Pathobiont-driven antibody sialylation through IL-10 undermines vaccination

The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protect...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 134; no. 24
Main Authors Tsai, Chih-Ming, Hajam, Irshad A., Caldera, J.R., Chiang, Austin W.T., Gonzalez, Cesia, Du, Choudhruy, Biswa, Li, Haining, Suzuki, Emi, Askarian, Fatemeh, Clark, Ty’Tianna, Lin, Brian, Wierzbicki, Igor H., Riestra, Angelica M., Conrad, Douglas J., Gonzalez, David J., Nizet, Victor, Lewis, Nathan E., Liu, George Y.
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 16.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
AbstractList The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall–associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti– Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy. There hasn’t been a successful staphylococcal vaccine to date. We show that S. aureus induces IL-10 which abrogates protective anti-staphylococcal antibody function through hyper-sialylation.
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-[alpha]2,3sialylation of antibodies and loss of protective activity. IL-10 enhances [alpha]2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Audience Academic
Author Liu, George Y.
Hajam, Irshad A.
Tsai, Chih-Ming
Lin, Brian
Lewis, Nathan E.
Choudhruy, Biswa
Wierzbicki, Igor H.
Chiang, Austin W.T.
Askarian, Fatemeh
Caldera, J.R.
Du
Gonzalez, David J.
Suzuki, Emi
Clark, Ty’Tianna
Conrad, Douglas J.
Riestra, Angelica M.
Gonzalez, Cesia
Li, Haining
Nizet, Victor
AuthorAffiliation 5 Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
10 Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
4 Department of Bioengineering, University of California, La Jolla, California, USA
3 Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
8 Department of Biology, San Diego State University, San Diego, California, USA
1 Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
6 Division of Gastroenterology, Rady Children’s Hospital, San Diego, California, USA
7 Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
9 Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
2 Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
11 Division of Infectious Diseases, Rady Children’s Hospital, S
AuthorAffiliation_xml – name: 4 Department of Bioengineering, University of California, La Jolla, California, USA
– name: 1 Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
– name: 5 Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
– name: 9 Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
– name: 8 Department of Biology, San Diego State University, San Diego, California, USA
– name: 10 Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
– name: 6 Division of Gastroenterology, Rady Children’s Hospital, San Diego, California, USA
– name: 7 Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
– name: 11 Division of Infectious Diseases, Rady Children’s Hospital, San Diego, California, USA
– name: 2 Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
– name: 3 Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
Author_xml – sequence: 1
  givenname: Chih-Ming
  orcidid: 0000-0001-7305-7401
  surname: Tsai
  fullname: Tsai, Chih-Ming
– sequence: 2
  givenname: Irshad A.
  surname: Hajam
  fullname: Hajam, Irshad A.
– sequence: 3
  givenname: J.R.
  orcidid: 0000-0003-0563-8815
  surname: Caldera
  fullname: Caldera, J.R.
– sequence: 4
  givenname: Austin W.T.
  surname: Chiang
  fullname: Chiang, Austin W.T.
– sequence: 5
  givenname: Cesia
  surname: Gonzalez
  fullname: Gonzalez, Cesia
– sequence: 6
  surname: Du
  fullname: Du
– sequence: 7
  givenname: Biswa
  surname: Choudhruy
  fullname: Choudhruy, Biswa
– sequence: 8
  givenname: Haining
  surname: Li
  fullname: Li, Haining
– sequence: 9
  givenname: Emi
  surname: Suzuki
  fullname: Suzuki, Emi
– sequence: 10
  givenname: Fatemeh
  surname: Askarian
  fullname: Askarian, Fatemeh
– sequence: 11
  givenname: Ty’Tianna
  surname: Clark
  fullname: Clark, Ty’Tianna
– sequence: 12
  givenname: Brian
  surname: Lin
  fullname: Lin, Brian
– sequence: 13
  givenname: Igor H.
  surname: Wierzbicki
  fullname: Wierzbicki, Igor H.
– sequence: 14
  givenname: Angelica M.
  surname: Riestra
  fullname: Riestra, Angelica M.
– sequence: 15
  givenname: Douglas J.
  surname: Conrad
  fullname: Conrad, Douglas J.
– sequence: 16
  givenname: David J.
  surname: Gonzalez
  fullname: Gonzalez, David J.
– sequence: 17
  givenname: Victor
  orcidid: 0000-0003-3847-0422
  surname: Nizet
  fullname: Nizet, Victor
– sequence: 18
  givenname: Nathan E.
  orcidid: 0000-0001-7700-3654
  surname: Lewis
  fullname: Lewis, Nathan E.
– sequence: 19
  givenname: George Y.
  surname: Liu
  fullname: Liu, George Y.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39680460$$D View this record in MEDLINE/PubMed
BookMark eNqN0k1v0zAYB_AIDbEXOPAFUCQkBIdscewkzmmaKgaFSkO8XS3HfpwYufaInWr99rjrVhrRA8rBUfx7_o7t5zQ5ss5CkrxE-TlCdXHxaTZHdVNW-ElygsqSZrTA9Gjv_Tg59f5XniNCSvIsOcZNRXNS5SfJ5y889K7VzoZMDnoFNuU26NbJdeo1N2vDQ5xMQz-4sevT-SJDeTpaCcNSW_Dpiguh7T16njxV3Hh48TCeJT-u33-ffcwWNx_ms6tFJkqah4zUVVEKWVcNxtC2jaQyV2VT0LaqW6At4EJxJVRNpFQNoJZUBIlWNZwQJRXCZ8nlNvd2bJcgBdgwcMNuB73kw5o5rtl0xuqedW7FEKpIiUgZE94-JAzu9wg-sKX2AozhFtzoGUakahDC9Ya-3tKOG2DaKhcjxYazK1oUNW1QiaPKDqgOLMT142UpHT9P_PkBHx8JSy0OFrybFEQT4C50fPSezb99_X9783Nq3-zZHrgJvXdm3Nynn8JX-4e-O-3HVorgYgvE4LwfQDGhw31fxK1pw1DONs3Kds369z93FY-h_9o_H77mXw
CitedBy_id crossref_primary_10_1016_j_vaccine_2025_126896
crossref_primary_10_1172_JCI187055
crossref_primary_10_1016_j_bioflm_2025_100264
Cites_doi 10.1126/science.1118948
10.1016/j.immuni.2018.01.006
10.1073/pnas.0900473106
10.12688/f1000research.22139.1
10.4049/jimmunol.1500153
10.1016/j.cell.2020.07.040
10.3390/microorganisms8121936
10.1203/01.PDR.0000047528.79014.CF
10.3389/fimmu.2020.581713
10.1172/JCI65938
10.1016/j.cell.2016.08.072
10.1371/journal.ppat.1010647
10.1016/0003-2697(89)90115-2
10.1093/bioinformatics/btaa611
10.4049/jimmunol.1401329
10.3389/fimmu.2021.724379
10.1093/glycob/cwaa018
10.1038/mi.2015.66
10.1073/pnas.2003621117
10.1126/sciimmunol.adf7702
10.1016/j.cell.2017.11.041
10.3389/fimmu.2020.620339
10.1016/j.chom.2017.08.008
10.1126/science.1129594
10.4049/jimmunol.1001307
10.3389/fpls.2022.893994
10.1038/nm.2862
10.1093/femsre/fuz030
10.1016/j.xcrm.2023.101360
10.1038/nature11724
10.1093/bioinformatics/btv359
10.1146/annurev.immunol.19.1.683
10.1073/pnas.2301538120
10.1093/infdis/jis552
10.4049/jimmunol.1502232
10.1038/s41586-018-0730-x
10.1084/jem.20020552
10.1128/IAI.00494-19
10.1128/mBio.02473-19
10.1038/ni.3579
10.1172/JCI114364
10.1038/s41564-017-0005-6
10.4049/jimmunol.180.9.5771
10.1021/pr7008252
10.1016/j.jaci.2020.04.059
10.1038/nri2656
10.1084/jem.20150074
10.3389/fimmu.2018.00455
10.1128/JCM.00641-08
10.1006/abio.1995.1468
10.1038/s41592-019-0686-2
10.5812/ircmj.28271
10.1126/science.1154315
10.3389/fimmu.2022.818736
10.1001/jama.2013.3010
10.1186/s12859-016-0930-z
10.1016/j.chom.2022.06.006
10.1038/s41598-021-85200-x
10.1016/j.jpba.2010.03.045
10.1084/jem.20141404
10.1038/s41564-020-0756-3
10.1093/bfgp/elt028
10.1016/j.celrep.2019.11.001
10.1128/IAI.74.4.2215-2223.2006
10.1038/s41586-022-04816-9
10.1007/82_2019_152
10.1016/j.ab.2015.06.006
10.1073/pnas.1417683112
ContentType Journal Article
Copyright COPYRIGHT 2024 American Society for Clinical Investigation
2024 Tsai et al. 2024 Tsai et al.
Copyright_xml – notice: COPYRIGHT 2024 American Society for Clinical Investigation
– notice: 2024 Tsai et al. 2024 Tsai et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
DOI 10.1172/JCI179563
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints (Gale in Context)
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-8238
ExternalDocumentID PMC11645145
A822789153
39680460
10_1172_JCI179563
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM119850
– fundername: NIAID NIH HHS
  grantid: R01 AI181321
– fundername: NIAID NIH HHS
  grantid: R01 AI144694
– fundername: NIAID NIH HHS
  grantid: R01 AI179098
– fundername: NIAID NIH HHS
  grantid: R01 AI127406
– fundername: National institute of Health
  grantid: R01AI181321
– fundername: NIH, Novo Nordisk Foundation
  grantid: National Institute of Health (grants R01AI127406,R01AI144694; R35 GM119850); the Novo Nordisk Foundation (NNF20SA0066621)
– fundername: national institute of health
  grantid: R01AI179098
GroupedDBID ---
-~X
.55
.XZ
08G
08P
29K
354
36B
5GY
5RE
5RS
7RV
7X7
88E
8AO
8F7
8FE
8FH
8FI
8FJ
8R4
8R5
AAWTL
AAYXX
ABOCM
ABPMR
ABUWG
ACGFO
ACIHN
ACNCT
ACPRK
ADBBV
AEAQA
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BCU
BEC
BENPR
BHPHI
BKEYQ
BLC
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
EX3
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IEA
IHR
IHW
INH
IOF
IOV
IPO
ISR
ITC
KQ8
L7B
LK8
M1P
M5~
M7P
NAPCQ
OBH
OCB
ODZKP
OFXIZ
OGEVE
OHH
OK1
OVD
OVIDX
OVT
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPM
S0X
SJFOW
SV3
TEORI
TR2
TVE
UKHRP
VVN
W2D
WH7
WOQ
WOW
X7M
XSB
YFH
YHG
YKV
YOC
ZY1
~H1
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
5PM
ID FETCH-LOGICAL-c580t-47625cd76933ebb9d8d0f5928b67be8be32fafcf74ddf9e1b4641cbf9a44fdf13
ISSN 1558-8238
0021-9738
IngestDate Thu Aug 21 18:29:21 EDT 2025
Fri Jul 11 12:31:13 EDT 2025
Tue Jun 17 21:58:53 EDT 2025
Fri Jun 13 00:00:53 EDT 2025
Tue Jun 10 20:58:46 EDT 2025
Fri Jun 27 05:14:13 EDT 2025
Fri Jun 27 05:14:18 EDT 2025
Thu May 22 21:23:39 EDT 2025
Mon Jul 21 05:35:50 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Tue Jul 01 01:53:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Infectious disease
Adaptive immunity
Immunology
Imprinting
Language English
License http://creativecommons.org/licenses/by/4.0
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c580t-47625cd76933ebb9d8d0f5928b67be8be32fafcf74ddf9e1b4641cbf9a44fdf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7305-7401
0000-0003-3847-0422
0000-0003-0563-8815
0000-0001-7700-3654
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11645145
PMID 39680460
PQID 3146911375
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11645145
proquest_miscellaneous_3146911375
gale_infotracmisc_A822789153
gale_infotracgeneralonefile_A822789153
gale_infotracacademiconefile_A822789153
gale_incontextgauss_ISR_A822789153
gale_incontextgauss_IOV_A822789153
gale_healthsolutions_A822789153
pubmed_primary_39680460
crossref_citationtrail_10_1172_JCI179563
crossref_primary_10_1172_JCI179563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of clinical investigation
PublicationTitleAlternate J Clin Invest
PublicationYear 2024
Publisher American Society for Clinical Investigation
Publisher_xml – name: American Society for Clinical Investigation
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B11
  doi: 10.1126/science.1118948
– ident: B19
  doi: 10.1016/j.immuni.2018.01.006
– ident: B32
  doi: 10.1073/pnas.0900473106
– ident: B57
  doi: 10.12688/f1000research.22139.1
– ident: B25
  doi: 10.4049/jimmunol.1500153
– ident: B43
  doi: 10.1016/j.cell.2020.07.040
– ident: B2
  doi: 10.3390/microorganisms8121936
– ident: B34
  doi: 10.1203/01.PDR.0000047528.79014.CF
– ident: B39
  doi: 10.3389/fimmu.2020.581713
– ident: B14
  doi: 10.1172/JCI65938
– ident: B44
  doi: 10.1016/j.cell.2016.08.072
– ident: B21
  doi: 10.1371/journal.ppat.1010647
– ident: B64
  doi: 10.1016/0003-2697(89)90115-2
– ident: B61
  doi: 10.1093/bioinformatics/btaa611
– ident: B28
  doi: 10.4049/jimmunol.1401329
– ident: B46
  doi: 10.3389/fimmu.2021.724379
– ident: B17
  doi: 10.1093/glycob/cwaa018
– ident: B42
  doi: 10.1038/mi.2015.66
– ident: B48
  doi: 10.1073/pnas.2003621117
– ident: B50
  doi: 10.1126/sciimmunol.adf7702
– ident: B15
  doi: 10.1016/j.cell.2017.11.041
– ident: B41
  doi: 10.3389/fimmu.2020.620339
– ident: B8
  doi: 10.1016/j.chom.2017.08.008
– ident: B12
  doi: 10.1126/science.1129594
– ident: B24
  doi: 10.4049/jimmunol.1001307
– ident: B30
  doi: 10.3389/fpls.2022.893994
– ident: B13
  doi: 10.1038/nm.2862
– ident: B1
  doi: 10.1093/femsre/fuz030
– ident: B10
  doi: 10.1016/j.xcrm.2023.101360
– ident: B4
  doi: 10.1038/nature11724
– ident: B59
  doi: 10.1093/bioinformatics/btv359
– ident: B35
  doi: 10.1146/annurev.immunol.19.1.683
– ident: B52
  doi: 10.1073/pnas.2301538120
– ident: B23
  doi: 10.1093/infdis/jis552
– ident: B37
  doi: 10.4049/jimmunol.1502232
– ident: B5
  doi: 10.1038/s41586-018-0730-x
– ident: B6
  doi: 10.1084/jem.20020552
– ident: B38
  doi: 10.1128/IAI.00494-19
– ident: B58
  doi: 10.1128/mBio.02473-19
– ident: B18
  doi: 10.1038/ni.3579
– ident: B49
  doi: 10.1172/JCI114364
– ident: B53
  doi: 10.1038/s41564-017-0005-6
– ident: B36
  doi: 10.4049/jimmunol.180.9.5771
– ident: B68
  doi: 10.1021/pr7008252
– ident: B47
  doi: 10.1016/j.jaci.2020.04.059
– ident: B27
  doi: 10.1038/nri2656
– ident: B55
  doi: 10.1084/jem.20150074
– ident: B40
  doi: 10.3389/fimmu.2018.00455
– ident: B3
  doi: 10.1128/JCM.00641-08
– ident: B65
  doi: 10.1006/abio.1995.1468
– ident: B63
  doi: 10.1038/s41592-019-0686-2
– ident: B51
  doi: 10.5812/ircmj.28271
– ident: B16
  doi: 10.1126/science.1154315
– ident: B29
  doi: 10.3389/fimmu.2022.818736
– ident: B20
  doi: 10.1001/jama.2013.3010
– ident: B62
  doi: 10.1186/s12859-016-0930-z
– ident: B9
  doi: 10.1016/j.chom.2022.06.006
– ident: B56
  doi: 10.1038/s41598-021-85200-x
– ident: B67
  doi: 10.1016/j.jpba.2010.03.045
– ident: B7
  doi: 10.1084/jem.20141404
– ident: B22
  doi: 10.1038/s41564-020-0756-3
– ident: B31
  doi: 10.1093/bfgp/elt028
– ident: B54
  doi: 10.1016/j.celrep.2019.11.001
– ident: B26
  doi: 10.1128/IAI.74.4.2215-2223.2006
– ident: B45
  doi: 10.1038/s41586-022-04816-9
– ident: B33
  doi: 10.1007/82_2019_152
– ident: B66
  doi: 10.1016/j.ab.2015.06.006
– ident: B60
  doi: 10.1073/pnas.1417683112
SSID ssj0014454
Score 2.4831886
Snippet The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism...
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Antibodies, Bacterial - immunology
B cells
B-Lymphocytes - immunology
Care and treatment
Diagnosis
Female
Glycosylation
Health aspects
Humans
Interleukin-10
Interleukin-10 - immunology
Interleukin-10 - metabolism
Mice
Sialic acids
Sialyltransferases - immunology
Sialyltransferases - metabolism
Staphylococcal Infections - immunology
Staphylococcal Infections - microbiology
Staphylococcal Infections - prevention & control
Staphylococcal Vaccines - immunology
Staphylococcus aureus - immunology
Staphylococcus aureus infections
STAT3 Transcription Factor - immunology
STAT3 Transcription Factor - metabolism
Testing
Vaccination
Title Pathobiont-driven antibody sialylation through IL-10 undermines vaccination
URI https://www.ncbi.nlm.nih.gov/pubmed/39680460
https://www.proquest.com/docview/3146911375
https://pubmed.ncbi.nlm.nih.gov/PMC11645145
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6TUK8IH5TGCUgBEhVStI4sfMI1dA66JhGB32LYjtZM6EUNS3SEH8859hxEtqHwktUxdfE8X05n5277xB6yQT3h2ng2TF1iI059W0Wh9zGInQS7DmCUpmNPDkNji_wycyfdTq_m9klKzbgv7bmlfyPVuEc6FVmyf6DZs1F4QT8Bv3CETQMx510fAbum6RRyle2WEqz1YdxythCXPcLuPu1inMztXjGn8AcloVvZQBMUvR_xpxnea2bqxo6DUfVJE9mNSdH_fF-WqiC1qN5Nrcn1URY2rQrBbbxspjHot40HcWyMriK0R2YD03wf711Lbdfsrz_bTBtbkkMS-JDlTHZyAKQ5qkReDqq-jre6GuVVuDaIVFUL8Y0641OhUGVbL1p84nkkD0ZjcG2-Npatni1x5-_tk8qvl9aZgGDxd9DB0NYZJSp4jMTIAQrTV9zeKuOaV4quN1bc7OWN_P3nN5watoBtw0PZnob3dIatd4pHN1BnSS_i25MdHDFPfRxA05WBSerASdLw8kq4WTVcLIacLqPLj4cTUfHtq61YXOfOisbw6TocyErY3oJY6Ggwkn9cEhZQFhCWeIN0zjlKcFCpGHiMhxgl7M0jDFORep6D9B-vsiTR8jCIQGzDgt5zyMY2ikhDuapy8FbcoM46aI31ZhFXBPRy3oo36NyQUqGkRneLnphRH8o9pVtQs_kwEcqcdi811GtYLhMKSH5TnIZUHUZr4siAlzsIPTlvCX0WgulC-gzj3USCzy55FFrSb5qSV4qFvltgoctQTDvvNX8vMJTJJtkTGSeLNZF5IGTA66KR_wueqjwZQbJCwMqQx66iLaQZwQkq3y7Jc_mJbu86wYYVlH-410G7Qm6WRuAQ7S_Wq6Tp-Clr1gP7ZEZ6aGD90enZ-e98tX6A-mg7Yk
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathobiont-driven+antibody+sialylation+through+IL-10+undermines+vaccination&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Tsai%2C+Chih-Ming&rft.au=Hajam%2C+Irshad+A&rft.au=Caldera%2C+J.R&rft.au=Chiang%2C+Austin+W.T&rft.date=2024-12-16&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.volume=134&rft.issue=24&rft_id=info:doi/10.1172%2FJCI179563&rft.externalDBID=IOV&rft.externalDocID=A822789153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon