Dynamic reconfiguration of human brain networks during learning
Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 18; pp. 7641 - 7646 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.05.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. |
---|---|
AbstractList | Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. [PUBLICATION ABSTRACT] Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. |
Author | Carlson, Jean M Bassett, Danielle S Mucha, Peter J Grafton, Scott T Porter, Mason A Wymbs, Nicholas F |
Author_xml | – sequence: 1 fullname: Bassett, Danielle S – sequence: 2 fullname: Wymbs, Nicholas F – sequence: 3 fullname: Porter, Mason A – sequence: 4 fullname: Mucha, Peter J – sequence: 5 fullname: Carlson, Jean M – sequence: 6 fullname: Grafton, Scott T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21502525$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFMycg4gKX0LFjx_YFhMqnVIkD9Gw5trP1kthbOwH13-Nll13ooZw80jzzjt-ZOUFHIQaH0GMMrzDw5mwddC4RFlIwDOIeWmCQuG6phCO0ACC8FpTQY3SS8woAJBPwAB0TzIAwwhbozbuboEdvquRMDL1fzklPPoYq9tXVPOpQdUn7UAU3_Yzpe67snHxYVoPTKZTgIbrf6yG7R7v3FF1-eP_t_FN98eXj5_O3F7UpHadaMt1YTg033GnTdqzrpDHWUNvaDlOwwjWSto1hlhhbouJOSm1YZ5xmhjWn6PVWdz13o7PGhSnpQa2TH3W6UVF79W8m-Cu1jD9UA0IwLorAi51Aitezy5MafTZuGHRwcc5KlJm1lAteyJd3klhgLjBQSv-PAuZl5FySgj6_ha7inEKZWWnNWMsxlQV6-rfLvb0_-yrA2RYwKeacXL9HMKjNRajNRajDRZQKdqvC-On3isuY_HBH3bPdVzaJQxdR_CveUlyIJ1tilaeY9gjFhBLS0INCr6PSy-SzuvxKALcAWBY3svkFygvX3w |
CitedBy_id | crossref_primary_10_1016_j_actpsy_2019_102936 crossref_primary_10_1016_j_neuroimage_2014_12_020 crossref_primary_10_1016_j_nicl_2019_101841 crossref_primary_10_1038_s41598_024_55753_8 crossref_primary_10_1371_journal_pcbi_1004533 crossref_primary_10_1073_pnas_1722313115 crossref_primary_10_1016_j_neuroimage_2017_03_064 crossref_primary_10_1089_brain_2019_0709 crossref_primary_10_1371_journal_pcbi_1006957 crossref_primary_10_1093_comnet_cnt017 crossref_primary_10_1016_j_nicl_2020_102396 crossref_primary_10_1080_15427951_2012_714718 crossref_primary_10_1093_brain_aww143 crossref_primary_10_1002_hbm_23007 crossref_primary_10_1016_j_neuroimage_2024_120740 crossref_primary_10_1017_nws_2020_39 crossref_primary_10_1002_hbm_26511 crossref_primary_10_1016_j_neuroimage_2012_01_068 crossref_primary_10_1016_j_neuroimage_2014_12_034 crossref_primary_10_1093_scan_nsac020 crossref_primary_10_1002_hbm_25420 crossref_primary_10_3389_fnint_2020_491403 crossref_primary_10_1109_JPROC_2018_2820126 crossref_primary_10_1016_j_neuroimage_2014_05_083 crossref_primary_10_1016_j_neuroimage_2013_09_013 crossref_primary_10_1016_j_nlm_2020_107340 crossref_primary_10_1016_j_neuroimage_2017_12_093 crossref_primary_10_1038_s41467_017_01755_2 crossref_primary_10_3389_fpsyg_2021_665419 crossref_primary_10_1038_s41593_020_00719_y crossref_primary_10_1016_j_neubiorev_2017_01_016 crossref_primary_10_1016_j_neuroimage_2019_05_011 crossref_primary_10_1162_jocn_a_01142 crossref_primary_10_3389_fnhum_2016_00114 crossref_primary_10_1016_j_nicl_2019_101865 crossref_primary_10_1016_j_physa_2023_128849 crossref_primary_10_3390_brainsci9060144 crossref_primary_10_1109_TBME_2016_2553960 crossref_primary_10_1177_1545968320981953 crossref_primary_10_1016_j_neuroimage_2017_02_031 crossref_primary_10_1088_2632_072X_ad3262 crossref_primary_10_1016_j_neuroimage_2020_117440 crossref_primary_10_1016_j_coisb_2017_04_006 crossref_primary_10_1038_s41598_018_36537_3 crossref_primary_10_1016_j_neuroimage_2023_120266 crossref_primary_10_1016_j_nicl_2024_103574 crossref_primary_10_1016_j_neuroimage_2020_117429 crossref_primary_10_1111_bjep_12340 crossref_primary_10_1146_annurev_conmatphys_030212_184316 crossref_primary_10_1063_5_0152942 crossref_primary_10_1016_j_neuroimage_2020_117674 crossref_primary_10_1016_j_arr_2025_102688 crossref_primary_10_1016_j_neuroimage_2017_12_074 crossref_primary_10_1038_s41598_017_07846_w crossref_primary_10_1038_s41598_020_57915_w crossref_primary_10_1016_j_neuroscience_2019_05_011 crossref_primary_10_1038_nrn3835 crossref_primary_10_1177_1087054720959712 crossref_primary_10_1523_ENEURO_0382_20_2021 crossref_primary_10_1016_j_neuroscience_2016_09_034 crossref_primary_10_1002_ece3_5641 crossref_primary_10_1109_TNSRE_2020_2977250 crossref_primary_10_1371_journal_pone_0215520 crossref_primary_10_1016_j_tine_2019_04_001 crossref_primary_10_1016_j_neuroimage_2020_117668 crossref_primary_10_1016_j_neubiorev_2016_08_036 crossref_primary_10_1073_pnas_1815321116 crossref_primary_10_1016_j_bandl_2021_104977 crossref_primary_10_1038_s41551_019_0404_5 crossref_primary_10_1002_hbm_22599 crossref_primary_10_2139_ssrn_2341334 crossref_primary_10_1007_s12311_021_01241_y crossref_primary_10_1016_j_neuroimage_2024_120789 crossref_primary_10_1016_j_neuroimage_2017_01_003 crossref_primary_10_1016_j_neuroimage_2017_11_015 crossref_primary_10_1038_s41467_024_54472_y crossref_primary_10_3389_fneur_2022_1029669 crossref_primary_10_1016_j_neuroimage_2020_117654 crossref_primary_10_1523_JNEUROSCI_2128_13_2013 crossref_primary_10_1002_hbm_23676 crossref_primary_10_1093_brain_aww337 crossref_primary_10_1016_j_neuron_2014_08_034 crossref_primary_10_1007_s11682_022_00651_8 crossref_primary_10_1371_journal_pbio_1002469 crossref_primary_10_1103_PhysRevE_92_060801 crossref_primary_10_1016_j_nut_2025_112730 crossref_primary_10_1111_psyp_14702 crossref_primary_10_1103_PhysRevE_104_014302 crossref_primary_10_1016_j_nicl_2020_102169 crossref_primary_10_1148_radiol_2019191125 crossref_primary_10_1088_1741_2552_abef39 crossref_primary_10_3389_fnins_2021_715861 crossref_primary_10_1109_TNSRE_2016_2597961 crossref_primary_10_1109_TNSRE_2023_3277509 crossref_primary_10_1088_1751_8113_47_34_343001 crossref_primary_10_1214_20_AOAS1339 crossref_primary_10_3389_fnagi_2023_1140975 crossref_primary_10_1007_s11571_013_9251_3 crossref_primary_10_1073_pnas_1510619112 crossref_primary_10_1016_j_bspc_2021_102902 crossref_primary_10_1089_brain_2020_0920 crossref_primary_10_1038_s41467_022_28299_4 crossref_primary_10_1007_s11682_019_00220_6 crossref_primary_10_1016_j_neubiorev_2013_07_016 crossref_primary_10_3389_fnins_2023_1025428 crossref_primary_10_1016_j_jad_2021_04_061 crossref_primary_10_1016_j_neuroimage_2012_03_070 crossref_primary_10_1002_hbm_23463 crossref_primary_10_1111_ejn_15901 crossref_primary_10_1523_JNEUROSCI_1324_15_2015 crossref_primary_10_1371_journal_pbio_3002314 crossref_primary_10_1371_journal_pbio_3002797 crossref_primary_10_1162_jocn_a_01590 crossref_primary_10_1016_j_neuron_2014_08_016 crossref_primary_10_1371_journal_pone_0088202 crossref_primary_10_1371_journal_pone_0123950 crossref_primary_10_1109_TNSRE_2017_2681963 crossref_primary_10_1016_j_neuroimage_2017_02_066 crossref_primary_10_1016_j_nicl_2020_102163 crossref_primary_10_1002_hbm_23699 crossref_primary_10_1002_pbc_25022 crossref_primary_10_1016_j_neuroscience_2014_05_035 crossref_primary_10_1016_j_ynirp_2023_100171 crossref_primary_10_1038_s41598_017_08050_6 crossref_primary_10_3389_fnhum_2018_00001 crossref_primary_10_1097_j_pain_0000000000002010 crossref_primary_10_1002_hbm_23890 crossref_primary_10_1016_j_biopsych_2022_12_012 crossref_primary_10_3389_fncom_2014_00051 crossref_primary_10_1002_hbm_24983 crossref_primary_10_1073_pnas_2201194119 crossref_primary_10_1016_j_neuroimage_2017_01_057 crossref_primary_10_1162_netn_a_00323 crossref_primary_10_3389_fnhum_2021_655576 crossref_primary_10_1016_j_neuron_2014_05_014 crossref_primary_10_1038_s41539_022_00130_1 crossref_primary_10_1016_j_neuroscience_2020_04_030 crossref_primary_10_1063_1_5092226 crossref_primary_10_1162_netn_a_00321 crossref_primary_10_3390_su11195508 crossref_primary_10_1073_pnas_2415508122 crossref_primary_10_1088_1742_5468_ab2ad1 crossref_primary_10_2139_ssrn_3195358 crossref_primary_10_1088_2632_072X_ad253a crossref_primary_10_3389_fnhum_2019_00006 crossref_primary_10_1177_1073858416638641 crossref_primary_10_1016_j_jneumeth_2017_12_021 crossref_primary_10_1016_j_neuroimage_2019_04_027 crossref_primary_10_1093_cercor_bhac457 crossref_primary_10_1080_2331186X_2018_1429134 crossref_primary_10_1093_cercor_bhac454 crossref_primary_10_1093_cercor_bhad542 crossref_primary_10_1093_cercor_bhac213 crossref_primary_10_1016_j_ins_2012_12_038 crossref_primary_10_30773_pi_2021_0386 crossref_primary_10_1111_ejn_13988 crossref_primary_10_1177_1352458516651503 crossref_primary_10_1016_j_plrev_2017_12_006 crossref_primary_10_1016_j_plrev_2017_12_007 crossref_primary_10_1038_s41598_018_31202_1 crossref_primary_10_1073_pnas_2405850121 crossref_primary_10_1007_s10548_017_0559_x crossref_primary_10_1162_netn_a_00314 crossref_primary_10_1016_j_plrev_2017_12_005 crossref_primary_10_1063_5_0046047 crossref_primary_10_1016_j_bpsc_2018_05_005 crossref_primary_10_1523_ENEURO_0531_19_2020 crossref_primary_10_1016_j_neuroimage_2019_05_064 crossref_primary_10_1016_j_neuron_2021_01_023 crossref_primary_10_3389_fnhum_2019_00258 crossref_primary_10_1002_hbm_24722 crossref_primary_10_1016_j_neuroimage_2020_117296 crossref_primary_10_1073_pnas_1414466112 crossref_primary_10_3389_fnhum_2021_788091 crossref_primary_10_1002_hbm_23631 crossref_primary_10_1093_braincomms_fcad143 crossref_primary_10_1038_s41592_019_0400_4 crossref_primary_10_1002_hbm_22548 crossref_primary_10_1007_s11682_024_00849_y crossref_primary_10_17116_jnevro2018118101128 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_1002_brb3_1698 crossref_primary_10_1016_j_neuroimage_2021_118657 crossref_primary_10_1109_JSTSP_2016_2600859 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_3389_fnhum_2017_00169 crossref_primary_10_1093_brain_awz034 crossref_primary_10_1109_TSIPN_2020_2982765 crossref_primary_10_1111_adb_13446 crossref_primary_10_3389_fncom_2019_00086 crossref_primary_10_1093_cercor_bhab144 crossref_primary_10_1137_15M1009615 crossref_primary_10_3389_fnhum_2018_00292 crossref_primary_10_1016_j_neuroimage_2019_03_015 crossref_primary_10_1016_j_tics_2017_05_002 crossref_primary_10_1007_s11682_023_00774_6 crossref_primary_10_1371_journal_pcbi_1002522 crossref_primary_10_1089_brain_2012_0110 crossref_primary_10_1148_radiol_14132388 crossref_primary_10_3390_e26030256 crossref_primary_10_1016_j_physrep_2020_08_003 crossref_primary_10_1016_j_bpsc_2021_01_007 crossref_primary_10_1137_22M1525909 crossref_primary_10_3389_fncom_2019_00075 crossref_primary_10_1093_cercor_bhac489 crossref_primary_10_1016_j_bandc_2023_106080 crossref_primary_10_1038_s41598_017_04716_3 crossref_primary_10_3758_s13415_024_01240_6 crossref_primary_10_1016_j_neuroimage_2023_120036 crossref_primary_10_1093_cercor_bhy181 crossref_primary_10_1162_netn_a_00121 crossref_primary_10_1016_j_neubiorev_2020_02_023 crossref_primary_10_1016_j_brainres_2014_11_007 crossref_primary_10_1016_j_neuroimage_2021_118635 crossref_primary_10_1016_j_neuroimage_2021_118636 crossref_primary_10_1016_j_schres_2012_07_026 crossref_primary_10_1093_cercor_bhad506 crossref_primary_10_1007_s00429_023_02751_7 crossref_primary_10_1016_j_neuroimage_2021_117784 crossref_primary_10_1016_j_neuroimage_2011_08_085 crossref_primary_10_1371_journal_pcbi_1009591 crossref_primary_10_1093_cercor_bhac415 crossref_primary_10_1108_IJWIS_02_2022_0040 crossref_primary_10_1016_j_celrep_2023_113304 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1016_j_csda_2016_11_016 crossref_primary_10_1093_braincomms_fcac095 crossref_primary_10_3389_fnhum_2015_00099 crossref_primary_10_1162_netn_a_00114 crossref_primary_10_1038_s41598_023_50265_3 crossref_primary_10_1016_j_neuroimage_2016_07_032 crossref_primary_10_3389_fneur_2022_780896 crossref_primary_10_1016_j_neuropsychologia_2019_05_021 crossref_primary_10_1038_s41598_018_34372_0 crossref_primary_10_1073_pnas_2420228122 crossref_primary_10_3390_brainsci11121652 crossref_primary_10_1016_j_neuroimage_2019_116284 crossref_primary_10_1002_hbm_22740 crossref_primary_10_1007_s11682_019_00042_6 crossref_primary_10_1016_j_conb_2012_11_015 crossref_primary_10_1093_bib_bbv094 crossref_primary_10_1002_hbm_22744 crossref_primary_10_1016_j_neuroimage_2019_116285 crossref_primary_10_1080_00207454_2022_2130295 crossref_primary_10_1523_JNEUROSCI_4903_14_2015 crossref_primary_10_1016_j_neuron_2016_09_018 crossref_primary_10_1016_j_nlm_2018_11_005 crossref_primary_10_1089_brain_2016_0426 crossref_primary_10_1016_j_neuroimage_2016_07_061 crossref_primary_10_1038_s41598_020_80293_2 crossref_primary_10_1016_j_neuroimage_2014_03_041 crossref_primary_10_1016_j_neuroimage_2021_118607 crossref_primary_10_1162_netn_a_00102 crossref_primary_10_1016_j_neuroimage_2021_118615 crossref_primary_10_1088_1741_2552_ac5150 crossref_primary_10_1002_hbm_24718 crossref_primary_10_1162_jocn_a_00899 crossref_primary_10_1016_j_neuroimage_2020_117489 crossref_primary_10_3389_fnagi_2018_00362 crossref_primary_10_1002_hbm_24954 crossref_primary_10_3389_fpsyt_2020_00422 crossref_primary_10_1111_1365_2435_13237 crossref_primary_10_1002_hipo_23042 crossref_primary_10_1016_j_plrev_2017_11_003 crossref_primary_10_1002_hbm_24950 crossref_primary_10_1007_s11682_014_9306_z crossref_primary_10_1088_1741_2552_abc760 crossref_primary_10_1002_cplx_21407 crossref_primary_10_1016_j_neuroimage_2019_03_055 crossref_primary_10_1002_jmri_25429 crossref_primary_10_1016_j_neuroimage_2018_09_005 crossref_primary_10_1016_j_neuron_2012_03_038 crossref_primary_10_3389_fpsyt_2021_701420 crossref_primary_10_1109_ACCESS_2020_3036751 crossref_primary_10_1093_cercor_bhv272 crossref_primary_10_1016_j_neuroimage_2016_05_078 crossref_primary_10_1162_netn_a_00169 crossref_primary_10_1007_s00429_023_02711_1 crossref_primary_10_1162_netn_a_00168 crossref_primary_10_1016_j_bandc_2014_02_008 crossref_primary_10_1016_j_bspc_2020_102099 crossref_primary_10_3390_s22218283 crossref_primary_10_1109_JPROC_2018_2798928 crossref_primary_10_1016_j_neuroimage_2018_07_004 crossref_primary_10_1109_TNSRE_2022_3140888 crossref_primary_10_1016_j_neuroscience_2013_06_021 crossref_primary_10_1086_687857 crossref_primary_10_1016_j_euroneuro_2014_02_011 crossref_primary_10_1016_j_jneumeth_2018_07_010 crossref_primary_10_1016_j_jpsychires_2024_11_038 crossref_primary_10_3389_fncom_2018_00021 crossref_primary_10_1016_j_neuroimage_2019_03_080 crossref_primary_10_1038_srep41414 crossref_primary_10_1109_JBHI_2021_3119940 crossref_primary_10_3390_brainsci11101348 crossref_primary_10_1080_17588928_2019_1683525 crossref_primary_10_1371_journal_pcbi_1007360 crossref_primary_10_1016_j_neuroimage_2018_08_033 crossref_primary_10_1016_j_physa_2019_01_082 crossref_primary_10_1016_j_bpsc_2022_09_003 crossref_primary_10_1016_j_tics_2017_03_002 crossref_primary_10_1038_srep30770 crossref_primary_10_1162_netn_a_00149 crossref_primary_10_1111_ejn_13478 crossref_primary_10_1038_s41380_020_00983_1 crossref_primary_10_3389_fnhum_2017_00443 crossref_primary_10_1371_journal_pone_0074935 crossref_primary_10_1007_s11063_017_9718_z crossref_primary_10_1038_ncomms16048 crossref_primary_10_1016_j_cortex_2020_06_011 crossref_primary_10_7554_eLife_32696 crossref_primary_10_1016_j_neuroimage_2018_08_021 crossref_primary_10_1007_s00429_021_02249_0 crossref_primary_10_1093_cercor_bhad298 crossref_primary_10_1016_j_brainres_2017_07_018 crossref_primary_10_1016_j_heares_2015_11_015 crossref_primary_10_1088_2632_072X_ac3ddd crossref_primary_10_1162_netn_a_00378 crossref_primary_10_1523_JNEUROSCI_2135_15_2015 crossref_primary_10_1103_PhysRevE_85_026103 crossref_primary_10_1162_netn_a_00139 crossref_primary_10_1162_netn_a_00374 crossref_primary_10_1371_journal_pone_0106636 crossref_primary_10_1371_journal_pone_0228334 crossref_primary_10_1088_1741_2552_ab882d crossref_primary_10_3389_fnhum_2019_00430 crossref_primary_10_1093_bfgp_els023 crossref_primary_10_1146_annurev_statistics_040522_020722 crossref_primary_10_1016_j_pnpbp_2019_03_004 crossref_primary_10_1093_cercor_bhac375 crossref_primary_10_1002_hbm_26164 crossref_primary_10_1080_23273798_2022_2129084 crossref_primary_10_1007_s12021_025_09718_5 crossref_primary_10_1177_1545968312461718 crossref_primary_10_3390_ani14071082 crossref_primary_10_1111_epi_17325 crossref_primary_10_1371_journal_pcbi_1006487 crossref_primary_10_1093_joc_jqab044 crossref_primary_10_1093_cercor_bhac378 crossref_primary_10_1186_s13195_023_01368_6 crossref_primary_10_1177_2372732216656869 crossref_primary_10_3389_fnhum_2015_00255 crossref_primary_10_1002_hbm_26158 crossref_primary_10_1016_j_sciaf_2018_e00019 crossref_primary_10_1016_j_celrep_2021_108871 crossref_primary_10_1073_pnas_1400181111 crossref_primary_10_1007_s10548_015_0451_5 crossref_primary_10_1038_nn_3428 crossref_primary_10_1002_hbm_26150 crossref_primary_10_1093_psyrad_kkab011 crossref_primary_10_1063_1_4996980 crossref_primary_10_3389_fpsyg_2019_02769 crossref_primary_10_1371_journal_pone_0039731 crossref_primary_10_1162_jocn_a_00965 crossref_primary_10_1007_s11571_022_09894_z crossref_primary_10_1016_j_neuroimage_2021_118369 crossref_primary_10_1016_j_bspc_2018_12_008 crossref_primary_10_1103_PhysRevLett_116_228301 crossref_primary_10_1371_journal_pcbi_1006234 crossref_primary_10_3389_fnhum_2021_740225 crossref_primary_10_1162_netn_a_00193 crossref_primary_10_1073_pnas_1616130114 crossref_primary_10_1111_adb_12285 crossref_primary_10_1093_cercor_bhab059 crossref_primary_10_1093_cercor_bhad242 crossref_primary_10_1111_nyas_13338 crossref_primary_10_1016_j_neuroimage_2013_07_019 crossref_primary_10_1007_s10548_014_0406_2 crossref_primary_10_1371_journal_pone_0083653 crossref_primary_10_1017_nws_2013_19 crossref_primary_10_1016_j_tics_2013_12_006 crossref_primary_10_1088_1367_2630_ac066d crossref_primary_10_1038_s41467_017_02658_y crossref_primary_10_1017_nws_2021_3 crossref_primary_10_1016_j_ynirp_2021_100022 crossref_primary_10_1371_journal_pcbi_1005178 crossref_primary_10_3390_brainsci10120969 crossref_primary_10_1109_TPAMI_2017_2750160 crossref_primary_10_1109_JPROC_2016_2637349 crossref_primary_10_3174_ajnr_A4947 crossref_primary_10_1016_j_jvcir_2016_03_023 crossref_primary_10_1016_j_neuroimage_2018_07_019 crossref_primary_10_1007_s00429_013_0634_3 crossref_primary_10_1063_5_0039333 crossref_primary_10_1016_j_nicl_2022_103055 crossref_primary_10_1016_j_neuroimage_2021_118588 crossref_primary_10_1016_j_cortex_2022_08_010 crossref_primary_10_1038_nn_3690 crossref_primary_10_1093_scan_nsy007 crossref_primary_10_1007_s00429_015_1083_y crossref_primary_10_1016_j_plrev_2014_06_006 crossref_primary_10_1017_S095679251600022X crossref_primary_10_1109_TIM_2023_3271740 crossref_primary_10_1038_s41467_024_52744_1 crossref_primary_10_1016_j_dsp_2021_103192 crossref_primary_10_3389_fncom_2023_1290089 crossref_primary_10_1016_j_neuroimage_2022_119125 crossref_primary_10_1002_hbm_25035 crossref_primary_10_1016_j_nicl_2021_102702 crossref_primary_10_1038_s41598_024_58123_6 crossref_primary_10_1016_j_neuron_2017_11_007 crossref_primary_10_1098_rstb_2013_0525 crossref_primary_10_1371_journal_pcbi_1003171 crossref_primary_10_1016_j_jneumeth_2018_10_011 crossref_primary_10_1016_j_neuroimage_2013_05_079 crossref_primary_10_1016_j_tics_2017_01_010 crossref_primary_10_1162_jocn_a_00911 crossref_primary_10_1007_s11682_024_00907_5 crossref_primary_10_1016_j_biopsych_2012_03_026 crossref_primary_10_1016_j_cobeha_2017_09_005 crossref_primary_10_1051_jbio_2023020 crossref_primary_10_1016_j_physa_2024_129906 crossref_primary_10_1089_brain_2023_0024 crossref_primary_10_1103_PhysRevE_88_032807 crossref_primary_10_1016_j_plrev_2018_10_001 crossref_primary_10_1038_srep34291 crossref_primary_10_1016_j_pnpbp_2021_110426 crossref_primary_10_1002_hbm_25017 crossref_primary_10_1038_s41598_021_83425_4 crossref_primary_10_1016_j_nicl_2018_11_014 crossref_primary_10_1103_PhysRevE_109_064309 crossref_primary_10_1016_j_bandl_2016_12_006 crossref_primary_10_1016_j_neuroimage_2025_121027 crossref_primary_10_1038_s41598_017_03394_5 crossref_primary_10_14232_edulingua_2021_1_1 crossref_primary_10_1523_JNEUROSCI_1766_23_2024 crossref_primary_10_1093_comnet_cnv027 crossref_primary_10_1016_j_neuroimage_2025_121021 crossref_primary_10_1002_jnr_24555 crossref_primary_10_1073_pnas_1502829112 crossref_primary_10_1007_s00429_019_01867_z crossref_primary_10_1002_jnr_24316 crossref_primary_10_1016_j_nicl_2023_103387 crossref_primary_10_1007_s00248_022_02108_3 crossref_primary_10_1162_NECO_a_00936 crossref_primary_10_1016_j_plrev_2014_03_005 crossref_primary_10_1214_18_AOS1800 crossref_primary_10_1016_j_neuroimage_2022_119131 crossref_primary_10_1371_journal_pone_0072351 crossref_primary_10_3389_fnins_2024_1402039 crossref_primary_10_1063_1_4978997 crossref_primary_10_1371_journal_pcbi_1006207 crossref_primary_10_1371_journal_pcbi_1004029 crossref_primary_10_1002_hbm_24193 crossref_primary_10_1089_brain_2023_0048 crossref_primary_10_1103_RevModPhys_94_031002 crossref_primary_10_3389_fnins_2022_889725 crossref_primary_10_1016_j_crhy_2018_09_005 crossref_primary_10_1038_nn_4502 crossref_primary_10_1002_hbm_24192 crossref_primary_10_1098_rstb_2013_0520 crossref_primary_10_1098_rstb_2013_0521 crossref_primary_10_1016_j_neuroimage_2012_11_020 crossref_primary_10_3390_app132111627 crossref_primary_10_1162_imag_a_00234 crossref_primary_10_1016_j_physa_2016_05_063 crossref_primary_10_1016_j_jad_2022_09_069 crossref_primary_10_7554_eLife_52443 crossref_primary_10_1002_hbm_25235 crossref_primary_10_1016_j_neuroimage_2022_119323 crossref_primary_10_1016_j_neuroimage_2012_12_066 crossref_primary_10_17537_2024_19_609 crossref_primary_10_1016_j_bbr_2016_07_029 crossref_primary_10_1016_j_jneumeth_2017_01_010 crossref_primary_10_1093_cercor_bhae391 crossref_primary_10_1038_s41598_021_81884_3 crossref_primary_10_1038_srep36255 crossref_primary_10_1126_science_1238411 crossref_primary_10_1016_j_jad_2015_11_041 crossref_primary_10_1016_j_neuroimage_2020_116974 crossref_primary_10_1146_annurev_psych_122414_033634 crossref_primary_10_1038_s41398_019_0616_1 crossref_primary_10_1155_np_9932927 crossref_primary_10_3389_fnhum_2017_00420 crossref_primary_10_1038_s41467_023_39941_0 crossref_primary_10_1089_brain_2020_0866 crossref_primary_10_1088_1741_2552_aad8c7 crossref_primary_10_3389_fnhum_2017_00423 crossref_primary_10_1038_s42003_022_03196_0 crossref_primary_10_1038_s41598_020_72013_7 crossref_primary_10_1002_hbm_23285 crossref_primary_10_1002_hbm_24374 crossref_primary_10_1002_hbm_25462 crossref_primary_10_1016_j_neuroimage_2012_12_073 crossref_primary_10_1016_j_neuroimage_2016_01_028 crossref_primary_10_1002_hbm_25467 crossref_primary_10_1002_hbm_24376 crossref_primary_10_1088_1741_2552_ab9064 crossref_primary_10_1016_j_nlm_2017_07_015 crossref_primary_10_1016_j_neuroimage_2025_121094 crossref_primary_10_1007_s12038_018_9813_y crossref_primary_10_1109_TNSE_2018_2871726 crossref_primary_10_3389_fncel_2022_977769 crossref_primary_10_1016_j_bbr_2021_113685 crossref_primary_10_1002_hbm_70024 crossref_primary_10_1038_srep09710 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_3109_17483107_2016_1139633 crossref_primary_10_1142_S0129065720500070 crossref_primary_10_1016_j_chaos_2020_110484 crossref_primary_10_1016_j_nicl_2021_102726 crossref_primary_10_1016_j_neunet_2020_08_003 crossref_primary_10_1080_14737175_2019_1601558 crossref_primary_10_3389_fphy_2019_00115 crossref_primary_10_1063_1_4962129 crossref_primary_10_1371_journal_pone_0143133 crossref_primary_10_1016_j_neuroimage_2013_05_019 crossref_primary_10_1103_PhysRevX_7_031056 crossref_primary_10_1002_hbm_25009 crossref_primary_10_1016_j_neuroimage_2018_06_057 crossref_primary_10_1016_j_chaos_2024_114568 crossref_primary_10_1016_j_celrep_2024_114348 crossref_primary_10_1016_j_plrev_2014_05_010 crossref_primary_10_1016_j_neuroimage_2016_01_005 crossref_primary_10_1103_PhysRevResearch_2_023100 crossref_primary_10_1126_sciadv_adm8430 crossref_primary_10_1371_journal_pone_0050122 crossref_primary_10_1007_s11571_022_09848_5 crossref_primary_10_1080_23273798_2016_1227858 crossref_primary_10_1002_hbm_26575 crossref_primary_10_1038_s42003_021_01700_6 crossref_primary_10_1093_scan_nsaa069 crossref_primary_10_3390_brainsci8060107 crossref_primary_10_3389_fnins_2019_01348 crossref_primary_10_1007_s12652_020_02031_w crossref_primary_10_1038_s41398_019_0560_0 crossref_primary_10_1038_s41583_024_00846_6 crossref_primary_10_1016_j_plrev_2019_04_009 crossref_primary_10_3758_s13415_019_00753_9 crossref_primary_10_1016_j_neuroimage_2017_10_048 crossref_primary_10_1038_srep46088 crossref_primary_10_1016_j_dr_2021_100964 crossref_primary_10_1073_pnas_1604898113 crossref_primary_10_1002_hbm_25313 crossref_primary_10_1007_s41109_022_00510_x crossref_primary_10_1016_j_laa_2022_08_022 crossref_primary_10_1038_s41531_022_00279_x crossref_primary_10_1007_s11682_020_00388_2 crossref_primary_10_3389_fnins_2019_00542 crossref_primary_10_1016_j_ijchp_2023_100401 crossref_primary_10_1007_s11571_022_09868_1 crossref_primary_10_3389_feduc_2024_1369394 crossref_primary_10_1016_j_ecosta_2022_10_005 crossref_primary_10_1002_hbm_24459 crossref_primary_10_1523_JNEUROSCI_3038_13_2014 crossref_primary_10_1002_hbm_25303 crossref_primary_10_1002_hbm_25545 crossref_primary_10_1371_journal_pbio_1002570 crossref_primary_10_1038_nrn3963 crossref_primary_10_1002_hbm_23121 crossref_primary_10_1371_journal_pcbi_1003796 crossref_primary_10_1073_pnas_1302855110 crossref_primary_10_3390_brainsci12020218 crossref_primary_10_1142_S0129065717500514 crossref_primary_10_1016_j_jneumeth_2018_12_012 crossref_primary_10_1002_hbm_24206 crossref_primary_10_1073_pnas_1715766115 crossref_primary_10_3389_fnhum_2014_00195 crossref_primary_10_1007_s00429_023_02708_w crossref_primary_10_1002_hbm_24241 crossref_primary_10_3758_s13428_019_01217_1 crossref_primary_10_1002_art_42013 crossref_primary_10_1016_j_neuroimage_2012_08_061 crossref_primary_10_1038_s41598_023_48219_w crossref_primary_10_3389_fnana_2015_00097 crossref_primary_10_1093_gigascience_gix004 crossref_primary_10_1371_journal_pone_0066761 crossref_primary_10_1089_brain_2013_0205 crossref_primary_10_1162_jocn_a_01260 crossref_primary_10_1038_ncomms13217 crossref_primary_10_1371_journal_pcbi_1003591 crossref_primary_10_1016_j_jad_2017_11_026 crossref_primary_10_1162_jocn_a_01026 crossref_primary_10_1007_s11336_023_09908_7 crossref_primary_10_1016_j_bbr_2016_11_021 crossref_primary_10_1007_s11357_024_01324_8 crossref_primary_10_1016_j_neuroimage_2018_12_008 crossref_primary_10_1038_s42003_022_03362_4 crossref_primary_10_1038_s41467_021_22199_9 crossref_primary_10_1016_j_neuroimage_2013_04_087 crossref_primary_10_1016_j_nicl_2012_09_011 crossref_primary_10_1016_j_neuron_2015_09_027 crossref_primary_10_1017_S0033291722002665 crossref_primary_10_1088_1741_2552_ace47c crossref_primary_10_7554_eLife_74463 crossref_primary_10_1111_psyp_14630 crossref_primary_10_1002_aur_2020 crossref_primary_10_1038_s41380_022_01706_4 crossref_primary_10_1038_s41539_024_00216_y crossref_primary_10_1162_jocn_a_01037 crossref_primary_10_1016_j_neubiorev_2018_03_001 crossref_primary_10_1016_j_neuron_2024_05_008 crossref_primary_10_1523_JNEUROSCI_4892_14_2015 crossref_primary_10_3934_Neuroscience_2021028 crossref_primary_10_1038_s41467_024_55188_9 crossref_primary_10_1016_j_neuroimage_2012_08_056 crossref_primary_10_1007_s13246_023_01273_0 crossref_primary_10_1371_journal_pone_0166787 crossref_primary_10_1089_brain_2022_0074 crossref_primary_10_1177_1073858416667720 crossref_primary_10_1103_PhysRevResearch_3_L032045 crossref_primary_10_1109_JPROC_2017_2786710 crossref_primary_10_1007_s00429_013_0619_2 crossref_primary_10_1002_hbm_22235 crossref_primary_10_1038_s41598_020_71692_6 crossref_primary_10_1016_j_ifacol_2023_10_618 crossref_primary_10_1016_j_neunet_2018_07_005 crossref_primary_10_1523_JNEUROSCI_1672_16_2016 crossref_primary_10_3389_frobt_2020_00090 crossref_primary_10_1017_S0140525X15001673 crossref_primary_10_1177_1073858414537560 crossref_primary_10_3389_fnsys_2021_688424 crossref_primary_10_1371_journal_pcbi_1004608 crossref_primary_10_1016_j_jbi_2013_09_005 crossref_primary_10_1093_braincomms_fcaf083 crossref_primary_10_1093_cercor_bhs352 crossref_primary_10_1016_j_neubiorev_2023_105193 crossref_primary_10_1016_j_nicl_2018_06_010 crossref_primary_10_1016_j_nicl_2020_102299 crossref_primary_10_1016_j_neuroimage_2015_07_053 crossref_primary_10_1016_j_neuroimage_2020_116687 crossref_primary_10_1007_s00429_019_02004_6 crossref_primary_10_1137_110855715 crossref_primary_10_3233_JAD_180342 crossref_primary_10_3389_fnins_2019_00747 crossref_primary_10_1016_j_cortex_2016_10_020 crossref_primary_10_1073_pnas_2002645117 crossref_primary_10_1155_2017_7190758 crossref_primary_10_1016_j_neuroimage_2012_06_002 crossref_primary_10_1371_journal_pone_0132518 crossref_primary_10_1080_00222895_2021_1930993 crossref_primary_10_1103_PhysRevE_110_064305 crossref_primary_10_1523_JNEUROSCI_0451_17_2017 crossref_primary_10_1098_rsif_2015_0883 crossref_primary_10_1007_s00500_017_2496_8 crossref_primary_10_1080_08982112_2021_1974033 crossref_primary_10_3389_fpain_2023_1156108 crossref_primary_10_1016_j_neuroimage_2015_12_001 crossref_primary_10_1002_hbm_23355 crossref_primary_10_1088_2632_072X_abb4c6 crossref_primary_10_1016_j_tics_2011_03_006 crossref_primary_10_1152_jn_00028_2014 crossref_primary_10_1109_TMI_2019_2904555 crossref_primary_10_1007_s00429_024_02847_8 crossref_primary_10_3390_biology12101323 crossref_primary_10_1016_j_neuroimage_2020_117522 crossref_primary_10_1016_j_psyneuen_2020_104710 crossref_primary_10_1016_j_brainres_2024_149418 crossref_primary_10_3389_fnagi_2023_1266423 crossref_primary_10_1109_TBME_2018_2854676 crossref_primary_10_1016_j_ibneur_2021_12_007 crossref_primary_10_3390_biology11060896 crossref_primary_10_1186_s13195_024_01619_0 crossref_primary_10_1016_j_neuropsychologia_2017_09_020 crossref_primary_10_1007_s12021_012_9157_y crossref_primary_10_1016_j_conb_2016_01_012 crossref_primary_10_1016_j_nicl_2024_103655 crossref_primary_10_1038_s41398_021_01335_5 crossref_primary_10_1016_j_isci_2022_104673 crossref_primary_10_1088_1741_2552_ab79f5 crossref_primary_10_1016_j_neuroimage_2016_10_026 crossref_primary_10_1016_j_neuroimage_2013_10_046 crossref_primary_10_1063_5_0087291 crossref_primary_10_1371_journal_pone_0131209 crossref_primary_10_3389_fphys_2020_611125 crossref_primary_10_1016_j_neuroimage_2022_119052 crossref_primary_10_1038_s41598_019_39180_8 crossref_primary_10_1093_cercor_bhac331 crossref_primary_10_3389_fncir_2019_00036 crossref_primary_10_1186_s12868_022_00707_x crossref_primary_10_1371_journal_pone_0104021 crossref_primary_10_1073_pnas_1814785115 crossref_primary_10_1016_j_celrep_2019_10_072 crossref_primary_10_1016_j_plrev_2024_12_013 crossref_primary_10_1016_j_neuroimage_2017_07_005 crossref_primary_10_1093_brain_awy042 crossref_primary_10_1016_j_tics_2016_06_003 crossref_primary_10_1016_j_neuroimage_2021_118310 crossref_primary_10_1016_j_neuroimage_2017_08_044 crossref_primary_10_1088_1741_2552_aaac36 crossref_primary_10_3390_brainsci12010016 crossref_primary_10_1016_j_pscychresns_2018_08_006 crossref_primary_10_1093_cercor_bhab010 crossref_primary_10_1371_journal_pone_0267456 crossref_primary_10_1109_TMI_2020_3030047 crossref_primary_10_1093_cercor_bhy010 crossref_primary_10_1073_pnas_1803839115 crossref_primary_10_1038_nmeth_2485 crossref_primary_10_1002_hbm_23518 crossref_primary_10_1016_j_physbeh_2020_112962 crossref_primary_10_1073_pnas_2022288118 crossref_primary_10_1002_hbm_24602 crossref_primary_10_1007_s11571_022_09899_8 crossref_primary_10_1093_cercor_bhad436 crossref_primary_10_1002_hbm_23516 crossref_primary_10_3390_brainsci11020192 crossref_primary_10_1137_23M1553790 crossref_primary_10_1212_WNL_0000000000002358 crossref_primary_10_1016_j_neucom_2022_11_035 crossref_primary_10_1089_brain_2014_0253 crossref_primary_10_3390_s21051733 crossref_primary_10_1093_cercor_bhab263 crossref_primary_10_1093_cercor_bhac353 crossref_primary_10_1016_j_psychres_2024_116351 crossref_primary_10_1371_journal_pone_0138297 crossref_primary_10_1016_j_jneuroling_2015_04_005 crossref_primary_10_1073_pnas_1207523109 crossref_primary_10_3389_fnins_2018_00506 crossref_primary_10_1016_j_cortex_2023_09_020 crossref_primary_10_1016_j_neurobiolaging_2018_05_016 crossref_primary_10_1371_journal_pbio_3002489 crossref_primary_10_1016_j_eneco_2021_105801 crossref_primary_10_1038_srep42117 crossref_primary_10_1038_s41467_018_04723_6 crossref_primary_10_1152_jn_00619_2018 crossref_primary_10_1038_s41598_019_40345_8 crossref_primary_10_29121_granthaalayah_v8_i7_2020_677 crossref_primary_10_1002_hbm_25967 crossref_primary_10_1093_cercor_bhad445 crossref_primary_10_1162_netn_a_00419 crossref_primary_10_3389_fnagi_2021_681043 crossref_primary_10_1016_j_humov_2018_06_014 crossref_primary_10_1016_j_physa_2019_122058 crossref_primary_10_1038_s41598_017_00425_z crossref_primary_10_1002_hbm_24872 crossref_primary_10_1038_s42003_021_01872_1 crossref_primary_10_1016_j_neurobiolaging_2013_07_003 crossref_primary_10_1007_s11682_019_00189_2 crossref_primary_10_1016_j_neuropsychologia_2022_108164 crossref_primary_10_1073_pnas_2201074119 crossref_primary_10_1016_j_tins_2021_01_007 crossref_primary_10_1093_cercor_bhy032 crossref_primary_10_3389_fphys_2018_00909 crossref_primary_10_3389_fnsys_2021_624183 crossref_primary_10_1016_j_jad_2021_01_088 crossref_primary_10_1038_s41598_024_65648_3 crossref_primary_10_1016_j_tins_2020_06_005 crossref_primary_10_3389_fnagi_2017_00203 crossref_primary_10_1016_j_neuroimage_2020_117156 crossref_primary_10_1007_s10827_016_0608_6 crossref_primary_10_1038_s41598_021_92170_7 crossref_primary_10_1371_journal_pone_0246709 crossref_primary_10_1016_j_neuroimage_2021_118784 crossref_primary_10_1016_j_neuroimage_2020_117155 crossref_primary_10_1016_j_cortex_2017_08_014 crossref_primary_10_1016_j_neuroimage_2015_04_052 crossref_primary_10_1093_cercor_bhaa350 crossref_primary_10_1016_j_neuroimage_2017_08_006 crossref_primary_10_1038_s41598_023_33008_2 crossref_primary_10_3389_fninf_2017_00028 crossref_primary_10_1038_s41467_020_15442_2 crossref_primary_10_1093_cercor_bhz150 crossref_primary_10_1002_sim_6757 crossref_primary_10_1038_s41598_022_12158_9 crossref_primary_10_1038_s42005_021_00695_0 crossref_primary_10_1016_j_physa_2020_125233 crossref_primary_10_3389_fnins_2020_627062 crossref_primary_10_1212_WNL_0000000000001476 crossref_primary_10_1109_TNSE_2019_2936865 crossref_primary_10_1364_BOE_6_002337 crossref_primary_10_1038_s41467_020_15631_z crossref_primary_10_1162_netn_a_00238 crossref_primary_10_1016_j_pneurobio_2021_102180 crossref_primary_10_1038_s41598_017_08565_y crossref_primary_10_1016_j_celrep_2020_108658 crossref_primary_10_1155_2018_4326097 crossref_primary_10_1002_hbm_23717 crossref_primary_10_1016_j_neuroimage_2015_05_025 crossref_primary_10_1073_pnas_1422487112 crossref_primary_10_1098_rspb_2020_2127 crossref_primary_10_1002_hbm_23710 crossref_primary_10_1002_hbm_22861 crossref_primary_10_1093_brain_awx145 crossref_primary_10_1093_cercor_bhab458 crossref_primary_10_1093_cercor_bhaa128 crossref_primary_10_1007_s11701_023_01722_8 crossref_primary_10_1016_j_pscychresns_2018_09_006 crossref_primary_10_1017_S0033291720002391 crossref_primary_10_1007_s10548_013_0276_z crossref_primary_10_1093_cercor_bhab462 crossref_primary_10_1162_NETN_a_00028 crossref_primary_10_1515_RNS_2011_039 crossref_primary_10_3390_brainsci13050731 crossref_primary_10_1016_j_celrep_2022_111394 crossref_primary_10_1016_j_neuroimage_2018_01_037 crossref_primary_10_1162_netn_a_00225 crossref_primary_10_1371_journal_pone_0115131 crossref_primary_10_1162_netn_a_00227 crossref_primary_10_1093_comnet_cnz023 crossref_primary_10_1152_physrev_00033_2019 crossref_primary_10_3390_brainsci11091137 crossref_primary_10_1162_netn_a_00223 crossref_primary_10_3389_fnsys_2015_00044 crossref_primary_10_1016_j_jpsychires_2023_12_018 crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_1016_j_neuropsychologia_2021_108066 crossref_primary_10_1016_j_physrep_2012_03_001 crossref_primary_10_1002_wics_1467 crossref_primary_10_1002_hbm_23500 crossref_primary_10_1162_NETN_a_00020 crossref_primary_10_1038_s41598_022_08767_z crossref_primary_10_1093_braincomms_fcad035 crossref_primary_10_1016_j_tins_2016_01_001 crossref_primary_10_1016_j_neuroimage_2018_01_048 crossref_primary_10_1162_NETN_a_00011 crossref_primary_10_1371_journal_pone_0187715 crossref_primary_10_1063_5_0057276 crossref_primary_10_1038_s41598_022_12123_6 crossref_primary_10_7554_eLife_55241 crossref_primary_10_31083_j_jin2310182 crossref_primary_10_1162_netn_a_00216 crossref_primary_10_1086_701037 crossref_primary_10_1016_j_bpsc_2017_03_017 crossref_primary_10_1016_j_neuroimage_2015_05_042 crossref_primary_10_1016_j_physrep_2019_12_004 crossref_primary_10_1038_s41598_020_63552_0 crossref_primary_10_1016_j_neuroscience_2023_08_020 crossref_primary_10_1016_j_jad_2021_01_047 crossref_primary_10_2139_ssrn_4153708 crossref_primary_10_1162_NETN_a_00010 crossref_primary_10_1038_srep43250 crossref_primary_10_1002_hbm_22404 crossref_primary_10_1098_rstb_2019_0323 crossref_primary_10_1103_PhysRevE_91_012821 crossref_primary_10_1007_s41109_019_0132_5 crossref_primary_10_1038_s42003_021_02497_0 crossref_primary_10_1007_s41109_019_0178_4 crossref_primary_10_1162_NETN_a_00001 crossref_primary_10_1103_PhysRevE_89_032811 crossref_primary_10_1177_0963721418773362 crossref_primary_10_1103_PhysRevE_89_032810 crossref_primary_10_1162_NETN_a_00002 crossref_primary_10_3389_fnins_2016_00146 crossref_primary_10_3389_fpsyg_2019_00894 crossref_primary_10_1162_neco_a_01219 crossref_primary_10_1162_netn_a_00045 crossref_primary_10_1162_netn_a_00047 crossref_primary_10_1162_netn_a_00289 crossref_primary_10_1016_j_nlm_2025_108037 crossref_primary_10_1088_1361_6633_ace6bc crossref_primary_10_1016_j_nic_2017_06_009 crossref_primary_10_1093_cercor_bhw238 crossref_primary_10_1038_s41598_022_24368_2 crossref_primary_10_1080_01621459_2017_1388244 crossref_primary_10_1016_j_tics_2015_06_005 crossref_primary_10_1007_s00221_021_06039_2 crossref_primary_10_1016_j_neuroimage_2019_116233 crossref_primary_10_1371_journal_pone_0184344 crossref_primary_10_1371_journal_pone_0218201 crossref_primary_10_1038_srep07845 crossref_primary_10_1016_j_neuroimage_2017_06_029 crossref_primary_10_1162_netn_a_00037 crossref_primary_10_1162_neco_a_01205 crossref_primary_10_1016_j_nicl_2022_103108 crossref_primary_10_1007_s11571_022_09907_x crossref_primary_10_1016_j_neuroimage_2018_01_064 crossref_primary_10_1063_1_4937451 crossref_primary_10_1162_netn_a_00033 crossref_primary_10_3233_JIN_170058 crossref_primary_10_1098_rstb_2019_0502 crossref_primary_10_7554_eLife_68531 crossref_primary_10_1162_netn_a_00270 crossref_primary_10_1016_j_neuroimage_2021_118288 crossref_primary_10_1371_journal_pone_0197419 crossref_primary_10_1016_j_neuropsychologia_2014_06_030 crossref_primary_10_1017_S0033291721003895 crossref_primary_10_7554_eLife_83604 crossref_primary_10_1007_s00332_017_9436_8 crossref_primary_10_1016_j_sleep_2023_10_035 crossref_primary_10_1016_j_neuron_2018_03_035 crossref_primary_10_1111_ejn_13112 crossref_primary_10_1016_j_neuroimage_2016_11_006 crossref_primary_10_1073_pnas_1608819113 crossref_primary_10_1162_imag_a_00184 crossref_primary_10_1007_s11065_014_9248_7 crossref_primary_10_1038_s41467_020_16285_7 crossref_primary_10_1007_s00429_013_0581_z crossref_primary_10_1088_1367_2630_abe504 crossref_primary_10_1088_1741_2552_ad33b1 crossref_primary_10_1016_j_nbd_2021_105401 crossref_primary_10_1016_j_plrev_2019_11_004 crossref_primary_10_1093_comnet_cny005 crossref_primary_10_1162_netn_a_00259 crossref_primary_10_1017_S0956792512000186 crossref_primary_10_1089_brain_2018_0630 crossref_primary_10_7498_aps_66_188901 crossref_primary_10_1016_j_bbr_2023_114828 crossref_primary_10_1162_netn_a_00255 crossref_primary_10_1098_rsif_2021_0850 crossref_primary_10_1016_j_neuroimage_2021_118027 crossref_primary_10_1016_j_tics_2023_08_009 crossref_primary_10_1093_cercor_bhac010 crossref_primary_10_1016_j_nicl_2020_102507 crossref_primary_10_1109_ACCESS_2019_2945059 crossref_primary_10_1016_j_jagp_2020_03_011 crossref_primary_10_1016_j_nicl_2020_102500 crossref_primary_10_3389_fnhum_2014_00954 crossref_primary_10_1162_netn_a_00089 crossref_primary_10_1016_j_neuroimage_2016_12_061 crossref_primary_10_1162_netn_a_00087 crossref_primary_10_1186_s40535_017_0035_4 crossref_primary_10_1371_journal_pone_0121085 crossref_primary_10_1515_revneuro_2016_0051 crossref_primary_10_1038_s41514_023_00119_z crossref_primary_10_1038_s41467_022_34267_9 crossref_primary_10_1088_1741_2552_abffe6 crossref_primary_10_1016_j_bandl_2021_105047 crossref_primary_10_1016_j_dcn_2020_100855 crossref_primary_10_1093_cercor_bhaa085 crossref_primary_10_1016_j_scib_2024_02_035 crossref_primary_10_1093_cercor_bhab175 crossref_primary_10_1016_j_neuroimage_2020_117091 crossref_primary_10_1016_j_neuron_2014_10_015 crossref_primary_10_1017_S0140525X14000120 crossref_primary_10_1093_cercor_bhw279 crossref_primary_10_3389_fendo_2022_1117735 crossref_primary_10_1093_imaiai_iay010 crossref_primary_10_1002_wcs_1275 crossref_primary_10_1038_s41562_024_02017_0 crossref_primary_10_1162_netn_a_00079 crossref_primary_10_1016_j_pnpbp_2020_109866 crossref_primary_10_1162_netn_a_00071 crossref_primary_10_1063_5_0168783 crossref_primary_10_1093_cercor_bhae204 crossref_primary_10_1016_j_dcn_2020_100862 crossref_primary_10_1103_PhysRevE_97_052304 crossref_primary_10_1126_sciadv_abq3851 crossref_primary_10_3389_fnins_2016_00326 crossref_primary_10_1073_pnas_1216402109 crossref_primary_10_1016_j_ijchp_2025_100547 crossref_primary_10_1007_s00464_024_11049_6 crossref_primary_10_1016_j_tics_2017_10_001 crossref_primary_10_1002_hbm_22937 crossref_primary_10_1016_j_neuroimage_2018_10_079 crossref_primary_10_1162_jocn_a_00810 crossref_primary_10_3389_fnhum_2017_00366 crossref_primary_10_1162_netn_a_00060 crossref_primary_10_3389_fnins_2018_00790 crossref_primary_10_1016_j_nicl_2018_02_027 crossref_primary_10_1155_2012_452503 crossref_primary_10_1002_brb3_954 crossref_primary_10_1109_TSP_2013_2259825 crossref_primary_10_3174_ajnr_A3738 crossref_primary_10_1016_j_neuroimage_2011_10_002 crossref_primary_10_1016_j_neuroimage_2015_03_055 crossref_primary_10_1007_s00429_021_02304_w crossref_primary_10_1016_j_neuroimage_2015_03_057 crossref_primary_10_1146_annurev_bioeng_071516_044511 crossref_primary_10_1016_j_cobeha_2019_04_008 crossref_primary_10_1016_j_nbd_2023_106055 crossref_primary_10_3389_fnbeh_2023_1123534 crossref_primary_10_31887_DCNS_2018_20_2_osporns crossref_primary_10_1016_j_neuroimage_2022_119618 crossref_primary_10_1162_netn_a_00058 crossref_primary_10_1016_j_neures_2019_03_004 crossref_primary_10_1016_j_neuroimage_2021_118224 crossref_primary_10_1017_S1366728915000280 crossref_primary_10_3389_fneur_2020_606592 crossref_primary_10_1073_pnas_1507168112 crossref_primary_10_1142_S1793351X24300073 crossref_primary_10_1016_j_bbr_2016_12_017 crossref_primary_10_1007_s11571_023_09988_2 crossref_primary_10_1016_j_physrep_2021_10_006 crossref_primary_10_1007_s10548_019_00719_7 crossref_primary_10_1038_s41398_024_02929_5 crossref_primary_10_1016_j_neuroimage_2012_03_067 crossref_primary_10_1016_j_neuroimage_2019_07_003 crossref_primary_10_1016_j_neuroimage_2016_09_001 crossref_primary_10_1063_1_4790830 crossref_primary_10_1016_j_bpsc_2021_05_003 crossref_primary_10_1038_s41467_019_10317_7 crossref_primary_10_1038_s41559_017_0101 crossref_primary_10_1016_j_neuroimage_2020_117504 crossref_primary_10_1038_s41593_019_0400_9 crossref_primary_10_1016_j_plrev_2024_04_012 crossref_primary_10_1162_imag_a_00366 crossref_primary_10_1038_s41398_024_03067_8 crossref_primary_10_1038_srep06130 crossref_primary_10_1089_brain_2017_0536 crossref_primary_10_1016_j_neubiorev_2017_03_018 crossref_primary_10_1089_brain_2011_0055 crossref_primary_10_1371_journal_pone_0157243 crossref_primary_10_1007_s00464_023_10409_y crossref_primary_10_1073_pnas_1415122111 crossref_primary_10_1002_hbm_26477 crossref_primary_10_1080_10803548_2022_2035966 crossref_primary_10_1016_j_compbiomed_2024_108712 crossref_primary_10_1016_j_neuroimage_2017_05_067 crossref_primary_10_1093_comnet_cnw004 crossref_primary_10_3389_fnins_2014_00138 crossref_primary_10_1016_j_neuroimage_2017_05_065 crossref_primary_10_1214_13_SS103 crossref_primary_10_1109_MSP_2012_2233865 crossref_primary_10_1038_nn_3993 crossref_primary_10_1523_JNEUROSCI_2322_23_2024 crossref_primary_10_1109_TNSE_2017_2753963 crossref_primary_10_1016_j_nicl_2022_103190 crossref_primary_10_1162_imag_a_00133 crossref_primary_10_3390_brainsci9120380 crossref_primary_10_1038_nrn3214 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_1103_PhysRevE_88_054702 crossref_primary_10_1038_s41598_020_75396_9 crossref_primary_10_1038_s41593_020_0653_3 crossref_primary_10_1103_PhysRevE_108_014901 crossref_primary_10_1523_JNEUROSCI_2084_17_2018 crossref_primary_10_1523_JNEUROSCI_1476_16_2016 crossref_primary_10_1073_pnas_1700811114 crossref_primary_10_1371_journal_pone_0111007 crossref_primary_10_3389_fneur_2019_01265 crossref_primary_10_1007_s11682_019_00226_0 crossref_primary_10_1016_j_neubiorev_2014_05_009 crossref_primary_10_1016_j_neuroimage_2013_12_008 crossref_primary_10_1124_pharmrev_121_000508 crossref_primary_10_7717_peerj_15721 crossref_primary_10_1089_brain_2017_0543 crossref_primary_10_1007_s12264_022_00982_y crossref_primary_10_1016_j_neuroimage_2017_05_048 crossref_primary_10_3389_fnins_2024_1305284 crossref_primary_10_1016_j_nicl_2018_03_016 crossref_primary_10_1093_comnet_cnu044 crossref_primary_10_1002_hbm_25161 crossref_primary_10_1016_j_neuroimage_2017_06_081 crossref_primary_10_1093_texcom_tgac024 crossref_primary_10_1002_aelm_201700046 crossref_primary_10_3390_brainsci12040477 crossref_primary_10_1016_j_neuroimage_2017_04_015 crossref_primary_10_1016_j_pnpbp_2018_12_006 crossref_primary_10_1162_netn_a_00090 crossref_primary_10_1016_j_neuron_2016_10_004 crossref_primary_10_3390_brainsci13030429 crossref_primary_10_1016_j_jneumeth_2017_08_007 crossref_primary_10_3389_fnins_2019_00583 crossref_primary_10_1093_comnet_cnu038 crossref_primary_10_1038_s41598_017_09896_6 crossref_primary_10_3389_fnins_2019_00585 crossref_primary_10_1016_j_neuroimage_2020_116603 crossref_primary_10_1016_j_nicl_2021_102861 crossref_primary_10_1016_j_tics_2024_03_004 crossref_primary_10_3390_bioengineering11090882 crossref_primary_10_1016_j_neuroimage_2022_119209 crossref_primary_10_1016_j_neuroimage_2014_07_033 crossref_primary_10_1016_j_neuroimage_2018_11_028 crossref_primary_10_1371_journal_pcbi_1003491 crossref_primary_10_1109_JSTSP_2016_2594949 crossref_primary_10_1016_j_neuroimage_2020_116854 crossref_primary_10_1103_PhysRevE_97_042314 crossref_primary_10_1007_s00453_019_00665_7 crossref_primary_10_1002_hbm_25589 crossref_primary_10_3389_fneur_2019_01242 crossref_primary_10_1038_s41467_021_25481_y crossref_primary_10_1088_1741_2552_aad7b1 crossref_primary_10_1371_journal_pone_0071163 crossref_primary_10_1016_j_neuroimage_2022_119672 crossref_primary_10_1016_j_neuroimage_2022_119673 crossref_primary_10_1080_26941899_2023_2260431 crossref_primary_10_1177_00187208241285513 crossref_primary_10_1089_brain_2013_0157 crossref_primary_10_1371_journal_pcbi_1007834 crossref_primary_10_1038_s41467_023_41024_z crossref_primary_10_1002_hbm_25580 crossref_primary_10_1016_j_psychres_2024_115774 crossref_primary_10_1007_s42113_020_00080_0 crossref_primary_10_1051_medsci_20173306014 crossref_primary_10_1103_PhysRevE_94_032908 crossref_primary_10_3389_fnhum_2017_00552 crossref_primary_10_1016_j_neuroimage_2012_04_051 crossref_primary_10_3389_fnhum_2020_571733 crossref_primary_10_1007_s41109_016_0007_y crossref_primary_10_1016_j_biopsych_2024_03_012 crossref_primary_10_3389_fnins_2014_00187 crossref_primary_10_1038_s42003_024_06210_9 crossref_primary_10_1109_TNSE_2022_3148168 crossref_primary_10_1523_ENEURO_0200_19_2019 crossref_primary_10_3389_fnhum_2016_00314 crossref_primary_10_1016_j_nicl_2021_102844 crossref_primary_10_31083_j_jin2106170 crossref_primary_10_1016_j_tics_2013_04_010 crossref_primary_10_1016_j_neuropsychologia_2019_01_021 crossref_primary_10_1038_nrn_2017_149 crossref_primary_10_3389_fpsyg_2021_696507 crossref_primary_10_1371_journal_pcbi_1002187 crossref_primary_10_1063_1_4858457 crossref_primary_10_1016_j_ijpsycho_2019_01_002 crossref_primary_10_1214_14_AOAS760 crossref_primary_10_1016_j_pharmthera_2013_01_016 crossref_primary_10_1007_s10816_020_09502_6 crossref_primary_10_1038_srep07622 crossref_primary_10_1016_j_neuroimage_2022_119455 crossref_primary_10_3390_math12030455 crossref_primary_10_1016_j_exger_2024_112527 crossref_primary_10_1038_ncomms9414 crossref_primary_10_1080_19312458_2020_1860206 crossref_primary_10_3390_brainsci14090935 crossref_primary_10_1111_psyp_13464 crossref_primary_10_1093_schbul_sbad022 crossref_primary_10_3390_axioms11090464 crossref_primary_10_1109_TNSRE_2018_2838075 crossref_primary_10_1016_j_neuroimage_2017_04_051 |
Cites_doi | 10.1073/pnas.0901831106 10.1016/j.neuroimage.2007.02.041 10.1103/PhysRevE.77.036104 10.1097/WCO.0b013e32832d93dd 10.1007/s00221-006-0538-z 10.1109/TKDE.2007.190689 10.1038/nrn2258 10.1073/pnas.95.15.8420 10.1073/pnas.0606005103 10.1016/j.humov.2010.02.006 10.1016/j.tics.2010.01.008 10.1038/nature09108 10.1016/S0079-6123(07)00017-9 10.1016/j.neuroimage.2010.09.006 10.1038/nrn2575 10.1038/sj.hdy.6800915 10.1088/1742-5468/2008/10/P10008 10.1155/NP.2001.131 10.1006/nimg.2001.1037 10.1038/nature05670 10.1177/1073858406293182 10.1126/science.1184819 10.1126/science.283.5407.1538 10.1073/pnas.0503610102 10.1016/j.conb.2005.03.004 10.1038/nn.2412 10.1523/JNEUROSCI.5894-08.2010 10.3389/fnins.2010.00200 10.1103/PhysRevE.81.046106 10.1038/nature08389 10.1016/j.humov.2009.07.001 10.7551/mitpress/4737.001.0001 10.1007/s00429-009-0208-6 10.1016/j.conb.2005.10.009 10.1371/journal.pcbi.1000106 10.1007/s004220050435 10.3389/neuro.11.037.2009 10.1016/S0166-2236(96)10081-3 10.1016/j.tig.2010.06.002 10.1152/jn.00405.2006 10.1146/annurev-clinpsy-040510-143934 10.1007/s00221-003-1799-4 10.1016/j.neuron.2009.06.025 10.1111/j.1558-5646.1996.tb02339.x 10.1016/j.neuroimage.2008.09.062 10.1371/journal.pcbi.1000748 10.1016/j.cub.2009.12.040 10.1097/01.wco.0000200544.29915.cc 10.1126/science.1065103 10.1016/j.physrep.2009.11.002 10.1007/BF02691333 |
ContentType | Journal Article |
Copyright | Copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 3, 2011 |
Copyright_xml | – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 3, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1018985108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Architecture Statistics |
EISSN | 1091-6490 |
EndPage | 7646 |
ExternalDocumentID | PMC3088578 2341967111 21502525 10_1073_pnas_1018985108 108_18_7641 41242234 US201600192529 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS44393 – fundername: NINDS NIH HHS grantid: P01 NS044393 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c580t-95a3d74c7c7eac6b5bb9ccdc4d6db140d8e39463c5d2cd94610799ac5bcea5c53 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:22:39 EDT 2025 Fri Jul 11 06:19:10 EDT 2025 Fri Jul 11 15:39:55 EDT 2025 Thu Jul 10 23:22:17 EDT 2025 Mon Jun 30 08:21:15 EDT 2025 Thu Apr 03 07:05:34 EDT 2025 Tue Jul 01 00:47:09 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Wed Nov 11 00:29:33 EST 2020 Thu May 29 08:40:54 EDT 2025 Thu Apr 03 09:41:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c580t-95a3d74c7c7eac6b5bb9ccdc4d6db140d8e39463c5d2cd94610799ac5bcea5c53 |
Notes | http://dx.doi.org/10.1073/pnas.1018985108 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: D.S.B., N.F.W., M.A.P., P.J.M., and S.T.G. designed research; D.S.B. and N.F.W. performed research; D.S.B., N.F.W., M.A.P., P.J.M., J.M.C., and S.T.G. contributed new reagents/analytic tools; D.S.B. and P.J.M. wrote the code; D.S.B. analyzed data; and D.S.B., N.F.W., and M.A.P. wrote the paper. Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved March 15, 2011 (received for review December 16, 2010) |
PMID | 21502525 |
PQID | 865567149 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_108_18_7641 crossref_primary_10_1073_pnas_1018985108 proquest_miscellaneous_1817810444 pubmed_primary_21502525 jstor_primary_41242234 proquest_journals_865567149 proquest_miscellaneous_1017958792 crossref_citationtrail_10_1073_pnas_1018985108 proquest_miscellaneous_864964787 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3088578 fao_agris_US201600192529 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-03 |
PublicationDateYYYYMMDD | 2011-05-03 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Werner G (e_1_3_3_14_2) 2010; 1 e_1_3_3_50_2 Simon HA (e_1_3_3_7_2) 1962; 106 Porter MA (e_1_3_3_30_2) 2009; 56 Lippí S (e_1_3_3_53_2) 2009; 3 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_37_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 Schlosser G (e_1_3_3_12_2) 2004 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_52_2 doi: 10.1073/pnas.0901831106 – ident: e_1_3_3_39_2 doi: 10.1016/j.neuroimage.2007.02.041 – ident: e_1_3_3_41_2 doi: 10.1103/PhysRevE.77.036104 – ident: e_1_3_3_22_2 doi: 10.1097/WCO.0b013e32832d93dd – ident: e_1_3_3_45_2 doi: 10.1007/s00221-006-0538-z – ident: e_1_3_3_55_2 doi: 10.1109/TKDE.2007.190689 – ident: e_1_3_3_49_2 doi: 10.1038/nrn2258 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.95.15.8420 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0606005103 – ident: e_1_3_3_44_2 doi: 10.1016/j.humov.2010.02.006 – ident: e_1_3_3_40_2 doi: 10.1016/j.tics.2010.01.008 – ident: e_1_3_3_20_2 doi: 10.1038/nature09108 – ident: e_1_3_3_2_2 doi: 10.1016/S0079-6123(07)00017-9 – ident: e_1_3_3_28_2 doi: 10.1016/j.neuroimage.2010.09.006 – ident: e_1_3_3_24_2 doi: 10.1038/nrn2575 – volume: 3 start-page: 48 year: 2009 ident: e_1_3_3_53_2 article-title: Differential maturation of brain signal complexity in the human auditory and visual system publication-title: Front Hum Neurosci – ident: e_1_3_3_9_2 doi: 10.1038/sj.hdy.6800915 – ident: e_1_3_3_32_2 doi: 10.1088/1742-5468/2008/10/P10008 – ident: e_1_3_3_48_2 doi: 10.1155/NP.2001.131 – ident: e_1_3_3_54_2 doi: 10.1006/nimg.2001.1037 – ident: e_1_3_3_34_2 doi: 10.1038/nature05670 – ident: e_1_3_3_23_2 doi: 10.1177/1073858406293182 – ident: e_1_3_3_25_2 doi: 10.1126/science.1184819 – ident: e_1_3_3_4_2 doi: 10.1126/science.283.5407.1538 – volume: 56 start-page: 1164 year: 2009 ident: e_1_3_3_30_2 article-title: Communities in networks publication-title: Not Am Math Soc – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0503610102 – ident: e_1_3_3_18_2 doi: 10.1016/j.conb.2005.03.004 – ident: e_1_3_3_43_2 doi: 10.1038/nn.2412 – volume: 1 start-page: 1 year: 2010 ident: e_1_3_3_14_2 article-title: Fractals in the nervous system: Conceptual implications for theoretical neuroscience publication-title: Front Physiol – ident: e_1_3_3_6_2 doi: 10.1523/JNEUROSCI.5894-08.2010 – ident: e_1_3_3_13_2 doi: 10.3389/fnins.2010.00200 – ident: e_1_3_3_56_2 doi: 10.1103/PhysRevE.81.046106 – ident: e_1_3_3_3_2 doi: 10.1038/nature08389 – ident: e_1_3_3_19_2 doi: 10.1016/j.humov.2009.07.001 – ident: e_1_3_3_38_2 doi: 10.7551/mitpress/4737.001.0001 – ident: e_1_3_3_37_2 doi: 10.1007/s00429-009-0208-6 – ident: e_1_3_3_17_2 doi: 10.1016/j.conb.2005.10.009 – ident: e_1_3_3_50_2 doi: 10.1371/journal.pcbi.1000106 – ident: e_1_3_3_15_2 doi: 10.1007/s004220050435 – ident: e_1_3_3_36_2 doi: 10.3389/neuro.11.037.2009 – ident: e_1_3_3_1_2 doi: 10.1016/S0166-2236(96)10081-3 – ident: e_1_3_3_29_2 doi: 10.1016/j.tig.2010.06.002 – ident: e_1_3_3_5_2 doi: 10.1152/jn.00405.2006 – ident: e_1_3_3_21_2 doi: 10.1146/annurev-clinpsy-040510-143934 – ident: e_1_3_3_16_2 doi: 10.1007/s00221-003-1799-4 – ident: e_1_3_3_46_2 doi: 10.1016/j.neuron.2009.06.025 – ident: e_1_3_3_11_2 doi: 10.1111/j.1558-5646.1996.tb02339.x – ident: e_1_3_3_35_2 doi: 10.1016/j.neuroimage.2008.09.062 – ident: e_1_3_3_27_2 doi: 10.1371/journal.pcbi.1000748 – ident: e_1_3_3_42_2 doi: 10.1016/j.cub.2009.12.040 – volume-title: Modularity in Development and Evolution year: 2004 ident: e_1_3_3_12_2 – ident: e_1_3_3_47_2 doi: 10.1097/01.wco.0000200544.29915.cc – volume: 106 start-page: 467 year: 1962 ident: e_1_3_3_7_2 article-title: The architecture of complexity publication-title: Proc Amer Philos Soc – ident: e_1_3_3_33_2 doi: 10.1126/science.1065103 – ident: e_1_3_3_31_2 doi: 10.1016/j.physrep.2009.11.002 – ident: e_1_3_3_51_2 doi: 10.1007/BF02691333 |
SSID | ssj0009580 |
Score | 2.5897589 |
Snippet | Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7641 |
SubjectTerms | Adaptability Adaptation, Physiological - physiology Adult Architecture Behavior Biological Sciences Brain Brain - anatomy & histology Brain - physiology Community structure Connectivity Development Evolution Female Human subjects Humans Learning Learning - physiology Learning modules Magnetic Resonance Imaging Male Models, Neurological Modular structures Modularity Motor ability Motor skill learning Nerve Net - anatomy & histology Nerve Net - physiology Neural networks Neuronal Plasticity - physiology neurophysiology Nodes Physical Sciences Psychomotor Performance - physiology Statistics Time windows |
Title | Dynamic reconfiguration of human brain networks during learning |
URI | https://www.jstor.org/stable/41242234 http://www.pnas.org/content/108/18/7641.abstract https://www.ncbi.nlm.nih.gov/pubmed/21502525 https://www.proquest.com/docview/865567149 https://www.proquest.com/docview/1017958792 https://www.proquest.com/docview/1817810444 https://www.proquest.com/docview/864964787 https://pubmed.ncbi.nlm.nih.gov/PMC3088578 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYGKAg8TBUZTSJHdtPqOJDFdKqSazS3qLYScokSNHSPsCfwF_Nne18Ve0EvERt4riu75fznXP3O0JeS6HiMguTQMkIHRRNgyxRWI-YlYoiIUiI2cgX82S2oJ-v2fVo9LsXtbRZq3P9a2deyf9IFc6BXDFL9h8k23YKJ-AzyBeOIGE4_pWMP9hy8mPj1ZY3y81tZwCazXmFBSDGlQ31rpucRFcpYtk3TC_bhaxuwgbmzT7htMs6caqgHgfjy3mvhjGY4C7g1-asY4Riq-9_fle1Qx160nUXTYxxrBYzFxmWQpx28tf2TZSJH3bvrvJut5UFk7iL3bhjoH2tHMFKSW0udauVJ6IPP9FTsjyxXFluwYavyc7FALQXVjCushr3KIQE49J1OmTYXnyJkGcPjV0WyQNyLwKXwwSJzvoEzsKmM7mxNjRRPH679QsDC-egzFZNqCvy50LTXb7Mdkhuz8a5ekgeOOfEn1qkHZFRUT0iR81U-meOo_zNY_LOQc_fgp6_Kn0DPd9Az2-g51vo-Q30npDFp49X72eBq8URaPjj60CyLM451VxzWKoTxZSSWueaYkEycNJzUcSSJrFmeaRziSz-XMpMM6WLjGkWH5PDalUVJ8QvGNVUlHnJNd6IHoSiCcsmJfgGE1l45LyZv1Q7onqsl_ItNQETPE5xFtNuwj1y1t7ww3K07G96AgJJsyWsoOlQ7h45NlJqu8C67GA8U7jH9NJ1LdJQpIhCj5w2okydXqhTTPVOeEihx1ftVVDa-CYuq4rVxgyIA6C4jO5oI0IuQqRz9Ii_p41IKGaSC-6RpxY_7SjBlAd3JmIe4QNktQ2QV354pbr5avjlY7A8YCF_tn-uTsn97ml_Tg7Xt5viBRjna_XSPDV_ABPI4YM |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+reconfiguration+of+human+brain+networks+during+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bassett%2C+Danielle+S&rft.au=Wymbs%2C+Nicholas+F&rft.au=Porter%2C+Mason+A&rft.au=Mucha%2C+Peter+J&rft.date=2011-05-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=108&rft.issue=18&rft.spage=7641&rft.epage=7646&rft_id=info:doi/10.1073%2Fpnas.1018985108&rft.externalDocID=US201600192529 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F18.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F18.cover.gif |