顾及设计矩阵误差的AR模型新解法
在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singularvaluedecomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性....
Saved in:
Published in | 测绘学报 Vol. 46; no. 11; pp. 1795 - 1801 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学测绘学院,湖北武汉430079
2017
武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079 地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 |
DOI | 10.11947/j.AGCS.2017.20170004 |
Cover
Abstract | 在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singularvaluedecomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性. |
---|---|
AbstractList | 在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singularvaluedecomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性. P228; 在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singular value decomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性. |
Abstract_FL | The ordinary least square method could not solve the problem that the error exist both in design matrix and observation vector while compute parameter values of AR model.In this article,a new method is proposed which consider the random errors of design matrix.The source of design matrix and observation vector is same and the amount of parameters contain error can be equal by introducing virtual observation.Then,this problem could be solved under the framework of normal least square by equivalence transformation of observation equation.The result of this new method is superior to SVD method and normal least square method by simulation date and observation data which verify the feasibility and effectiveness of this method. |
Author | 姚宜斌;熊朝晖;张豹;张良;孔建 |
AuthorAffiliation | 武汉大学测绘学院,湖北武汉430079;武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079;地球空间信息技术协同创新中心,湖北武汉430079;武汉大学中国南极测绘研究中心,湖北武汉430079 |
AuthorAffiliation_xml | – name: 武汉大学测绘学院,湖北武汉430079;武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079;地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079 |
Author_FL | ZHANG Liang KONG Jian YAO Yibin XIONG Zhaohui ZHANG Bao |
Author_FL_xml | – sequence: 1 fullname: YAO Yibin – sequence: 2 fullname: XIONG Zhaohui – sequence: 3 fullname: ZHANG Bao – sequence: 4 fullname: ZHANG Liang – sequence: 5 fullname: KONG Jian |
Author_xml | – sequence: 1 fullname: 姚宜斌;熊朝晖;张豹;张良;孔建 |
BookMark | eNotjzFLw0AcxW-oYK39CE7iZuL_cndJbgxBq1AQtHvI5ZI2RRNNEHV3soOTIg5KcFCXVBBx67dJmn4LE-vy3vLjPX5rqBXFkY_QBgYVY06NnbFq9exjVQNs_AUA0BZqYwCsYMbZKuqmaSgAGCUGI7yNthfZrLi7rfJZlWfzl4_F43c1nRY_-fzpxjoq37PieVI-fFZvr-XX_TpaCdyT1O_-dwcN9nYH9r7SP-wd2FZf8ZiJFSE8zjADKTnhlApfSh00QSgngdQxcDCkJrlm6IFpCiGpSyTXseHpGqXgmqSDtpazl24UuNHQGccXSVQfOt7oSjReuDGquc0l543iaHge1uRZEp66ybXTmBNuEsLILxW6X5w |
ClassificationCodes | P228 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11947/j.AGCS.2017.20170004 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix |
DocumentTitle_FL | A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix |
EndPage | 1801 |
ExternalDocumentID | chxb201711001 7000398335 |
GrantInformation_xml | – fundername: 国家自然科学基金; 湖北省杰出青年科学基金(2015CFA036)The General Program of National Natural Science Foundation of China; Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China funderid: (41274022,41574028); (.41274022,41574028); (2015CFA036) |
GroupedDBID | -01 2B. 2C. 2RA 5VS 5XA 5XB 7X2 92E 92I 92L ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CQIGP CW9 GROUPED_DOAJ HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PIMPY PYCSY RIG TCJ TGP U1G U5K W94 ~WA 4A8 93N ABJNI AEUYN PHGZM PHGZT PMFND PSX |
ID | FETCH-LOGICAL-c581-bbc95150dd93944bedd602b3493fd610907d2d9276f88bbd4a3d9617c62440a83 |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:08 EDT 2025 Wed Feb 14 10:08:22 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | AR模型 设计矩阵误差 AR model 奇异值分解 virtual observations 虚拟观测值 整体最小二乘 TLS SVD method design matrix error |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c581-bbc95150dd93944bedd602b3493fd610907d2d9276f88bbd4a3d9617c62440a83 |
Notes | The ordinary least square method could not solve the problem that the error exist both in design matrix and observation vector while compute parameter values of AR model.In this article,a new method is proposed which consider the random errors of design matrix.The source of design matrix and observation vector is same and the amount of parameters contain error can be equal by introducing virtual observation.Then,this problem could be solved under the framework of normal least square by equivalence transformation of observation equation.The result of this new method is superior to SVD method and normal least square method by simulation date and observation data which verify the feasibility and effectiveness of this method. AR model;design matrix error;TLS;virtual observations;SVD method 11-2089/P |
PageCount | 7 |
ParticipantIDs | wanfang_journals_chxb201711001 chongqing_primary_7000398335 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 测绘学报 |
PublicationTitleAlternate | Acta Geodaetica et Cartographica Sinica |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2017 |
Publisher | 武汉大学测绘学院,湖北武汉430079 武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079 地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079 |
Publisher_xml | – name: 武汉大学测绘学院,湖北武汉430079 – name: 地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079 – name: 武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079 |
SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
Score | 2.111377 |
Snippet | ... P228;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1795 |
SubjectTerms | AR模型;设计矩阵误差;整体最小二乘;虚拟观测值;奇异值分解 |
Title | 顾及设计矩阵误差的AR模型新解法 |
URI | http://lib.cqvip.com/qk/90069X/201711/7000398335.html https://d.wanfangdata.com.cn/periodical/chxb201711001 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCeKqFUuXAcMIQx7v2znGdOlQgkChF6i2yvUl7IQWSStAzJzhwAiEOoAiJx6VFQohb_03a9F8ws3ZTCyoESJG1mpl9zmb22_XOWIjLVkm_axV6HMzLk5iTHaRp4Fne4IaB7aBi5-Tbd8LF-_LmilqZmvpYubW0Mciu5ZtH-pX8j1aJRnplL9l_0OykUCJQmvRLT9IwPf9Kx5AgGB_iBBIFugXaQKLBJI7iEsRNIsAWGGRh1BArx2rxj3LFEYuxjAEtzRIkIRjt8inABHTMFAwhrrt8JB4wJQ6g-GzlAbJ1ROXkI4hjropKMAtgQmZR04w60K7juCo5kQA2y0p0EwJXgHY5mNgEXHAJZAHmUqObYFxzYuo8_krUyH0riFQ_SseNoTySKI84Cl_O0h7zjS9CXKpqsMszy3Ji-hXzS9ZFVZZyXxcHJb8vEygjt06YG817fL8vcg8GuIfr4uS2YuQ8mNk77Zg43ogin6-O3rpbhbEEInUVJpFVq4SBUzKgXeEENnKMfxkehmlUfhAFIU62bYwJlXtLX3a-9DzjVl8_qs0cF2Rtvbf6iNCOcz7rddPeagUnLZ8SJ8sNTs0Us_W0mNpcOyNmTJ9fuaw_eFq7UnPp4kStf1Zc3R_ujF4-H2_tjLeGe--_7L_5Pt7eHv3Y2nv7zCztfh6O3r3Yff11_OnD7rdX58RyK1luLnrlJzy8XGnfy7KcELyqW4vsgJ11rA3rjSyQGHQtB_qvR7ZhsRGFXa2zzMo0sEiYOg8JddZTHZwX0731XmdG1HwadhrkLsq8IVEjZnmaEjrXadTRuQxmxdxkDNoPi0gt7UPNzYr5clja5R-4387XnmQ8hBw10b_w5_wXxQkWLQ7f5sT04PFG5xLB0UE27-bCT-AwZLo |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A1%BE%E5%8F%8A%E8%AE%BE%E8%AE%A1%E7%9F%A9%E9%98%B5%E8%AF%AF%E5%B7%AE%E7%9A%84AR%E6%A8%A1%E5%9E%8B%E6%96%B0%E8%A7%A3%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%A7%9A%E5%AE%9C%E6%96%8C%3B%E7%86%8A%E6%9C%9D%E6%99%96%3B%E5%BC%A0%E8%B1%B9%3B%E5%BC%A0%E8%89%AF%3B%E5%AD%94%E5%BB%BA&rft.date=2017&rft.issn=1001-1595&rft.volume=46&rft.issue=11&rft.spage=1795&rft.epage=1801&rft_id=info:doi/10.11947%2Fj.AGCS.2017.20170004&rft.externalDocID=7000398335 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |