, Langmuir 2013, 29, 5581-5588.
– reference: O. J. Dautel, C. Borras, J.-D. Borras, J. J. E. Moreau, Actual. Chim. 2012, 29-35.
– reference: J. L. Bantignies, L. Vellutini, D. Maurin, P. Hermet, P. Dieudonne, M. W. C. Man, J. R. Bartlett, C. Bied, J. L. Sauvajol, J. J. E. Moreau, J. Phys. Chem. B 2006, 110, 15797-15802;
– reference: Angew. Chem. Int. Ed. 2006, 45, 3216-3251;
– reference: X. Sallenave, O. J. Dautel, G. Wantz, P. Valvin, J.-P. Lère-Porte, J. J. E. Moreau, Adv. Funct. Mater. 2009, 19, 404-410;
– reference: N. T. Whilton, S. L. Burkett, S. Mann, J. Mater. Chem. 1998, 8, 1927-1932.
– reference: L. D. Carlos, V. d. Z. Bermudez, V. S. Amaral, S. C. Nunes, N. J. O. Silva, R. A. S. Ferreira, J. Rocha, C. V. Santilli, D. Ostrovskii, Adv. Mater. 2007, 19, 341-348;
– reference: M. Ohashi, Y. Goto, N. Mizoshita, T. Ohsuna, T. Tani, S. Inagaki, Bull. Chem. Soc. Jpn. 2009, 82, 1035-1038.
– reference: A. Sayari, W. H. Wang, J. Am. Chem. Soc. 2005, 127, 12194-12195.
– reference: L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, J. Phys. Chem. C 2012, 116, 24320-24330.
– reference: M. Michau, R. Caraballo, C. Arnal-Herault, M. Barboiu, J. Membr. Sci. 2008, 321, 22-30;
– reference: A. Ulman, Chem. Rev. 1996, 96, 1533-1554.
– reference: M. Barboiu, C. Guizard, N. Hovnanian, L. Cot, Sep. Purif. Technol. 2001, 25, 211-218.
– reference: R. J. P. Corriu, A. Mehdi, C. Reyé, J. Mater. Chem. 2005, 15, 4285-4294;
– reference: H. Fan, Z. Chen, C. J. Brinker, J. Clawson, T. Alam, J. Am. Chem. Soc. 2005, 127, 13746-13747;
– reference: Y. Kaneko, N. Iyi, K. Kurashima, T. Matsumoto, T. Fujita, K. Kitamura, Chem. Mater. 2004, 16, 3417-3423.
– reference: T. Mizutani, Y. Fukushima, A. Okada, O. Kamigaito, Bull. Chem. Soc. Jpn. 1990, 63, 2094-2098.
– reference: N. Mizoshita, T. Tani, S. Inagaki, Adv. Funct. Mater. 2011, 21, 3291-3296.
– reference: Y.-C. Liao, J. T. Roberts, J. Am. Chem. Soc. 2006, 128, 9061-9065.
– reference: L. Ni, A. Chemtob, C. Croutxe-Barghorn, J. Brendle, L. Vidal, S. Rigolet, Langmuir 2012, 28, 7129-7133.
– reference: G. Cerveau, S. Chappellet, R. J. P. Corriu, J. Mater. Chem. 2003, 13, 1905-1909.
– reference: J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, Chem. Eur. J. 2003, 9, 1594-1599.
– reference: H. W. Ro, C. L. Soles, Mater. Today 2011, 14, 20-33;
– reference: L. Yang, H. Peng, K. Huang, J. T. Mague, H. Li, Y. Lu, Adv. Funct. Mater. 2008, 18, 1526-1535.
– reference: N. Umeda, A. Shimojima, K. Kuroda, J. Organomet. Chem. 2003, 686, 223-227.
– reference: Y. Luo, J. Lin, H. Duan, J. Zhang, C. Lin, Chem. Mater. 2005, 17, 2234-2236;
– reference: G. Creff, G. Arrachart, P. Hermet, H. Wadepohl, R. Almairac, D. Maurin, J.-L. Sauvajol, C. Carcel, J. J. E. Moreau, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, Phys. Chem. Chem. Phys. 2012, 14, 5672-5679.
– reference: A. B. Bourlinos, S. R. Chowdhury, D. D. Jiang, Y.-U. An, Q. Zhang, L. A. Archer, E. P. Giannelis, Small 2005, 1, 80-82.
– reference: A. Shimojima, N. Umeda, K. Kuroda, Chem. Mater. 2001, 13, 3610-3616;
– reference: Angew. Chem. Int. Ed. 1999, 38, 3172-3175;
– reference: J. J. E. Moreau, L. Vellutini, P. Dieudonne, M. W. C. Man, J.-L. Bantignies, J.-L. Sauvajol, C. Bied, J. Mater. Chem. 2005, 15, 4943-4948.
– reference: L.-C. Hu, K. J. Shea, Chem. Soc. Rev. 2011, 40, 688-695.
– reference: B. P. Pichon, M. Wong Chi Man, P. Dieudonné, J. L. Bantignies, C. Bied, J. L. Sauvajol, J. J. E. Moreau, Adv. Funct. Mater. 2007, 17, 2349-2355.
– reference: J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2005, 15, 841-843.
– reference: H. Peng, J. Tang, J. Pang, D. Chen, L. yang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2005, 127, 12782-12783;
– reference: Y. Fukushima, M. Tani, J. Chem. Soc. Chem. Commun. 1995, 241-242;
– reference: R. Mouawia, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2008, 18, 2028-2035.
– reference: G. Dubois, C. Reye, R. J. P. Corriu, S. Brandes, F. Denat, R. Guilard, Angew. Chem. 2001, 113, 1121-1124.
– reference: E. Besson, A. Mehdi, A. Van der Lee, H. Chollet, C. Reyé, R. Guilard, R. J. P. Corriu, Chem. Eur. J. 2010, 16, 10226-10233.
– reference: B. Boury, F. Ben, R. J. P. Corriu, Angew. Chem. 2001, 113, 2946-2948;
– reference: J. Pang, L. Yang, D. A. Loy, H. Peng, H. S. Ashbaugh, J. Mague, C. J. Brinker, Y. Lu, Chem. Commun. 2006, 1545-1547.
– reference: G. Arrachart, A. Bendjerriou, C. Carcel, J. J. E. Moreau, M. W. C. Man, New J. Chem. 2010, 34, 1436-1440.
– reference: K. Kawahara, H. Tachibana, Y. Hagiwara, K. Kuroda, New J. Chem. 2012, 36, 1210-1217.
– reference: T. Suzuki, A. Shimojima, Y. Fujimoto, K. Kuroda, Chem. Eur. J. 2008, 14, 973-980.
– reference: A. Shimojima, K. Kuroda, Langmuir 2002, 18, 1144-1149.
– reference: C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 2011, 40, 696-753.
– reference: H. Muramatsu, R. J. P. Corriu, B. Boury, J. Am. Chem. Soc. 2003, 125, 854-855.
– reference: M. J. Rosen in Surfactants and Interfacial Phenomena, 3rd ed., Wiley, Hoboken, New Jersey, 2004, pp. 217-301.
– reference: F. Ben, B. Boury, R. J. P. Corriu, V. Le Strat, Chem. Mater. 2000, 12, 3249-3252.
– reference: A. Shimojima, M. Sakurai, K. Kuroda, T. Okubo, J. Colloid Interface Sci. 2010, 350, 155-160.
– reference: M. Richard-Plouet, S. Vilminot, M. Guillot, New J. Chem. 2004, 28, 1073-1082.
– reference: P. Gomez-Romero, C. Sanchez, Functional Hybrid Materials, Wiley-VCH, Weinheim, 2006.
– reference: X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906-2910.
– reference: A. Shimojima, K. Kuroda, Angew. Chem. 2003, 115, 4191-4194;
– reference: F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. 2006, 118, 3290-3328;
– reference: M. Takahashi, C. Figus, T. Kichob, S. Enzo, M. Casula, M. Valentini, P. Innocenzi, Adv. Mater. 2009, 21, 1732-1736.
– reference: S. Mihai, A. Cazacu, C. Arnal-Herault, G. Nasr, A. Meffre, A. van der Lee, M. Barboiu, New J. Chem. 2009, 33, 2335-2343.
– reference: H. Peng, J. Tang, L. Yang, J. Pang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, Y. Lu, J. Am. Chem. Soc. 2006, 128, 5304-5305.
– reference: D. R. Dunphy, B. Smarsly, C. J. Brinker in Supramolecular Chemistry of Organic-Inorganic Hybrid Materials (Eds.: K. Rurack, R. Martinez-Manez), Wiley, Hoboken, New Jersey, 2010, pp. 531-545;
– reference: R. Goto, A. Shimojima, H. Kuge, K. Kuroda, Chem. Commun. 2008, 6152-6154.
– reference: K. Okamoto, Y. Goto, S. Inagaki, J. Mater. Chem. 2005, 15, 4136-4140.
– reference: M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000.
– reference: D. W. Schaefer, G. Beaucage, D. A. Loy, K. J. Shea, J. S. Lin, Chem. Mater. 2004, 16, 1402-1410.
– reference: P. Dieudonné, M. W. C. Man, B. P. Pichon, L. Vellutini, J.-L. Bantignies, C. Blanc, G. Creff, S. Finet, J.-L. Sauvajol, C. Bied, J. J. E. Moreau, Small 2009, 5, 503-510.
– reference: J. J. E. Moreau, B. P. Pichon, G. Arrachart, M. W. C. Man, C. Bied, New J. Chem. 2005, 29, 653-658;
– reference: R. Mouawia, A. Mehdi, C. Reye, R. J. P. Corriu, J. Mater. Chem. 2007, 17, 616-618;
– reference: Y. Fujimoto, M. Heishi, A. Shimojima, K. Kuroda, J. Mater. Chem. 2005, 15, 5151-5157.
– reference: J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, Chem. Commun. 2006, 347-349;
– reference: Y. Goto, T. Ohsuna, N. Mizoshita, T. Tani, S. Inagaki, Solid State Sci. 2011, 13, 729-735;
– reference: A. Shimojima, H. Kuge, K. Kuroda, J. Sol-Gel Sci. Technol. 2011, 57, 263-268.
– reference: N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789-800;
– reference: F. Lerouge, G. Cerveau, R. J. P. Corriu, New J. Chem. 2006, 30, 1364-1376;
– reference: D. A. Loy, G. M. Jamison, B. M. Baugher, S. A. Myers, R. A. Assink, K. J. Shea, Chem. Mater. 1996, 8, 656-663;
– reference: W. Chaikittisilp, M. Kubo, T. Moteki, A. Sugawara-Narutaki, A. Shimojima, T. Okubo, J. Am. Chem. Soc. 2011, 133, 13832-13835.
– reference: Q. H. Yang, M. P. Kapoor, S. Inagaki, J. Am. Chem. Soc. 2002, 124, 9694-9695.
– reference: M. G. da Fonseca, C. R. Silva, C. Airoldi, Langmuir 1999, 15, 5048-5055;
– reference: J. Jiang, O. V. Lima, Y. Pei, Z. Jiang, Z. Chen, C. Z. Yu, J. Wang, X. C. Zeng, E. Forsythe, L. Tan, ACS Nano 2010, 4, 3773-3780.
– reference: A. Shimojima, Y. Sugahara, K. Kuroda, Bull. Chem. Soc. Jpn. 1997, 70, 2847-2853;
– reference: L. Ni, A. Chemtob, C. Croutxe-Barghorn, L. Vidal, J. Brendlé, S. Rigolet, J. Mater. Chem. 2012, 22, 643-652.
– reference: S. L. Burkett, A. Press, S. Mann, Chem. Mater. 1997, 9, 1071-1073;
– reference: G. Arrachart, G. Creff, H. Wadepohl, C. Blanc, C. Bonhomme, F. Babonneau, B. Alonso, J. L. Bantignies, C. Carcel, J. J. E. Moreau, P. Dieudonne, J. L. Sauvajol, D. Massiot, M. W. C. Man, Chem. Eur. J. 2009, 15, 5002-5005;
– reference: Y. Fujimoto, A. Shimojima, K. Kuroda, Chem. Mater. 2003, 15, 4768-4774.
– reference: S. Bourg, J.-C. Broudic, O. Conocar, J. J. E. Moreau, M. Meyer, M. W. C. Man, Chem. Mater. 2001, 13, 491-499.
– reference: J. Alauzun, A. Mehdi, C. Reye, R. J. P. Corriu, J. Am. Chem. Soc. 2005, 127, 11204-11205.
– reference: K. J. Shea, D. A. Loy, O. Webster, J. Am. Chem. Soc. 1992, 114, 6700-6710.
– reference: A. Mehdi, J. Mater. Chem. 2010, 20, 9281-9286.
– reference: A. Shimojima, R. Goto, N. Atsumi, K. Kuroda, Chem. Eur. J. 2008, 14, 8500-8506.
– reference: Angew. Chem. Int. Ed. 2004, 43, 203-206.
– reference: M. Llusar, C. Sanchez, Chem. Mater. 2008, 20, 782-820.
– reference: H. E. Romeo, M. A. Fanovich, R. J. J. Williams, L. Matejka, J. Plestil, J. Brus, Macromolecules 2007, 40, 1435-1443.
– reference: J. Minet, S. Abramson, B. Bresson, C. Sanchez, V. Montouillout, N. Lequeux, Chem. Mater. 2004, 16, 3955-3962;
– reference: R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev. 1995, 95, 1409-1430.
– reference: M. G. da Fonseca, E. C. da Silva, R. Junior, L. N. H. Arakaki, J. G. P. Espinola, C. Airoldi, J. Solid State Chem. 2004, 177, 2316-2322.
– reference: A. Mehdi, C. Reyé, R. J. P. Corriu, Chem. Soc. Rev. 2011, 40, 563-574.
– reference: Y. Kaneko, N. Iyi, T. Matsumoto, K. Kitamura, Polymer 2005, 46, 1828-1833.
– reference: M. Fernandes, S. S. Nobre, X. Qinghong, C. Carcel, J. N. Cachia, X. Cattoen, J. M. Sousa, R. A. S. Ferreira, L. D. Carlos, C. V. Santilli, M. W. C. Man, V. de Zea Bermudez, J. Phys. Chem. B 2011, 115, 10877-10891.
– reference: K. J. Shea, D. A. Loy, Chem. Mater. 1989, 1, 572-574;
– reference: S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891-908;
– reference: W. Volksen, R. D. Miller, G. Dubois, Chem. Rev. 2010, 110, 56-110.
– reference: G. Cerveau, R. J. P. Corriu, E. Framery, Chem. Mater. 2001, 13, 3373-3388.
– reference: S. D. Korkin, M. I. Buzin, E. V. Matukhina, L. N. Zherlitsyna, N. Auner, O. I. Shchegolikhina, J. Organomet. Chem. 2003, 686, 313-320.
– reference: J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, J. L. Bantignies, P. Dieudonne, J. L. Sauvajol, J. Am. Chem. Soc. 2001, 123, 7957-7958.
– reference: L. Ukrainczyk, R. A. Bellman, A. B. Anderson, J. Phys. Chem. B 1997, 101, 531-539;
– reference: O. J. Dautel, J.-P. Lere-Porte, J. J. E. Moreau, M. W. C. Man, Chem. Commun. 2003, 2662-2663;
– reference: D. A. Loy, B. M. Baugher, C. R. Baugher, D. A. Schneider, K. Rahimian, Chem. Mater. 2000, 12, 3624-3632;
– reference: F. Hoffmann, M. Froba, Chem. Soc. Rev. 2011, 40, 608-620.
– reference: D. J. Boday, R. J. Stover, B. Muriithi, D. A. Loy, J. Sol-Gel Sci. Technol. 2012, 61, 144-150.
– reference: G. Arrachart, C. Carcel, J. J. E. Moreau, G. Hartmeyer, B. Alonso, D. Massiot, G. Creff, J.-L. Bantignies, P. Dieudonne, M. W. C. Man, G. Althoff, F. Babonneau, C. Bonhomme, J. Mater. Chem. 2008, 18, 392-399.
– reference: K.-M. Kim, T. Ogoshi, Y. Chujo, J. Polym. Sci. Part A 2005, 43, 473-478;
– reference: L. Zhao, M. Vaupel, D. A. Loy, K. J. Shea, Chem. Mater. 2008, 20, 1870-1876.
– reference: B. Menaa, M. Takahashi, P. Innocenzi, T. Yoko, Chem. Mater. 2007, 19, 1946-1953.
– reference: T. Ogoshi, Y. Chujo, Compos. Interfaces 2005, 11, 539-566.
– reference: S. Hartmann, D. Brandhuber, N. Husing, Acc. Chem. Res. 2007, 40, 885-894.
– reference: M. G. da Fonseca, C. R. Silva, J. S. Barone, C. Airoldi, J. Mater. Chem. 2000, 10, 789-795;
– reference: M. Jaber, J. Miehe-Brendle, L. Delmotte, R. Le Dred, Solid State Sci. 2005, 7, 610-615;
– reference: L. Zhao, D. A. Loy, K. J. Shea, J. Am. Chem. Soc. 2006, 128, 14250-14251;
– reference: A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem. Soc. 2005, 127, 14108-14116.
– reference: J. H. Sim, S.-I. Lee, H.-J. Lee, R. Kasica, H.-M. Kim, C. L. Soles, K.-B. Kim, D. Y. Yoon, Chem. Mater. 2010, 22, 3021-3023;
– reference: J. J. E. Moreau, B. P. Pichon, C. Bied, M. W. C. Man, J. Mater. Chem. 2005, 15, 3929-3936;
– reference: G. Garnweitner, B. Smarsly, R. Assink, W. Ruland, E. Bond, C. J. Brinker, J. Am. Chem. Soc. 2003, 125, 5626-5627;
– reference: E. Besson, A. Mehdi, C. Reye, P. Gaveau, R. J. P. Corriu, Dalton Trans. 2010, 39, 7534-7539.
– reference: F. Ben, B. Boury, R. J. P. Corriu, Adv. Mater. 2002, 14, 1081-1083.
– reference: C. Triantafillidis, M. Elsaesser, N. Husing, Chem. Soc. Rev. 2013, 42, 3833-3846.
– reference: M. Barboiu, S. Cerneaux, A. van der Lee, G. Vaughan, J. Am. Chem. Soc. 2004, 126, 3545-3550.
– reference: D. A. Loy, J. P. Carpenter, T. M. Alam, R. Shaltout, P. K. Dorhout, J. Greaves, J. H. Small, K. J. Shea, J. Am. Chem. Soc. 1999, 121, 5413-5425;
– volume: 25
  start-page: 211
  year: 2001
  end-page: 218
  publication-title: Sep. Purif. Technol.
– volume: 82
  start-page: 1035
  year: 2009
  end-page: 1038
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 119
  start-page: 3135
  year: 1997
  end-page: 3143
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 789
  year: 2011
  end-page: 800
  publication-title: Chem. Soc. Rev.
– volume: 124
  start-page: 9694
  year: 2002
  end-page: 9695
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 2335
  year: 2009
  end-page: 2343
  publication-title: New J. Chem.
– volume: 128
  start-page: 16213
  year: 2006
  end-page: 16223
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 491
  year: 2001
  end-page: 499
  publication-title: Chem. Mater.
– volume: 27
  start-page: 12621
  year: 2011
  end-page: 12629
  publication-title: Langmuir
– volume: 31
  start-page: 151
  year: 2004
  end-page: 156
  publication-title: J. Sol–Gel Sci. Technol.
– volume: 14
  start-page: 1776
  year: 2008
  end-page: 1783
  publication-title: Chem. Eur. J.
– volume: 28
  start-page: 7129
  year: 2012
  end-page: 7133
  publication-title: Langmuir
– volume: 15
  start-page: 3929
  year: 2005
  end-page: 3936
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 3773
  year: 2010
  end-page: 3780
  publication-title: ACS Nano
– volume: 63
  start-page: 2094
  year: 1990
  end-page: 2098
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 9
  start-page: 1594
  year: 2003
  end-page: 1599
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 658
  year: 2007
  end-page: 663
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 1330
  year: 2010
  end-page: 1339
  publication-title: Chem. Mater.
– volume: 113
  start-page: 1121
  year: 2001
  end-page: 1124
  publication-title: Angew. Chem.
– year: 1990
– volume: 39
  start-page: 489
  year: 2006
  end-page: 497
  publication-title: Acc. Chem. Res.
– volume: 16
  start-page: 10226
  year: 2010
  end-page: 10233
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 1071
  year: 1997
  end-page: 1073
  publication-title: Chem. Mater.
– volume: 5
  start-page: 503
  year: 2009
  end-page: 510
  publication-title: Small
– volume: 14
  start-page: 20
  year: 2011
  end-page: 33
  publication-title: Mater. Today
– volume: 2
  start-page: 503
  year: 2006
  end-page: 506
  publication-title: Small
– volume: 20
  start-page: 1870
  year: 2008
  end-page: 1876
  publication-title: Chem. Mater.
– volume: 36
  start-page: 1210
  year: 2012
  end-page: 1217
  publication-title: New J. Chem.
– volume: 123
  start-page: 7957
  year: 2001
  end-page: 7958
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 782
  year: 2008
  end-page: 820
  publication-title: Chem. Mater.
– volume: 128
  start-page: 5304
  year: 2006
  end-page: 5305
  publication-title: J. Am. Chem. Soc.
– volume: 416
  start-page: 304
  year: 2002
  end-page: 307
  publication-title: Nature
– volume: 108
  start-page: 2088
  year: 2008
  end-page: 2096
  publication-title: Int. J. Quantum Chem.
– volume: 128
  start-page: 4892
  year: 2006
  end-page: 4901
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 80
  year: 2005
  end-page: 82
  publication-title: Small
– volume: 40
  start-page: 608
  year: 2011
  end-page: 620
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 1364
  year: 2006
  end-page: 1376
  publication-title: New J. Chem.
– volume: 133
  start-page: 13832
  year: 2011
  end-page: 13835
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 539
  year: 2005
  end-page: 566
  publication-title: Compos. Interfaces
– volume: 113 40
  start-page: 2946 2853
  year: 2001 2001
  end-page: 2948 2856
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 686
  start-page: 313
  year: 2003
  end-page: 320
  publication-title: J. Organomet. Chem.
– volume: 13
  start-page: 3373
  year: 2001
  end-page: 3388
  publication-title: Chem. Mater.
– volume: 18
  start-page: 1526
  year: 2008
  end-page: 1535
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 900
  year: 2009
  end-page: 901
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 10482
  year: 2002
  end-page: 10488
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 707
  year: 2001
  end-page: 716
  publication-title: Acc. Chem. Res.
– volume: 61
  start-page: 144
  year: 2012
  end-page: 150
  publication-title: J. Sol–Gel Sci. Technol.
– volume: 16
  start-page: 3955
  year: 2004
  end-page: 3962
  publication-title: Chem. Mater.
– volume: 14
  start-page: 439
  year: 2002
  end-page: 443
  publication-title: Adv. Mater.
– volume: 321
  start-page: 22
  year: 2008
  end-page: 30
  publication-title: J. Membr. Sci.
– year: 2007
– volume: 15
  start-page: 5048
  year: 1999
  end-page: 5055
  publication-title: Langmuir
– volume: 127
  start-page: 11204
  year: 2005
  end-page: 11205
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 7466
  year: 2010
  end-page: 7476
  publication-title: Chem. Commun.
– volume: 128
  start-page: 14250
  year: 2006
  end-page: 14251
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 2349
  year: 2007
  end-page: 2355
  publication-title: Adv. Funct. Mater.
– volume: 110
  start-page: 15797
  year: 2006
  end-page: 15802
  publication-title: J. Phys. Chem. B
– volume: 112
  start-page: 1034
  year: 2012
  end-page: 1054
  publication-title: Chem. Rev.
– volume: 15
  start-page: 4285
  year: 2005
  end-page: 4294
  publication-title: J. Mater. Chem.
– start-page: 1545
  year: 2006
  end-page: 1547
  publication-title: Chem. Commun.
– volume: 17
  start-page: 3926
  year: 2007
  end-page: 3932
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 643
  year: 2012
  end-page: 652
  publication-title: J. Mater. Chem.
– volume: 46
  start-page: 1828
  year: 2005
  end-page: 1833
  publication-title: Polymer
– volume: 114
  start-page: 6700
  year: 1992
  end-page: 6710
  publication-title: J. Am. Chem. Soc.
– year: 2010
– volume: 18
  start-page: 3665
  year: 2006
  end-page: 3673
  publication-title: Chem. Mater.
– volume: 18
  start-page: 1144
  year: 2002
  end-page: 1149
  publication-title: Langmuir
– volume: 21
  start-page: 9432
  year: 2005
  end-page: 9439
  publication-title: Langmuir
– volume: 29
  start-page: 5581
  year: 2013
  end-page: 5588
  publication-title: Langmuir
– start-page: 6152
  year: 2008
  end-page: 6154
  publication-title: Chem. Commun.
– volume: 19
  start-page: 7106
  year: 2009
  end-page: 7111
  publication-title: J. Mater. Chem.
– volume: 350
  start-page: 155
  year: 2010
  end-page: 160
  publication-title: J. Colloid Interface Sci.
– volume: 110
  start-page: 2081
  year: 2010
  end-page: 2173
  publication-title: Chem. Rev.
– start-page: 50
  year: 2004
  end-page: 85
– volume: 20
  start-page: 682
  year: 2008
  end-page: 737
  publication-title: Chem. Mater.
– volume: 15
  start-page: 841
  year: 2005
  end-page: 843
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 53
  year: 2006
  end-page: 63
  publication-title: Chem. Rec.
– volume: 20
  start-page: 503
  year: 2008
  end-page: 513
  publication-title: Chem. Mater.
– volume: 20
  start-page: 797
  year: 2008
  end-page: 800
  publication-title: Adv. Mater.
– volume: 20
  start-page: 891
  year: 2008
  end-page: 908
  publication-title: Chem. Mater.
– volume: 96
  start-page: 1533
  year: 1996
  end-page: 1554
  publication-title: Chem. Rev.
– volume: 15
  start-page: 5002
  year: 2009
  end-page: 5005
  publication-title: Chem. Eur. J.
– volume: 14
  start-page: 8500
  year: 2008
  end-page: 8506
  publication-title: Chem. Eur. J.
– year: 1978
– volume: 40
  start-page: 885
  year: 2007
  end-page: 894
  publication-title: Acc. Chem. Res.
– volume: 40
  start-page: 696
  year: 2011
  end-page: 753
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 3624
  year: 2000
  end-page: 3632
  publication-title: Chem. Mater.
– volume: 295
  start-page: 2418
  year: 2002
  end-page: 2421
  publication-title: Science
– volume: 115
  start-page: 10877
  year: 2011
  end-page: 10891
  publication-title: J. Phys. Chem. B
– volume: 18
  start-page: 392
  year: 2008
  end-page: 399
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 1927
  year: 1998
  end-page: 1932
  publication-title: J. Mater. Chem.
– volume: 70
  start-page: 2847
  year: 1997
  end-page: 2853
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 7
  start-page: 610
  year: 2005
  end-page: 615
  publication-title: Solid State Sci.
– volume: 127
  start-page: 12194
  year: 2005
  end-page: 12195
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 415
  year: 2007
  end-page: 435
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 789
  year: 2000
  end-page: 795
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 1147
  year: 1996
  end-page: 1160
  publication-title: Chem. Mater.
– volume: 125
  start-page: 854
  year: 2003
  end-page: 855
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1081
  year: 2002
  end-page: 1083
  publication-title: Adv. Mater.
– volume: 131
  start-page: 9634
  year: 2009
  end-page: 9635
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1732
  year: 2009
  end-page: 1736
  publication-title: Adv. Mater.
– volume: 8
  start-page: 656
  year: 1996
  end-page: 663
  publication-title: Chem. Mater.
– volume: 111
  start-page: 2011
  year: 2007
  end-page: 2019
  publication-title: J. Phys. Chem. A
– start-page: 347
  year: 2006
  end-page: 349
  publication-title: Chem. Commun.
– volume: 2
  start-page: 2087
  year: 2012
  end-page: 2099
  publication-title: RSC Adv.
– volume: 101
  start-page: 531
  year: 1997
  end-page: 539
  publication-title: J. Phys. Chem. B
– volume: 20
  start-page: 9281
  year: 2010
  end-page: 9286
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 3610
  year: 2001
  end-page: 3616
  publication-title: Chem. Mater.
– start-page: 143
  year: 2012
  end-page: 150
  publication-title: Eur. J. Inorg. Chem.
– volume: 43
  start-page: 473
  year: 2005
  end-page: 478
  publication-title: J. Polym. Sci. Part A
– volume: 95
  start-page: 1431
  year: 1995
  end-page: 1442
  publication-title: Chem. Rev.
– volume: 1
  start-page: 572
  year: 1989
  end-page: 574
  publication-title: Chem. Mater.
– volume: 116 43
  start-page: 205 203
  year: 2004 2004
  end-page: 208 206
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 20
  start-page: 9443
  year: 2010
  end-page: 9448
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 3291
  year: 2011
  end-page: 3296
  publication-title: Adv. Funct. Mater.
– start-page: 5312
  year: 2012
  end-page: 5322
  publication-title: Eur. J. Inorg. Chem.
– volume: 126
  start-page: 4796
  year: 2004
  end-page: 4797
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 3667
  year: 1996
  end-page: 3671
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 16
  start-page: 6298
  year: 2000
  end-page: 6305
  publication-title: Langmuir
– volume: 15
  start-page: 3725
  year: 2005
  end-page: 3744
  publication-title: J. Mater. Chem.
– volume: 14
  start-page: 973
  year: 2008
  end-page: 980
  publication-title: Chem. Eur. J.
– volume: 28
  start-page: 1073
  year: 2004
  end-page: 1082
  publication-title: New J. Chem.
– volume: 125
  start-page: 5626
  year: 2003
  end-page: 5627
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 7534
  year: 2010
  end-page: 7539
  publication-title: Dalton Trans.
– volume: 15
  start-page: 1189
  year: 2003
  end-page: 1197
  publication-title: Chem. Mater.
– volume: 44
  start-page: 1073
  year: 2011
  end-page: 1109
  publication-title: Macromolecules
– volume: 95
  start-page: 1409
  year: 1995
  end-page: 1430
  publication-title: Chem. Rev.
– volume: 126
  start-page: 3545
  year: 2004
  end-page: 3550
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 341
  year: 2007
  end-page: 348
  publication-title: Adv. Mater.
– volume: 110
  start-page: 56
  year: 2010
  end-page: 110
  publication-title: Chem. Rev.
– volume: 177
  start-page: 2316
  year: 2004
  end-page: 2322
  publication-title: J. Solid State Chem.
– volume: 13
  start-page: 6792
  year: 2007
  end-page: 6800
  publication-title: Chem. Eur. J.
– volume: 120
  start-page: 4528
  year: 1998
  end-page: 4529
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1905
  year: 2003
  end-page: 1909
  publication-title: J. Mater. Chem.
– volume: 127
  start-page: 12782
  year: 2005
  end-page: 12783
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 5151
  year: 2005
  end-page: 5157
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 2393
  year: 2010
  end-page: 2398
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 241
  year: 1995
  end-page: 242
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 26
  start-page: 1597
  year: 2002
  end-page: 1600
  publication-title: New J. Chem.
– volume: 34
  start-page: 1436
  year: 2010
  end-page: 1440
  publication-title: New J. Chem.
– volume: 29
  start-page: 653
  year: 2005
  end-page: 658
  publication-title: New J. Chem.
– volume: 22
  start-page: 1459
  year: 2003
  end-page: 1461
  publication-title: J. Mater. Sci. Lett.
– volume: 18
  start-page: 2028
  year: 2008
  end-page: 2035
  publication-title: J. Mater. Chem.
– start-page: 217
  year: 2004
  end-page: 301
– year: 2000
– volume: 16
  start-page: 2041
  year: 2004
  end-page: 2043
  publication-title: Chem. Mater.
– volume: 15
  start-page: 4136
  year: 2005
  end-page: 4140
  publication-title: J. Mater. Chem.
– volume: 111 38
  start-page: 3366 3172
  year: 1999 1999
  end-page: 3370 3175
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 17
  start-page: 2234
  year: 2005
  end-page: 2236
  publication-title: Chem. Mater.
– volume: 116
  start-page: 24320
  year: 2012
  end-page: 24330
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 263
  year: 2011
  end-page: 268
  publication-title: J. Sol–Gel Sci. Technol.
– volume: 22
  start-page: 1733
  year: 2012
  end-page: 1746
  publication-title: J. Mater. Chem.
– volume: 128
  start-page: 9061
  year: 2006
  end-page: 9065
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2058
  year: 2003
  end-page: 2060
  publication-title: J. Mater. Chem.
– volume: 124
  start-page: 14540
  year: 2002
  end-page: 14541
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 3833
  year: 2013
  end-page: 3846
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 1527
  year: 2005
  end-page: 1537
  publication-title: Chem. Eur. J.
– volume: 30
  start-page: 272
  year: 2006
  end-page: 276
  publication-title: New J. Chem.
– volume: 19
  start-page: 404
  year: 2009
  end-page: 410
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3333
  year: 1999
  end-page: 3341
  publication-title: Chem. Mater.
– volume: 3
  start-page: 120
  year: 2003
  end-page: 132
  publication-title: Chem. Rec.
– volume: 118 45
  start-page: 3290 3216
  year: 2006 2006
  end-page: 3328 3251
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 127
  start-page: 13746
  year: 2005
  end-page: 13747
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3
  year: 2010
  end-page: 39
  publication-title: C. R. Chim.
– volume: 686
  start-page: 223
  year: 2003
  end-page: 227
  publication-title: J. Organomet. Chem.
– volume: 16
  start-page: 3417
  year: 2004
  end-page: 3423
  publication-title: Chem. Mater.
– volume: 16
  start-page: 1402
  year: 2004
  end-page: 1410
  publication-title: Chem. Mater.
– volume: 15
  start-page: 4943
  year: 2005
  end-page: 4948
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 4768
  year: 2003
  end-page: 4774
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1457
  year: 2000
  end-page: 1463
  publication-title: J. Mater. Chem.
– year: 2006
– volume: 121
  start-page: 5413
  year: 1999
  end-page: 5425
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 616
  year: 2007
  end-page: 618
  publication-title: J. Mater. Chem.
– volume: 12
  start-page: 3249
  year: 2000
  end-page: 3252
  publication-title: Chem. Mater.
– start-page: 29
  year: 2012
  end-page: 35
  publication-title: Actual. Chim.
– volume: 127
  start-page: 14108
  year: 2005
  end-page: 14116
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 729
  year: 2011
  end-page: 735
  publication-title: Solid State Sci.
– volume: 24
  start-page: 2906
  year: 2012
  end-page: 2910
  publication-title: Adv. Mater.
– start-page: 531
  year: 2010
  end-page: 545
– volume: 40
  start-page: 563
  year: 2011
  end-page: 574
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 3579
  year: 2010
  end-page: 3584
  publication-title: Langmuir
– volume: 40
  start-page: 1435
  year: 2007
  end-page: 1443
  publication-title: Macromolecules
– volume: 19
  start-page: 1946
  year: 2007
  end-page: 1953
  publication-title: Chem. Mater.
– volume: 14
  start-page: 5672
  year: 2012
  end-page: 5679
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 8119
  year: 1999
  end-page: 8125
  publication-title: Langmuir
– start-page: 2662
  year: 2003
  end-page: 2663
  publication-title: Chem. Commun.
– volume: 22
  start-page: 3021
  year: 2010
  end-page: 3023
  publication-title: Chem. Mater.
– volume: 16
  start-page: 90
  year: 2006
  end-page: 95
  publication-title: J. Mater. Chem.
– volume: 115 42
  start-page: 4191 4057
  year: 2003 2003
  end-page: 4194 4060
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 295
  start-page: 2400
  year: 2002
  end-page: 2403
  publication-title: Science
– volume: 40
  start-page: 688
  year: 2011
  end-page: 695
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_7_128_2
  doi: 10.1246/bcsj.69.3667
– ident: e_1_2_7_147_2
  doi: 10.1039/b516985b
– ident: e_1_2_7_26_2
  doi: 10.1021/cm702271v
– ident: e_1_2_7_52_2
  doi: 10.1021/jp0672712
– ident: e_1_2_7_77_2
  doi: 10.1021/cm000550w
– ident: e_1_2_7_177_2
  doi: 10.1023/B:JSST.0000047977.44966.53
– ident: e_1_2_7_32_2
– ident: e_1_2_7_96_2
  doi: 10.1021/jp307274d
– ident: e_1_2_7_122_2
  doi: 10.1023/A:1025779918534
– ident: e_1_2_7_40_2
  doi: 10.1021/ja053795o
– ident: e_1_2_7_217_2
  doi: 10.1039/b509017b
– ident: e_1_2_7_90_2
  doi: 10.1002/smll.200400027
– ident: e_1_2_7_166_2
  doi: 10.1007/s10971-011-2603-8
– ident: e_1_2_7_104_2
– ident: e_1_2_7_124_2
  doi: 10.1039/b910345g
– ident: e_1_2_7_136_2
  doi: 10.1039/a802120a
– ident: e_1_2_7_184_2
  doi: 10.1021/la400293k
– ident: e_1_2_7_226_2
  doi: 10.1016/j.jcis.2010.06.013
– volume-title: Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing
  year: 1990
  ident: e_1_2_7_9_2
– ident: e_1_2_7_19_2
  doi: 10.1039/C0CS00010H
– ident: e_1_2_7_174_2
  doi: 10.1002/chem.200390183
– ident: e_1_2_7_171_2
  doi: 10.1002/(SICI)1521-3757(19991102)111:21<3366::AID-ANGE3366>3.0.CO;2-2
– ident: e_1_2_7_87_2
  doi: 10.1246/bcsj.70.2847
– ident: e_1_2_7_175_3
  doi: 10.1002/anie.200352485
– ident: e_1_2_7_8_2
  doi: 10.1016/j.crci.2009.06.001
– volume-title: Functional Hybrid Materials
  year: 2006
  ident: e_1_2_7_3_2
– ident: e_1_2_7_15_2
  doi: 10.1002/adfm.201100444
– ident: e_1_2_7_116_2
  doi: 10.1016/S0022-328X(03)00721-6
– ident: e_1_2_7_141_2
  doi: 10.1021/jp962937l
– ident: e_1_2_7_120_2
  doi: 10.1016/S0022-328X(03)00619-3
– ident: e_1_2_7_197_2
– ident: e_1_2_7_185_2
  doi: 10.1039/b510893d
– ident: e_1_2_7_4_2
– ident: e_1_2_7_209_2
  doi: 10.1039/b508818f
– ident: e_1_2_7_68_2
  doi: 10.1002/chem.200902454
– ident: e_1_2_7_231_2
  doi: 10.1021/ja2046556
– ident: e_1_2_7_158_2
  doi: 10.1039/c0cs00219d
– ident: e_1_2_7_63_2
  doi: 10.1002/chem.200700943
– ident: e_1_2_7_140_2
– ident: e_1_2_7_105_2
  doi: 10.1002/adma.200601435
– ident: e_1_2_7_65_2
  doi: 10.1039/c0jm01044h
– ident: e_1_2_7_145_3
  doi: 10.1002/1521-3773(20010803)40:15<2853::AID-ANIE2853>3.0.CO;2-J
– ident: e_1_2_7_138_2
  doi: 10.1016/j.solidstatesciences.2005.02.003
– ident: e_1_2_7_130_2
  doi: 10.1021/la9817866
– ident: e_1_2_7_23_2
  doi: 10.1039/b504536n
– ident: e_1_2_7_114_2
  doi: 10.1002/chem.200700739
– ident: e_1_2_7_2_2
  doi: 10.1039/c0cs00136h
– ident: e_1_2_7_215_2
  doi: 10.1039/b512450f
– ident: e_1_2_7_230_2
  doi: 10.1039/c2nj20953e
– ident: e_1_2_7_31_2
  doi: 10.1163/1568554053148735
– ident: e_1_2_7_74_2
  doi: 10.1021/la902990v
– ident: e_1_2_7_51_2
  doi: 10.1002/chem.200700914
– ident: e_1_2_7_188_2
  doi: 10.1039/c2cp40250e
– ident: e_1_2_7_71_2
  doi: 10.1021/ja058680z
– ident: e_1_2_7_91_2
  doi: 10.1021/la000206d
– ident: e_1_2_7_169_2
  doi: 10.1021/cm702804r
– ident: e_1_2_7_36_2
  doi: 10.1021/cr900201r
– ident: e_1_2_7_152_2
– volume-title: Silicon in Organic, Organometallic, and Polymer Chemistry
  year: 2000
  ident: e_1_2_7_89_2
– ident: e_1_2_7_190_2
– ident: e_1_2_7_69_2
– ident: e_1_2_7_109_2
  doi: 10.1021/ja039146z
– ident: e_1_2_7_41_2
– ident: e_1_2_7_38_2
– ident: e_1_2_7_123_2
  doi: 10.1039/B615027F
– ident: e_1_2_7_165_2
  doi: 10.1021/cm990405m
– ident: e_1_2_7_198_2
  doi: 10.1021/cm050275j
– ident: e_1_2_7_72_2
– ident: e_1_2_7_75_2
  doi: 10.1021/am1004046
– ident: e_1_2_7_161_2
  doi: 10.1021/ja982751v
– ident: e_1_2_7_11_2
  doi: 10.1039/C0CS00076K
– ident: e_1_2_7_24_2
  doi: 10.1002/tcr.20073
– ident: e_1_2_7_88_2
  doi: 10.1021/cm030432j
– ident: e_1_2_7_192_2
  doi: 10.1002/chem.200802748
– ident: e_1_2_7_101_2
  doi: 10.1039/b618228c
– ident: e_1_2_7_189_2
  doi: 10.1039/b714785f
– ident: e_1_2_7_18_2
  doi: 10.1021/cm702100t
– ident: e_1_2_7_42_2
– ident: e_1_2_7_113_2
– ident: e_1_2_7_213_2
  doi: 10.1039/b512482d
– ident: e_1_2_7_53_2
– ident: e_1_2_7_194_2
  doi: 10.1021/ja025650c
– ident: e_1_2_7_115_2
  doi: 10.1039/c0jm01248c
– ident: e_1_2_7_207_2
  doi: 10.1021/cm701946w
– ident: e_1_2_7_107_2
  doi: 10.1021/cm062660u
– ident: e_1_2_7_118_2
  doi: 10.1021/ja980236r
– ident: e_1_2_7_222_2
  doi: 10.1002/adfm.200600670
– ident: e_1_2_7_10_2
  doi: 10.1021/ja963284p
– ident: e_1_2_7_86_2
– ident: e_1_2_7_164_2
  doi: 10.1021/cm0350683
– ident: e_1_2_7_12_2
  doi: 10.1038/416304a
– ident: e_1_2_7_186_2
– ident: e_1_2_7_92_2
  doi: 10.1021/la202253v
– ident: e_1_2_7_146_2
  doi: 10.1039/b303672n
– ident: e_1_2_7_25_2
  doi: 10.1039/B603655D
– ident: e_1_2_7_98_2
  doi: 10.1021/cm0495212
– start-page: 50
  volume-title: Functional Hydrid Materials
  year: 2004
  ident: e_1_2_7_205_2
– ident: e_1_2_7_85_2
  doi: 10.1021/cm960137h
– ident: e_1_2_7_176_2
– ident: e_1_2_7_131_2
  doi: 10.1039/b001556n
– ident: e_1_2_7_137_2
– ident: e_1_2_7_187_2
  doi: 10.1021/jp060975r
– ident: e_1_2_7_151_2
  doi: 10.1002/smll.200800254
– ident: e_1_2_7_6_2
– ident: e_1_2_7_218_2
  doi: 10.1021/la0515569
– ident: e_1_2_7_201_2
– ident: e_1_2_7_54_2
  doi: 10.1002/smll.200500300
– ident: e_1_2_7_206_2
  doi: 10.1021/cm060440a
– ident: e_1_2_7_170_2
– ident: e_1_2_7_56_2
  doi: 10.1021/ja0611238
– ident: e_1_2_7_17_2
  doi: 10.1002/ange.200503075
– ident: e_1_2_7_34_2
  doi: 10.1021/ma102360t
– ident: e_1_2_7_181_2
  doi: 10.1039/b504635a
– ident: e_1_2_7_20_2
  doi: 10.1039/c3cs35345a
– ident: e_1_2_7_149_2
  doi: 10.1016/j.solidstatesciences.2010.05.003
– ident: e_1_2_7_17_3
  doi: 10.1002/anie.200503075
– ident: e_1_2_7_202_2
  doi: 10.1021/ja053966p
– ident: e_1_2_7_57_2
  doi: 10.1021/la980863u
– ident: e_1_2_7_61_2
  doi: 10.1002/qua.21720
– ident: e_1_2_7_214_2
  doi: 10.1021/ma062091b
– ident: e_1_2_7_47_2
  doi: 10.1021/ja020975e
– ident: e_1_2_7_99_2
  doi: 10.1016/j.polymer.2004.12.038
– ident: e_1_2_7_30_2
  doi: 10.1002/pola.20571
– ident: e_1_2_7_199_2
  doi: 10.1002/adfm.200700673
– ident: e_1_2_7_16_2
– ident: e_1_2_7_119_2
  doi: 10.1021/cm0101125
– ident: e_1_2_7_50_2
  doi: 10.1021/cm702141e
– ident: e_1_2_7_156_2
  doi: 10.1021/cr00037a013
– ident: e_1_2_7_134_2
– ident: e_1_2_7_55_2
  doi: 10.1021/ar6000318
– ident: e_1_2_7_76_2
  doi: 10.1016/S1383-5866(01)00104-6
– ident: e_1_2_7_106_2
  doi: 10.1039/c2ra00702a
– ident: e_1_2_7_224_2
  doi: 10.1021/ja0541736
– ident: e_1_2_7_81_2
– ident: e_1_2_7_95_2
  doi: 10.1021/la3011579
– ident: e_1_2_7_200_2
  doi: 10.1021/ja027991w
– ident: e_1_2_7_173_2
  doi: 10.1021/ja016053d
– ident: e_1_2_7_178_2
  doi: 10.1002/adfm.200700299
– ident: e_1_2_7_62_2
– ident: e_1_2_7_180_2
– ident: e_1_2_7_228_2
  doi: 10.1007/s10971-010-2224-7
– ident: e_1_2_7_150_2
  doi: 10.1246/bcsj.82.1035
– ident: e_1_2_7_172_2
  doi: 10.1021/cm0011458
– ident: e_1_2_7_22_2
  doi: 10.1002/tcr.10056
– ident: e_1_2_7_29_2
  doi: 10.1021/ja0342648
– ident: e_1_2_7_216_2
  doi: 10.1002/1521-3757(20010316)113:6<1121::AID-ANGE11210>3.0.CO;2-A
– ident: e_1_2_7_60_2
  doi: 10.1021/cr2002257
– ident: e_1_2_7_132_2
  doi: 10.1039/a907804e
– ident: e_1_2_7_49_2
  doi: 10.1021/ar0500923
– ident: e_1_2_7_78_2
– ident: e_1_2_7_148_2
– ident: e_1_2_7_58_2
  doi: 10.1021/cm011008q
– ident: e_1_2_7_43_2
  doi: 10.1126/science.1070821
– ident: e_1_2_7_167_2
– ident: e_1_2_7_232_2
  doi: 10.1002/ejic.201101037
– start-page: 29
  year: 2012
  ident: e_1_2_7_195_2
  publication-title: Actual. Chim.
– ident: e_1_2_7_129_2
– ident: e_1_2_7_66_2
– ident: e_1_2_7_94_2
  doi: 10.1039/C1JM13053F
– ident: e_1_2_7_227_2
  doi: 10.1002/chem.200801106
– ident: e_1_2_7_163_2
  doi: 10.1021/cm0498640
– ident: e_1_2_7_154_2
  doi: 10.1021/ja00043a014
– ident: e_1_2_7_183_2
  doi: 10.1002/ejic.201200616
– ident: e_1_2_7_27_2
  doi: 10.1039/B920516K
– volume-title: The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials
  year: 2010
  ident: e_1_2_7_7_2
  doi: 10.1002/9780470552704
– ident: e_1_2_7_135_2
  doi: 10.1021/cm9700615
– ident: e_1_2_7_175_2
  doi: 10.1002/ange.200352485
– ident: e_1_2_7_179_2
  doi: 10.1002/chem.200401012
– volume-title: Hybrid Materials: Synthesis Characterization, and Applications
  year: 2007
  ident: e_1_2_7_1_2
– ident: e_1_2_7_155_2
– ident: e_1_2_7_64_2
  doi: 10.1039/c0cc00341g
– ident: e_1_2_7_143_2
  doi: 10.1021/cm034967o
– ident: e_1_2_7_82_2
  doi: 10.1016/S1369-7021(11)70019-0
– ident: e_1_2_7_45_2
  doi: 10.1002/0471670561
– ident: e_1_2_7_28_2
– ident: e_1_2_7_108_2
  doi: 10.1021/ja808103h
– ident: e_1_2_7_117_2
– ident: e_1_2_7_125_2
  doi: 10.1246/bcsj.63.2094
– ident: e_1_2_7_126_2
– ident: e_1_2_7_80_2
  doi: 10.1002/adma.200802937
– ident: e_1_2_7_168_2
  doi: 10.1021/ja066047n
– ident: e_1_2_7_223_2
  doi: 10.1002/ange.200351419
– ident: e_1_2_7_223_3
  doi: 10.1002/anie.200351419
– ident: e_1_2_7_211_2
  doi: 10.1021/ja054103z
– ident: e_1_2_7_84_2
  doi: 10.1021/cr9002819
– ident: e_1_2_7_97_2
  doi: 10.1039/B305545K
– ident: e_1_2_7_229_2
  doi: 10.1039/b813679c
– ident: e_1_2_7_196_2
  doi: 10.1021/ja065434u
– ident: e_1_2_7_208_2
  doi: 10.1002/1521-4095(20020805)14:15<1081::AID-ADMA1081>3.0.CO;2-2
– ident: e_1_2_7_14_2
  doi: 10.1021/cr00037a012
– ident: e_1_2_7_102_2
  doi: 10.1039/b719162f
– ident: e_1_2_7_171_3
  doi: 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3
– ident: e_1_2_7_153_2
  doi: 10.1021/cm00006a003
– ident: e_1_2_7_13_2
  doi: 10.1021/cr9502357
– ident: e_1_2_7_110_2
– ident: e_1_2_7_127_2
  doi: 10.1039/C39950000241
– ident: e_1_2_7_142_2
  doi: 10.1021/cm0209665
– ident: e_1_2_7_111_2
  doi: 10.1016/j.memsci.2007.12.044
– ident: e_1_2_7_220_2
  doi: 10.1002/adma.200701927
– ident: e_1_2_7_157_2
  doi: 10.1021/ar000109b
– ident: e_1_2_7_159_2
– ident: e_1_2_7_103_2
  doi: 10.1039/c0dt00117a
– ident: e_1_2_7_204_2
  doi: 10.1021/ja051518b
– ident: e_1_2_7_39_2
  doi: 10.1002/9780470552704.ch18
– ident: e_1_2_7_225_2
  doi: 10.1021/ja903176k
– ident: e_1_2_7_193_2
  doi: 10.1039/b9nj00741e
– ident: e_1_2_7_21_2
– ident: e_1_2_7_67_2
  doi: 10.1039/b512537e
– ident: e_1_2_7_145_2
  doi: 10.1002/1521-3757(20010803)113:15<2946::AID-ANGE2946>3.0.CO;2-1
– ident: e_1_2_7_203_2
  doi: 10.1021/ja0575732
– ident: e_1_2_7_73_2
  doi: 10.1021/ja0499400
– ident: e_1_2_7_182_2
  doi: 10.1021/jp2022902
– ident: e_1_2_7_221_2
  doi: 10.1002/adma.201200422
– ident: e_1_2_7_35_2
  doi: 10.1039/b506815k
– ident: e_1_2_7_59_2
  doi: 10.1002/1521-4095(20020318)14:6<439::AID-ADMA439>3.0.CO;2-8
– ident: e_1_2_7_144_2
  doi: 10.1039/b316089k
– ident: e_1_2_7_48_2
  doi: 10.1039/B603555H
– ident: e_1_2_7_112_2
  doi: 10.1039/b908641m
– ident: e_1_2_7_44_2
  doi: 10.1126/science.1071063
– ident: e_1_2_7_191_2
  doi: 10.1039/b419376h
– ident: e_1_2_7_133_2
  doi: 10.1016/j.jssc.2004.02.026
– ident: e_1_2_7_83_2
  doi: 10.1021/cm9035456
– ident: e_1_2_7_160_2
  doi: 10.1021/cm950067z
– ident: e_1_2_7_37_2
  doi: 10.1021/cm901771y
– ident: e_1_2_7_70_2
  doi: 10.1039/B308703D
– ident: e_1_2_7_162_2
  doi: 10.1021/cm000451i
– ident: e_1_2_7_210_2
  doi: 10.1021/ja026799r
– ident: e_1_2_7_219_2
– ident: e_1_2_7_46_2
  doi: 10.1021/nn100273m
– ident: e_1_2_7_5_2
  doi: 10.1039/c0jm90087g
– ident: e_1_2_7_93_2
– ident: e_1_2_7_100_2
– ident: e_1_2_7_212_2
  doi: 10.1039/B416157B
– ident: e_1_2_7_121_2
  doi: 10.1021/la011016l
– ident: e_1_2_7_139_2
  doi: 10.1039/b206516a
– ident: e_1_2_7_79_2
  doi: 10.1002/adfm.200801387
– ident: e_1_2_7_33_2
  doi: 10.1039/C1JM14231C
SSID ssj0009633
Score 2.372589
SecondaryResourceType review_article
Snippet Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of...
Despite considerable achievements over the last two decades, nonporous organic-inorganic hybrid materials are mostly amorphous, especially in the absence of...
SourceID hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1790
SubjectTerms Amorphous materials
Catalysis
Chemical Sciences
Chemistry
Crosslinking
hybrid materials
Hybrids
Long range order
nanostructures
Nanotechnology
organosilane
Other
Polymerization
Self assembly
Sol gel process
sol-gel processes
Synthesis
Synthesis (chemistry)
Title Ordered Hybrids from Template-Free Organosilane Self-Assembly
URI https://api.istex.fr/ark:/67375/WNG-F1DB807F-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201303070
https://www.ncbi.nlm.nih.gov/pubmed/24449381
https://www.proquest.com/docview/1493476204
https://www.proquest.com/docview/1494306071
https://www.proquest.com/docview/1777996742
https://hal.science/hal-04383919
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPcAFKI8SKFVACE5pHceJ7eNut2GFUJGgFb1Z8SMCdbtb7QNRTv0J_Y38EmacTcoiHhLckngsx_Z4PGPPfEPI88xzCrLRJmDPsoTLvE4UZTZJa6q8MYXlPjjIHhTDI_76OD_-IYq_wYfoDtxwZQR5jQu8MrPdK9BQ6BNGkqMMBrYFIZxmBYLnD95d4UcBdzW55LlIEIO1RW2kbHe1-squdP0j-kSu4zB_-ZXiuarHho2ovE2qtguN_8nJzmJuduzXn9Ad_6ePd8itpZYa9xq22iDX_PguubHXJoe7R3pvpyHLZzw8x5CvWYxhKvGhPz0bgfL67eKynHofh0DPyewTOtTG7_2ohgK8ZT41o_P75KjcP9wbJstsDInNJbpwqFwW3BWOM-GYMdxlgnoLFo8yoLSllS14xZnzgjFXqzpjKhfcOyvxmBWExwOyNp6M_UMSZ0o6mqnK5rXilZGGC1M7ar2qhTVCRiRpZ0PbJVQ5ZswY6QZkmWkcGN0NTERedvRnDUjHbymfweR2RIitPey90fgtgLaqVH1OI_IizH1HVk1P0P9N5PrDwStdpoO-pKLULCJbLXPo5dKfgS2lMi4Q5j8iT7timB68iYHhniwCDQdbDdS7P9AIIcAYFRya2WwYr_sh0MmgFQm1WWCfv_RaI7xG9_boXyo9JjfhmaO_ekq3yNp8uvBPQB2bm22y3usP-uV2WHrfAfEZKjQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R9lAuUN6BAgEhOKVNHCeOj0tLCLAsEmwFNyt2HIG63a32gSin_oT-xv4SZpxNqkU8JDjGGcuxPXa-sWe-AXgSWx7i3mgCtGdZwLOkDmTITBDVobRap4Zb5yA7SIsD_vpT0noTUixMww_RHbjRynD7NS1wOpDevWANxU5RKDltwqi3a7DBEW2Q_bX__oJBCvWrySbPRUAsrC1vY8h2V-uv_JfWPpNX5AYN9LdfQc9VJOt-RflV0G0nGg-Uw53FXO-Y7z_xO_5XL7fgyhKo-r1Gs67BJTu-Dpt7bX64G9B7N3WJPv3ihKK-Zj5FqvhDe3Q8Qvx6fnqWT631XaznZPaFfGr9D3ZU4wu6aD7So5ObcJC_GO4VwTIhQ2CSjLw4ZJKlvEorzkTFtOZVLEJr0OiRGnFbVJqUl5xVVjBW1bKOmUwEt5XJ6KQV949bsD6ejO0d8GOZVWEsS5PUkpc601zougqNlbUwWmQeBO10KLNkK6ekGSPV8CwzRQOjuoHx4Fknf9zwdPxW8jHObidE9NpFr6-ozPG2ykh-jTx46ia_Eyunh-QCJxL1cfBS5dH-8ywUuWIebLfaoZarf4bmlIy5IKZ_Dx51r3F66DIGh3uycDIczTVEeH-QEUKgPSo4NnO70bzugxCWYSsZ1mZOf_7Sa0UMG93T3X-p9BA2i-Hbvuq_Gry5B5exnJP7ehRuw_p8urD3EZ3N9QO3_n4AN1Qs4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVgIuvB-BAgEhOKVNHCeOj0tLWKBaELSiNyt-RKBud1f7QJQTP4HfyC9hxtmkLOIhwTHxWMnYY_ubZOYbgIep4zHujSZCf5ZFvMjqSMbMREkdS6d1brjzAbKDvH_AXxxmhz9k8Tf8EN0HN1oZfr-mBT6x9fYpaSjqRJnktAej2a7BBs8RThAsenNKIIXm1RST5yIiEtaWtjFm26v9V46ltfcUFLlB4_zpV8hzFcj6k6i8CFWrQxOAcrS1mOst8_knesf_UfISXFjC1LDX2NVlOONGV-DcTlsd7ir0Xk19mc-wf0I5X7OQ8lTCfXc8GSJ6_fblazl1LvSZnuPZB4qoDd-6YY0N9Jv5WA9PrsFB-XR_px8tyzFEJisohkNmRc5tbjkTlmnNbSpiZ9DlkRpRW1KZnFecWScYs7WsUyYzwZ01BX1nxd3jOqyPxiN3E8JUFjZOZWWyWvJKF5oLXdvYOFkLo0URQNTOhjJLrnIqmTFUDcsyUzQwqhuYAB538pOGpeO3kg9wcjshItfu9_YU3fOsrTKRH5MAHvm578Sq6REFwIlMvRs8U2Wy-6SIRalYAJutcajl2p-hMyVTLojnP4D7XTNOD_2KweEeL7wMR2cN8d0fZIQQ6I0Kjo-50Rhe90IIyvApBfZm3nz-orUifo3u6ta_dLoHZ1_vlmrv-eDlbTiPtznFrifxJqzPpwt3B6HZXN_1q-87f3IrkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordered+Hybrids+from+Template-Free+Organosilane+Self-Assembly&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chemtob%2C+Abraham&rft.au=Ni%2C+Lingli&rft.au=Croutxe-Barghorn%2C+C%C3%A9line&rft.au=Boury%2C+Bruno&rft.date=2014-02-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=7&rft.spage=1790&rft_id=info:doi/10.1002%2Fchem.201303070&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3200517171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon