Dynamic reconfiguration of human brain networks during learning

Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 18; pp. 7641 - 7646
Main Authors Bassett, Danielle S, Wymbs, Nicholas F, Porter, Mason A, Mucha, Peter J, Carlson, Jean M, Grafton, Scott T
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.05.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.
AbstractList Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.
Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. [PUBLICATION ABSTRACT]
Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.
Author Carlson, Jean M
Bassett, Danielle S
Mucha, Peter J
Grafton, Scott T
Porter, Mason A
Wymbs, Nicholas F
Author_xml – sequence: 1
  fullname: Bassett, Danielle S
– sequence: 2
  fullname: Wymbs, Nicholas F
– sequence: 3
  fullname: Porter, Mason A
– sequence: 4
  fullname: Mucha, Peter J
– sequence: 5
  fullname: Carlson, Jean M
– sequence: 6
  fullname: Grafton, Scott T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21502525$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFMycg4gKX0LFjx_YFhMqnVIkD9Gw5trP1kthbOwH13-Nll13ooZw80jzzjt-ZOUFHIQaH0GMMrzDw5mwddC4RFlIwDOIeWmCQuG6phCO0ACC8FpTQY3SS8woAJBPwAB0TzIAwwhbozbuboEdvquRMDL1fzklPPoYq9tXVPOpQdUn7UAU3_Yzpe67snHxYVoPTKZTgIbrf6yG7R7v3FF1-eP_t_FN98eXj5_O3F7UpHadaMt1YTg033GnTdqzrpDHWUNvaDlOwwjWSto1hlhhbouJOSm1YZ5xmhjWn6PVWdz13o7PGhSnpQa2TH3W6UVF79W8m-Cu1jD9UA0IwLorAi51Aitezy5MafTZuGHRwcc5KlJm1lAteyJd3klhgLjBQSv-PAuZl5FySgj6_ha7inEKZWWnNWMsxlQV6-rfLvb0_-yrA2RYwKeacXL9HMKjNRajNRajDRZQKdqvC-On3isuY_HBH3bPdVzaJQxdR_CveUlyIJ1tilaeY9gjFhBLS0INCr6PSy-SzuvxKALcAWBY3svkFygvX3w
CitedBy_id crossref_primary_10_1016_j_actpsy_2019_102936
crossref_primary_10_1016_j_neuroimage_2014_12_020
crossref_primary_10_1016_j_nicl_2019_101841
crossref_primary_10_1038_s41598_024_55753_8
crossref_primary_10_1371_journal_pcbi_1004533
crossref_primary_10_1073_pnas_1722313115
crossref_primary_10_1016_j_neuroimage_2017_03_064
crossref_primary_10_1089_brain_2019_0709
crossref_primary_10_1371_journal_pcbi_1006957
crossref_primary_10_1093_comnet_cnt017
crossref_primary_10_1016_j_nicl_2020_102396
crossref_primary_10_1080_15427951_2012_714718
crossref_primary_10_1093_brain_aww143
crossref_primary_10_1002_hbm_23007
crossref_primary_10_1016_j_neuroimage_2024_120740
crossref_primary_10_1017_nws_2020_39
crossref_primary_10_1002_hbm_26511
crossref_primary_10_1016_j_neuroimage_2012_01_068
crossref_primary_10_1016_j_neuroimage_2014_12_034
crossref_primary_10_1093_scan_nsac020
crossref_primary_10_1002_hbm_25420
crossref_primary_10_3389_fnint_2020_491403
crossref_primary_10_1109_JPROC_2018_2820126
crossref_primary_10_1016_j_neuroimage_2014_05_083
crossref_primary_10_1016_j_neuroimage_2013_09_013
crossref_primary_10_1016_j_nlm_2020_107340
crossref_primary_10_1016_j_neuroimage_2017_12_093
crossref_primary_10_1038_s41467_017_01755_2
crossref_primary_10_3389_fpsyg_2021_665419
crossref_primary_10_1038_s41593_020_00719_y
crossref_primary_10_1016_j_neubiorev_2017_01_016
crossref_primary_10_1016_j_neuroimage_2019_05_011
crossref_primary_10_1162_jocn_a_01142
crossref_primary_10_3389_fnhum_2016_00114
crossref_primary_10_1016_j_nicl_2019_101865
crossref_primary_10_1016_j_physa_2023_128849
crossref_primary_10_3390_brainsci9060144
crossref_primary_10_1109_TBME_2016_2553960
crossref_primary_10_1177_1545968320981953
crossref_primary_10_1016_j_neuroimage_2017_02_031
crossref_primary_10_1088_2632_072X_ad3262
crossref_primary_10_1016_j_neuroimage_2020_117440
crossref_primary_10_1016_j_coisb_2017_04_006
crossref_primary_10_1038_s41598_018_36537_3
crossref_primary_10_1016_j_neuroimage_2023_120266
crossref_primary_10_1016_j_nicl_2024_103574
crossref_primary_10_1016_j_neuroimage_2020_117429
crossref_primary_10_1111_bjep_12340
crossref_primary_10_1146_annurev_conmatphys_030212_184316
crossref_primary_10_1063_5_0152942
crossref_primary_10_1016_j_neuroimage_2020_117674
crossref_primary_10_1016_j_arr_2025_102688
crossref_primary_10_1016_j_neuroimage_2017_12_074
crossref_primary_10_1038_s41598_017_07846_w
crossref_primary_10_1038_s41598_020_57915_w
crossref_primary_10_1016_j_neuroscience_2019_05_011
crossref_primary_10_1038_nrn3835
crossref_primary_10_1177_1087054720959712
crossref_primary_10_1523_ENEURO_0382_20_2021
crossref_primary_10_1016_j_neuroscience_2016_09_034
crossref_primary_10_1002_ece3_5641
crossref_primary_10_1109_TNSRE_2020_2977250
crossref_primary_10_1371_journal_pone_0215520
crossref_primary_10_1016_j_tine_2019_04_001
crossref_primary_10_1016_j_neuroimage_2020_117668
crossref_primary_10_1016_j_neubiorev_2016_08_036
crossref_primary_10_1073_pnas_1815321116
crossref_primary_10_1016_j_bandl_2021_104977
crossref_primary_10_1038_s41551_019_0404_5
crossref_primary_10_1002_hbm_22599
crossref_primary_10_2139_ssrn_2341334
crossref_primary_10_1007_s12311_021_01241_y
crossref_primary_10_1016_j_neuroimage_2024_120789
crossref_primary_10_1016_j_neuroimage_2017_01_003
crossref_primary_10_1016_j_neuroimage_2017_11_015
crossref_primary_10_1038_s41467_024_54472_y
crossref_primary_10_3389_fneur_2022_1029669
crossref_primary_10_1016_j_neuroimage_2020_117654
crossref_primary_10_1523_JNEUROSCI_2128_13_2013
crossref_primary_10_1002_hbm_23676
crossref_primary_10_1093_brain_aww337
crossref_primary_10_1016_j_neuron_2014_08_034
crossref_primary_10_1007_s11682_022_00651_8
crossref_primary_10_1371_journal_pbio_1002469
crossref_primary_10_1103_PhysRevE_92_060801
crossref_primary_10_1016_j_nut_2025_112730
crossref_primary_10_1111_psyp_14702
crossref_primary_10_1103_PhysRevE_104_014302
crossref_primary_10_1016_j_nicl_2020_102169
crossref_primary_10_1148_radiol_2019191125
crossref_primary_10_1088_1741_2552_abef39
crossref_primary_10_3389_fnins_2021_715861
crossref_primary_10_1109_TNSRE_2016_2597961
crossref_primary_10_1109_TNSRE_2023_3277509
crossref_primary_10_1088_1751_8113_47_34_343001
crossref_primary_10_1214_20_AOAS1339
crossref_primary_10_3389_fnagi_2023_1140975
crossref_primary_10_1007_s11571_013_9251_3
crossref_primary_10_1073_pnas_1510619112
crossref_primary_10_1016_j_bspc_2021_102902
crossref_primary_10_1089_brain_2020_0920
crossref_primary_10_1038_s41467_022_28299_4
crossref_primary_10_1007_s11682_019_00220_6
crossref_primary_10_1016_j_neubiorev_2013_07_016
crossref_primary_10_3389_fnins_2023_1025428
crossref_primary_10_1016_j_jad_2021_04_061
crossref_primary_10_1016_j_neuroimage_2012_03_070
crossref_primary_10_1002_hbm_23463
crossref_primary_10_1111_ejn_15901
crossref_primary_10_1523_JNEUROSCI_1324_15_2015
crossref_primary_10_1371_journal_pbio_3002314
crossref_primary_10_1371_journal_pbio_3002797
crossref_primary_10_1162_jocn_a_01590
crossref_primary_10_1016_j_neuron_2014_08_016
crossref_primary_10_1371_journal_pone_0088202
crossref_primary_10_1371_journal_pone_0123950
crossref_primary_10_1109_TNSRE_2017_2681963
crossref_primary_10_1016_j_neuroimage_2017_02_066
crossref_primary_10_1016_j_nicl_2020_102163
crossref_primary_10_1002_hbm_23699
crossref_primary_10_1002_pbc_25022
crossref_primary_10_1016_j_neuroscience_2014_05_035
crossref_primary_10_1016_j_ynirp_2023_100171
crossref_primary_10_1038_s41598_017_08050_6
crossref_primary_10_3389_fnhum_2018_00001
crossref_primary_10_1097_j_pain_0000000000002010
crossref_primary_10_1002_hbm_23890
crossref_primary_10_1016_j_biopsych_2022_12_012
crossref_primary_10_3389_fncom_2014_00051
crossref_primary_10_1002_hbm_24983
crossref_primary_10_1073_pnas_2201194119
crossref_primary_10_1016_j_neuroimage_2017_01_057
crossref_primary_10_1162_netn_a_00323
crossref_primary_10_3389_fnhum_2021_655576
crossref_primary_10_1016_j_neuron_2014_05_014
crossref_primary_10_1038_s41539_022_00130_1
crossref_primary_10_1016_j_neuroscience_2020_04_030
crossref_primary_10_1063_1_5092226
crossref_primary_10_1162_netn_a_00321
crossref_primary_10_3390_su11195508
crossref_primary_10_1073_pnas_2415508122
crossref_primary_10_1088_1742_5468_ab2ad1
crossref_primary_10_2139_ssrn_3195358
crossref_primary_10_1088_2632_072X_ad253a
crossref_primary_10_3389_fnhum_2019_00006
crossref_primary_10_1177_1073858416638641
crossref_primary_10_1016_j_jneumeth_2017_12_021
crossref_primary_10_1016_j_neuroimage_2019_04_027
crossref_primary_10_1093_cercor_bhac457
crossref_primary_10_1080_2331186X_2018_1429134
crossref_primary_10_1093_cercor_bhac454
crossref_primary_10_1093_cercor_bhad542
crossref_primary_10_1093_cercor_bhac213
crossref_primary_10_1016_j_ins_2012_12_038
crossref_primary_10_30773_pi_2021_0386
crossref_primary_10_1111_ejn_13988
crossref_primary_10_1177_1352458516651503
crossref_primary_10_1016_j_plrev_2017_12_006
crossref_primary_10_1016_j_plrev_2017_12_007
crossref_primary_10_1038_s41598_018_31202_1
crossref_primary_10_1073_pnas_2405850121
crossref_primary_10_1007_s10548_017_0559_x
crossref_primary_10_1162_netn_a_00314
crossref_primary_10_1016_j_plrev_2017_12_005
crossref_primary_10_1063_5_0046047
crossref_primary_10_1016_j_bpsc_2018_05_005
crossref_primary_10_1523_ENEURO_0531_19_2020
crossref_primary_10_1016_j_neuroimage_2019_05_064
crossref_primary_10_1016_j_neuron_2021_01_023
crossref_primary_10_3389_fnhum_2019_00258
crossref_primary_10_1002_hbm_24722
crossref_primary_10_1016_j_neuroimage_2020_117296
crossref_primary_10_1073_pnas_1414466112
crossref_primary_10_3389_fnhum_2021_788091
crossref_primary_10_1002_hbm_23631
crossref_primary_10_1093_braincomms_fcad143
crossref_primary_10_1038_s41592_019_0400_4
crossref_primary_10_1002_hbm_22548
crossref_primary_10_1007_s11682_024_00849_y
crossref_primary_10_17116_jnevro2018118101128
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_1002_brb3_1698
crossref_primary_10_1016_j_neuroimage_2021_118657
crossref_primary_10_1109_JSTSP_2016_2600859
crossref_primary_10_1109_JPROC_2018_2825200
crossref_primary_10_3389_fnhum_2017_00169
crossref_primary_10_1093_brain_awz034
crossref_primary_10_1109_TSIPN_2020_2982765
crossref_primary_10_1111_adb_13446
crossref_primary_10_3389_fncom_2019_00086
crossref_primary_10_1093_cercor_bhab144
crossref_primary_10_1137_15M1009615
crossref_primary_10_3389_fnhum_2018_00292
crossref_primary_10_1016_j_neuroimage_2019_03_015
crossref_primary_10_1016_j_tics_2017_05_002
crossref_primary_10_1007_s11682_023_00774_6
crossref_primary_10_1371_journal_pcbi_1002522
crossref_primary_10_1089_brain_2012_0110
crossref_primary_10_1148_radiol_14132388
crossref_primary_10_3390_e26030256
crossref_primary_10_1016_j_physrep_2020_08_003
crossref_primary_10_1016_j_bpsc_2021_01_007
crossref_primary_10_1137_22M1525909
crossref_primary_10_3389_fncom_2019_00075
crossref_primary_10_1093_cercor_bhac489
crossref_primary_10_1016_j_bandc_2023_106080
crossref_primary_10_1038_s41598_017_04716_3
crossref_primary_10_3758_s13415_024_01240_6
crossref_primary_10_1016_j_neuroimage_2023_120036
crossref_primary_10_1093_cercor_bhy181
crossref_primary_10_1162_netn_a_00121
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_1016_j_brainres_2014_11_007
crossref_primary_10_1016_j_neuroimage_2021_118635
crossref_primary_10_1016_j_neuroimage_2021_118636
crossref_primary_10_1016_j_schres_2012_07_026
crossref_primary_10_1093_cercor_bhad506
crossref_primary_10_1007_s00429_023_02751_7
crossref_primary_10_1016_j_neuroimage_2021_117784
crossref_primary_10_1016_j_neuroimage_2011_08_085
crossref_primary_10_1371_journal_pcbi_1009591
crossref_primary_10_1093_cercor_bhac415
crossref_primary_10_1108_IJWIS_02_2022_0040
crossref_primary_10_1016_j_celrep_2023_113304
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_1016_j_csda_2016_11_016
crossref_primary_10_1093_braincomms_fcac095
crossref_primary_10_3389_fnhum_2015_00099
crossref_primary_10_1162_netn_a_00114
crossref_primary_10_1038_s41598_023_50265_3
crossref_primary_10_1016_j_neuroimage_2016_07_032
crossref_primary_10_3389_fneur_2022_780896
crossref_primary_10_1016_j_neuropsychologia_2019_05_021
crossref_primary_10_1038_s41598_018_34372_0
crossref_primary_10_1073_pnas_2420228122
crossref_primary_10_3390_brainsci11121652
crossref_primary_10_1016_j_neuroimage_2019_116284
crossref_primary_10_1002_hbm_22740
crossref_primary_10_1007_s11682_019_00042_6
crossref_primary_10_1016_j_conb_2012_11_015
crossref_primary_10_1093_bib_bbv094
crossref_primary_10_1002_hbm_22744
crossref_primary_10_1016_j_neuroimage_2019_116285
crossref_primary_10_1080_00207454_2022_2130295
crossref_primary_10_1523_JNEUROSCI_4903_14_2015
crossref_primary_10_1016_j_neuron_2016_09_018
crossref_primary_10_1016_j_nlm_2018_11_005
crossref_primary_10_1089_brain_2016_0426
crossref_primary_10_1016_j_neuroimage_2016_07_061
crossref_primary_10_1038_s41598_020_80293_2
crossref_primary_10_1016_j_neuroimage_2014_03_041
crossref_primary_10_1016_j_neuroimage_2021_118607
crossref_primary_10_1162_netn_a_00102
crossref_primary_10_1016_j_neuroimage_2021_118615
crossref_primary_10_1088_1741_2552_ac5150
crossref_primary_10_1002_hbm_24718
crossref_primary_10_1162_jocn_a_00899
crossref_primary_10_1016_j_neuroimage_2020_117489
crossref_primary_10_3389_fnagi_2018_00362
crossref_primary_10_1002_hbm_24954
crossref_primary_10_3389_fpsyt_2020_00422
crossref_primary_10_1111_1365_2435_13237
crossref_primary_10_1002_hipo_23042
crossref_primary_10_1016_j_plrev_2017_11_003
crossref_primary_10_1002_hbm_24950
crossref_primary_10_1007_s11682_014_9306_z
crossref_primary_10_1088_1741_2552_abc760
crossref_primary_10_1002_cplx_21407
crossref_primary_10_1016_j_neuroimage_2019_03_055
crossref_primary_10_1002_jmri_25429
crossref_primary_10_1016_j_neuroimage_2018_09_005
crossref_primary_10_1016_j_neuron_2012_03_038
crossref_primary_10_3389_fpsyt_2021_701420
crossref_primary_10_1109_ACCESS_2020_3036751
crossref_primary_10_1093_cercor_bhv272
crossref_primary_10_1016_j_neuroimage_2016_05_078
crossref_primary_10_1162_netn_a_00169
crossref_primary_10_1007_s00429_023_02711_1
crossref_primary_10_1162_netn_a_00168
crossref_primary_10_1016_j_bandc_2014_02_008
crossref_primary_10_1016_j_bspc_2020_102099
crossref_primary_10_3390_s22218283
crossref_primary_10_1109_JPROC_2018_2798928
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_1109_TNSRE_2022_3140888
crossref_primary_10_1016_j_neuroscience_2013_06_021
crossref_primary_10_1086_687857
crossref_primary_10_1016_j_euroneuro_2014_02_011
crossref_primary_10_1016_j_jneumeth_2018_07_010
crossref_primary_10_1016_j_jpsychires_2024_11_038
crossref_primary_10_3389_fncom_2018_00021
crossref_primary_10_1016_j_neuroimage_2019_03_080
crossref_primary_10_1038_srep41414
crossref_primary_10_1109_JBHI_2021_3119940
crossref_primary_10_3390_brainsci11101348
crossref_primary_10_1080_17588928_2019_1683525
crossref_primary_10_1371_journal_pcbi_1007360
crossref_primary_10_1016_j_neuroimage_2018_08_033
crossref_primary_10_1016_j_physa_2019_01_082
crossref_primary_10_1016_j_bpsc_2022_09_003
crossref_primary_10_1016_j_tics_2017_03_002
crossref_primary_10_1038_srep30770
crossref_primary_10_1162_netn_a_00149
crossref_primary_10_1111_ejn_13478
crossref_primary_10_1038_s41380_020_00983_1
crossref_primary_10_3389_fnhum_2017_00443
crossref_primary_10_1371_journal_pone_0074935
crossref_primary_10_1007_s11063_017_9718_z
crossref_primary_10_1038_ncomms16048
crossref_primary_10_1016_j_cortex_2020_06_011
crossref_primary_10_7554_eLife_32696
crossref_primary_10_1016_j_neuroimage_2018_08_021
crossref_primary_10_1007_s00429_021_02249_0
crossref_primary_10_1093_cercor_bhad298
crossref_primary_10_1016_j_brainres_2017_07_018
crossref_primary_10_1016_j_heares_2015_11_015
crossref_primary_10_1088_2632_072X_ac3ddd
crossref_primary_10_1162_netn_a_00378
crossref_primary_10_1523_JNEUROSCI_2135_15_2015
crossref_primary_10_1103_PhysRevE_85_026103
crossref_primary_10_1162_netn_a_00139
crossref_primary_10_1162_netn_a_00374
crossref_primary_10_1371_journal_pone_0106636
crossref_primary_10_1371_journal_pone_0228334
crossref_primary_10_1088_1741_2552_ab882d
crossref_primary_10_3389_fnhum_2019_00430
crossref_primary_10_1093_bfgp_els023
crossref_primary_10_1146_annurev_statistics_040522_020722
crossref_primary_10_1016_j_pnpbp_2019_03_004
crossref_primary_10_1093_cercor_bhac375
crossref_primary_10_1002_hbm_26164
crossref_primary_10_1080_23273798_2022_2129084
crossref_primary_10_1007_s12021_025_09718_5
crossref_primary_10_1177_1545968312461718
crossref_primary_10_3390_ani14071082
crossref_primary_10_1111_epi_17325
crossref_primary_10_1371_journal_pcbi_1006487
crossref_primary_10_1093_joc_jqab044
crossref_primary_10_1093_cercor_bhac378
crossref_primary_10_1186_s13195_023_01368_6
crossref_primary_10_1177_2372732216656869
crossref_primary_10_3389_fnhum_2015_00255
crossref_primary_10_1002_hbm_26158
crossref_primary_10_1016_j_sciaf_2018_e00019
crossref_primary_10_1016_j_celrep_2021_108871
crossref_primary_10_1073_pnas_1400181111
crossref_primary_10_1007_s10548_015_0451_5
crossref_primary_10_1038_nn_3428
crossref_primary_10_1002_hbm_26150
crossref_primary_10_1093_psyrad_kkab011
crossref_primary_10_1063_1_4996980
crossref_primary_10_3389_fpsyg_2019_02769
crossref_primary_10_1371_journal_pone_0039731
crossref_primary_10_1162_jocn_a_00965
crossref_primary_10_1007_s11571_022_09894_z
crossref_primary_10_1016_j_neuroimage_2021_118369
crossref_primary_10_1016_j_bspc_2018_12_008
crossref_primary_10_1103_PhysRevLett_116_228301
crossref_primary_10_1371_journal_pcbi_1006234
crossref_primary_10_3389_fnhum_2021_740225
crossref_primary_10_1162_netn_a_00193
crossref_primary_10_1073_pnas_1616130114
crossref_primary_10_1111_adb_12285
crossref_primary_10_1093_cercor_bhab059
crossref_primary_10_1093_cercor_bhad242
crossref_primary_10_1111_nyas_13338
crossref_primary_10_1016_j_neuroimage_2013_07_019
crossref_primary_10_1007_s10548_014_0406_2
crossref_primary_10_1371_journal_pone_0083653
crossref_primary_10_1017_nws_2013_19
crossref_primary_10_1016_j_tics_2013_12_006
crossref_primary_10_1088_1367_2630_ac066d
crossref_primary_10_1038_s41467_017_02658_y
crossref_primary_10_1017_nws_2021_3
crossref_primary_10_1016_j_ynirp_2021_100022
crossref_primary_10_1371_journal_pcbi_1005178
crossref_primary_10_3390_brainsci10120969
crossref_primary_10_1109_TPAMI_2017_2750160
crossref_primary_10_1109_JPROC_2016_2637349
crossref_primary_10_3174_ajnr_A4947
crossref_primary_10_1016_j_jvcir_2016_03_023
crossref_primary_10_1016_j_neuroimage_2018_07_019
crossref_primary_10_1007_s00429_013_0634_3
crossref_primary_10_1063_5_0039333
crossref_primary_10_1016_j_nicl_2022_103055
crossref_primary_10_1016_j_neuroimage_2021_118588
crossref_primary_10_1016_j_cortex_2022_08_010
crossref_primary_10_1038_nn_3690
crossref_primary_10_1093_scan_nsy007
crossref_primary_10_1007_s00429_015_1083_y
crossref_primary_10_1016_j_plrev_2014_06_006
crossref_primary_10_1017_S095679251600022X
crossref_primary_10_1109_TIM_2023_3271740
crossref_primary_10_1038_s41467_024_52744_1
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_3389_fncom_2023_1290089
crossref_primary_10_1016_j_neuroimage_2022_119125
crossref_primary_10_1002_hbm_25035
crossref_primary_10_1016_j_nicl_2021_102702
crossref_primary_10_1038_s41598_024_58123_6
crossref_primary_10_1016_j_neuron_2017_11_007
crossref_primary_10_1098_rstb_2013_0525
crossref_primary_10_1371_journal_pcbi_1003171
crossref_primary_10_1016_j_jneumeth_2018_10_011
crossref_primary_10_1016_j_neuroimage_2013_05_079
crossref_primary_10_1016_j_tics_2017_01_010
crossref_primary_10_1162_jocn_a_00911
crossref_primary_10_1007_s11682_024_00907_5
crossref_primary_10_1016_j_biopsych_2012_03_026
crossref_primary_10_1016_j_cobeha_2017_09_005
crossref_primary_10_1051_jbio_2023020
crossref_primary_10_1016_j_physa_2024_129906
crossref_primary_10_1089_brain_2023_0024
crossref_primary_10_1103_PhysRevE_88_032807
crossref_primary_10_1016_j_plrev_2018_10_001
crossref_primary_10_1038_srep34291
crossref_primary_10_1016_j_pnpbp_2021_110426
crossref_primary_10_1002_hbm_25017
crossref_primary_10_1038_s41598_021_83425_4
crossref_primary_10_1016_j_nicl_2018_11_014
crossref_primary_10_1103_PhysRevE_109_064309
crossref_primary_10_1016_j_bandl_2016_12_006
crossref_primary_10_1016_j_neuroimage_2025_121027
crossref_primary_10_1038_s41598_017_03394_5
crossref_primary_10_14232_edulingua_2021_1_1
crossref_primary_10_1523_JNEUROSCI_1766_23_2024
crossref_primary_10_1093_comnet_cnv027
crossref_primary_10_1016_j_neuroimage_2025_121021
crossref_primary_10_1002_jnr_24555
crossref_primary_10_1073_pnas_1502829112
crossref_primary_10_1007_s00429_019_01867_z
crossref_primary_10_1002_jnr_24316
crossref_primary_10_1016_j_nicl_2023_103387
crossref_primary_10_1007_s00248_022_02108_3
crossref_primary_10_1162_NECO_a_00936
crossref_primary_10_1016_j_plrev_2014_03_005
crossref_primary_10_1214_18_AOS1800
crossref_primary_10_1016_j_neuroimage_2022_119131
crossref_primary_10_1371_journal_pone_0072351
crossref_primary_10_3389_fnins_2024_1402039
crossref_primary_10_1063_1_4978997
crossref_primary_10_1371_journal_pcbi_1006207
crossref_primary_10_1371_journal_pcbi_1004029
crossref_primary_10_1002_hbm_24193
crossref_primary_10_1089_brain_2023_0048
crossref_primary_10_1103_RevModPhys_94_031002
crossref_primary_10_3389_fnins_2022_889725
crossref_primary_10_1016_j_crhy_2018_09_005
crossref_primary_10_1038_nn_4502
crossref_primary_10_1002_hbm_24192
crossref_primary_10_1098_rstb_2013_0520
crossref_primary_10_1098_rstb_2013_0521
crossref_primary_10_1016_j_neuroimage_2012_11_020
crossref_primary_10_3390_app132111627
crossref_primary_10_1162_imag_a_00234
crossref_primary_10_1016_j_physa_2016_05_063
crossref_primary_10_1016_j_jad_2022_09_069
crossref_primary_10_7554_eLife_52443
crossref_primary_10_1002_hbm_25235
crossref_primary_10_1016_j_neuroimage_2022_119323
crossref_primary_10_1016_j_neuroimage_2012_12_066
crossref_primary_10_17537_2024_19_609
crossref_primary_10_1016_j_bbr_2016_07_029
crossref_primary_10_1016_j_jneumeth_2017_01_010
crossref_primary_10_1093_cercor_bhae391
crossref_primary_10_1038_s41598_021_81884_3
crossref_primary_10_1038_srep36255
crossref_primary_10_1126_science_1238411
crossref_primary_10_1016_j_jad_2015_11_041
crossref_primary_10_1016_j_neuroimage_2020_116974
crossref_primary_10_1146_annurev_psych_122414_033634
crossref_primary_10_1038_s41398_019_0616_1
crossref_primary_10_1155_np_9932927
crossref_primary_10_3389_fnhum_2017_00420
crossref_primary_10_1038_s41467_023_39941_0
crossref_primary_10_1089_brain_2020_0866
crossref_primary_10_1088_1741_2552_aad8c7
crossref_primary_10_3389_fnhum_2017_00423
crossref_primary_10_1038_s42003_022_03196_0
crossref_primary_10_1038_s41598_020_72013_7
crossref_primary_10_1002_hbm_23285
crossref_primary_10_1002_hbm_24374
crossref_primary_10_1002_hbm_25462
crossref_primary_10_1016_j_neuroimage_2012_12_073
crossref_primary_10_1016_j_neuroimage_2016_01_028
crossref_primary_10_1002_hbm_25467
crossref_primary_10_1002_hbm_24376
crossref_primary_10_1088_1741_2552_ab9064
crossref_primary_10_1016_j_nlm_2017_07_015
crossref_primary_10_1016_j_neuroimage_2025_121094
crossref_primary_10_1007_s12038_018_9813_y
crossref_primary_10_1109_TNSE_2018_2871726
crossref_primary_10_3389_fncel_2022_977769
crossref_primary_10_1016_j_bbr_2021_113685
crossref_primary_10_1002_hbm_70024
crossref_primary_10_1038_srep09710
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_3109_17483107_2016_1139633
crossref_primary_10_1142_S0129065720500070
crossref_primary_10_1016_j_chaos_2020_110484
crossref_primary_10_1016_j_nicl_2021_102726
crossref_primary_10_1016_j_neunet_2020_08_003
crossref_primary_10_1080_14737175_2019_1601558
crossref_primary_10_3389_fphy_2019_00115
crossref_primary_10_1063_1_4962129
crossref_primary_10_1371_journal_pone_0143133
crossref_primary_10_1016_j_neuroimage_2013_05_019
crossref_primary_10_1103_PhysRevX_7_031056
crossref_primary_10_1002_hbm_25009
crossref_primary_10_1016_j_neuroimage_2018_06_057
crossref_primary_10_1016_j_chaos_2024_114568
crossref_primary_10_1016_j_celrep_2024_114348
crossref_primary_10_1016_j_plrev_2014_05_010
crossref_primary_10_1016_j_neuroimage_2016_01_005
crossref_primary_10_1103_PhysRevResearch_2_023100
crossref_primary_10_1126_sciadv_adm8430
crossref_primary_10_1371_journal_pone_0050122
crossref_primary_10_1007_s11571_022_09848_5
crossref_primary_10_1080_23273798_2016_1227858
crossref_primary_10_1002_hbm_26575
crossref_primary_10_1038_s42003_021_01700_6
crossref_primary_10_1093_scan_nsaa069
crossref_primary_10_3390_brainsci8060107
crossref_primary_10_3389_fnins_2019_01348
crossref_primary_10_1007_s12652_020_02031_w
crossref_primary_10_1038_s41398_019_0560_0
crossref_primary_10_1038_s41583_024_00846_6
crossref_primary_10_1016_j_plrev_2019_04_009
crossref_primary_10_3758_s13415_019_00753_9
crossref_primary_10_1016_j_neuroimage_2017_10_048
crossref_primary_10_1038_srep46088
crossref_primary_10_1016_j_dr_2021_100964
crossref_primary_10_1073_pnas_1604898113
crossref_primary_10_1002_hbm_25313
crossref_primary_10_1007_s41109_022_00510_x
crossref_primary_10_1016_j_laa_2022_08_022
crossref_primary_10_1038_s41531_022_00279_x
crossref_primary_10_1007_s11682_020_00388_2
crossref_primary_10_3389_fnins_2019_00542
crossref_primary_10_1016_j_ijchp_2023_100401
crossref_primary_10_1007_s11571_022_09868_1
crossref_primary_10_3389_feduc_2024_1369394
crossref_primary_10_1016_j_ecosta_2022_10_005
crossref_primary_10_1002_hbm_24459
crossref_primary_10_1523_JNEUROSCI_3038_13_2014
crossref_primary_10_1002_hbm_25303
crossref_primary_10_1002_hbm_25545
crossref_primary_10_1371_journal_pbio_1002570
crossref_primary_10_1038_nrn3963
crossref_primary_10_1002_hbm_23121
crossref_primary_10_1371_journal_pcbi_1003796
crossref_primary_10_1073_pnas_1302855110
crossref_primary_10_3390_brainsci12020218
crossref_primary_10_1142_S0129065717500514
crossref_primary_10_1016_j_jneumeth_2018_12_012
crossref_primary_10_1002_hbm_24206
crossref_primary_10_1073_pnas_1715766115
crossref_primary_10_3389_fnhum_2014_00195
crossref_primary_10_1007_s00429_023_02708_w
crossref_primary_10_1002_hbm_24241
crossref_primary_10_3758_s13428_019_01217_1
crossref_primary_10_1002_art_42013
crossref_primary_10_1016_j_neuroimage_2012_08_061
crossref_primary_10_1038_s41598_023_48219_w
crossref_primary_10_3389_fnana_2015_00097
crossref_primary_10_1093_gigascience_gix004
crossref_primary_10_1371_journal_pone_0066761
crossref_primary_10_1089_brain_2013_0205
crossref_primary_10_1162_jocn_a_01260
crossref_primary_10_1038_ncomms13217
crossref_primary_10_1371_journal_pcbi_1003591
crossref_primary_10_1016_j_jad_2017_11_026
crossref_primary_10_1162_jocn_a_01026
crossref_primary_10_1007_s11336_023_09908_7
crossref_primary_10_1016_j_bbr_2016_11_021
crossref_primary_10_1007_s11357_024_01324_8
crossref_primary_10_1016_j_neuroimage_2018_12_008
crossref_primary_10_1038_s42003_022_03362_4
crossref_primary_10_1038_s41467_021_22199_9
crossref_primary_10_1016_j_neuroimage_2013_04_087
crossref_primary_10_1016_j_nicl_2012_09_011
crossref_primary_10_1016_j_neuron_2015_09_027
crossref_primary_10_1017_S0033291722002665
crossref_primary_10_1088_1741_2552_ace47c
crossref_primary_10_7554_eLife_74463
crossref_primary_10_1111_psyp_14630
crossref_primary_10_1002_aur_2020
crossref_primary_10_1038_s41380_022_01706_4
crossref_primary_10_1038_s41539_024_00216_y
crossref_primary_10_1162_jocn_a_01037
crossref_primary_10_1016_j_neubiorev_2018_03_001
crossref_primary_10_1016_j_neuron_2024_05_008
crossref_primary_10_1523_JNEUROSCI_4892_14_2015
crossref_primary_10_3934_Neuroscience_2021028
crossref_primary_10_1038_s41467_024_55188_9
crossref_primary_10_1016_j_neuroimage_2012_08_056
crossref_primary_10_1007_s13246_023_01273_0
crossref_primary_10_1371_journal_pone_0166787
crossref_primary_10_1089_brain_2022_0074
crossref_primary_10_1177_1073858416667720
crossref_primary_10_1103_PhysRevResearch_3_L032045
crossref_primary_10_1109_JPROC_2017_2786710
crossref_primary_10_1007_s00429_013_0619_2
crossref_primary_10_1002_hbm_22235
crossref_primary_10_1038_s41598_020_71692_6
crossref_primary_10_1016_j_ifacol_2023_10_618
crossref_primary_10_1016_j_neunet_2018_07_005
crossref_primary_10_1523_JNEUROSCI_1672_16_2016
crossref_primary_10_3389_frobt_2020_00090
crossref_primary_10_1017_S0140525X15001673
crossref_primary_10_1177_1073858414537560
crossref_primary_10_3389_fnsys_2021_688424
crossref_primary_10_1371_journal_pcbi_1004608
crossref_primary_10_1016_j_jbi_2013_09_005
crossref_primary_10_1093_braincomms_fcaf083
crossref_primary_10_1093_cercor_bhs352
crossref_primary_10_1016_j_neubiorev_2023_105193
crossref_primary_10_1016_j_nicl_2018_06_010
crossref_primary_10_1016_j_nicl_2020_102299
crossref_primary_10_1016_j_neuroimage_2015_07_053
crossref_primary_10_1016_j_neuroimage_2020_116687
crossref_primary_10_1007_s00429_019_02004_6
crossref_primary_10_1137_110855715
crossref_primary_10_3233_JAD_180342
crossref_primary_10_3389_fnins_2019_00747
crossref_primary_10_1016_j_cortex_2016_10_020
crossref_primary_10_1073_pnas_2002645117
crossref_primary_10_1155_2017_7190758
crossref_primary_10_1016_j_neuroimage_2012_06_002
crossref_primary_10_1371_journal_pone_0132518
crossref_primary_10_1080_00222895_2021_1930993
crossref_primary_10_1103_PhysRevE_110_064305
crossref_primary_10_1523_JNEUROSCI_0451_17_2017
crossref_primary_10_1098_rsif_2015_0883
crossref_primary_10_1007_s00500_017_2496_8
crossref_primary_10_1080_08982112_2021_1974033
crossref_primary_10_3389_fpain_2023_1156108
crossref_primary_10_1016_j_neuroimage_2015_12_001
crossref_primary_10_1002_hbm_23355
crossref_primary_10_1088_2632_072X_abb4c6
crossref_primary_10_1016_j_tics_2011_03_006
crossref_primary_10_1152_jn_00028_2014
crossref_primary_10_1109_TMI_2019_2904555
crossref_primary_10_1007_s00429_024_02847_8
crossref_primary_10_3390_biology12101323
crossref_primary_10_1016_j_neuroimage_2020_117522
crossref_primary_10_1016_j_psyneuen_2020_104710
crossref_primary_10_1016_j_brainres_2024_149418
crossref_primary_10_3389_fnagi_2023_1266423
crossref_primary_10_1109_TBME_2018_2854676
crossref_primary_10_1016_j_ibneur_2021_12_007
crossref_primary_10_3390_biology11060896
crossref_primary_10_1186_s13195_024_01619_0
crossref_primary_10_1016_j_neuropsychologia_2017_09_020
crossref_primary_10_1007_s12021_012_9157_y
crossref_primary_10_1016_j_conb_2016_01_012
crossref_primary_10_1016_j_nicl_2024_103655
crossref_primary_10_1038_s41398_021_01335_5
crossref_primary_10_1016_j_isci_2022_104673
crossref_primary_10_1088_1741_2552_ab79f5
crossref_primary_10_1016_j_neuroimage_2016_10_026
crossref_primary_10_1016_j_neuroimage_2013_10_046
crossref_primary_10_1063_5_0087291
crossref_primary_10_1371_journal_pone_0131209
crossref_primary_10_3389_fphys_2020_611125
crossref_primary_10_1016_j_neuroimage_2022_119052
crossref_primary_10_1038_s41598_019_39180_8
crossref_primary_10_1093_cercor_bhac331
crossref_primary_10_3389_fncir_2019_00036
crossref_primary_10_1186_s12868_022_00707_x
crossref_primary_10_1371_journal_pone_0104021
crossref_primary_10_1073_pnas_1814785115
crossref_primary_10_1016_j_celrep_2019_10_072
crossref_primary_10_1016_j_plrev_2024_12_013
crossref_primary_10_1016_j_neuroimage_2017_07_005
crossref_primary_10_1093_brain_awy042
crossref_primary_10_1016_j_tics_2016_06_003
crossref_primary_10_1016_j_neuroimage_2021_118310
crossref_primary_10_1016_j_neuroimage_2017_08_044
crossref_primary_10_1088_1741_2552_aaac36
crossref_primary_10_3390_brainsci12010016
crossref_primary_10_1016_j_pscychresns_2018_08_006
crossref_primary_10_1093_cercor_bhab010
crossref_primary_10_1371_journal_pone_0267456
crossref_primary_10_1109_TMI_2020_3030047
crossref_primary_10_1093_cercor_bhy010
crossref_primary_10_1073_pnas_1803839115
crossref_primary_10_1038_nmeth_2485
crossref_primary_10_1002_hbm_23518
crossref_primary_10_1016_j_physbeh_2020_112962
crossref_primary_10_1073_pnas_2022288118
crossref_primary_10_1002_hbm_24602
crossref_primary_10_1007_s11571_022_09899_8
crossref_primary_10_1093_cercor_bhad436
crossref_primary_10_1002_hbm_23516
crossref_primary_10_3390_brainsci11020192
crossref_primary_10_1137_23M1553790
crossref_primary_10_1212_WNL_0000000000002358
crossref_primary_10_1016_j_neucom_2022_11_035
crossref_primary_10_1089_brain_2014_0253
crossref_primary_10_3390_s21051733
crossref_primary_10_1093_cercor_bhab263
crossref_primary_10_1093_cercor_bhac353
crossref_primary_10_1016_j_psychres_2024_116351
crossref_primary_10_1371_journal_pone_0138297
crossref_primary_10_1016_j_jneuroling_2015_04_005
crossref_primary_10_1073_pnas_1207523109
crossref_primary_10_3389_fnins_2018_00506
crossref_primary_10_1016_j_cortex_2023_09_020
crossref_primary_10_1016_j_neurobiolaging_2018_05_016
crossref_primary_10_1371_journal_pbio_3002489
crossref_primary_10_1016_j_eneco_2021_105801
crossref_primary_10_1038_srep42117
crossref_primary_10_1038_s41467_018_04723_6
crossref_primary_10_1152_jn_00619_2018
crossref_primary_10_1038_s41598_019_40345_8
crossref_primary_10_29121_granthaalayah_v8_i7_2020_677
crossref_primary_10_1002_hbm_25967
crossref_primary_10_1093_cercor_bhad445
crossref_primary_10_1162_netn_a_00419
crossref_primary_10_3389_fnagi_2021_681043
crossref_primary_10_1016_j_humov_2018_06_014
crossref_primary_10_1016_j_physa_2019_122058
crossref_primary_10_1038_s41598_017_00425_z
crossref_primary_10_1002_hbm_24872
crossref_primary_10_1038_s42003_021_01872_1
crossref_primary_10_1016_j_neurobiolaging_2013_07_003
crossref_primary_10_1007_s11682_019_00189_2
crossref_primary_10_1016_j_neuropsychologia_2022_108164
crossref_primary_10_1073_pnas_2201074119
crossref_primary_10_1016_j_tins_2021_01_007
crossref_primary_10_1093_cercor_bhy032
crossref_primary_10_3389_fphys_2018_00909
crossref_primary_10_3389_fnsys_2021_624183
crossref_primary_10_1016_j_jad_2021_01_088
crossref_primary_10_1038_s41598_024_65648_3
crossref_primary_10_1016_j_tins_2020_06_005
crossref_primary_10_3389_fnagi_2017_00203
crossref_primary_10_1016_j_neuroimage_2020_117156
crossref_primary_10_1007_s10827_016_0608_6
crossref_primary_10_1038_s41598_021_92170_7
crossref_primary_10_1371_journal_pone_0246709
crossref_primary_10_1016_j_neuroimage_2021_118784
crossref_primary_10_1016_j_neuroimage_2020_117155
crossref_primary_10_1016_j_cortex_2017_08_014
crossref_primary_10_1016_j_neuroimage_2015_04_052
crossref_primary_10_1093_cercor_bhaa350
crossref_primary_10_1016_j_neuroimage_2017_08_006
crossref_primary_10_1038_s41598_023_33008_2
crossref_primary_10_3389_fninf_2017_00028
crossref_primary_10_1038_s41467_020_15442_2
crossref_primary_10_1093_cercor_bhz150
crossref_primary_10_1002_sim_6757
crossref_primary_10_1038_s41598_022_12158_9
crossref_primary_10_1038_s42005_021_00695_0
crossref_primary_10_1016_j_physa_2020_125233
crossref_primary_10_3389_fnins_2020_627062
crossref_primary_10_1212_WNL_0000000000001476
crossref_primary_10_1109_TNSE_2019_2936865
crossref_primary_10_1364_BOE_6_002337
crossref_primary_10_1038_s41467_020_15631_z
crossref_primary_10_1162_netn_a_00238
crossref_primary_10_1016_j_pneurobio_2021_102180
crossref_primary_10_1038_s41598_017_08565_y
crossref_primary_10_1016_j_celrep_2020_108658
crossref_primary_10_1155_2018_4326097
crossref_primary_10_1002_hbm_23717
crossref_primary_10_1016_j_neuroimage_2015_05_025
crossref_primary_10_1073_pnas_1422487112
crossref_primary_10_1098_rspb_2020_2127
crossref_primary_10_1002_hbm_23710
crossref_primary_10_1002_hbm_22861
crossref_primary_10_1093_brain_awx145
crossref_primary_10_1093_cercor_bhab458
crossref_primary_10_1093_cercor_bhaa128
crossref_primary_10_1007_s11701_023_01722_8
crossref_primary_10_1016_j_pscychresns_2018_09_006
crossref_primary_10_1017_S0033291720002391
crossref_primary_10_1007_s10548_013_0276_z
crossref_primary_10_1093_cercor_bhab462
crossref_primary_10_1162_NETN_a_00028
crossref_primary_10_1515_RNS_2011_039
crossref_primary_10_3390_brainsci13050731
crossref_primary_10_1016_j_celrep_2022_111394
crossref_primary_10_1016_j_neuroimage_2018_01_037
crossref_primary_10_1162_netn_a_00225
crossref_primary_10_1371_journal_pone_0115131
crossref_primary_10_1162_netn_a_00227
crossref_primary_10_1093_comnet_cnz023
crossref_primary_10_1152_physrev_00033_2019
crossref_primary_10_3390_brainsci11091137
crossref_primary_10_1162_netn_a_00223
crossref_primary_10_3389_fnsys_2015_00044
crossref_primary_10_1016_j_jpsychires_2023_12_018
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_1016_j_neuropsychologia_2021_108066
crossref_primary_10_1016_j_physrep_2012_03_001
crossref_primary_10_1002_wics_1467
crossref_primary_10_1002_hbm_23500
crossref_primary_10_1162_NETN_a_00020
crossref_primary_10_1038_s41598_022_08767_z
crossref_primary_10_1093_braincomms_fcad035
crossref_primary_10_1016_j_tins_2016_01_001
crossref_primary_10_1016_j_neuroimage_2018_01_048
crossref_primary_10_1162_NETN_a_00011
crossref_primary_10_1371_journal_pone_0187715
crossref_primary_10_1063_5_0057276
crossref_primary_10_1038_s41598_022_12123_6
crossref_primary_10_7554_eLife_55241
crossref_primary_10_31083_j_jin2310182
crossref_primary_10_1162_netn_a_00216
crossref_primary_10_1086_701037
crossref_primary_10_1016_j_bpsc_2017_03_017
crossref_primary_10_1016_j_neuroimage_2015_05_042
crossref_primary_10_1016_j_physrep_2019_12_004
crossref_primary_10_1038_s41598_020_63552_0
crossref_primary_10_1016_j_neuroscience_2023_08_020
crossref_primary_10_1016_j_jad_2021_01_047
crossref_primary_10_2139_ssrn_4153708
crossref_primary_10_1162_NETN_a_00010
crossref_primary_10_1038_srep43250
crossref_primary_10_1002_hbm_22404
crossref_primary_10_1098_rstb_2019_0323
crossref_primary_10_1103_PhysRevE_91_012821
crossref_primary_10_1007_s41109_019_0132_5
crossref_primary_10_1038_s42003_021_02497_0
crossref_primary_10_1007_s41109_019_0178_4
crossref_primary_10_1162_NETN_a_00001
crossref_primary_10_1103_PhysRevE_89_032811
crossref_primary_10_1177_0963721418773362
crossref_primary_10_1103_PhysRevE_89_032810
crossref_primary_10_1162_NETN_a_00002
crossref_primary_10_3389_fnins_2016_00146
crossref_primary_10_3389_fpsyg_2019_00894
crossref_primary_10_1162_neco_a_01219
crossref_primary_10_1162_netn_a_00045
crossref_primary_10_1162_netn_a_00047
crossref_primary_10_1162_netn_a_00289
crossref_primary_10_1016_j_nlm_2025_108037
crossref_primary_10_1088_1361_6633_ace6bc
crossref_primary_10_1016_j_nic_2017_06_009
crossref_primary_10_1093_cercor_bhw238
crossref_primary_10_1038_s41598_022_24368_2
crossref_primary_10_1080_01621459_2017_1388244
crossref_primary_10_1016_j_tics_2015_06_005
crossref_primary_10_1007_s00221_021_06039_2
crossref_primary_10_1016_j_neuroimage_2019_116233
crossref_primary_10_1371_journal_pone_0184344
crossref_primary_10_1371_journal_pone_0218201
crossref_primary_10_1038_srep07845
crossref_primary_10_1016_j_neuroimage_2017_06_029
crossref_primary_10_1162_netn_a_00037
crossref_primary_10_1162_neco_a_01205
crossref_primary_10_1016_j_nicl_2022_103108
crossref_primary_10_1007_s11571_022_09907_x
crossref_primary_10_1016_j_neuroimage_2018_01_064
crossref_primary_10_1063_1_4937451
crossref_primary_10_1162_netn_a_00033
crossref_primary_10_3233_JIN_170058
crossref_primary_10_1098_rstb_2019_0502
crossref_primary_10_7554_eLife_68531
crossref_primary_10_1162_netn_a_00270
crossref_primary_10_1016_j_neuroimage_2021_118288
crossref_primary_10_1371_journal_pone_0197419
crossref_primary_10_1016_j_neuropsychologia_2014_06_030
crossref_primary_10_1017_S0033291721003895
crossref_primary_10_7554_eLife_83604
crossref_primary_10_1007_s00332_017_9436_8
crossref_primary_10_1016_j_sleep_2023_10_035
crossref_primary_10_1016_j_neuron_2018_03_035
crossref_primary_10_1111_ejn_13112
crossref_primary_10_1016_j_neuroimage_2016_11_006
crossref_primary_10_1073_pnas_1608819113
crossref_primary_10_1162_imag_a_00184
crossref_primary_10_1007_s11065_014_9248_7
crossref_primary_10_1038_s41467_020_16285_7
crossref_primary_10_1007_s00429_013_0581_z
crossref_primary_10_1088_1367_2630_abe504
crossref_primary_10_1088_1741_2552_ad33b1
crossref_primary_10_1016_j_nbd_2021_105401
crossref_primary_10_1016_j_plrev_2019_11_004
crossref_primary_10_1093_comnet_cny005
crossref_primary_10_1162_netn_a_00259
crossref_primary_10_1017_S0956792512000186
crossref_primary_10_1089_brain_2018_0630
crossref_primary_10_7498_aps_66_188901
crossref_primary_10_1016_j_bbr_2023_114828
crossref_primary_10_1162_netn_a_00255
crossref_primary_10_1098_rsif_2021_0850
crossref_primary_10_1016_j_neuroimage_2021_118027
crossref_primary_10_1016_j_tics_2023_08_009
crossref_primary_10_1093_cercor_bhac010
crossref_primary_10_1016_j_nicl_2020_102507
crossref_primary_10_1109_ACCESS_2019_2945059
crossref_primary_10_1016_j_jagp_2020_03_011
crossref_primary_10_1016_j_nicl_2020_102500
crossref_primary_10_3389_fnhum_2014_00954
crossref_primary_10_1162_netn_a_00089
crossref_primary_10_1016_j_neuroimage_2016_12_061
crossref_primary_10_1162_netn_a_00087
crossref_primary_10_1186_s40535_017_0035_4
crossref_primary_10_1371_journal_pone_0121085
crossref_primary_10_1515_revneuro_2016_0051
crossref_primary_10_1038_s41514_023_00119_z
crossref_primary_10_1038_s41467_022_34267_9
crossref_primary_10_1088_1741_2552_abffe6
crossref_primary_10_1016_j_bandl_2021_105047
crossref_primary_10_1016_j_dcn_2020_100855
crossref_primary_10_1093_cercor_bhaa085
crossref_primary_10_1016_j_scib_2024_02_035
crossref_primary_10_1093_cercor_bhab175
crossref_primary_10_1016_j_neuroimage_2020_117091
crossref_primary_10_1016_j_neuron_2014_10_015
crossref_primary_10_1017_S0140525X14000120
crossref_primary_10_1093_cercor_bhw279
crossref_primary_10_3389_fendo_2022_1117735
crossref_primary_10_1093_imaiai_iay010
crossref_primary_10_1002_wcs_1275
crossref_primary_10_1038_s41562_024_02017_0
crossref_primary_10_1162_netn_a_00079
crossref_primary_10_1016_j_pnpbp_2020_109866
crossref_primary_10_1162_netn_a_00071
crossref_primary_10_1063_5_0168783
crossref_primary_10_1093_cercor_bhae204
crossref_primary_10_1016_j_dcn_2020_100862
crossref_primary_10_1103_PhysRevE_97_052304
crossref_primary_10_1126_sciadv_abq3851
crossref_primary_10_3389_fnins_2016_00326
crossref_primary_10_1073_pnas_1216402109
crossref_primary_10_1016_j_ijchp_2025_100547
crossref_primary_10_1007_s00464_024_11049_6
crossref_primary_10_1016_j_tics_2017_10_001
crossref_primary_10_1002_hbm_22937
crossref_primary_10_1016_j_neuroimage_2018_10_079
crossref_primary_10_1162_jocn_a_00810
crossref_primary_10_3389_fnhum_2017_00366
crossref_primary_10_1162_netn_a_00060
crossref_primary_10_3389_fnins_2018_00790
crossref_primary_10_1016_j_nicl_2018_02_027
crossref_primary_10_1155_2012_452503
crossref_primary_10_1002_brb3_954
crossref_primary_10_1109_TSP_2013_2259825
crossref_primary_10_3174_ajnr_A3738
crossref_primary_10_1016_j_neuroimage_2011_10_002
crossref_primary_10_1016_j_neuroimage_2015_03_055
crossref_primary_10_1007_s00429_021_02304_w
crossref_primary_10_1016_j_neuroimage_2015_03_057
crossref_primary_10_1146_annurev_bioeng_071516_044511
crossref_primary_10_1016_j_cobeha_2019_04_008
crossref_primary_10_1016_j_nbd_2023_106055
crossref_primary_10_3389_fnbeh_2023_1123534
crossref_primary_10_31887_DCNS_2018_20_2_osporns
crossref_primary_10_1016_j_neuroimage_2022_119618
crossref_primary_10_1162_netn_a_00058
crossref_primary_10_1016_j_neures_2019_03_004
crossref_primary_10_1016_j_neuroimage_2021_118224
crossref_primary_10_1017_S1366728915000280
crossref_primary_10_3389_fneur_2020_606592
crossref_primary_10_1073_pnas_1507168112
crossref_primary_10_1142_S1793351X24300073
crossref_primary_10_1016_j_bbr_2016_12_017
crossref_primary_10_1007_s11571_023_09988_2
crossref_primary_10_1016_j_physrep_2021_10_006
crossref_primary_10_1007_s10548_019_00719_7
crossref_primary_10_1038_s41398_024_02929_5
crossref_primary_10_1016_j_neuroimage_2012_03_067
crossref_primary_10_1016_j_neuroimage_2019_07_003
crossref_primary_10_1016_j_neuroimage_2016_09_001
crossref_primary_10_1063_1_4790830
crossref_primary_10_1016_j_bpsc_2021_05_003
crossref_primary_10_1038_s41467_019_10317_7
crossref_primary_10_1038_s41559_017_0101
crossref_primary_10_1016_j_neuroimage_2020_117504
crossref_primary_10_1038_s41593_019_0400_9
crossref_primary_10_1016_j_plrev_2024_04_012
crossref_primary_10_1162_imag_a_00366
crossref_primary_10_1038_s41398_024_03067_8
crossref_primary_10_1038_srep06130
crossref_primary_10_1089_brain_2017_0536
crossref_primary_10_1016_j_neubiorev_2017_03_018
crossref_primary_10_1089_brain_2011_0055
crossref_primary_10_1371_journal_pone_0157243
crossref_primary_10_1007_s00464_023_10409_y
crossref_primary_10_1073_pnas_1415122111
crossref_primary_10_1002_hbm_26477
crossref_primary_10_1080_10803548_2022_2035966
crossref_primary_10_1016_j_compbiomed_2024_108712
crossref_primary_10_1016_j_neuroimage_2017_05_067
crossref_primary_10_1093_comnet_cnw004
crossref_primary_10_3389_fnins_2014_00138
crossref_primary_10_1016_j_neuroimage_2017_05_065
crossref_primary_10_1214_13_SS103
crossref_primary_10_1109_MSP_2012_2233865
crossref_primary_10_1038_nn_3993
crossref_primary_10_1523_JNEUROSCI_2322_23_2024
crossref_primary_10_1109_TNSE_2017_2753963
crossref_primary_10_1016_j_nicl_2022_103190
crossref_primary_10_1162_imag_a_00133
crossref_primary_10_3390_brainsci9120380
crossref_primary_10_1038_nrn3214
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_1103_PhysRevE_88_054702
crossref_primary_10_1038_s41598_020_75396_9
crossref_primary_10_1038_s41593_020_0653_3
crossref_primary_10_1103_PhysRevE_108_014901
crossref_primary_10_1523_JNEUROSCI_2084_17_2018
crossref_primary_10_1523_JNEUROSCI_1476_16_2016
crossref_primary_10_1073_pnas_1700811114
crossref_primary_10_1371_journal_pone_0111007
crossref_primary_10_3389_fneur_2019_01265
crossref_primary_10_1007_s11682_019_00226_0
crossref_primary_10_1016_j_neubiorev_2014_05_009
crossref_primary_10_1016_j_neuroimage_2013_12_008
crossref_primary_10_1124_pharmrev_121_000508
crossref_primary_10_7717_peerj_15721
crossref_primary_10_1089_brain_2017_0543
crossref_primary_10_1007_s12264_022_00982_y
crossref_primary_10_1016_j_neuroimage_2017_05_048
crossref_primary_10_3389_fnins_2024_1305284
crossref_primary_10_1016_j_nicl_2018_03_016
crossref_primary_10_1093_comnet_cnu044
crossref_primary_10_1002_hbm_25161
crossref_primary_10_1016_j_neuroimage_2017_06_081
crossref_primary_10_1093_texcom_tgac024
crossref_primary_10_1002_aelm_201700046
crossref_primary_10_3390_brainsci12040477
crossref_primary_10_1016_j_neuroimage_2017_04_015
crossref_primary_10_1016_j_pnpbp_2018_12_006
crossref_primary_10_1162_netn_a_00090
crossref_primary_10_1016_j_neuron_2016_10_004
crossref_primary_10_3390_brainsci13030429
crossref_primary_10_1016_j_jneumeth_2017_08_007
crossref_primary_10_3389_fnins_2019_00583
crossref_primary_10_1093_comnet_cnu038
crossref_primary_10_1038_s41598_017_09896_6
crossref_primary_10_3389_fnins_2019_00585
crossref_primary_10_1016_j_neuroimage_2020_116603
crossref_primary_10_1016_j_nicl_2021_102861
crossref_primary_10_1016_j_tics_2024_03_004
crossref_primary_10_3390_bioengineering11090882
crossref_primary_10_1016_j_neuroimage_2022_119209
crossref_primary_10_1016_j_neuroimage_2014_07_033
crossref_primary_10_1016_j_neuroimage_2018_11_028
crossref_primary_10_1371_journal_pcbi_1003491
crossref_primary_10_1109_JSTSP_2016_2594949
crossref_primary_10_1016_j_neuroimage_2020_116854
crossref_primary_10_1103_PhysRevE_97_042314
crossref_primary_10_1007_s00453_019_00665_7
crossref_primary_10_1002_hbm_25589
crossref_primary_10_3389_fneur_2019_01242
crossref_primary_10_1038_s41467_021_25481_y
crossref_primary_10_1088_1741_2552_aad7b1
crossref_primary_10_1371_journal_pone_0071163
crossref_primary_10_1016_j_neuroimage_2022_119672
crossref_primary_10_1016_j_neuroimage_2022_119673
crossref_primary_10_1080_26941899_2023_2260431
crossref_primary_10_1177_00187208241285513
crossref_primary_10_1089_brain_2013_0157
crossref_primary_10_1371_journal_pcbi_1007834
crossref_primary_10_1038_s41467_023_41024_z
crossref_primary_10_1002_hbm_25580
crossref_primary_10_1016_j_psychres_2024_115774
crossref_primary_10_1007_s42113_020_00080_0
crossref_primary_10_1051_medsci_20173306014
crossref_primary_10_1103_PhysRevE_94_032908
crossref_primary_10_3389_fnhum_2017_00552
crossref_primary_10_1016_j_neuroimage_2012_04_051
crossref_primary_10_3389_fnhum_2020_571733
crossref_primary_10_1007_s41109_016_0007_y
crossref_primary_10_1016_j_biopsych_2024_03_012
crossref_primary_10_3389_fnins_2014_00187
crossref_primary_10_1038_s42003_024_06210_9
crossref_primary_10_1109_TNSE_2022_3148168
crossref_primary_10_1523_ENEURO_0200_19_2019
crossref_primary_10_3389_fnhum_2016_00314
crossref_primary_10_1016_j_nicl_2021_102844
crossref_primary_10_31083_j_jin2106170
crossref_primary_10_1016_j_tics_2013_04_010
crossref_primary_10_1016_j_neuropsychologia_2019_01_021
crossref_primary_10_1038_nrn_2017_149
crossref_primary_10_3389_fpsyg_2021_696507
crossref_primary_10_1371_journal_pcbi_1002187
crossref_primary_10_1063_1_4858457
crossref_primary_10_1016_j_ijpsycho_2019_01_002
crossref_primary_10_1214_14_AOAS760
crossref_primary_10_1016_j_pharmthera_2013_01_016
crossref_primary_10_1007_s10816_020_09502_6
crossref_primary_10_1038_srep07622
crossref_primary_10_1016_j_neuroimage_2022_119455
crossref_primary_10_3390_math12030455
crossref_primary_10_1016_j_exger_2024_112527
crossref_primary_10_1038_ncomms9414
crossref_primary_10_1080_19312458_2020_1860206
crossref_primary_10_3390_brainsci14090935
crossref_primary_10_1111_psyp_13464
crossref_primary_10_1093_schbul_sbad022
crossref_primary_10_3390_axioms11090464
crossref_primary_10_1109_TNSRE_2018_2838075
crossref_primary_10_1016_j_neuroimage_2017_04_051
Cites_doi 10.1073/pnas.0901831106
10.1016/j.neuroimage.2007.02.041
10.1103/PhysRevE.77.036104
10.1097/WCO.0b013e32832d93dd
10.1007/s00221-006-0538-z
10.1109/TKDE.2007.190689
10.1038/nrn2258
10.1073/pnas.95.15.8420
10.1073/pnas.0606005103
10.1016/j.humov.2010.02.006
10.1016/j.tics.2010.01.008
10.1038/nature09108
10.1016/S0079-6123(07)00017-9
10.1016/j.neuroimage.2010.09.006
10.1038/nrn2575
10.1038/sj.hdy.6800915
10.1088/1742-5468/2008/10/P10008
10.1155/NP.2001.131
10.1006/nimg.2001.1037
10.1038/nature05670
10.1177/1073858406293182
10.1126/science.1184819
10.1126/science.283.5407.1538
10.1073/pnas.0503610102
10.1016/j.conb.2005.03.004
10.1038/nn.2412
10.1523/JNEUROSCI.5894-08.2010
10.3389/fnins.2010.00200
10.1103/PhysRevE.81.046106
10.1038/nature08389
10.1016/j.humov.2009.07.001
10.7551/mitpress/4737.001.0001
10.1007/s00429-009-0208-6
10.1016/j.conb.2005.10.009
10.1371/journal.pcbi.1000106
10.1007/s004220050435
10.3389/neuro.11.037.2009
10.1016/S0166-2236(96)10081-3
10.1016/j.tig.2010.06.002
10.1152/jn.00405.2006
10.1146/annurev-clinpsy-040510-143934
10.1007/s00221-003-1799-4
10.1016/j.neuron.2009.06.025
10.1111/j.1558-5646.1996.tb02339.x
10.1016/j.neuroimage.2008.09.062
10.1371/journal.pcbi.1000748
10.1016/j.cub.2009.12.040
10.1097/01.wco.0000200544.29915.cc
10.1126/science.1065103
10.1016/j.physrep.2009.11.002
10.1007/BF02691333
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 3, 2011
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 3, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1018985108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
Virology and AIDS Abstracts


CrossRef
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
Statistics
EISSN 1091-6490
EndPage 7646
ExternalDocumentID PMC3088578
2341967111
21502525
10_1073_pnas_1018985108
108_18_7641
41242234
US201600192529
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS44393
– fundername: NINDS NIH HHS
  grantid: P01 NS044393
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c580t-95a3d74c7c7eac6b5bb9ccdc4d6db140d8e39463c5d2cd94610799ac5bcea5c53
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:22:39 EDT 2025
Fri Jul 11 06:19:10 EDT 2025
Fri Jul 11 15:39:55 EDT 2025
Thu Jul 10 23:22:17 EDT 2025
Mon Jun 30 08:21:15 EDT 2025
Thu Apr 03 07:05:34 EDT 2025
Tue Jul 01 00:47:09 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Wed Nov 11 00:29:33 EST 2020
Thu May 29 08:40:54 EDT 2025
Thu Apr 03 09:41:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c580t-95a3d74c7c7eac6b5bb9ccdc4d6db140d8e39463c5d2cd94610799ac5bcea5c53
Notes http://dx.doi.org/10.1073/pnas.1018985108
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: D.S.B., N.F.W., M.A.P., P.J.M., and S.T.G. designed research; D.S.B. and N.F.W. performed research; D.S.B., N.F.W., M.A.P., P.J.M., J.M.C., and S.T.G. contributed new reagents/analytic tools; D.S.B. and P.J.M. wrote the code; D.S.B. analyzed data; and D.S.B., N.F.W., and M.A.P. wrote the paper.
Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved March 15, 2011 (received for review December 16, 2010)
PMID 21502525
PQID 865567149
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_108_18_7641
crossref_primary_10_1073_pnas_1018985108
proquest_miscellaneous_1817810444
pubmed_primary_21502525
jstor_primary_41242234
proquest_journals_865567149
proquest_miscellaneous_1017958792
crossref_citationtrail_10_1073_pnas_1018985108
proquest_miscellaneous_864964787
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3088578
fao_agris_US201600192529
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-03
PublicationDateYYYYMMDD 2011-05-03
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Werner G (e_1_3_3_14_2) 2010; 1
e_1_3_3_50_2
Simon HA (e_1_3_3_7_2) 1962; 106
Porter MA (e_1_3_3_30_2) 2009; 56
Lippí S (e_1_3_3_53_2) 2009; 3
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_37_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Schlosser G (e_1_3_3_12_2) 2004
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_52_2
  doi: 10.1073/pnas.0901831106
– ident: e_1_3_3_39_2
  doi: 10.1016/j.neuroimage.2007.02.041
– ident: e_1_3_3_41_2
  doi: 10.1103/PhysRevE.77.036104
– ident: e_1_3_3_22_2
  doi: 10.1097/WCO.0b013e32832d93dd
– ident: e_1_3_3_45_2
  doi: 10.1007/s00221-006-0538-z
– ident: e_1_3_3_55_2
  doi: 10.1109/TKDE.2007.190689
– ident: e_1_3_3_49_2
  doi: 10.1038/nrn2258
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.95.15.8420
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0606005103
– ident: e_1_3_3_44_2
  doi: 10.1016/j.humov.2010.02.006
– ident: e_1_3_3_40_2
  doi: 10.1016/j.tics.2010.01.008
– ident: e_1_3_3_20_2
  doi: 10.1038/nature09108
– ident: e_1_3_3_2_2
  doi: 10.1016/S0079-6123(07)00017-9
– ident: e_1_3_3_28_2
  doi: 10.1016/j.neuroimage.2010.09.006
– ident: e_1_3_3_24_2
  doi: 10.1038/nrn2575
– volume: 3
  start-page: 48
  year: 2009
  ident: e_1_3_3_53_2
  article-title: Differential maturation of brain signal complexity in the human auditory and visual system
  publication-title: Front Hum Neurosci
– ident: e_1_3_3_9_2
  doi: 10.1038/sj.hdy.6800915
– ident: e_1_3_3_32_2
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: e_1_3_3_48_2
  doi: 10.1155/NP.2001.131
– ident: e_1_3_3_54_2
  doi: 10.1006/nimg.2001.1037
– ident: e_1_3_3_34_2
  doi: 10.1038/nature05670
– ident: e_1_3_3_23_2
  doi: 10.1177/1073858406293182
– ident: e_1_3_3_25_2
  doi: 10.1126/science.1184819
– ident: e_1_3_3_4_2
  doi: 10.1126/science.283.5407.1538
– volume: 56
  start-page: 1164
  year: 2009
  ident: e_1_3_3_30_2
  article-title: Communities in networks
  publication-title: Not Am Math Soc
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0503610102
– ident: e_1_3_3_18_2
  doi: 10.1016/j.conb.2005.03.004
– ident: e_1_3_3_43_2
  doi: 10.1038/nn.2412
– volume: 1
  start-page: 1
  year: 2010
  ident: e_1_3_3_14_2
  article-title: Fractals in the nervous system: Conceptual implications for theoretical neuroscience
  publication-title: Front Physiol
– ident: e_1_3_3_6_2
  doi: 10.1523/JNEUROSCI.5894-08.2010
– ident: e_1_3_3_13_2
  doi: 10.3389/fnins.2010.00200
– ident: e_1_3_3_56_2
  doi: 10.1103/PhysRevE.81.046106
– ident: e_1_3_3_3_2
  doi: 10.1038/nature08389
– ident: e_1_3_3_19_2
  doi: 10.1016/j.humov.2009.07.001
– ident: e_1_3_3_38_2
  doi: 10.7551/mitpress/4737.001.0001
– ident: e_1_3_3_37_2
  doi: 10.1007/s00429-009-0208-6
– ident: e_1_3_3_17_2
  doi: 10.1016/j.conb.2005.10.009
– ident: e_1_3_3_50_2
  doi: 10.1371/journal.pcbi.1000106
– ident: e_1_3_3_15_2
  doi: 10.1007/s004220050435
– ident: e_1_3_3_36_2
  doi: 10.3389/neuro.11.037.2009
– ident: e_1_3_3_1_2
  doi: 10.1016/S0166-2236(96)10081-3
– ident: e_1_3_3_29_2
  doi: 10.1016/j.tig.2010.06.002
– ident: e_1_3_3_5_2
  doi: 10.1152/jn.00405.2006
– ident: e_1_3_3_21_2
  doi: 10.1146/annurev-clinpsy-040510-143934
– ident: e_1_3_3_16_2
  doi: 10.1007/s00221-003-1799-4
– ident: e_1_3_3_46_2
  doi: 10.1016/j.neuron.2009.06.025
– ident: e_1_3_3_11_2
  doi: 10.1111/j.1558-5646.1996.tb02339.x
– ident: e_1_3_3_35_2
  doi: 10.1016/j.neuroimage.2008.09.062
– ident: e_1_3_3_27_2
  doi: 10.1371/journal.pcbi.1000748
– ident: e_1_3_3_42_2
  doi: 10.1016/j.cub.2009.12.040
– volume-title: Modularity in Development and Evolution
  year: 2004
  ident: e_1_3_3_12_2
– ident: e_1_3_3_47_2
  doi: 10.1097/01.wco.0000200544.29915.cc
– volume: 106
  start-page: 467
  year: 1962
  ident: e_1_3_3_7_2
  article-title: The architecture of complexity
  publication-title: Proc Amer Philos Soc
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1065103
– ident: e_1_3_3_31_2
  doi: 10.1016/j.physrep.2009.11.002
– ident: e_1_3_3_51_2
  doi: 10.1007/BF02691333
SSID ssj0009580
Score 2.5897589
Snippet Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7641
SubjectTerms Adaptability
Adaptation, Physiological - physiology
Adult
Architecture
Behavior
Biological Sciences
Brain
Brain - anatomy & histology
Brain - physiology
Community structure
Connectivity
Development
Evolution
Female
Human subjects
Humans
Learning
Learning - physiology
Learning modules
Magnetic Resonance Imaging
Male
Models, Neurological
Modular structures
Modularity
Motor ability
Motor skill learning
Nerve Net - anatomy & histology
Nerve Net - physiology
Neural networks
Neuronal Plasticity - physiology
neurophysiology
Nodes
Physical Sciences
Psychomotor Performance - physiology
Statistics
Time windows
Title Dynamic reconfiguration of human brain networks during learning
URI https://www.jstor.org/stable/41242234
http://www.pnas.org/content/108/18/7641.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21502525
https://www.proquest.com/docview/865567149
https://www.proquest.com/docview/1017958792
https://www.proquest.com/docview/1817810444
https://www.proquest.com/docview/864964787
https://pubmed.ncbi.nlm.nih.gov/PMC3088578
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYGKAg8TBUZTSJHdtPqOJDFdKqSazS3qLYScokSNHSPsCfwF_Nne18Ve0EvERt4riu75fznXP3O0JeS6HiMguTQMkIHRRNgyxRWI-YlYoiIUiI2cgX82S2oJ-v2fVo9LsXtbRZq3P9a2deyf9IFc6BXDFL9h8k23YKJ-AzyBeOIGE4_pWMP9hy8mPj1ZY3y81tZwCazXmFBSDGlQ31rpucRFcpYtk3TC_bhaxuwgbmzT7htMs6caqgHgfjy3mvhjGY4C7g1-asY4Riq-9_fle1Qx160nUXTYxxrBYzFxmWQpx28tf2TZSJH3bvrvJut5UFk7iL3bhjoH2tHMFKSW0udauVJ6IPP9FTsjyxXFluwYavyc7FALQXVjCushr3KIQE49J1OmTYXnyJkGcPjV0WyQNyLwKXwwSJzvoEzsKmM7mxNjRRPH679QsDC-egzFZNqCvy50LTXb7Mdkhuz8a5ekgeOOfEn1qkHZFRUT0iR81U-meOo_zNY_LOQc_fgp6_Kn0DPd9Az2-g51vo-Q30npDFp49X72eBq8URaPjj60CyLM451VxzWKoTxZSSWueaYkEycNJzUcSSJrFmeaRziSz-XMpMM6WLjGkWH5PDalUVJ8QvGNVUlHnJNd6IHoSiCcsmJfgGE1l45LyZv1Q7onqsl_ItNQETPE5xFtNuwj1y1t7ww3K07G96AgJJsyWsoOlQ7h45NlJqu8C67GA8U7jH9NJ1LdJQpIhCj5w2okydXqhTTPVOeEihx1ftVVDa-CYuq4rVxgyIA6C4jO5oI0IuQqRz9Ii_p41IKGaSC-6RpxY_7SjBlAd3JmIe4QNktQ2QV354pbr5avjlY7A8YCF_tn-uTsn97ml_Tg7Xt5viBRjna_XSPDV_ABPI4YM
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+reconfiguration+of+human+brain+networks+during+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bassett%2C+Danielle+S&rft.au=Wymbs%2C+Nicholas+F&rft.au=Porter%2C+Mason+A&rft.au=Mucha%2C+Peter+J&rft.date=2011-05-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=108&rft.issue=18&rft.spage=7641&rft.epage=7646&rft_id=info:doi/10.1073%2Fpnas.1018985108&rft.externalDocID=US201600192529
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F18.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F18.cover.gif