The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria

Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagoph...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 74; no. 2; pp. 320 - 329.e6
Main Authors Ravenhill, Benjamin J., Boyle, Keith B., von Muhlinen, Natalia, Ellison, Cara J., Masson, Glenn R., Otten, Elsje G., Foeglein, Agnes, Williams, Roger, Randow, Felix
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.04.2019
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes. [Display omitted] •NDP52 recruits upstream autophagy machinery to damaged Salmonella-containing vacuoles•NDP52 trimerizes with the ULK subunit FIP200 and the TBK1 adaptor SINTBAD•NDP52-dependent recruitment of FIP200-ULK and SINTBAD-TBK1 required for xenophagy•Recruitment of ULK and TBK1 complexes promotes phagophore formation in situ Selective autophagy defends the cytosol against invasive bacteria. In this study, Ravenhill et al. report that the cargo receptor NDP52 recruits the upstream autophagy machinery to cytosolic bacteria by trimerizing with FIP200 and SINTBAD, subunits of the ULK and TBK1 complexes, respectively.
AbstractList Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes. [Display omitted] •NDP52 recruits upstream autophagy machinery to damaged Salmonella-containing vacuoles•NDP52 trimerizes with the ULK subunit FIP200 and the TBK1 adaptor SINTBAD•NDP52-dependent recruitment of FIP200-ULK and SINTBAD-TBK1 required for xenophagy•Recruitment of ULK and TBK1 complexes promotes phagophore formation in situ Selective autophagy defends the cytosol against invasive bacteria. In this study, Ravenhill et al. report that the cargo receptor NDP52 recruits the upstream autophagy machinery to cytosolic bacteria by trimerizing with FIP200 and SINTBAD, subunits of the ULK and TBK1 complexes, respectively.
Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes. • NDP52 recruits upstream autophagy machinery to damaged Salmonella -containing vacuoles • NDP52 trimerizes with the ULK subunit FIP200 and the TBK1 adaptor SINTBAD • NDP52-dependent recruitment of FIP200-ULK and SINTBAD-TBK1 required for xenophagy • Recruitment of ULK and TBK1 complexes promotes phagophore formation in situ Selective autophagy defends the cytosol against invasive bacteria. In this study, Ravenhill et al. report that the cargo receptor NDP52 recruits the upstream autophagy machinery to cytosolic bacteria by trimerizing with FIP200 and SINTBAD, subunits of the ULK and TBK1 complexes, respectively.
Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated "eat me" signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.
Author Randow, Felix
Boyle, Keith B.
Williams, Roger
Masson, Glenn R.
Ravenhill, Benjamin J.
Foeglein, Agnes
Ellison, Cara J.
Otten, Elsje G.
von Muhlinen, Natalia
AuthorAffiliation 1 Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
2 Addenbrooke’s Hospital, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
AuthorAffiliation_xml – name: 2 Addenbrooke’s Hospital, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
– name: 1 Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
Author_xml – sequence: 1
  givenname: Benjamin J.
  surname: Ravenhill
  fullname: Ravenhill, Benjamin J.
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 2
  givenname: Keith B.
  surname: Boyle
  fullname: Boyle, Keith B.
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 3
  givenname: Natalia
  surname: von Muhlinen
  fullname: von Muhlinen, Natalia
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 4
  givenname: Cara J.
  surname: Ellison
  fullname: Ellison, Cara J.
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 5
  givenname: Glenn R.
  surname: Masson
  fullname: Masson, Glenn R.
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 6
  givenname: Elsje G.
  surname: Otten
  fullname: Otten, Elsje G.
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 7
  givenname: Agnes
  surname: Foeglein
  fullname: Foeglein, Agnes
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 8
  givenname: Roger
  surname: Williams
  fullname: Williams, Roger
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
– sequence: 9
  givenname: Felix
  surname: Randow
  fullname: Randow, Felix
  email: randow@mrc-lmb.cam.ac.uk
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30853402$$D View this record in MEDLINE/PubMed
BookMark eNp9kU2P0zAQhi20iP2Af4CQj1wSxo6djwvSEmCpqABBOVuOM2ldJXHXdir67zdVywIXTrbkZ94Zz3NNLkY3IiEvGaQMWP5mmw6uN9inHFiVAktBsCfkikFVJILl4uJ850UuL8l1CFsAJmRZPSOXGZQyE8CvyP1qg7TWfu3odzS4i87TL--_SU4Xo41WRwz0B_Zoot0jvZ2i2230-kCbw5H308yMaxrnkJ_Lz7R2w67HXzQ6Wh-iC65PFuNet0fmnTYRvdXPydNO9wFfnM8bsvr4YVV_SpZf7xb17TIxsoSYtK0oO8gM78qmEXneVUKysimxAQSea9lVMme8K7DS2LBGdIXAjAOWoLO8zW7I21PsbmoGbA2O0ete7bwdtD8op63692W0G7V2e5WLomCSzwGvzwHe3U8YohpsmPfd6xHdFBRnFTBWgixmVJxQ410IHrvHNgzUUZbaqpMsdZSlgKlZ1lz26u8RH4t-2_nzB5z3tLfoVTAWR4Ot9bMR1Tr7_w4PxCmq7g
CitedBy_id crossref_primary_10_1016_j_jmb_2019_05_012
crossref_primary_10_1146_annurev_cellbio_100818_125300
crossref_primary_10_1002_cam4_3519
crossref_primary_10_1016_j_jmb_2019_05_010
crossref_primary_10_1242_jcs_247056
crossref_primary_10_1038_s41580_020_0241_0
crossref_primary_10_3390_ijms21062008
crossref_primary_10_1083_jcb_201911047
crossref_primary_10_1083_jcb_202309015
crossref_primary_10_1126_sciadv_adg2997
crossref_primary_10_1016_j_molcel_2023_04_021
crossref_primary_10_1080_15548627_2021_1909407
crossref_primary_10_1126_sciadv_abg4922
crossref_primary_10_1080_15548627_2021_1993704
crossref_primary_10_1080_27694127_2023_2188523
crossref_primary_10_1093_jb_mvad098
crossref_primary_10_1186_s11658_021_00272_x
crossref_primary_10_1083_jcb_202004182
crossref_primary_10_3389_fcell_2019_00308
crossref_primary_10_1016_j_jmb_2019_07_027
crossref_primary_10_1038_s41598_021_92408_4
crossref_primary_10_1080_15548627_2019_1628548
crossref_primary_10_1126_science_add6967
crossref_primary_10_1042_BST20210272
crossref_primary_10_15252_embj_2022111372
crossref_primary_10_3389_fcell_2020_00200
crossref_primary_10_1042_BST20191156
crossref_primary_10_3390_ijms21020578
crossref_primary_10_1002_bies_202000122
crossref_primary_10_1038_s41594_024_01217_6
crossref_primary_10_1038_s41577_020_0391_5
crossref_primary_10_1371_journal_ppat_1010736
crossref_primary_10_1083_jcb_201912144
crossref_primary_10_3390_cells12060956
crossref_primary_10_1111_tra_12723
crossref_primary_10_1083_jcb_202008031
crossref_primary_10_1101_cshperspect_a041256
crossref_primary_10_1007_s12275_022_2009_z
crossref_primary_10_1016_j_molcel_2021_10_001
crossref_primary_10_1016_j_tibs_2019_08_002
crossref_primary_10_1016_j_devcel_2019_12_017
crossref_primary_10_3390_cells11010030
crossref_primary_10_3389_fcell_2020_00171
crossref_primary_10_1038_s41467_024_45863_2
crossref_primary_10_3389_fmicb_2019_02962
crossref_primary_10_1016_j_celrep_2024_114294
crossref_primary_10_1038_s41467_021_27420_3
crossref_primary_10_1016_j_immuni_2021_01_018
crossref_primary_10_1016_j_tim_2021_02_006
crossref_primary_10_1080_15548627_2023_2197760
crossref_primary_10_1080_15548627_2023_2259775
crossref_primary_10_1016_j_molcel_2019_09_005
crossref_primary_10_1080_15548627_2022_2107309
crossref_primary_10_15252_embj_2020104948
crossref_primary_10_1042_BCJ20210225
crossref_primary_10_1016_j_celrep_2021_109434
crossref_primary_10_15252_embr_202152864
crossref_primary_10_3389_fmicb_2020_00721
crossref_primary_10_7554_eLife_59099
crossref_primary_10_3389_fimmu_2021_642771
crossref_primary_10_1038_s41576_022_00562_w
crossref_primary_10_1038_s41556_024_01348_4
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_1111_febs_15824
crossref_primary_10_1242_jcs_240440
crossref_primary_10_1016_j_celrep_2023_113051
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_1111_cas_15112
crossref_primary_10_3389_fcell_2019_00373
crossref_primary_10_1016_j_tcb_2020_02_001
crossref_primary_10_1128_IAI_00054_20
crossref_primary_10_3390_cells9010070
crossref_primary_10_1038_s41594_024_01338_y
crossref_primary_10_1038_s41598_020_78845_7
crossref_primary_10_1016_j_cophys_2022_100590
crossref_primary_10_1007_s00018_023_04704_z
crossref_primary_10_1242_jcs_259748
crossref_primary_10_1093_plcell_koab235
crossref_primary_10_3389_fcell_2021_775364
crossref_primary_10_1038_s41467_021_21874_1
crossref_primary_10_1128_MCB_00389_20
crossref_primary_10_1016_j_ceb_2022_01_009
crossref_primary_10_1083_jcb_202208092
crossref_primary_10_1016_j_molcel_2021_03_001
crossref_primary_10_1038_s44318_024_00091_8
crossref_primary_10_1111_febs_16628
crossref_primary_10_1371_journal_ppat_1011080
crossref_primary_10_7554_eLife_58396
crossref_primary_10_1038_s41421_020_0155_1
crossref_primary_10_1016_j_jmb_2019_07_016
crossref_primary_10_1128_IAI_00793_19
crossref_primary_10_15252_embj_2020105985
crossref_primary_10_1016_j_jmb_2019_09_005
crossref_primary_10_1126_sciadv_aay4624
crossref_primary_10_3390_cells8090973
crossref_primary_10_1016_j_cub_2022_11_002
crossref_primary_10_1073_pnas_2024144118
crossref_primary_10_1186_s12985_023_02069_0
crossref_primary_10_1038_s41598_021_03404_7
crossref_primary_10_1371_journal_ppat_1009280
crossref_primary_10_1016_j_tcb_2021_12_009
crossref_primary_10_1080_15548627_2021_1969765
crossref_primary_10_7554_eLife_72328
crossref_primary_10_1016_j_matbio_2021_01_004
crossref_primary_10_1016_j_jmb_2024_168631
crossref_primary_10_1083_jcb_202002085
crossref_primary_10_1016_j_expneurol_2021_113756
crossref_primary_10_3390_cells10113124
crossref_primary_10_1016_j_jmb_2024_168472
crossref_primary_10_1080_15548627_2022_2148432
crossref_primary_10_3389_fcimb_2022_834321
crossref_primary_10_1016_j_jmb_2019_05_051
crossref_primary_10_1242_jcs_258824
crossref_primary_10_1038_s41580_022_00542_2
crossref_primary_10_1152_physrev_00038_2021
crossref_primary_10_1631_jzus_B2100285
crossref_primary_10_1016_j_molcel_2022_03_012
crossref_primary_10_1038_s41467_020_14533_4
crossref_primary_10_1083_jcb_202105005
crossref_primary_10_1038_s41421_020_0141_7
crossref_primary_10_1080_15548627_2020_1853382
crossref_primary_10_1272_jnms_JNMS_2024_91_102
crossref_primary_10_1158_0008_5472_CAN_20_0519
crossref_primary_10_1080_15548627_2022_2029234
crossref_primary_10_15252_embj_2020106990
crossref_primary_10_15252_embj_2021110031
crossref_primary_10_1126_sciadv_abi6582
crossref_primary_10_1242_jcs_252973
crossref_primary_10_3390_cells9051205
crossref_primary_10_2183_pjab_96_032
crossref_primary_10_1016_j_celrep_2020_108371
crossref_primary_10_1146_annurev_genet_022422_095608
crossref_primary_10_1016_j_ceb_2019_12_001
crossref_primary_10_1016_j_tibs_2020_12_013
crossref_primary_10_1073_pnas_2315550121
crossref_primary_10_1080_15548627_2020_1783119
crossref_primary_10_15252_embr_201948317
crossref_primary_10_1016_j_cell_2021_10_017
crossref_primary_10_1042_BST20200130
crossref_primary_10_1038_s41467_021_25572_w
crossref_primary_10_1016_j_jbc_2021_101339
crossref_primary_10_3390_cells9092042
crossref_primary_10_1186_s13046_022_02352_y
crossref_primary_10_1016_j_dci_2020_103693
crossref_primary_10_1038_s41467_023_44201_2
crossref_primary_10_1146_annurev_cellbio_120219_035530
crossref_primary_10_1080_15548627_2022_2070331
crossref_primary_10_1111_febs_16280
crossref_primary_10_7554_eLife_74531
crossref_primary_10_1016_j_bbagen_2021_129972
crossref_primary_10_1016_j_molcel_2023_08_021
crossref_primary_10_1126_science_aaz7714
crossref_primary_10_1111_febs_14932
crossref_primary_10_1016_j_jmb_2019_08_010
crossref_primary_10_3389_fimmu_2021_674241
crossref_primary_10_1128_mBio_00852_20
crossref_primary_10_1016_j_jmb_2019_06_001
crossref_primary_10_1038_s41590_020_0697_2
crossref_primary_10_1091_mbc_E21_10_0505
crossref_primary_10_1016_j_micinf_2023_105128
crossref_primary_10_1038_s41398_023_02432_3
crossref_primary_10_1038_s41467_023_44005_4
crossref_primary_10_1038_s44318_024_00036_1
crossref_primary_10_3389_fcimb_2022_892610
crossref_primary_10_1016_j_intimp_2023_110336
crossref_primary_10_15252_embj_2022113012
crossref_primary_10_1126_science_aax3769
crossref_primary_10_3390_ijms21218196
crossref_primary_10_1016_j_molcel_2020_10_041
crossref_primary_10_1002_jcp_30836
crossref_primary_10_1083_jcb_202303082
crossref_primary_10_1038_s41556_021_00669_y
crossref_primary_10_1042_BST20210819
crossref_primary_10_1038_s41580_023_00676_x
crossref_primary_10_1080_15548627_2021_1874133
crossref_primary_10_1093_lifemedi_lnac043
crossref_primary_10_1038_s41467_020_20185_1
crossref_primary_10_15252_embj_2023113491
crossref_primary_10_1016_j_livres_2023_02_002
crossref_primary_10_1128_mBio_01871_20
crossref_primary_10_1186_s12929_019_0569_y
crossref_primary_10_1016_j_jmb_2019_10_013
crossref_primary_10_15252_embr_202256399
crossref_primary_10_3389_fcimb_2022_1014897
crossref_primary_10_3390_ijms21041202
crossref_primary_10_1007_s00018_020_03667_9
crossref_primary_10_1016_j_celrep_2023_112037
Cites_doi 10.1038/nmicrobiol.2017.63
10.1038/s41580-018-0003-4
10.1038/nature10744
10.1016/j.molcel.2014.05.021
10.1086/650733
10.1038/nature14893
10.1074/jbc.R117.810366
10.1038/ncb1086
10.1016/j.molcel.2012.08.024
10.1042/bse0550051
10.1016/j.devcel.2017.11.024
10.1038/ni.1800
10.1111/j.1462-5822.2009.01415.x
10.1091/mbc.e10-05-0457
10.1038/sj.emboj.7601743
10.1042/bse0550079
10.4049/jimmunol.0900441
10.1016/j.febslet.2008.02.047
10.1126/science.1233028
10.1126/science.1205405
10.1038/nmicrobiol.2017.66
10.1016/j.mib.2013.03.010
10.1038/embor.2013.40
10.1038/ncb2979
10.15252/embj.201694491
10.1016/j.chom.2013.05.004
10.1091/mbc.e10-11-0893
10.1038/nature12566
10.1042/bse0550017
10.1038/nri3532
10.1016/j.chom.2015.02.008
10.1016/j.chom.2012.10.019
10.1146/annurev-cellbio-092910-154005
10.1007/978-1-4020-4896-8_30
10.1038/ncb2589
ContentType Journal Article
Copyright 2019 MRC Laboratory of Molecular Biology
Copyright © 2019 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.
2019 MRC Laboratory of Molecular Biology 2019
Copyright_xml – notice: 2019 MRC Laboratory of Molecular Biology
– notice: Copyright © 2019 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.
– notice: 2019 MRC Laboratory of Molecular Biology 2019
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.molcel.2019.01.041
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 329.e6
ExternalDocumentID 10_1016_j_molcel_2019_01_041
30853402
S1097276519300619
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: WT104752MA
– fundername: Medical Research Council
  grantid: MC_U105170648
– fundername: Medical Research Council
  grantid: MC_U105184308
– fundername: Medical Research Council
  grantid: U105170648
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
0SF
AAEDT
AAHBH
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.55
.GJ
29M
3O-
53G
5VS
AAIKJ
AAQFI
AAQXK
AAYXX
ADMUD
AGHFR
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
7X8
5PM
ID FETCH-LOGICAL-c580t-dd48f03c2f8bb466f94518b8eb0e026a5f95612f7e9aeb1b4f74e320e80a36d3
IEDL.DBID ABVKL
ISSN 1097-2765
IngestDate Tue Sep 17 21:12:11 EDT 2024
Fri Oct 25 08:33:55 EDT 2024
Thu Sep 26 17:40:18 EDT 2024
Sat Sep 28 08:25:08 EDT 2024
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords xenophagy
Salmonella enterica
TBK1
ULK
galectin-8
selective autophagy
FIP200
NDP52
cargo receptor
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-dd48f03c2f8bb466f94518b8eb0e026a5f95612f7e9aeb1b4f74e320e80a36d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276519300619
PMID 30853402
PQID 2190118057
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6477152
proquest_miscellaneous_2190118057
crossref_primary_10_1016_j_molcel_2019_01_041
pubmed_primary_30853402
elsevier_sciencedirect_doi_10_1016_j_molcel_2019_01_041
PublicationCentury 2000
PublicationDate 2019-04-18
PublicationDateYYYYMMDD 2019-04-18
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2019
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Noad, von der Malsburg, Pathe, Michel, Komander, Randow (bib16) 2017; 2
Smith, Harley, Kemp, Wills, Lee, Arends, von Kriegsheim, Behrends, Wilkinson (bib24) 2018; 44
von Muhlinen, Akutsu, Ravenhill, Foeglein, Bloor, Rutherford, Freund, Komander, Randow (bib33) 2012; 48
Majowicz, Musto, Scallan, Angulo, Kirk, O’Brien, Jones, Fazil, Hoekstra (bib11) 2010; 50
Mizushima, Yoshimori, Ohsumi (bib14) 2011; 27
Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (bib27) 2009; 10
Morton, Hesson, Peggie, Cohen (bib15) 2008; 582
Bouwmeester, Bauch, Ruffner, Angrand, Bergamini, Croughton, Cruciat, Eberhard, Gagneur, Ghidelli (bib2) 2004; 6
Boyle, Randow (bib3) 2013; 16
Huett, Heath, Begun, Sassi, Baxt, Vyas, Goldberg, Xavier (bib8) 2012; 12
Ryzhakov, Randow (bib22) 2007; 26
Thurston, Boyle, Allen, Ravenhill, Karpiyevich, Bloor, Kaul, Noad, Foeglein, Matthews (bib29) 2016; 35
Dikic, Elazar (bib5) 2018; 19
Dooley, Razi, Polson, Girardin, Wilson, Tooze (bib6) 2014; 55
Benjamin, Sumpter, Levine, Hooper (bib1) 2013; 13
Deretic, Saitoh, Akira (bib4) 2013; 13
Manzanillo, Ayres, Watson, Collins, Souza, Rae, Schneider, Nakamura, Shiloh, Cox (bib12) 2013; 501
van Wijk, Fricke, Herhaus, Gupta, Hötte, Pampaloni, Grumati, Kaulich, Sou, Komatsu (bib31) 2017; 2
Kageyama, Omori, Saitoh, Sone, Guan, Akira, Imamoto, Noda, Yoshimori (bib9) 2011; 22
Roberts, Ktistakis (bib21) 2013; 55
Mercer, Gubas, Tooze (bib13) 2018; 293
Randow, Sale (bib19) 2006; 40
Thurston, Wandel, von Muhlinen, Foeglein, Randow (bib28) 2012; 482
Zheng, Shahnazari, Brech, Lamark, Johansen, Brumell (bib35) 2009; 183
Slobodkin, Elazar (bib23) 2013; 55
Verlhac, Grégoire, Azocar, Petkova, Baguet, Viret, Faure (bib32) 2015; 17
Stolz, Ernst, Dikic (bib25) 2014; 16
Randow, MacMicking, James (bib20) 2013; 340
Svenning, Johansen (bib26) 2013; 55
Tumbarello, Waxse, Arden, Bright, Kendrick-Jones, Buss (bib30) 2012; 14
Paz, Sachse, Dupont, Mounier, Cederfur, Enninga, Leffler, Poirier, Prevost, Lafont, Sansonetti (bib18) 2010; 12
Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib10) 2015; 524
Ohashi, Munro (bib17) 2010; 21
Wild, Farhan, McEwan, Wagner, Rogov, Brady, Richter, Korac, Waidmann, Choudhary (bib34) 2011; 333
Farré, Burkenroad, Burnett, Subramani (bib7) 2013; 14
31258038 - Autophagy. 2019 Sep;15(9):1655-1656
Lazarou (10.1016/j.molcel.2019.01.041_bib10) 2015; 524
Thurston (10.1016/j.molcel.2019.01.041_bib27) 2009; 10
Stolz (10.1016/j.molcel.2019.01.041_bib25) 2014; 16
Dikic (10.1016/j.molcel.2019.01.041_bib5) 2018; 19
Svenning (10.1016/j.molcel.2019.01.041_bib26) 2013; 55
Smith (10.1016/j.molcel.2019.01.041_bib24) 2018; 44
Thurston (10.1016/j.molcel.2019.01.041_bib29) 2016; 35
von Muhlinen (10.1016/j.molcel.2019.01.041_bib33) 2012; 48
Ohashi (10.1016/j.molcel.2019.01.041_bib17) 2010; 21
Zheng (10.1016/j.molcel.2019.01.041_bib35) 2009; 183
Thurston (10.1016/j.molcel.2019.01.041_bib28) 2012; 482
Morton (10.1016/j.molcel.2019.01.041_bib15) 2008; 582
Slobodkin (10.1016/j.molcel.2019.01.041_bib23) 2013; 55
Boyle (10.1016/j.molcel.2019.01.041_bib3) 2013; 16
Kageyama (10.1016/j.molcel.2019.01.041_bib9) 2011; 22
Randow (10.1016/j.molcel.2019.01.041_bib19) 2006; 40
Paz (10.1016/j.molcel.2019.01.041_bib18) 2010; 12
Mercer (10.1016/j.molcel.2019.01.041_bib13) 2018; 293
Benjamin (10.1016/j.molcel.2019.01.041_bib1) 2013; 13
Ryzhakov (10.1016/j.molcel.2019.01.041_bib22) 2007; 26
Verlhac (10.1016/j.molcel.2019.01.041_bib32) 2015; 17
Huett (10.1016/j.molcel.2019.01.041_bib8) 2012; 12
Majowicz (10.1016/j.molcel.2019.01.041_bib11) 2010; 50
Wild (10.1016/j.molcel.2019.01.041_bib34) 2011; 333
Mizushima (10.1016/j.molcel.2019.01.041_bib14) 2011; 27
van Wijk (10.1016/j.molcel.2019.01.041_bib31) 2017; 2
Farré (10.1016/j.molcel.2019.01.041_bib7) 2013; 14
Dooley (10.1016/j.molcel.2019.01.041_bib6) 2014; 55
Manzanillo (10.1016/j.molcel.2019.01.041_bib12) 2013; 501
Roberts (10.1016/j.molcel.2019.01.041_bib21) 2013; 55
Tumbarello (10.1016/j.molcel.2019.01.041_bib30) 2012; 14
Bouwmeester (10.1016/j.molcel.2019.01.041_bib2) 2004; 6
Deretic (10.1016/j.molcel.2019.01.041_bib4) 2013; 13
Noad (10.1016/j.molcel.2019.01.041_bib16) 2017; 2
Randow (10.1016/j.molcel.2019.01.041_bib20) 2013; 340
References_xml – volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  ident: bib14
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
  contributor:
    fullname: Ohsumi
– volume: 293
  start-page: 5386
  year: 2018
  end-page: 5395
  ident: bib13
  article-title: A molecular perspective of mammalian autophagosome biogenesis
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Tooze
– volume: 22
  start-page: 2290
  year: 2011
  end-page: 2300
  ident: bib9
  article-title: The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Yoshimori
– volume: 17
  start-page: 515
  year: 2015
  end-page: 525
  ident: bib32
  article-title: Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation
  publication-title: Cell Host Microbe
  contributor:
    fullname: Faure
– volume: 333
  start-page: 228
  year: 2011
  end-page: 233
  ident: bib34
  article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
  publication-title: Science
  contributor:
    fullname: Choudhary
– volume: 50
  start-page: 882
  year: 2010
  end-page: 889
  ident: bib11
  article-title: The global burden of nontyphoidal Salmonella gastroenteritis
  publication-title: Clin. Infect. Dis.
  contributor:
    fullname: Hoekstra
– volume: 10
  start-page: 1215
  year: 2009
  end-page: 1221
  ident: bib27
  article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
  publication-title: Nat. Immunol.
  contributor:
    fullname: Randow
– volume: 14
  start-page: 441
  year: 2013
  end-page: 449
  ident: bib7
  article-title: Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
  publication-title: EMBO Rep.
  contributor:
    fullname: Subramani
– volume: 13
  start-page: 722
  year: 2013
  end-page: 737
  ident: bib4
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat. Rev. Immunol.
  contributor:
    fullname: Akira
– volume: 19
  start-page: 349
  year: 2018
  end-page: 364
  ident: bib5
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  contributor:
    fullname: Elazar
– volume: 55
  start-page: 51
  year: 2013
  end-page: 64
  ident: bib23
  article-title: The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy
  publication-title: Essays Biochem.
  contributor:
    fullname: Elazar
– volume: 35
  start-page: 1779
  year: 2016
  end-page: 1792
  ident: bib29
  article-title: Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy
  publication-title: EMBO J.
  contributor:
    fullname: Matthews
– volume: 12
  start-page: 530
  year: 2010
  end-page: 544
  ident: bib18
  article-title: Galectin-3, a marker for vacuole lysis by invasive pathogens
  publication-title: Cell. Microbiol.
  contributor:
    fullname: Sansonetti
– volume: 14
  start-page: 1024
  year: 2012
  end-page: 1035
  ident: bib30
  article-title: Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Buss
– volume: 2
  start-page: 17063
  year: 2017
  ident: bib16
  article-title: LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB
  publication-title: Nat. Microbiol.
  contributor:
    fullname: Randow
– volume: 48
  start-page: 329
  year: 2012
  end-page: 342
  ident: bib33
  article-title: LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
  publication-title: Mol. Cell
  contributor:
    fullname: Randow
– volume: 524
  start-page: 309
  year: 2015
  end-page: 314
  ident: bib10
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  contributor:
    fullname: Youle
– volume: 582
  start-page: 997
  year: 2008
  end-page: 1002
  ident: bib15
  article-title: Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma
  publication-title: FEBS Lett.
  contributor:
    fullname: Cohen
– volume: 13
  start-page: 723
  year: 2013
  end-page: 734
  ident: bib1
  article-title: Intestinal epithelial autophagy is essential for host defense against invasive bacteria
  publication-title: Cell Host Microbe
  contributor:
    fullname: Hooper
– volume: 12
  start-page: 778
  year: 2012
  end-page: 790
  ident: bib8
  article-title: The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium
  publication-title: Cell Host Microbe
  contributor:
    fullname: Xavier
– volume: 55
  start-page: 17
  year: 2013
  end-page: 27
  ident: bib21
  article-title: Omegasomes: PI3P platforms that manufacture autophagosomes
  publication-title: Essays Biochem.
  contributor:
    fullname: Ktistakis
– volume: 55
  start-page: 238
  year: 2014
  end-page: 252
  ident: bib6
  article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
  publication-title: Mol. Cell
  contributor:
    fullname: Tooze
– volume: 16
  start-page: 339
  year: 2013
  end-page: 348
  ident: bib3
  article-title: The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity
  publication-title: Curr. Opin. Microbiol.
  contributor:
    fullname: Randow
– volume: 55
  start-page: 79
  year: 2013
  end-page: 92
  ident: bib26
  article-title: Selective autophagy
  publication-title: Essays Biochem.
  contributor:
    fullname: Johansen
– volume: 340
  start-page: 701
  year: 2013
  end-page: 706
  ident: bib20
  article-title: Cellular self-defense: how cell-autonomous immunity protects against pathogens
  publication-title: Science
  contributor:
    fullname: James
– volume: 2
  start-page: 17066
  year: 2017
  ident: bib31
  article-title: Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation
  publication-title: Nat. Microbiol.
  contributor:
    fullname: Komatsu
– volume: 44
  start-page: 217
  year: 2018
  end-page: 232.e11
  ident: bib24
  article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis
  publication-title: Dev. Cell
  contributor:
    fullname: Wilkinson
– volume: 16
  start-page: 495
  year: 2014
  end-page: 501
  ident: bib25
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Dikic
– volume: 482
  start-page: 414
  year: 2012
  end-page: 418
  ident: bib28
  article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
  publication-title: Nature
  contributor:
    fullname: Randow
– volume: 183
  start-page: 5909
  year: 2009
  end-page: 5916
  ident: bib35
  article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
  publication-title: J. Immunol.
  contributor:
    fullname: Brumell
– volume: 21
  start-page: 3998
  year: 2010
  end-page: 4008
  ident: bib17
  article-title: Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Munro
– volume: 6
  start-page: 97
  year: 2004
  end-page: 105
  ident: bib2
  article-title: A physical and functional map of the human TNF-α/NF-κ B signal transduction pathway
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Ghidelli
– volume: 40
  start-page: 383
  year: 2006
  end-page: 386
  ident: bib19
  article-title: Retroviral transduction of DT40
  publication-title: Subcell. Biochem.
  contributor:
    fullname: Sale
– volume: 26
  start-page: 3180
  year: 2007
  end-page: 3190
  ident: bib22
  article-title: SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK
  publication-title: EMBO J.
  contributor:
    fullname: Randow
– volume: 501
  start-page: 512
  year: 2013
  end-page: 516
  ident: bib12
  article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens
  publication-title: Nature
  contributor:
    fullname: Cox
– volume: 2
  start-page: 17063
  year: 2017
  ident: 10.1016/j.molcel.2019.01.041_bib16
  article-title: LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.63
  contributor:
    fullname: Noad
– volume: 19
  start-page: 349
  year: 2018
  ident: 10.1016/j.molcel.2019.01.041_bib5
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0003-4
  contributor:
    fullname: Dikic
– volume: 482
  start-page: 414
  year: 2012
  ident: 10.1016/j.molcel.2019.01.041_bib28
  article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
  publication-title: Nature
  doi: 10.1038/nature10744
  contributor:
    fullname: Thurston
– volume: 55
  start-page: 238
  year: 2014
  ident: 10.1016/j.molcel.2019.01.041_bib6
  article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.05.021
  contributor:
    fullname: Dooley
– volume: 50
  start-page: 882
  year: 2010
  ident: 10.1016/j.molcel.2019.01.041_bib11
  article-title: The global burden of nontyphoidal Salmonella gastroenteritis
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/650733
  contributor:
    fullname: Majowicz
– volume: 524
  start-page: 309
  year: 2015
  ident: 10.1016/j.molcel.2019.01.041_bib10
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  doi: 10.1038/nature14893
  contributor:
    fullname: Lazarou
– volume: 293
  start-page: 5386
  year: 2018
  ident: 10.1016/j.molcel.2019.01.041_bib13
  article-title: A molecular perspective of mammalian autophagosome biogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R117.810366
  contributor:
    fullname: Mercer
– volume: 6
  start-page: 97
  year: 2004
  ident: 10.1016/j.molcel.2019.01.041_bib2
  article-title: A physical and functional map of the human TNF-α/NF-κ B signal transduction pathway
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1086
  contributor:
    fullname: Bouwmeester
– volume: 48
  start-page: 329
  year: 2012
  ident: 10.1016/j.molcel.2019.01.041_bib33
  article-title: LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.08.024
  contributor:
    fullname: von Muhlinen
– volume: 55
  start-page: 51
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib23
  article-title: The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy
  publication-title: Essays Biochem.
  doi: 10.1042/bse0550051
  contributor:
    fullname: Slobodkin
– volume: 44
  start-page: 217
  year: 2018
  ident: 10.1016/j.molcel.2019.01.041_bib24
  article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.11.024
  contributor:
    fullname: Smith
– volume: 10
  start-page: 1215
  year: 2009
  ident: 10.1016/j.molcel.2019.01.041_bib27
  article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1800
  contributor:
    fullname: Thurston
– volume: 12
  start-page: 530
  year: 2010
  ident: 10.1016/j.molcel.2019.01.041_bib18
  article-title: Galectin-3, a marker for vacuole lysis by invasive pathogens
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2009.01415.x
  contributor:
    fullname: Paz
– volume: 21
  start-page: 3998
  year: 2010
  ident: 10.1016/j.molcel.2019.01.041_bib17
  article-title: Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-05-0457
  contributor:
    fullname: Ohashi
– volume: 26
  start-page: 3180
  year: 2007
  ident: 10.1016/j.molcel.2019.01.041_bib22
  article-title: SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601743
  contributor:
    fullname: Ryzhakov
– volume: 55
  start-page: 79
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib26
  article-title: Selective autophagy
  publication-title: Essays Biochem.
  doi: 10.1042/bse0550079
  contributor:
    fullname: Svenning
– volume: 183
  start-page: 5909
  year: 2009
  ident: 10.1016/j.molcel.2019.01.041_bib35
  article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900441
  contributor:
    fullname: Zheng
– volume: 582
  start-page: 997
  year: 2008
  ident: 10.1016/j.molcel.2019.01.041_bib15
  article-title: Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.02.047
  contributor:
    fullname: Morton
– volume: 340
  start-page: 701
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib20
  article-title: Cellular self-defense: how cell-autonomous immunity protects against pathogens
  publication-title: Science
  doi: 10.1126/science.1233028
  contributor:
    fullname: Randow
– volume: 333
  start-page: 228
  year: 2011
  ident: 10.1016/j.molcel.2019.01.041_bib34
  article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
  publication-title: Science
  doi: 10.1126/science.1205405
  contributor:
    fullname: Wild
– volume: 2
  start-page: 17066
  year: 2017
  ident: 10.1016/j.molcel.2019.01.041_bib31
  article-title: Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.66
  contributor:
    fullname: van Wijk
– volume: 16
  start-page: 339
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib3
  article-title: The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2013.03.010
  contributor:
    fullname: Boyle
– volume: 14
  start-page: 441
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib7
  article-title: Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.40
  contributor:
    fullname: Farré
– volume: 16
  start-page: 495
  year: 2014
  ident: 10.1016/j.molcel.2019.01.041_bib25
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2979
  contributor:
    fullname: Stolz
– volume: 35
  start-page: 1779
  year: 2016
  ident: 10.1016/j.molcel.2019.01.041_bib29
  article-title: Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy
  publication-title: EMBO J.
  doi: 10.15252/embj.201694491
  contributor:
    fullname: Thurston
– volume: 13
  start-page: 723
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib1
  article-title: Intestinal epithelial autophagy is essential for host defense against invasive bacteria
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.05.004
  contributor:
    fullname: Benjamin
– volume: 22
  start-page: 2290
  year: 2011
  ident: 10.1016/j.molcel.2019.01.041_bib9
  article-title: The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-11-0893
  contributor:
    fullname: Kageyama
– volume: 501
  start-page: 512
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib12
  article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens
  publication-title: Nature
  doi: 10.1038/nature12566
  contributor:
    fullname: Manzanillo
– volume: 55
  start-page: 17
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib21
  article-title: Omegasomes: PI3P platforms that manufacture autophagosomes
  publication-title: Essays Biochem.
  doi: 10.1042/bse0550017
  contributor:
    fullname: Roberts
– volume: 13
  start-page: 722
  year: 2013
  ident: 10.1016/j.molcel.2019.01.041_bib4
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3532
  contributor:
    fullname: Deretic
– volume: 17
  start-page: 515
  year: 2015
  ident: 10.1016/j.molcel.2019.01.041_bib32
  article-title: Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.02.008
  contributor:
    fullname: Verlhac
– volume: 12
  start-page: 778
  year: 2012
  ident: 10.1016/j.molcel.2019.01.041_bib8
  article-title: The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.10.019
  contributor:
    fullname: Huett
– volume: 27
  start-page: 107
  year: 2011
  ident: 10.1016/j.molcel.2019.01.041_bib14
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154005
  contributor:
    fullname: Mizushima
– volume: 40
  start-page: 383
  year: 2006
  ident: 10.1016/j.molcel.2019.01.041_bib19
  article-title: Retroviral transduction of DT40
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-1-4020-4896-8_30
  contributor:
    fullname: Randow
– volume: 14
  start-page: 1024
  year: 2012
  ident: 10.1016/j.molcel.2019.01.041_bib30
  article-title: Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2589
  contributor:
    fullname: Tumbarello
SSID ssj0014589
Score 2.6905951
Snippet Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 320
SubjectTerms Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - genetics
Autophagy - genetics
Autophagy-Related Protein-1 Homolog - genetics
Autophagy-Related Proteins
Binding Sites - genetics
cargo receptor
Cytoplasm - microbiology
Cytosol - microbiology
FIP200
galectin-8
Humans
Multiprotein Complexes - chemistry
Multiprotein Complexes - genetics
NDP52
Nuclear Proteins - chemistry
Nuclear Proteins - genetics
Point Mutation - genetics
Protein Binding - genetics
Protein-Serine-Threonine Kinases - genetics
Protein-Tyrosine Kinases - chemistry
Protein-Tyrosine Kinases - genetics
Salmonella enterica
Salmonella typhimurium - genetics
Salmonella typhimurium - pathogenicity
selective autophagy
TBK1
ULK
xenophagy
Title The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria
URI https://dx.doi.org/10.1016/j.molcel.2019.01.041
https://www.ncbi.nlm.nih.gov/pubmed/30853402
https://search.proquest.com/docview/2190118057
https://pubmed.ncbi.nlm.nih.gov/PMC6477152
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ0i8IL4psMlIvFpNYidxHtuyaaVjQmyDvll242xFIyklRet_vzsnqSgIIfEUJbGVk-9y9zvdF8BbmbkkzVXBEznLubTopxgrAm5zYVRIDrRPxvxwlpxcyvfTeLoDo64WhtIqW93f6HSvrdsn_fY0-4v5vH9OsdMoTQiCkCHOdmE_QvSLwr4_GH6enG6CCTL2k_BoPacNXQWdT_P6Vt3MHMUgwsz375Th3yzUnwj090TKXyzT8UN40EJKNmiofgQ7rnwM95ohk-sn8B0lgY3M8qpiiBHdAp1sdvbuYxyxMSUOEdZk534aDio-NlhRpwFztWZ2TeuXqzklRjPEiezydMJIf9y4W1ZXbLSuK5RcPi5_-kR8Nmw6P5uncHF8dDE64e2gBT6LVVDzPJeqCMQsKpS1MkmKTMahssrZwKGPZuKCyl-jInWZQd1uZZFKJ6LAqcCIJBfPYK-sSvcCWO4QwhmXhULREA-ydYHIEptnKCuI5nrAu7PVi6adhu7yzL7qhheaeKGDUCMvepB2DNBbYqFR4_9j55uOXxr_GAqDmNJVqx86Cn25LQLVHjxv-LehRSD5Al1q_O4WZzcLqBv39ptyfu27clNFL4Khl_9N8Su4T3cUqgrVa9irlyt3gIintoetRNN18unL5BB2x9PhHaUHArQ
link.rule.ids 230,315,783,787,888,3515,27583,27938,27939,45677,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYi9IL5XPo3Eq9UkdhLnsStMLe0qpHVob5bdOKNoJKWkiP733DlJRUEIidfYVqzc5e53ut_dAbyRmUvSXBU8kYucS4txirEi4DYXRoUUQHsy5vksGV3K91fx1QEMu1oYolW2tr-x6d5at0_67dfsr5bL_gXlTqM0IQhCjji7BUeIBlKMwI4Gpx8n010yQcZ-Eh7t53Sgq6DzNK8v1c3CUQ4izHz_Thn-zUP9iUB_J1L-4pnO7sHdFlKyQXPr-3DgygdwuxkyuX0IX1ET2NCsryuGGNGtMMhms7cf4oiNiThEWJNd-Gk4aPjYYEOdBsz1ltkt7V9vlkSMZogT2eV0wsh-3LgfrK7YcFtXqLl8XH73RHx22nR-No9gfvZuPhzxdtACX8QqqHmeS1UEYhEVylqZJEUm41BZ5WzgMEYzcUHlr1GRusygbbeySKUTUeBUYESSi8dwWFalOwGWO4RwxmWhUDTEg3xdILLE5hnqCqK5HvDu2-pV005Ddzyzz7qRhSZZ6CDUKIsepJ0A9J5aaLT4_zj5upOXxj-G0iCmdNXmm45CX26LQLUHTxr57e4i8PoCQ2p8755kdxuoG_f-Srn85LtyU0UvgqGn_33jV3BnND-f6ul4NnkGx7RCaatQPYfDer1xLxD91PZlq90_Ab3xAvs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cargo+Receptor+NDP52+Initiates+Selective+Autophagy+by+Recruiting+the+ULK+Complex+to+Cytosol-Invading+Bacteria&rft.jtitle=Molecular+cell&rft.au=Ravenhill%2C+Benjamin+J&rft.au=Boyle%2C+Keith+B&rft.au=von+Muhlinen%2C+Natalia&rft.au=Ellison%2C+Cara+J&rft.date=2019-04-18&rft.eissn=1097-4164&rft.volume=74&rft.issue=2&rft.spage=320&rft.epage=329.e6&rft_id=info:doi/10.1016%2Fj.molcel.2019.01.041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon