Meta-analyses in psychology often overestimate evidence for and size of effects

Adjusting for publication bias is essential when drawing meta-analytic inferences. However, most methods that adjust for publication bias do not perform well across a range of research conditions, such as the degree of heterogeneity in effect sizes across studies. Sladekova . 2022 (Estimating the ch...

Full description

Saved in:
Bibliographic Details
Published inRoyal Society open science Vol. 10; no. 7; p. 230224
Main Authors Bartoš, František, Maier, Maximilian, Shanks, David R, Stanley, T D, Sladekova, Martina, Wagenmakers, Eric-Jan
Format Journal Article
LanguageEnglish
Published England The Royal Society 05.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adjusting for publication bias is essential when drawing meta-analytic inferences. However, most methods that adjust for publication bias do not perform well across a range of research conditions, such as the degree of heterogeneity in effect sizes across studies. Sladekova . 2022 (Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods. ) tried to circumvent this complication by selecting the methods that are most appropriate for a given set of conditions, and concluded that publication bias on average causes only minimal over-estimation of effect sizes in psychology. However, this approach suffers from a 'Catch-22' problem-to know the underlying research conditions, one needs to have adjusted for publication bias correctly, but to correctly adjust for publication bias, one needs to know the underlying research conditions. To alleviate this problem, we conduct an alternative analysis, robust Bayesian meta-analysis (RoBMA), which is not based on but on . In RoBMA, models that predict the observed results better are given correspondingly larger weights. A RoBMA reanalysis of Sladekova .'s dataset reveals that more than 60% of meta-analyses in psychology notably overestimate the evidence for the presence of the meta-analytic effect and more than 50% overestimate its magnitude.
AbstractList Adjusting for publication bias is essential when drawing meta-analytic inferences. However, most methods that adjust for publication bias do not perform well across a range of research conditions, such as the degree of heterogeneity in effect sizes across studies. Sladekova et al . 2022 (Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods. Psychol. Methods ) tried to circumvent this complication by selecting the methods that are most appropriate for a given set of conditions, and concluded that publication bias on average causes only minimal over-estimation of effect sizes in psychology. However, this approach suffers from a ‘Catch-22’ problem—to know the underlying research conditions, one needs to have adjusted for publication bias correctly, but to correctly adjust for publication bias, one needs to know the underlying research conditions. To alleviate this problem, we conduct an alternative analysis, robust Bayesian meta-analysis (RoBMA), which is not based on model-selection but on model-averaging . In RoBMA, models that predict the observed results better are given correspondingly larger weights. A RoBMA reanalysis of Sladekova et al .’s dataset reveals that more than 60% of meta-analyses in psychology notably overestimate the evidence for the presence of the meta-analytic effect and more than 50% overestimate its magnitude.
Adjusting for publication bias is essential when drawing meta-analytic inferences. However, most methods that adjust for publication bias do not perform well across a range of research conditions, such as the degree of heterogeneity in effect sizes across studies. Sladekova et al . 2022 (Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods. Psychol. Methods ) tried to circumvent this complication by selecting the methods that are most appropriate for a given set of conditions, and concluded that publication bias on average causes only minimal over-estimation of effect sizes in psychology. However, this approach suffers from a ‘Catch-22’ problem—to know the underlying research conditions, one needs to have adjusted for publication bias correctly, but to correctly adjust for publication bias, one needs to know the underlying research conditions. To alleviate this problem, we conduct an alternative analysis, robust Bayesian meta-analysis (RoBMA), which is not based on model-selection but on model-averaging . In RoBMA, models that predict the observed results better are given correspondingly larger weights. A RoBMA reanalysis of Sladekova et al .’s dataset reveals that more than 60% of meta-analyses in psychology notably overestimate the evidence for the presence of the meta-analytic effect and more than 50% overestimate its magnitude.
Adjusting for publication bias is essential when drawing meta-analytic inferences. However, most methods that adjust for publication bias do not perform well across a range of research conditions, such as the degree of heterogeneity in effect sizes across studies. Sladekova . 2022 (Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods. ) tried to circumvent this complication by selecting the methods that are most appropriate for a given set of conditions, and concluded that publication bias on average causes only minimal over-estimation of effect sizes in psychology. However, this approach suffers from a 'Catch-22' problem-to know the underlying research conditions, one needs to have adjusted for publication bias correctly, but to correctly adjust for publication bias, one needs to know the underlying research conditions. To alleviate this problem, we conduct an alternative analysis, robust Bayesian meta-analysis (RoBMA), which is not based on but on . In RoBMA, models that predict the observed results better are given correspondingly larger weights. A RoBMA reanalysis of Sladekova .'s dataset reveals that more than 60% of meta-analyses in psychology notably overestimate the evidence for the presence of the meta-analytic effect and more than 50% overestimate its magnitude.
Author Shanks, David R
Stanley, T D
Wagenmakers, Eric-Jan
Bartoš, František
Maier, Maximilian
Sladekova, Martina
Author_xml – sequence: 1
  givenname: František
  orcidid: 0000-0002-0018-5573
  surname: Bartoš
  fullname: Bartoš, František
  organization: Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
– sequence: 2
  givenname: Maximilian
  orcidid: 0000-0002-9873-6096
  surname: Maier
  fullname: Maier, Maximilian
  organization: Department of Experimental Psychology, University College London, London, UK
– sequence: 3
  givenname: David R
  orcidid: 0000-0002-4600-6323
  surname: Shanks
  fullname: Shanks, David R
  organization: Department of Experimental Psychology, University College London, London, UK
– sequence: 4
  givenname: T D
  surname: Stanley
  fullname: Stanley, T D
  organization: Department of Economics, School of Business, Deakin University, Burwood, Australia
– sequence: 5
  givenname: Martina
  orcidid: 0000-0001-5059-6576
  surname: Sladekova
  fullname: Sladekova, Martina
  organization: School of Psychology, University of Sussex, Brighton, UK
– sequence: 6
  givenname: Eric-Jan
  orcidid: 0000-0003-1596-1034
  surname: Wagenmakers
  fullname: Wagenmakers, Eric-Jan
  organization: Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37416830$$D View this record in MEDLINE/PubMed
BookMark eNpVkc9LXDEQx0OxVKueei85FuTZ_HzJnkoRbQWLl3oO85LJ-uRtsk3eLmz_-kbXip4yTD58MpnvR3KQckJCPnF2ztnCfi0113MhmRDqHTkSTKtOGyYPXtWH5LTWB8YY10ya3nwgh9Io3lvJjsjtL5yhgwTTrmKlY6LruvP3ecrLHc1xxkTzFgvWeVzBjBS3Y8DkkcZcKKRA6_gXG0gxRvRzPSHvI0wVT5_PY3J3dfn74md3c_vj-uL7Tee1ZXNneul1CDIIq4UJJkRtvbILJtUAgzWWGxCKaxg0IAD2C2MFVwZ11JJrIY_J9d4bMjy4dWnTlZ3LMLqnRi5LB2Ue_YQuyrAQCrgdeqOsAhhMtJEx4FK3dmiub3vXejOsMHhMc4HpjfTtTRrv3TJvHWdSMKl1M3x5NpT8Z9OW5VZj9ThNkDBvqhNWtm9qJnhDz_aoL7nWgvHlHc7cY6TuMVK3j7TRn1-P9sL-D1D-A5-Inrw
CitedBy_id crossref_primary_10_1016_j_jml_2024_104532
crossref_primary_10_1002_jrsm_1711
crossref_primary_10_15626_MP_2023_3987
crossref_primary_10_1038_s41562_024_01858_z
crossref_primary_10_1080_10463283_2024_2334563
Cites_doi 10.1007/BF02294384
10.1177/0963721416643289
10.1002/sim.9170
10.1371/journal.pone.0215052
10.1080/10586458.2016.1256006
10.1037/met0000405
10.1080/23743603.2017.1326760
10.1214/ss/1009212519
10.2466/pr0.1964.15.2.570
10.1037/met0000197
10.1177/2515245918810225
10.1002/cl2.1256
10.1177/2515245919847196
10.1177/2515245919898657
10.1002/sim.7228
10.1002/jrsm.1512
10.1002/jrsm.1298
10.1002/jrsm.1352
10.3389/fpsyg.2014.00781
10.31234/osf.io/pbrdk
10.1080/00031305.2018.1562983
10.1016/j.cortex.2015.03.022
10.1002/9780470743386
10.1371/journal.pone.0262809
10.1016/j.cortex.2012.12.016
10.1016/S0167-9473(97)00039-X
10.1002/jrsm.1594
10.5334/jopd.33
10.1002/jrsm.1467
10.1038/s41562-019-0787-z
10.1017/CBO9781139087759
10.3758/BF03194105
10.32614/CRAN.package.RoBMA
10.1037/met0000470
ContentType Journal Article
Copyright 2023 The Authors.
2023 The Authors. 2023
Copyright_xml – notice: 2023 The Authors.
– notice: 2023 The Authors. 2023
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1098/rsos.230224
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Meta-analyses in psychology often overestimate evidence for and size of effects
EISSN 2054-5703
EndPage 230224
ExternalDocumentID oai_doaj_org_article_f3d924a18b67484aab7f8f00a1354a1d
10_1098_rsos_230224
37416830
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 016.Vici.170.083
GroupedDBID 53G
5VS
7X2
88I
AAFWJ
ABJCF
ABUWG
ADBBV
ADRAZ
AFKRA
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
AZQEC
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
HYE
ICLEN
KB.
KQ8
M0K
M2P
M48
M7P
M7S
M~E
NPM
OK1
OP1
PATMY
PCBAR
PDBOC
PGMZT
PIMPY
PTHSS
PYCSY
RPM
V1E
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c580t-763c5dd3d28527d7df58c489034bab87817a2415ab5aeaae69782147e5f531523
IEDL.DBID RPM
ISSN 2054-5703
IngestDate Tue Oct 22 15:15:46 EDT 2024
Tue Sep 17 21:30:24 EDT 2024
Fri Aug 16 13:33:48 EDT 2024
Fri Dec 06 07:00:51 EST 2024
Sat Nov 02 12:30:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords model-selection
meta-analysis
publication bias
model-averaging
Bayesian inference
RoBMA
Language English
License 2023 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-763c5dd3d28527d7df58c489034bab87817a2415ab5aeaae69782147e5f531523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Both authors contributed equally to this study.
ORCID 0000-0002-9873-6096
0000-0002-0018-5573
0000-0002-4600-6323
0000-0001-5059-6576
0000-0003-1596-1034
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320355/
PMID 37416830
PQID 2835275021
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f3d924a18b67484aab7f8f00a1354a1d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320355
proquest_miscellaneous_2835275021
crossref_primary_10_1098_rsos_230224
pubmed_primary_37416830
PublicationCentury 2000
PublicationDate 2023-07-05
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Royal Society open science
PublicationTitleAlternate R Soc Open Sci
PublicationYear 2023
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_31_2
e_1_3_6_32_2
e_1_3_6_10_2
Heller J (e_1_3_6_6_2) 1961
Jeffreys H (e_1_3_6_20_2) 1973
Stanley TD (e_1_3_6_27_2) 2017; 36
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_38_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
Gronau QF (e_1_3_6_35_2) 2021; 4
e_1_3_6_16_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_41_2
e_1_3_6_43_2
e_1_3_6_21_2
e_1_3_6_42_2
Jeffreys H (e_1_3_6_19_2) 1961
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
Spiegelhalter DJ (e_1_3_6_40_2) 2004
e_1_3_6_7_2
Maier M (e_1_3_6_25_2) 2022; 18
e_1_3_6_26_2
e_1_3_6_28_2
e_1_3_6_29_2
Bartoš F (e_1_3_6_13_2) 2022; 5
e_1_3_6_22_2
e_1_3_6_23_2
e_1_3_6_24_2
References_xml – volume: 4
  start-page: 1
  year: 2021
  ident: e_1_3_6_35_2
  article-title: A primer on Bayesian model-averaged meta-analysis
  publication-title: Adv. Methods Pract. Psychol. Sci.
  contributor:
    fullname: Gronau QF
– ident: e_1_3_6_3_2
  doi: 10.1007/BF02294384
– ident: e_1_3_6_21_2
  doi: 10.1177/0963721416643289
– volume-title: Scientific inference
  year: 1973
  ident: e_1_3_6_20_2
  contributor:
    fullname: Jeffreys H
– ident: e_1_3_6_33_2
  doi: 10.1002/sim.9170
– ident: e_1_3_6_38_2
  doi: 10.1371/journal.pone.0215052
– ident: e_1_3_6_23_2
  doi: 10.1080/10586458.2016.1256006
– ident: e_1_3_6_14_2
  doi: 10.1037/met0000405
– ident: e_1_3_6_32_2
  doi: 10.1080/23743603.2017.1326760
– ident: e_1_3_6_39_2
– ident: e_1_3_6_11_2
  doi: 10.1214/ss/1009212519
– ident: e_1_3_6_2_2
  doi: 10.2466/pr0.1964.15.2.570
– ident: e_1_3_6_7_2
  doi: 10.1037/met0000197
– volume-title: Theory of probability
  year: 1961
  ident: e_1_3_6_19_2
  contributor:
    fullname: Jeffreys H
– volume: 5
  start-page: 1
  year: 2022
  ident: e_1_3_6_13_2
  article-title: Adjusting for publication bias in JASP and R: selection models, PET-PEESE, and robust Bayesian meta-analysis
  publication-title: Adv. Methods Pract. Psychol. Sci.
  contributor:
    fullname: Bartoš F
– ident: e_1_3_6_43_2
  doi: 10.1177/2515245918810225
– volume-title: Catch-22
  year: 1961
  ident: e_1_3_6_6_2
  contributor:
    fullname: Heller J
– volume: 18
  start-page: e1256
  year: 2022
  ident: e_1_3_6_25_2
  article-title: Using selection models to assess sensitivity to publication bias: a tutorial and call for more routine use
  publication-title: Campbell Syst. Rev.
  doi: 10.1002/cl2.1256
  contributor:
    fullname: Maier M
– ident: e_1_3_6_5_2
  doi: 10.1177/2515245919847196
– ident: e_1_3_6_36_2
– ident: e_1_3_6_10_2
  doi: 10.1177/2515245919898657
– volume: 36
  start-page: 1580
  year: 2017
  ident: e_1_3_6_27_2
  article-title: Finding the power to reduce publication bias
  publication-title: Stat. Med.
  doi: 10.1002/sim.7228
  contributor:
    fullname: Stanley TD
– ident: e_1_3_6_9_2
  doi: 10.1002/jrsm.1512
– ident: e_1_3_6_29_2
  doi: 10.1002/jrsm.1298
– ident: e_1_3_6_30_2
  doi: 10.1002/jrsm.1352
– ident: e_1_3_6_41_2
  doi: 10.3389/fpsyg.2014.00781
– ident: e_1_3_6_18_2
  doi: 10.31234/osf.io/pbrdk
– ident: e_1_3_6_42_2
  doi: 10.1080/00031305.2018.1562983
– ident: e_1_3_6_16_2
  doi: 10.1016/j.cortex.2015.03.022
– ident: e_1_3_6_4_2
  doi: 10.1002/9780470743386
– ident: e_1_3_6_8_2
  doi: 10.1371/journal.pone.0262809
– ident: e_1_3_6_17_2
  doi: 10.1016/j.cortex.2012.12.016
– ident: e_1_3_6_26_2
  doi: 10.1016/S0167-9473(97)00039-X
– volume-title: Bayesian approaches to clinical trials and health-care evaluation
  year: 2004
  ident: e_1_3_6_40_2
  contributor:
    fullname: Spiegelhalter DJ
– ident: e_1_3_6_12_2
  doi: 10.1002/jrsm.1594
– ident: e_1_3_6_24_2
  doi: 10.5334/jopd.33
– ident: e_1_3_6_28_2
  doi: 10.1002/jrsm.1467
– ident: e_1_3_6_15_2
  doi: 10.1038/s41562-019-0787-z
– ident: e_1_3_6_34_2
  doi: 10.1017/CBO9781139087759
– ident: e_1_3_6_22_2
  doi: 10.3758/BF03194105
– ident: e_1_3_6_37_2
  doi: 10.32614/CRAN.package.RoBMA
– ident: e_1_3_6_31_2
  doi: 10.1037/met0000470
SSID ssj0001503767
Score 2.3465333
Snippet Adjusting for publication bias is essential when drawing meta-analytic inferences. However, most methods that adjust for publication bias do not perform well...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 230224
SubjectTerms Bayesian inference
meta-analysis
model-averaging
model-selection
Psychology and Cognitive Neuroscience
publication bias
RoBMA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYtYn-uLCD3oYWl2k-ymRxVLEaoXC70tSTPBXrbFtgf99c7sbksrgheveZAwk0y-ITPfMNbOg-yCUjpOsuDQQdEydjKkMbECQBa6ViaUjTx4yfpD9TzSo41SXxQTVtMD14LrBOnRRbCJcVQWQ1nr8mCCEDaRGpt9ZX1FuuFM1fnBgmhKmoQ80TUdhK9zinpOU7X1BFVM_b_By59RkhvPTu-A7Td4kd_X-2yxHSgPWau5kXN-29BG3x2x1wEsbGwrkhHsmZR8tjJunxyNLZScwjWJVQNRKnBo6olyhK3clp7PJ1-AA3kT4nHMhr2nt8d-3JRLiMfaiEWMlmKsvZc-NTrNfe6DNmNlukIqZ53JTZJbeq-t0xashQwdSKpSBDrgRUSH9ITtltMSzhh3bozzFWpKgZIgDBUoznMIRmYeJ0SsvZJgMatZMYr6N9sUJOiiFnTEHki66yFEZV01oIKLRsHFXwqO2M1KNwUeffrPsCVMl7gIoUdEPGkSsdNaV-ulJCFNI0XEzJYWt_ay3VNO3it6baIYFAjDzv9j9xdsjwrUVwG--pLtLj6WcIUwZuGuqxP7Dfqu8Yo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xuPSCoNASHpWRONBD2iS2E-8BoRaBENLCpStxi-z1GFaqsnR3kYBfz0ziRV3EiavtkaOZjOcbefwNwGEVZA-V0mleBkcJipapk6FImRUAy9CzMufXyP2r8mKgLm_0zRLMm3FGBU7fTe24n9Rg8vfH47-nE3L4444MyfwkZDrlgmaKRsuwWlBI5NqufsT53XPhjFlL4vu8NzILEakl7n8Pbb4tmvwvCp2vw1qEj-JXZ-8NWMLmM2xEB52Ko8gi_X0Trvs4s6ltOUdoZtSI-_lZ9yTo7MVGcPUmk2wQaEWBsb2oIBQrbOPFdPSMtFDEio8tGJyf_Tm9SGP3hHSoTTZL6eAYau-lL4wuKl_5oM1QmV4mlbPOVCavLIdv67RFa7GkfJKbFqEO5JeUn36BlWbc4DYI54Ykr8hwCpXEzHC_4qrCYGTpSSCBw7kG6_uOJKPuLrdNzYquO0Un8Ju1-7qEma3bgfHkto6OUgfpKSW0uXHcBkVZ66pgQpbZXGoa9gkczG1Tkyfw9YZtcPxAmzCYJABU5Al87Wz1upVk4GlkloBZsOLCtyzONKO7lm2bGQczQmU7HxfdhU_cpb6t8tV7sDKbPOA-YZmZ-9b-py-TifdU
  priority: 102
  providerName: Scholars Portal
Title Meta-analyses in psychology often overestimate evidence for and size of effects
URI https://www.ncbi.nlm.nih.gov/pubmed/37416830
https://search.proquest.com/docview/2835275021
https://pubmed.ncbi.nlm.nih.gov/PMC10320355
https://doaj.org/article/f3d924a18b67484aab7f8f00a1354a1d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0Bp15QKQUCFBmJQ3sI68R24j1SVISQtnAoErfIju12peJdscsBfj0zToLYqicuPvhDtmZszxt5_AbgpA5i7KVUeVEFiw6KErkVocyJFcBXYWxEQb-RJz-ry1t5dafu1qAa_sKkoP3WTk_j3_vTOP2TYivn9-1oiBMb3UzOiQSOo6EcrcM62t83Pnr3N5gTRUn_GY-P9Qih64IinstSrpifxNL_P2j5b4TkG5Nz8RE2e6zIzro1bcGaj59gqz-NC_a1p4z-tg3XE780uUkEI9gyjWw-XGxPDC9aHxmFahKjBiJUz3yfS5QhZGUmOraYPnvsyPrwjs9we_Hj1_ll3qdKyFul-TLHW6JVzglXalXWrnZB6VbqMRfSGqtrXdSGbLWxynhjfIXOI2Uo8irgIURndAc24iz6PWDWtjheopakl8JzTcmJ69oHLSqHAzI4GSTYzDtGjKZ7ydYNCbrpBJ3Bd5LuaxeisU4Vs4ffTa_MJgiH_p8ptKWcJ9IYWwcdODeFUFjtMjgedNPgtqe3DBP97BEnIeSIaKcsMtjtdPU6lSCUqQXPQK9ocWUtqy240xK19rCz9t8_9AA-UEr6FNKrDmFj-fDovyBwWdqj5PBjOZEay-ub4ijt3BcHevNa
link.rule.ids 230,314,727,780,784,864,885,2102,2221,3322,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxEB6FUECDCK8sEDBSCig2513ba28JUaIDcoEikdKt7LUNJyW-U-5SwK9nZh9RDlHR-iFbnrHnG3nmG4B9HUUdpFR5UUWHDooSuROxzIkVIFSxtqKgbOTZaTU9l18u1MUWVGMuTBe037r5Qbq8Okjzn11s5fKqnYxxYpPvs0MigeNoKCf34L4Sui7ueOl9djAnkpIhHY_XZoLgdUUxz2UpNwxQx9P_L3D5d4zkHaNz_BgeDWiRfex3tQNbIT2BneE-rtj7gTT6w1P4Ngtrm9uOYgR75oktx6ftF8OnNiRGwZrEqYEYNbAwVBNlCFqZTZ6t5r8DDmRDgMczOD8-Ojuc5kOxhLxVhq9zfCda5b3wpVGl9tpHZVppai6ks85oU2hL1to6ZYO1oUL3kWoUBRXxGqI7-hy20yKFXWDOtThfopxkkCJwQ-WJtQ7RiMrjhAz2xxNslj0nRtP_ZZuGDrrpDzqDT3S6t0OIyLprWFz_aAZxNlF49ABtYRxVPZHWOh1N5NwWQmGzz-DdKJsGFZ9-M2wKixtchLAj4p2yyOBFL6vbpQThTCN4BmZDiht72exBXevItUfdevn_U9_Cg-nZ7KQ5-Xz69RU8pAL1XYCveg3b6-ubsIcwZu3edDr7B9C68-8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRHkGaDFSD3BI48R24j3SllV5bOmBSr1FdmyXlah31d0e4NczkzhVF3Hi6odsecb2N_LnbwD2miAmXkqVl3WwGKAokVsRqpxUAXwdJkaU9Bt5dlIfn8nP5-o8sSpXiVYZOzvfjz8v9-P8R8-tXF52xcgTK05nhyQCx_GiLJYuFHfhnhLoZbci9eGHMCehkvQlj090gQB2RbznqpIbl1Cv1f8vgPk3T_LWxTN9BA8TYmQfhpltwx0fH8N22pMr9i4JR79_At9mfm1y08uMYM08suV4vP1ieNz6yIiwSboaiFM98ymjKEPgykx0bDX_7bEhSySPp3A2_fj98DhPCRPyTmm-zvGs6JRzwlVaVY1rXFC6k3rChbTG6kaXjaEb21hlvDG-xhCS8hR5FXArYkj6DLbiIvoXwKztsL9EW0kvheeaUhQ3jQ9a1A47ZLA3rmC7HHQx2uE9W7e00O2w0Bkc0OreNCEx675gcXXRJpO2QTiMAk2pLWU-kcbYJujAuSmFwmKXwdvRNi06P71omOgX1zgI4UfEPFWZwfPBVjdDCcKaWvAM9IYVN-ayWYP-1gtsj_718v-7voH7p0fT9uunky-v4AHlqO85vuo1bK2vrv0OIpm13e1d9g9IuvUC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analyses+in+psychology+often+overestimate+evidence+for+and+size+of+effects&rft.jtitle=Royal+Society+open+science&rft.au=Barto%C5%A1%2C+Franti%C5%A1ek&rft.au=Maier%2C+Maximilian&rft.au=Shanks%2C+David+R.&rft.au=Stanley%2C+T.+D.&rft.date=2023-07-05&rft.pub=The+Royal+Society&rft.eissn=2054-5703&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1098%2Frsos.230224&rft.externalDBID=PMC10320355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon