顾及设计矩阵误差的AR模型新解法

在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singularvaluedecomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性....

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 46; no. 11; pp. 1795 - 1801
Main Author 姚宜斌;熊朝晖;张豹;张良;孔建
Format Journal Article
LanguageChinese
Published 武汉大学测绘学院,湖北武汉430079 2017
武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079
地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2017.20170004

Cover

Abstract 在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singularvaluedecomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性.
AbstractList 在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singularvaluedecomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性.
P228; 在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题.本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题.利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singular value decomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性.
Abstract_FL The ordinary least square method could not solve the problem that the error exist both in design matrix and observation vector while compute parameter values of AR model.In this article,a new method is proposed which consider the random errors of design matrix.The source of design matrix and observation vector is same and the amount of parameters contain error can be equal by introducing virtual observation.Then,this problem could be solved under the framework of normal least square by equivalence transformation of observation equation.The result of this new method is superior to SVD method and normal least square method by simulation date and observation data which verify the feasibility and effectiveness of this method.
Author 姚宜斌;熊朝晖;张豹;张良;孔建
AuthorAffiliation 武汉大学测绘学院,湖北武汉430079;武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079;地球空间信息技术协同创新中心,湖北武汉430079;武汉大学中国南极测绘研究中心,湖北武汉430079
AuthorAffiliation_xml – name: 武汉大学测绘学院,湖北武汉430079;武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079;地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079
Author_FL ZHANG Liang
KONG Jian
YAO Yibin
XIONG Zhaohui
ZHANG Bao
Author_FL_xml – sequence: 1
  fullname: YAO Yibin
– sequence: 2
  fullname: XIONG Zhaohui
– sequence: 3
  fullname: ZHANG Bao
– sequence: 4
  fullname: ZHANG Liang
– sequence: 5
  fullname: KONG Jian
Author_xml – sequence: 1
  fullname: 姚宜斌;熊朝晖;张豹;张良;孔建
BookMark eNotjzFLw0AcxW-oYK39CE7iZuL_cndJbgxBq1AQtHvI5ZI2RRNNEHV3soOTIg5KcFCXVBBx67dJmn4LE-vy3vLjPX5rqBXFkY_QBgYVY06NnbFq9exjVQNs_AUA0BZqYwCsYMbZKuqmaSgAGCUGI7yNthfZrLi7rfJZlWfzl4_F43c1nRY_-fzpxjoq37PieVI-fFZvr-XX_TpaCdyT1O_-dwcN9nYH9r7SP-wd2FZf8ZiJFSE8zjADKTnhlApfSh00QSgngdQxcDCkJrlm6IFpCiGpSyTXseHpGqXgmqSDtpazl24UuNHQGccXSVQfOt7oSjReuDGquc0l543iaHge1uRZEp66ybXTmBNuEsLILxW6X5w
ClassificationCodes P228
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2017.20170004
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix
DocumentTitle_FL A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix
EndPage 1801
ExternalDocumentID chxb201711001
7000398335
GrantInformation_xml – fundername: 国家自然科学基金; 湖北省杰出青年科学基金(2015CFA036)The General Program of National Natural Science Foundation of China; Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China
  funderid: (41274022,41574028); (.41274022,41574028); (2015CFA036)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c581-bbc95150dd93944bedd602b3493fd610907d2d9276f88bbd4a3d9617c62440a83
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Wed Feb 14 10:08:22 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords AR模型
设计矩阵误差
AR model
奇异值分解
virtual observations
虚拟观测值
整体最小二乘
TLS
SVD method
design matrix error
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581-bbc95150dd93944bedd602b3493fd610907d2d9276f88bbd4a3d9617c62440a83
Notes The ordinary least square method could not solve the problem that the error exist both in design matrix and observation vector while compute parameter values of AR model.In this article,a new method is proposed which consider the random errors of design matrix.The source of design matrix and observation vector is same and the amount of parameters contain error can be equal by introducing virtual observation.Then,this problem could be solved under the framework of normal least square by equivalence transformation of observation equation.The result of this new method is superior to SVD method and normal least square method by simulation date and observation data which verify the feasibility and effectiveness of this method.
AR model;design matrix error;TLS;virtual observations;SVD method
11-2089/P
PageCount 7
ParticipantIDs wanfang_journals_chxb201711001
chongqing_primary_7000398335
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2017
Publisher 武汉大学测绘学院,湖北武汉430079
武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079
地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079
Publisher_xml – name: 武汉大学测绘学院,湖北武汉430079
– name: 地球空间信息技术协同创新中心,湖北武汉430079%武汉大学测绘学院,湖北武汉,430079%武汉大学中国南极测绘研究中心,湖北武汉,430079
– name: 武汉大学地球空间环境与大地测量教育部重点实验室,湖北武汉430079
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.111377
Snippet ...
P228;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1795
SubjectTerms AR模型;设计矩阵误差;整体最小二乘;虚拟观测值;奇异值分解
Title 顾及设计矩阵误差的AR模型新解法
URI http://lib.cqvip.com/qk/90069X/201711/7000398335.html
https://d.wanfangdata.com.cn/periodical/chxb201711001
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCeKqFUuXAcMIQx7v2znGdOlQgkChF6i2yvUl7IQWSStAzJzhwAiEOoAiJx6VFQohb_03a9F8ws3ZTCyoESJG1mpl9zmb22_XOWIjLVkm_axV6HMzLk5iTHaRp4Fne4IaB7aBi5-Tbd8LF-_LmilqZmvpYubW0Mciu5ZtH-pX8j1aJRnplL9l_0OykUCJQmvRLT9IwPf9Kx5AgGB_iBBIFugXaQKLBJI7iEsRNIsAWGGRh1BArx2rxj3LFEYuxjAEtzRIkIRjt8inABHTMFAwhrrt8JB4wJQ6g-GzlAbJ1ROXkI4hjropKMAtgQmZR04w60K7juCo5kQA2y0p0EwJXgHY5mNgEXHAJZAHmUqObYFxzYuo8_krUyH0riFQ_SseNoTySKI84Cl_O0h7zjS9CXKpqsMszy3Ji-hXzS9ZFVZZyXxcHJb8vEygjt06YG817fL8vcg8GuIfr4uS2YuQ8mNk77Zg43ogin6-O3rpbhbEEInUVJpFVq4SBUzKgXeEENnKMfxkehmlUfhAFIU62bYwJlXtLX3a-9DzjVl8_qs0cF2Rtvbf6iNCOcz7rddPeagUnLZ8SJ8sNTs0Us_W0mNpcOyNmTJ9fuaw_eFq7UnPp4kStf1Zc3R_ujF4-H2_tjLeGe--_7L_5Pt7eHv3Y2nv7zCztfh6O3r3Yff11_OnD7rdX58RyK1luLnrlJzy8XGnfy7KcELyqW4vsgJ11rA3rjSyQGHQtB_qvR7ZhsRGFXa2zzMo0sEiYOg8JddZTHZwX0731XmdG1HwadhrkLsq8IVEjZnmaEjrXadTRuQxmxdxkDNoPi0gt7UPNzYr5clja5R-4387XnmQ8hBw10b_w5_wXxQkWLQ7f5sT04PFG5xLB0UE27-bCT-AwZLo
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A1%BE%E5%8F%8A%E8%AE%BE%E8%AE%A1%E7%9F%A9%E9%98%B5%E8%AF%AF%E5%B7%AE%E7%9A%84AR%E6%A8%A1%E5%9E%8B%E6%96%B0%E8%A7%A3%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%A7%9A%E5%AE%9C%E6%96%8C%3B%E7%86%8A%E6%9C%9D%E6%99%96%3B%E5%BC%A0%E8%B1%B9%3B%E5%BC%A0%E8%89%AF%3B%E5%AD%94%E5%BB%BA&rft.date=2017&rft.issn=1001-1595&rft.volume=46&rft.issue=11&rft.spage=1795&rft.epage=1801&rft_id=info:doi/10.11947%2Fj.AGCS.2017.20170004&rft.externalDocID=7000398335
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg