The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria
Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagoph...
Saved in:
Published in | Molecular cell Vol. 74; no. 2; pp. 320 - 329.e6 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.04.2019
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.
[Display omitted]
•NDP52 recruits upstream autophagy machinery to damaged Salmonella-containing vacuoles•NDP52 trimerizes with the ULK subunit FIP200 and the TBK1 adaptor SINTBAD•NDP52-dependent recruitment of FIP200-ULK and SINTBAD-TBK1 required for xenophagy•Recruitment of ULK and TBK1 complexes promotes phagophore formation in situ
Selective autophagy defends the cytosol against invasive bacteria. In this study, Ravenhill et al. report that the cargo receptor NDP52 recruits the upstream autophagy machinery to cytosolic bacteria by trimerizing with FIP200 and SINTBAD, subunits of the ULK and TBK1 complexes, respectively. |
---|---|
AbstractList | Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.
[Display omitted]
•NDP52 recruits upstream autophagy machinery to damaged Salmonella-containing vacuoles•NDP52 trimerizes with the ULK subunit FIP200 and the TBK1 adaptor SINTBAD•NDP52-dependent recruitment of FIP200-ULK and SINTBAD-TBK1 required for xenophagy•Recruitment of ULK and TBK1 complexes promotes phagophore formation in situ
Selective autophagy defends the cytosol against invasive bacteria. In this study, Ravenhill et al. report that the cargo receptor NDP52 recruits the upstream autophagy machinery to cytosolic bacteria by trimerizing with FIP200 and SINTBAD, subunits of the ULK and TBK1 complexes, respectively. Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated “eat me” signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes. • NDP52 recruits upstream autophagy machinery to damaged Salmonella -containing vacuoles • NDP52 trimerizes with the ULK subunit FIP200 and the TBK1 adaptor SINTBAD • NDP52-dependent recruitment of FIP200-ULK and SINTBAD-TBK1 required for xenophagy • Recruitment of ULK and TBK1 complexes promotes phagophore formation in situ Selective autophagy defends the cytosol against invasive bacteria. In this study, Ravenhill et al. report that the cargo receptor NDP52 recruits the upstream autophagy machinery to cytosolic bacteria by trimerizing with FIP200 and SINTBAD, subunits of the ULK and TBK1 complexes, respectively. Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated "eat me" signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes. |
Author | Randow, Felix Boyle, Keith B. Williams, Roger Masson, Glenn R. Ravenhill, Benjamin J. Foeglein, Agnes Ellison, Cara J. Otten, Elsje G. von Muhlinen, Natalia |
AuthorAffiliation | 1 Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK 2 Addenbrooke’s Hospital, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK |
AuthorAffiliation_xml | – name: 2 Addenbrooke’s Hospital, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK – name: 1 Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK |
Author_xml | – sequence: 1 givenname: Benjamin J. surname: Ravenhill fullname: Ravenhill, Benjamin J. organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 2 givenname: Keith B. surname: Boyle fullname: Boyle, Keith B. organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 3 givenname: Natalia surname: von Muhlinen fullname: von Muhlinen, Natalia organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 4 givenname: Cara J. surname: Ellison fullname: Ellison, Cara J. organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 5 givenname: Glenn R. surname: Masson fullname: Masson, Glenn R. organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 6 givenname: Elsje G. surname: Otten fullname: Otten, Elsje G. organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 7 givenname: Agnes surname: Foeglein fullname: Foeglein, Agnes organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 8 givenname: Roger surname: Williams fullname: Williams, Roger organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK – sequence: 9 givenname: Felix surname: Randow fullname: Randow, Felix email: randow@mrc-lmb.cam.ac.uk organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30853402$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU2P0zAQhi20iP2Af4CQj1wSxo6djwvSEmCpqABBOVuOM2ldJXHXdir67zdVywIXTrbkZ94Zz3NNLkY3IiEvGaQMWP5mmw6uN9inHFiVAktBsCfkikFVJILl4uJ850UuL8l1CFsAJmRZPSOXGZQyE8CvyP1qg7TWfu3odzS4i87TL--_SU4Xo41WRwz0B_Zoot0jvZ2i2230-kCbw5H308yMaxrnkJ_Lz7R2w67HXzQ6Wh-iC65PFuNet0fmnTYRvdXPydNO9wFfnM8bsvr4YVV_SpZf7xb17TIxsoSYtK0oO8gM78qmEXneVUKysimxAQSea9lVMme8K7DS2LBGdIXAjAOWoLO8zW7I21PsbmoGbA2O0ete7bwdtD8op63692W0G7V2e5WLomCSzwGvzwHe3U8YohpsmPfd6xHdFBRnFTBWgixmVJxQ410IHrvHNgzUUZbaqpMsdZSlgKlZ1lz26u8RH4t-2_nzB5z3tLfoVTAWR4Ot9bMR1Tr7_w4PxCmq7g |
CitedBy_id | crossref_primary_10_1016_j_jmb_2019_05_012 crossref_primary_10_1146_annurev_cellbio_100818_125300 crossref_primary_10_1002_cam4_3519 crossref_primary_10_1016_j_jmb_2019_05_010 crossref_primary_10_1242_jcs_247056 crossref_primary_10_1038_s41580_020_0241_0 crossref_primary_10_3390_ijms21062008 crossref_primary_10_1083_jcb_201911047 crossref_primary_10_1083_jcb_202309015 crossref_primary_10_1126_sciadv_adg2997 crossref_primary_10_1016_j_molcel_2023_04_021 crossref_primary_10_1080_15548627_2021_1909407 crossref_primary_10_1126_sciadv_abg4922 crossref_primary_10_1080_15548627_2021_1993704 crossref_primary_10_1080_27694127_2023_2188523 crossref_primary_10_1093_jb_mvad098 crossref_primary_10_1186_s11658_021_00272_x crossref_primary_10_1083_jcb_202004182 crossref_primary_10_3389_fcell_2019_00308 crossref_primary_10_1016_j_jmb_2019_07_027 crossref_primary_10_1038_s41598_021_92408_4 crossref_primary_10_1080_15548627_2019_1628548 crossref_primary_10_1126_science_add6967 crossref_primary_10_1042_BST20210272 crossref_primary_10_15252_embj_2022111372 crossref_primary_10_3389_fcell_2020_00200 crossref_primary_10_1042_BST20191156 crossref_primary_10_3390_ijms21020578 crossref_primary_10_1002_bies_202000122 crossref_primary_10_1038_s41594_024_01217_6 crossref_primary_10_1038_s41577_020_0391_5 crossref_primary_10_1371_journal_ppat_1010736 crossref_primary_10_1083_jcb_201912144 crossref_primary_10_3390_cells12060956 crossref_primary_10_1111_tra_12723 crossref_primary_10_1083_jcb_202008031 crossref_primary_10_1101_cshperspect_a041256 crossref_primary_10_1007_s12275_022_2009_z crossref_primary_10_1016_j_molcel_2021_10_001 crossref_primary_10_1016_j_tibs_2019_08_002 crossref_primary_10_1016_j_devcel_2019_12_017 crossref_primary_10_3390_cells11010030 crossref_primary_10_3389_fcell_2020_00171 crossref_primary_10_1038_s41467_024_45863_2 crossref_primary_10_3389_fmicb_2019_02962 crossref_primary_10_1016_j_celrep_2024_114294 crossref_primary_10_1038_s41467_021_27420_3 crossref_primary_10_1016_j_immuni_2021_01_018 crossref_primary_10_1016_j_tim_2021_02_006 crossref_primary_10_1080_15548627_2023_2197760 crossref_primary_10_1080_15548627_2023_2259775 crossref_primary_10_1016_j_molcel_2019_09_005 crossref_primary_10_1080_15548627_2022_2107309 crossref_primary_10_15252_embj_2020104948 crossref_primary_10_1042_BCJ20210225 crossref_primary_10_1016_j_celrep_2021_109434 crossref_primary_10_15252_embr_202152864 crossref_primary_10_3389_fmicb_2020_00721 crossref_primary_10_7554_eLife_59099 crossref_primary_10_3389_fimmu_2021_642771 crossref_primary_10_1038_s41576_022_00562_w crossref_primary_10_1038_s41556_024_01348_4 crossref_primary_10_1083_jcb_202203083 crossref_primary_10_1111_febs_15824 crossref_primary_10_1242_jcs_240440 crossref_primary_10_1016_j_celrep_2023_113051 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1111_cas_15112 crossref_primary_10_3389_fcell_2019_00373 crossref_primary_10_1016_j_tcb_2020_02_001 crossref_primary_10_1128_IAI_00054_20 crossref_primary_10_3390_cells9010070 crossref_primary_10_1038_s41594_024_01338_y crossref_primary_10_1038_s41598_020_78845_7 crossref_primary_10_1016_j_cophys_2022_100590 crossref_primary_10_1007_s00018_023_04704_z crossref_primary_10_1242_jcs_259748 crossref_primary_10_1093_plcell_koab235 crossref_primary_10_3389_fcell_2021_775364 crossref_primary_10_1038_s41467_021_21874_1 crossref_primary_10_1128_MCB_00389_20 crossref_primary_10_1016_j_ceb_2022_01_009 crossref_primary_10_1083_jcb_202208092 crossref_primary_10_1016_j_molcel_2021_03_001 crossref_primary_10_1038_s44318_024_00091_8 crossref_primary_10_1111_febs_16628 crossref_primary_10_1371_journal_ppat_1011080 crossref_primary_10_7554_eLife_58396 crossref_primary_10_1038_s41421_020_0155_1 crossref_primary_10_1016_j_jmb_2019_07_016 crossref_primary_10_1128_IAI_00793_19 crossref_primary_10_15252_embj_2020105985 crossref_primary_10_1016_j_jmb_2019_09_005 crossref_primary_10_1126_sciadv_aay4624 crossref_primary_10_3390_cells8090973 crossref_primary_10_1016_j_cub_2022_11_002 crossref_primary_10_1073_pnas_2024144118 crossref_primary_10_1186_s12985_023_02069_0 crossref_primary_10_1038_s41598_021_03404_7 crossref_primary_10_1371_journal_ppat_1009280 crossref_primary_10_1016_j_tcb_2021_12_009 crossref_primary_10_1080_15548627_2021_1969765 crossref_primary_10_7554_eLife_72328 crossref_primary_10_1016_j_matbio_2021_01_004 crossref_primary_10_1016_j_jmb_2024_168631 crossref_primary_10_1083_jcb_202002085 crossref_primary_10_1016_j_expneurol_2021_113756 crossref_primary_10_3390_cells10113124 crossref_primary_10_1016_j_jmb_2024_168472 crossref_primary_10_1080_15548627_2022_2148432 crossref_primary_10_3389_fcimb_2022_834321 crossref_primary_10_1016_j_jmb_2019_05_051 crossref_primary_10_1242_jcs_258824 crossref_primary_10_1038_s41580_022_00542_2 crossref_primary_10_1152_physrev_00038_2021 crossref_primary_10_1631_jzus_B2100285 crossref_primary_10_1016_j_molcel_2022_03_012 crossref_primary_10_1038_s41467_020_14533_4 crossref_primary_10_1083_jcb_202105005 crossref_primary_10_1038_s41421_020_0141_7 crossref_primary_10_1080_15548627_2020_1853382 crossref_primary_10_1272_jnms_JNMS_2024_91_102 crossref_primary_10_1158_0008_5472_CAN_20_0519 crossref_primary_10_1080_15548627_2022_2029234 crossref_primary_10_15252_embj_2020106990 crossref_primary_10_15252_embj_2021110031 crossref_primary_10_1126_sciadv_abi6582 crossref_primary_10_1242_jcs_252973 crossref_primary_10_3390_cells9051205 crossref_primary_10_2183_pjab_96_032 crossref_primary_10_1016_j_celrep_2020_108371 crossref_primary_10_1146_annurev_genet_022422_095608 crossref_primary_10_1016_j_ceb_2019_12_001 crossref_primary_10_1016_j_tibs_2020_12_013 crossref_primary_10_1073_pnas_2315550121 crossref_primary_10_1080_15548627_2020_1783119 crossref_primary_10_15252_embr_201948317 crossref_primary_10_1016_j_cell_2021_10_017 crossref_primary_10_1042_BST20200130 crossref_primary_10_1038_s41467_021_25572_w crossref_primary_10_1016_j_jbc_2021_101339 crossref_primary_10_3390_cells9092042 crossref_primary_10_1186_s13046_022_02352_y crossref_primary_10_1016_j_dci_2020_103693 crossref_primary_10_1038_s41467_023_44201_2 crossref_primary_10_1146_annurev_cellbio_120219_035530 crossref_primary_10_1080_15548627_2022_2070331 crossref_primary_10_1111_febs_16280 crossref_primary_10_7554_eLife_74531 crossref_primary_10_1016_j_bbagen_2021_129972 crossref_primary_10_1016_j_molcel_2023_08_021 crossref_primary_10_1126_science_aaz7714 crossref_primary_10_1111_febs_14932 crossref_primary_10_1016_j_jmb_2019_08_010 crossref_primary_10_3389_fimmu_2021_674241 crossref_primary_10_1128_mBio_00852_20 crossref_primary_10_1016_j_jmb_2019_06_001 crossref_primary_10_1038_s41590_020_0697_2 crossref_primary_10_1091_mbc_E21_10_0505 crossref_primary_10_1016_j_micinf_2023_105128 crossref_primary_10_1038_s41398_023_02432_3 crossref_primary_10_1038_s41467_023_44005_4 crossref_primary_10_1038_s44318_024_00036_1 crossref_primary_10_3389_fcimb_2022_892610 crossref_primary_10_1016_j_intimp_2023_110336 crossref_primary_10_15252_embj_2022113012 crossref_primary_10_1126_science_aax3769 crossref_primary_10_3390_ijms21218196 crossref_primary_10_1016_j_molcel_2020_10_041 crossref_primary_10_1002_jcp_30836 crossref_primary_10_1083_jcb_202303082 crossref_primary_10_1038_s41556_021_00669_y crossref_primary_10_1042_BST20210819 crossref_primary_10_1038_s41580_023_00676_x crossref_primary_10_1080_15548627_2021_1874133 crossref_primary_10_1093_lifemedi_lnac043 crossref_primary_10_1038_s41467_020_20185_1 crossref_primary_10_15252_embj_2023113491 crossref_primary_10_1016_j_livres_2023_02_002 crossref_primary_10_1128_mBio_01871_20 crossref_primary_10_1186_s12929_019_0569_y crossref_primary_10_1016_j_jmb_2019_10_013 crossref_primary_10_15252_embr_202256399 crossref_primary_10_3389_fcimb_2022_1014897 crossref_primary_10_3390_ijms21041202 crossref_primary_10_1007_s00018_020_03667_9 crossref_primary_10_1016_j_celrep_2023_112037 |
Cites_doi | 10.1038/nmicrobiol.2017.63 10.1038/s41580-018-0003-4 10.1038/nature10744 10.1016/j.molcel.2014.05.021 10.1086/650733 10.1038/nature14893 10.1074/jbc.R117.810366 10.1038/ncb1086 10.1016/j.molcel.2012.08.024 10.1042/bse0550051 10.1016/j.devcel.2017.11.024 10.1038/ni.1800 10.1111/j.1462-5822.2009.01415.x 10.1091/mbc.e10-05-0457 10.1038/sj.emboj.7601743 10.1042/bse0550079 10.4049/jimmunol.0900441 10.1016/j.febslet.2008.02.047 10.1126/science.1233028 10.1126/science.1205405 10.1038/nmicrobiol.2017.66 10.1016/j.mib.2013.03.010 10.1038/embor.2013.40 10.1038/ncb2979 10.15252/embj.201694491 10.1016/j.chom.2013.05.004 10.1091/mbc.e10-11-0893 10.1038/nature12566 10.1042/bse0550017 10.1038/nri3532 10.1016/j.chom.2015.02.008 10.1016/j.chom.2012.10.019 10.1146/annurev-cellbio-092910-154005 10.1007/978-1-4020-4896-8_30 10.1038/ncb2589 |
ContentType | Journal Article |
Copyright | 2019 MRC Laboratory of Molecular Biology Copyright © 2019 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved. 2019 MRC Laboratory of Molecular Biology 2019 |
Copyright_xml | – notice: 2019 MRC Laboratory of Molecular Biology – notice: Copyright © 2019 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved. – notice: 2019 MRC Laboratory of Molecular Biology 2019 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.molcel.2019.01.041 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 329.e6 |
ExternalDocumentID | 10_1016_j_molcel_2019_01_041 30853402 S1097276519300619 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: WT104752MA – fundername: Medical Research Council grantid: MC_U105170648 – fundername: Medical Research Council grantid: MC_U105184308 – fundername: Medical Research Council grantid: U105170648 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 0SF AAEDT AAHBH AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM .55 .GJ 29M 3O- 53G 5VS AAIKJ AAQFI AAQXK AAYXX ADMUD AGHFR CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c580t-dd48f03c2f8bb466f94518b8eb0e026a5f95612f7e9aeb1b4f74e320e80a36d3 |
IEDL.DBID | ABVKL |
ISSN | 1097-2765 |
IngestDate | Tue Sep 17 21:12:11 EDT 2024 Fri Oct 25 08:33:55 EDT 2024 Thu Sep 26 17:40:18 EDT 2024 Sat Sep 28 08:25:08 EDT 2024 Fri Feb 23 02:30:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | xenophagy Salmonella enterica TBK1 ULK galectin-8 selective autophagy FIP200 NDP52 cargo receptor |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c580t-dd48f03c2f8bb466f94518b8eb0e026a5f95612f7e9aeb1b4f74e320e80a36d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276519300619 |
PMID | 30853402 |
PQID | 2190118057 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6477152 proquest_miscellaneous_2190118057 crossref_primary_10_1016_j_molcel_2019_01_041 pubmed_primary_30853402 elsevier_sciencedirect_doi_10_1016_j_molcel_2019_01_041 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-18 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Noad, von der Malsburg, Pathe, Michel, Komander, Randow (bib16) 2017; 2 Smith, Harley, Kemp, Wills, Lee, Arends, von Kriegsheim, Behrends, Wilkinson (bib24) 2018; 44 von Muhlinen, Akutsu, Ravenhill, Foeglein, Bloor, Rutherford, Freund, Komander, Randow (bib33) 2012; 48 Majowicz, Musto, Scallan, Angulo, Kirk, O’Brien, Jones, Fazil, Hoekstra (bib11) 2010; 50 Mizushima, Yoshimori, Ohsumi (bib14) 2011; 27 Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (bib27) 2009; 10 Morton, Hesson, Peggie, Cohen (bib15) 2008; 582 Bouwmeester, Bauch, Ruffner, Angrand, Bergamini, Croughton, Cruciat, Eberhard, Gagneur, Ghidelli (bib2) 2004; 6 Boyle, Randow (bib3) 2013; 16 Huett, Heath, Begun, Sassi, Baxt, Vyas, Goldberg, Xavier (bib8) 2012; 12 Ryzhakov, Randow (bib22) 2007; 26 Thurston, Boyle, Allen, Ravenhill, Karpiyevich, Bloor, Kaul, Noad, Foeglein, Matthews (bib29) 2016; 35 Dikic, Elazar (bib5) 2018; 19 Dooley, Razi, Polson, Girardin, Wilson, Tooze (bib6) 2014; 55 Benjamin, Sumpter, Levine, Hooper (bib1) 2013; 13 Deretic, Saitoh, Akira (bib4) 2013; 13 Manzanillo, Ayres, Watson, Collins, Souza, Rae, Schneider, Nakamura, Shiloh, Cox (bib12) 2013; 501 van Wijk, Fricke, Herhaus, Gupta, Hötte, Pampaloni, Grumati, Kaulich, Sou, Komatsu (bib31) 2017; 2 Kageyama, Omori, Saitoh, Sone, Guan, Akira, Imamoto, Noda, Yoshimori (bib9) 2011; 22 Roberts, Ktistakis (bib21) 2013; 55 Mercer, Gubas, Tooze (bib13) 2018; 293 Randow, Sale (bib19) 2006; 40 Thurston, Wandel, von Muhlinen, Foeglein, Randow (bib28) 2012; 482 Zheng, Shahnazari, Brech, Lamark, Johansen, Brumell (bib35) 2009; 183 Slobodkin, Elazar (bib23) 2013; 55 Verlhac, Grégoire, Azocar, Petkova, Baguet, Viret, Faure (bib32) 2015; 17 Stolz, Ernst, Dikic (bib25) 2014; 16 Randow, MacMicking, James (bib20) 2013; 340 Svenning, Johansen (bib26) 2013; 55 Tumbarello, Waxse, Arden, Bright, Kendrick-Jones, Buss (bib30) 2012; 14 Paz, Sachse, Dupont, Mounier, Cederfur, Enninga, Leffler, Poirier, Prevost, Lafont, Sansonetti (bib18) 2010; 12 Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib10) 2015; 524 Ohashi, Munro (bib17) 2010; 21 Wild, Farhan, McEwan, Wagner, Rogov, Brady, Richter, Korac, Waidmann, Choudhary (bib34) 2011; 333 Farré, Burkenroad, Burnett, Subramani (bib7) 2013; 14 31258038 - Autophagy. 2019 Sep;15(9):1655-1656 Lazarou (10.1016/j.molcel.2019.01.041_bib10) 2015; 524 Thurston (10.1016/j.molcel.2019.01.041_bib27) 2009; 10 Stolz (10.1016/j.molcel.2019.01.041_bib25) 2014; 16 Dikic (10.1016/j.molcel.2019.01.041_bib5) 2018; 19 Svenning (10.1016/j.molcel.2019.01.041_bib26) 2013; 55 Smith (10.1016/j.molcel.2019.01.041_bib24) 2018; 44 Thurston (10.1016/j.molcel.2019.01.041_bib29) 2016; 35 von Muhlinen (10.1016/j.molcel.2019.01.041_bib33) 2012; 48 Ohashi (10.1016/j.molcel.2019.01.041_bib17) 2010; 21 Zheng (10.1016/j.molcel.2019.01.041_bib35) 2009; 183 Thurston (10.1016/j.molcel.2019.01.041_bib28) 2012; 482 Morton (10.1016/j.molcel.2019.01.041_bib15) 2008; 582 Slobodkin (10.1016/j.molcel.2019.01.041_bib23) 2013; 55 Boyle (10.1016/j.molcel.2019.01.041_bib3) 2013; 16 Kageyama (10.1016/j.molcel.2019.01.041_bib9) 2011; 22 Randow (10.1016/j.molcel.2019.01.041_bib19) 2006; 40 Paz (10.1016/j.molcel.2019.01.041_bib18) 2010; 12 Mercer (10.1016/j.molcel.2019.01.041_bib13) 2018; 293 Benjamin (10.1016/j.molcel.2019.01.041_bib1) 2013; 13 Ryzhakov (10.1016/j.molcel.2019.01.041_bib22) 2007; 26 Verlhac (10.1016/j.molcel.2019.01.041_bib32) 2015; 17 Huett (10.1016/j.molcel.2019.01.041_bib8) 2012; 12 Majowicz (10.1016/j.molcel.2019.01.041_bib11) 2010; 50 Wild (10.1016/j.molcel.2019.01.041_bib34) 2011; 333 Mizushima (10.1016/j.molcel.2019.01.041_bib14) 2011; 27 van Wijk (10.1016/j.molcel.2019.01.041_bib31) 2017; 2 Farré (10.1016/j.molcel.2019.01.041_bib7) 2013; 14 Dooley (10.1016/j.molcel.2019.01.041_bib6) 2014; 55 Manzanillo (10.1016/j.molcel.2019.01.041_bib12) 2013; 501 Roberts (10.1016/j.molcel.2019.01.041_bib21) 2013; 55 Tumbarello (10.1016/j.molcel.2019.01.041_bib30) 2012; 14 Bouwmeester (10.1016/j.molcel.2019.01.041_bib2) 2004; 6 Deretic (10.1016/j.molcel.2019.01.041_bib4) 2013; 13 Noad (10.1016/j.molcel.2019.01.041_bib16) 2017; 2 Randow (10.1016/j.molcel.2019.01.041_bib20) 2013; 340 |
References_xml | – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: bib14 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. contributor: fullname: Ohsumi – volume: 293 start-page: 5386 year: 2018 end-page: 5395 ident: bib13 article-title: A molecular perspective of mammalian autophagosome biogenesis publication-title: J. Biol. Chem. contributor: fullname: Tooze – volume: 22 start-page: 2290 year: 2011 end-page: 2300 ident: bib9 article-title: The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella publication-title: Mol. Biol. Cell contributor: fullname: Yoshimori – volume: 17 start-page: 515 year: 2015 end-page: 525 ident: bib32 article-title: Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation publication-title: Cell Host Microbe contributor: fullname: Faure – volume: 333 start-page: 228 year: 2011 end-page: 233 ident: bib34 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science contributor: fullname: Choudhary – volume: 50 start-page: 882 year: 2010 end-page: 889 ident: bib11 article-title: The global burden of nontyphoidal Salmonella gastroenteritis publication-title: Clin. Infect. Dis. contributor: fullname: Hoekstra – volume: 10 start-page: 1215 year: 2009 end-page: 1221 ident: bib27 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria publication-title: Nat. Immunol. contributor: fullname: Randow – volume: 14 start-page: 441 year: 2013 end-page: 449 ident: bib7 article-title: Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11 publication-title: EMBO Rep. contributor: fullname: Subramani – volume: 13 start-page: 722 year: 2013 end-page: 737 ident: bib4 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat. Rev. Immunol. contributor: fullname: Akira – volume: 19 start-page: 349 year: 2018 end-page: 364 ident: bib5 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Elazar – volume: 55 start-page: 51 year: 2013 end-page: 64 ident: bib23 article-title: The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy publication-title: Essays Biochem. contributor: fullname: Elazar – volume: 35 start-page: 1779 year: 2016 end-page: 1792 ident: bib29 article-title: Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy publication-title: EMBO J. contributor: fullname: Matthews – volume: 12 start-page: 530 year: 2010 end-page: 544 ident: bib18 article-title: Galectin-3, a marker for vacuole lysis by invasive pathogens publication-title: Cell. Microbiol. contributor: fullname: Sansonetti – volume: 14 start-page: 1024 year: 2012 end-page: 1035 ident: bib30 article-title: Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome publication-title: Nat. Cell Biol. contributor: fullname: Buss – volume: 2 start-page: 17063 year: 2017 ident: bib16 article-title: LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB publication-title: Nat. Microbiol. contributor: fullname: Randow – volume: 48 start-page: 329 year: 2012 end-page: 342 ident: bib33 article-title: LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy publication-title: Mol. Cell contributor: fullname: Randow – volume: 524 start-page: 309 year: 2015 end-page: 314 ident: bib10 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature contributor: fullname: Youle – volume: 582 start-page: 997 year: 2008 end-page: 1002 ident: bib15 article-title: Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma publication-title: FEBS Lett. contributor: fullname: Cohen – volume: 13 start-page: 723 year: 2013 end-page: 734 ident: bib1 article-title: Intestinal epithelial autophagy is essential for host defense against invasive bacteria publication-title: Cell Host Microbe contributor: fullname: Hooper – volume: 12 start-page: 778 year: 2012 end-page: 790 ident: bib8 article-title: The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium publication-title: Cell Host Microbe contributor: fullname: Xavier – volume: 55 start-page: 17 year: 2013 end-page: 27 ident: bib21 article-title: Omegasomes: PI3P platforms that manufacture autophagosomes publication-title: Essays Biochem. contributor: fullname: Ktistakis – volume: 55 start-page: 238 year: 2014 end-page: 252 ident: bib6 article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1 publication-title: Mol. Cell contributor: fullname: Tooze – volume: 16 start-page: 339 year: 2013 end-page: 348 ident: bib3 article-title: The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity publication-title: Curr. Opin. Microbiol. contributor: fullname: Randow – volume: 55 start-page: 79 year: 2013 end-page: 92 ident: bib26 article-title: Selective autophagy publication-title: Essays Biochem. contributor: fullname: Johansen – volume: 340 start-page: 701 year: 2013 end-page: 706 ident: bib20 article-title: Cellular self-defense: how cell-autonomous immunity protects against pathogens publication-title: Science contributor: fullname: James – volume: 2 start-page: 17066 year: 2017 ident: bib31 article-title: Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation publication-title: Nat. Microbiol. contributor: fullname: Komatsu – volume: 44 start-page: 217 year: 2018 end-page: 232.e11 ident: bib24 article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis publication-title: Dev. Cell contributor: fullname: Wilkinson – volume: 16 start-page: 495 year: 2014 end-page: 501 ident: bib25 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat. Cell Biol. contributor: fullname: Dikic – volume: 482 start-page: 414 year: 2012 end-page: 418 ident: bib28 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature contributor: fullname: Randow – volume: 183 start-page: 5909 year: 2009 end-page: 5916 ident: bib35 article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway publication-title: J. Immunol. contributor: fullname: Brumell – volume: 21 start-page: 3998 year: 2010 end-page: 4008 ident: bib17 article-title: Membrane delivery to the yeast autophagosome from the Golgi-endosomal system publication-title: Mol. Biol. Cell contributor: fullname: Munro – volume: 6 start-page: 97 year: 2004 end-page: 105 ident: bib2 article-title: A physical and functional map of the human TNF-α/NF-κ B signal transduction pathway publication-title: Nat. Cell Biol. contributor: fullname: Ghidelli – volume: 40 start-page: 383 year: 2006 end-page: 386 ident: bib19 article-title: Retroviral transduction of DT40 publication-title: Subcell. Biochem. contributor: fullname: Sale – volume: 26 start-page: 3180 year: 2007 end-page: 3190 ident: bib22 article-title: SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK publication-title: EMBO J. contributor: fullname: Randow – volume: 501 start-page: 512 year: 2013 end-page: 516 ident: bib12 article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens publication-title: Nature contributor: fullname: Cox – volume: 2 start-page: 17063 year: 2017 ident: 10.1016/j.molcel.2019.01.041_bib16 article-title: LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.63 contributor: fullname: Noad – volume: 19 start-page: 349 year: 2018 ident: 10.1016/j.molcel.2019.01.041_bib5 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0003-4 contributor: fullname: Dikic – volume: 482 start-page: 414 year: 2012 ident: 10.1016/j.molcel.2019.01.041_bib28 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature doi: 10.1038/nature10744 contributor: fullname: Thurston – volume: 55 start-page: 238 year: 2014 ident: 10.1016/j.molcel.2019.01.041_bib6 article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.05.021 contributor: fullname: Dooley – volume: 50 start-page: 882 year: 2010 ident: 10.1016/j.molcel.2019.01.041_bib11 article-title: The global burden of nontyphoidal Salmonella gastroenteritis publication-title: Clin. Infect. Dis. doi: 10.1086/650733 contributor: fullname: Majowicz – volume: 524 start-page: 309 year: 2015 ident: 10.1016/j.molcel.2019.01.041_bib10 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature doi: 10.1038/nature14893 contributor: fullname: Lazarou – volume: 293 start-page: 5386 year: 2018 ident: 10.1016/j.molcel.2019.01.041_bib13 article-title: A molecular perspective of mammalian autophagosome biogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.R117.810366 contributor: fullname: Mercer – volume: 6 start-page: 97 year: 2004 ident: 10.1016/j.molcel.2019.01.041_bib2 article-title: A physical and functional map of the human TNF-α/NF-κ B signal transduction pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb1086 contributor: fullname: Bouwmeester – volume: 48 start-page: 329 year: 2012 ident: 10.1016/j.molcel.2019.01.041_bib33 article-title: LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.024 contributor: fullname: von Muhlinen – volume: 55 start-page: 51 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib23 article-title: The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy publication-title: Essays Biochem. doi: 10.1042/bse0550051 contributor: fullname: Slobodkin – volume: 44 start-page: 217 year: 2018 ident: 10.1016/j.molcel.2019.01.041_bib24 article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.11.024 contributor: fullname: Smith – volume: 10 start-page: 1215 year: 2009 ident: 10.1016/j.molcel.2019.01.041_bib27 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria publication-title: Nat. Immunol. doi: 10.1038/ni.1800 contributor: fullname: Thurston – volume: 12 start-page: 530 year: 2010 ident: 10.1016/j.molcel.2019.01.041_bib18 article-title: Galectin-3, a marker for vacuole lysis by invasive pathogens publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2009.01415.x contributor: fullname: Paz – volume: 21 start-page: 3998 year: 2010 ident: 10.1016/j.molcel.2019.01.041_bib17 article-title: Membrane delivery to the yeast autophagosome from the Golgi-endosomal system publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-05-0457 contributor: fullname: Ohashi – volume: 26 start-page: 3180 year: 2007 ident: 10.1016/j.molcel.2019.01.041_bib22 article-title: SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK publication-title: EMBO J. doi: 10.1038/sj.emboj.7601743 contributor: fullname: Ryzhakov – volume: 55 start-page: 79 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib26 article-title: Selective autophagy publication-title: Essays Biochem. doi: 10.1042/bse0550079 contributor: fullname: Svenning – volume: 183 start-page: 5909 year: 2009 ident: 10.1016/j.molcel.2019.01.041_bib35 article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.0900441 contributor: fullname: Zheng – volume: 582 start-page: 997 year: 2008 ident: 10.1016/j.molcel.2019.01.041_bib15 article-title: Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.02.047 contributor: fullname: Morton – volume: 340 start-page: 701 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib20 article-title: Cellular self-defense: how cell-autonomous immunity protects against pathogens publication-title: Science doi: 10.1126/science.1233028 contributor: fullname: Randow – volume: 333 start-page: 228 year: 2011 ident: 10.1016/j.molcel.2019.01.041_bib34 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science doi: 10.1126/science.1205405 contributor: fullname: Wild – volume: 2 start-page: 17066 year: 2017 ident: 10.1016/j.molcel.2019.01.041_bib31 article-title: Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.66 contributor: fullname: van Wijk – volume: 16 start-page: 339 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib3 article-title: The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2013.03.010 contributor: fullname: Boyle – volume: 14 start-page: 441 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib7 article-title: Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11 publication-title: EMBO Rep. doi: 10.1038/embor.2013.40 contributor: fullname: Farré – volume: 16 start-page: 495 year: 2014 ident: 10.1016/j.molcel.2019.01.041_bib25 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat. Cell Biol. doi: 10.1038/ncb2979 contributor: fullname: Stolz – volume: 35 start-page: 1779 year: 2016 ident: 10.1016/j.molcel.2019.01.041_bib29 article-title: Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy publication-title: EMBO J. doi: 10.15252/embj.201694491 contributor: fullname: Thurston – volume: 13 start-page: 723 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib1 article-title: Intestinal epithelial autophagy is essential for host defense against invasive bacteria publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.05.004 contributor: fullname: Benjamin – volume: 22 start-page: 2290 year: 2011 ident: 10.1016/j.molcel.2019.01.041_bib9 article-title: The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-11-0893 contributor: fullname: Kageyama – volume: 501 start-page: 512 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib12 article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens publication-title: Nature doi: 10.1038/nature12566 contributor: fullname: Manzanillo – volume: 55 start-page: 17 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib21 article-title: Omegasomes: PI3P platforms that manufacture autophagosomes publication-title: Essays Biochem. doi: 10.1042/bse0550017 contributor: fullname: Roberts – volume: 13 start-page: 722 year: 2013 ident: 10.1016/j.molcel.2019.01.041_bib4 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3532 contributor: fullname: Deretic – volume: 17 start-page: 515 year: 2015 ident: 10.1016/j.molcel.2019.01.041_bib32 article-title: Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.02.008 contributor: fullname: Verlhac – volume: 12 start-page: 778 year: 2012 ident: 10.1016/j.molcel.2019.01.041_bib8 article-title: The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.10.019 contributor: fullname: Huett – volume: 27 start-page: 107 year: 2011 ident: 10.1016/j.molcel.2019.01.041_bib14 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154005 contributor: fullname: Mizushima – volume: 40 start-page: 383 year: 2006 ident: 10.1016/j.molcel.2019.01.041_bib19 article-title: Retroviral transduction of DT40 publication-title: Subcell. Biochem. doi: 10.1007/978-1-4020-4896-8_30 contributor: fullname: Randow – volume: 14 start-page: 1024 year: 2012 ident: 10.1016/j.molcel.2019.01.041_bib30 article-title: Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome publication-title: Nat. Cell Biol. doi: 10.1038/ncb2589 contributor: fullname: Tumbarello |
SSID | ssj0014589 |
Score | 2.6905951 |
Snippet | Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 320 |
SubjectTerms | Adaptor Proteins, Signal Transducing - chemistry Adaptor Proteins, Signal Transducing - genetics Autophagy - genetics Autophagy-Related Protein-1 Homolog - genetics Autophagy-Related Proteins Binding Sites - genetics cargo receptor Cytoplasm - microbiology Cytosol - microbiology FIP200 galectin-8 Humans Multiprotein Complexes - chemistry Multiprotein Complexes - genetics NDP52 Nuclear Proteins - chemistry Nuclear Proteins - genetics Point Mutation - genetics Protein Binding - genetics Protein-Serine-Threonine Kinases - genetics Protein-Tyrosine Kinases - chemistry Protein-Tyrosine Kinases - genetics Salmonella enterica Salmonella typhimurium - genetics Salmonella typhimurium - pathogenicity selective autophagy TBK1 ULK xenophagy |
Title | The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria |
URI | https://dx.doi.org/10.1016/j.molcel.2019.01.041 https://www.ncbi.nlm.nih.gov/pubmed/30853402 https://search.proquest.com/docview/2190118057 https://pubmed.ncbi.nlm.nih.gov/PMC6477152 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ0i8IL4psMlIvFpNYidxHtuyaaVjQmyDvll242xFIyklRet_vzsnqSgIIfEUJbGVk-9y9zvdF8BbmbkkzVXBEznLubTopxgrAm5zYVRIDrRPxvxwlpxcyvfTeLoDo64WhtIqW93f6HSvrdsn_fY0-4v5vH9OsdMoTQiCkCHOdmE_QvSLwr4_GH6enG6CCTL2k_BoPacNXQWdT_P6Vt3MHMUgwsz375Th3yzUnwj090TKXyzT8UN40EJKNmiofgQ7rnwM95ohk-sn8B0lgY3M8qpiiBHdAp1sdvbuYxyxMSUOEdZk534aDio-NlhRpwFztWZ2TeuXqzklRjPEiezydMJIf9y4W1ZXbLSuK5RcPi5_-kR8Nmw6P5uncHF8dDE64e2gBT6LVVDzPJeqCMQsKpS1MkmKTMahssrZwKGPZuKCyl-jInWZQd1uZZFKJ6LAqcCIJBfPYK-sSvcCWO4QwhmXhULREA-ydYHIEptnKCuI5nrAu7PVi6adhu7yzL7qhheaeKGDUCMvepB2DNBbYqFR4_9j55uOXxr_GAqDmNJVqx86Cn25LQLVHjxv-LehRSD5Al1q_O4WZzcLqBv39ptyfu27clNFL4Khl_9N8Su4T3cUqgrVa9irlyt3gIintoetRNN18unL5BB2x9PhHaUHArQ |
link.rule.ids | 230,315,783,787,888,3515,27583,27938,27939,45677,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYi9IL5XPo3Eq9UkdhLnsStMLe0qpHVob5bdOKNoJKWkiP733DlJRUEIidfYVqzc5e53ut_dAbyRmUvSXBU8kYucS4txirEi4DYXRoUUQHsy5vksGV3K91fx1QEMu1oYolW2tr-x6d5at0_67dfsr5bL_gXlTqM0IQhCjji7BUeIBlKMwI4Gpx8n010yQcZ-Eh7t53Sgq6DzNK8v1c3CUQ4izHz_Thn-zUP9iUB_J1L-4pnO7sHdFlKyQXPr-3DgygdwuxkyuX0IX1ET2NCsryuGGNGtMMhms7cf4oiNiThEWJNd-Gk4aPjYYEOdBsz1ltkt7V9vlkSMZogT2eV0wsh-3LgfrK7YcFtXqLl8XH73RHx22nR-No9gfvZuPhzxdtACX8QqqHmeS1UEYhEVylqZJEUm41BZ5WzgMEYzcUHlr1GRusygbbeySKUTUeBUYESSi8dwWFalOwGWO4RwxmWhUDTEg3xdILLE5hnqCqK5HvDu2-pV005Ddzyzz7qRhSZZ6CDUKIsepJ0A9J5aaLT4_zj5upOXxj-G0iCmdNXmm45CX26LQLUHTxr57e4i8PoCQ2p8755kdxuoG_f-Srn85LtyU0UvgqGn_33jV3BnND-f6ul4NnkGx7RCaatQPYfDer1xLxD91PZlq90_Ab3xAvs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cargo+Receptor+NDP52+Initiates+Selective+Autophagy+by+Recruiting+the+ULK+Complex+to+Cytosol-Invading+Bacteria&rft.jtitle=Molecular+cell&rft.au=Ravenhill%2C+Benjamin+J&rft.au=Boyle%2C+Keith+B&rft.au=von+Muhlinen%2C+Natalia&rft.au=Ellison%2C+Cara+J&rft.date=2019-04-18&rft.eissn=1097-4164&rft.volume=74&rft.issue=2&rft.spage=320&rft.epage=329.e6&rft_id=info:doi/10.1016%2Fj.molcel.2019.01.041&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |