Pathobiont-driven antibody sialylation through IL-10 undermines vaccination
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protect...
Saved in:
Published in | The Journal of clinical investigation Vol. 134; no. 24 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
16.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy. |
---|---|
AbstractList | The pathobiont
Staphylococcus aureus
(Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall–associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti–
Streptococcus pyogenes
and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
There hasn’t been a successful staphylococcal vaccine to date. We show that S. aureus induces IL-10 which abrogates protective anti-staphylococcal antibody function through hyper-sialylation. The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy. The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy. The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-[alpha]2,3sialylation of antibodies and loss of protective activity. IL-10 enhances [alpha]2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy. |
Audience | Academic |
Author | Liu, George Y. Hajam, Irshad A. Tsai, Chih-Ming Lin, Brian Lewis, Nathan E. Choudhruy, Biswa Wierzbicki, Igor H. Chiang, Austin W.T. Askarian, Fatemeh Caldera, J.R. Du Gonzalez, David J. Suzuki, Emi Clark, Ty’Tianna Conrad, Douglas J. Riestra, Angelica M. Gonzalez, Cesia Li, Haining Nizet, Victor |
AuthorAffiliation | 5 Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA 10 Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA 4 Department of Bioengineering, University of California, La Jolla, California, USA 3 Glycobiology Research and Training Center, UCSD, La Jolla, California, USA 8 Department of Biology, San Diego State University, San Diego, California, USA 1 Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA 6 Division of Gastroenterology, Rady Children’s Hospital, San Diego, California, USA 7 Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA 9 Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA 2 Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA 11 Division of Infectious Diseases, Rady Children’s Hospital, S |
AuthorAffiliation_xml | – name: 4 Department of Bioengineering, University of California, La Jolla, California, USA – name: 1 Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA – name: 5 Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA – name: 9 Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA – name: 8 Department of Biology, San Diego State University, San Diego, California, USA – name: 10 Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA – name: 6 Division of Gastroenterology, Rady Children’s Hospital, San Diego, California, USA – name: 7 Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA – name: 11 Division of Infectious Diseases, Rady Children’s Hospital, San Diego, California, USA – name: 2 Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA – name: 3 Glycobiology Research and Training Center, UCSD, La Jolla, California, USA |
Author_xml | – sequence: 1 givenname: Chih-Ming orcidid: 0000-0001-7305-7401 surname: Tsai fullname: Tsai, Chih-Ming – sequence: 2 givenname: Irshad A. surname: Hajam fullname: Hajam, Irshad A. – sequence: 3 givenname: J.R. orcidid: 0000-0003-0563-8815 surname: Caldera fullname: Caldera, J.R. – sequence: 4 givenname: Austin W.T. surname: Chiang fullname: Chiang, Austin W.T. – sequence: 5 givenname: Cesia surname: Gonzalez fullname: Gonzalez, Cesia – sequence: 6 surname: Du fullname: Du – sequence: 7 givenname: Biswa surname: Choudhruy fullname: Choudhruy, Biswa – sequence: 8 givenname: Haining surname: Li fullname: Li, Haining – sequence: 9 givenname: Emi surname: Suzuki fullname: Suzuki, Emi – sequence: 10 givenname: Fatemeh surname: Askarian fullname: Askarian, Fatemeh – sequence: 11 givenname: Ty’Tianna surname: Clark fullname: Clark, Ty’Tianna – sequence: 12 givenname: Brian surname: Lin fullname: Lin, Brian – sequence: 13 givenname: Igor H. surname: Wierzbicki fullname: Wierzbicki, Igor H. – sequence: 14 givenname: Angelica M. surname: Riestra fullname: Riestra, Angelica M. – sequence: 15 givenname: Douglas J. surname: Conrad fullname: Conrad, Douglas J. – sequence: 16 givenname: David J. surname: Gonzalez fullname: Gonzalez, David J. – sequence: 17 givenname: Victor orcidid: 0000-0003-3847-0422 surname: Nizet fullname: Nizet, Victor – sequence: 18 givenname: Nathan E. orcidid: 0000-0001-7700-3654 surname: Lewis fullname: Lewis, Nathan E. – sequence: 19 givenname: George Y. surname: Liu fullname: Liu, George Y. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39680460$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0k1v0zAYB_AIDbEXOPAFUCQkBIdscewkzmmaKgaFSkO8XS3HfpwYufaInWr99rjrVhrRA8rBUfx7_o7t5zQ5ss5CkrxE-TlCdXHxaTZHdVNW-ElygsqSZrTA9Gjv_Tg59f5XniNCSvIsOcZNRXNS5SfJ5y889K7VzoZMDnoFNuU26NbJdeo1N2vDQ5xMQz-4sevT-SJDeTpaCcNSW_Dpiguh7T16njxV3Hh48TCeJT-u33-ffcwWNx_ms6tFJkqah4zUVVEKWVcNxtC2jaQyV2VT0LaqW6At4EJxJVRNpFQNoJZUBIlWNZwQJRXCZ8nlNvd2bJcgBdgwcMNuB73kw5o5rtl0xuqedW7FEKpIiUgZE94-JAzu9wg-sKX2AozhFtzoGUakahDC9Ya-3tKOG2DaKhcjxYazK1oUNW1QiaPKDqgOLMT142UpHT9P_PkBHx8JSy0OFrybFEQT4C50fPSezb99_X9783Nq3-zZHrgJvXdm3Nynn8JX-4e-O-3HVorgYgvE4LwfQDGhw31fxK1pw1DONs3Kds369z93FY-h_9o_H77mXw |
CitedBy_id | crossref_primary_10_1016_j_vaccine_2025_126896 crossref_primary_10_1172_JCI187055 crossref_primary_10_1016_j_bioflm_2025_100264 |
Cites_doi | 10.1126/science.1118948 10.1016/j.immuni.2018.01.006 10.1073/pnas.0900473106 10.12688/f1000research.22139.1 10.4049/jimmunol.1500153 10.1016/j.cell.2020.07.040 10.3390/microorganisms8121936 10.1203/01.PDR.0000047528.79014.CF 10.3389/fimmu.2020.581713 10.1172/JCI65938 10.1016/j.cell.2016.08.072 10.1371/journal.ppat.1010647 10.1016/0003-2697(89)90115-2 10.1093/bioinformatics/btaa611 10.4049/jimmunol.1401329 10.3389/fimmu.2021.724379 10.1093/glycob/cwaa018 10.1038/mi.2015.66 10.1073/pnas.2003621117 10.1126/sciimmunol.adf7702 10.1016/j.cell.2017.11.041 10.3389/fimmu.2020.620339 10.1016/j.chom.2017.08.008 10.1126/science.1129594 10.4049/jimmunol.1001307 10.3389/fpls.2022.893994 10.1038/nm.2862 10.1093/femsre/fuz030 10.1016/j.xcrm.2023.101360 10.1038/nature11724 10.1093/bioinformatics/btv359 10.1146/annurev.immunol.19.1.683 10.1073/pnas.2301538120 10.1093/infdis/jis552 10.4049/jimmunol.1502232 10.1038/s41586-018-0730-x 10.1084/jem.20020552 10.1128/IAI.00494-19 10.1128/mBio.02473-19 10.1038/ni.3579 10.1172/JCI114364 10.1038/s41564-017-0005-6 10.4049/jimmunol.180.9.5771 10.1021/pr7008252 10.1016/j.jaci.2020.04.059 10.1038/nri2656 10.1084/jem.20150074 10.3389/fimmu.2018.00455 10.1128/JCM.00641-08 10.1006/abio.1995.1468 10.1038/s41592-019-0686-2 10.5812/ircmj.28271 10.1126/science.1154315 10.3389/fimmu.2022.818736 10.1001/jama.2013.3010 10.1186/s12859-016-0930-z 10.1016/j.chom.2022.06.006 10.1038/s41598-021-85200-x 10.1016/j.jpba.2010.03.045 10.1084/jem.20141404 10.1038/s41564-020-0756-3 10.1093/bfgp/elt028 10.1016/j.celrep.2019.11.001 10.1128/IAI.74.4.2215-2223.2006 10.1038/s41586-022-04816-9 10.1007/82_2019_152 10.1016/j.ab.2015.06.006 10.1073/pnas.1417683112 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 American Society for Clinical Investigation 2024 Tsai et al. 2024 Tsai et al. |
Copyright_xml | – notice: COPYRIGHT 2024 American Society for Clinical Investigation – notice: 2024 Tsai et al. 2024 Tsai et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM |
DOI | 10.1172/JCI179563 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints (Gale in Context) Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-8238 |
ExternalDocumentID | PMC11645145 A822789153 39680460 10_1172_JCI179563 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM119850 – fundername: NIAID NIH HHS grantid: R01 AI181321 – fundername: NIAID NIH HHS grantid: R01 AI144694 – fundername: NIAID NIH HHS grantid: R01 AI179098 – fundername: NIAID NIH HHS grantid: R01 AI127406 – fundername: National institute of Health grantid: R01AI181321 – fundername: NIH, Novo Nordisk Foundation grantid: National Institute of Health (grants R01AI127406,R01AI144694; R35 GM119850); the Novo Nordisk Foundation (NNF20SA0066621) – fundername: national institute of health grantid: R01AI179098 |
GroupedDBID | --- -~X .55 .XZ 08G 08P 29K 354 36B 5GY 5RE 5RS 7RV 7X7 88E 8AO 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAWTL AAYXX ABOCM ABPMR ABUWG ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BCU BEC BENPR BHPHI BKEYQ BLC BPHCQ BVXVI CCPQU CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB EX3 F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IEA IHR IHW INH IOF IOV IPO ISR ITC KQ8 L7B LK8 M1P M5~ M7P NAPCQ OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPM S0X SJFOW SV3 TEORI TR2 TVE UKHRP VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZY1 ~H1 CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 5PM |
ID | FETCH-LOGICAL-c580t-47625cd76933ebb9d8d0f5928b67be8be32fafcf74ddf9e1b4641cbf9a44fdf13 |
ISSN | 1558-8238 0021-9738 |
IngestDate | Thu Aug 21 18:29:21 EDT 2025 Fri Jul 11 12:31:13 EDT 2025 Tue Jun 17 21:58:53 EDT 2025 Fri Jun 13 00:00:53 EDT 2025 Tue Jun 10 20:58:46 EDT 2025 Fri Jun 27 05:14:13 EDT 2025 Fri Jun 27 05:14:18 EDT 2025 Thu May 22 21:23:39 EDT 2025 Mon Jul 21 05:35:50 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Tue Jul 01 01:53:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Infectious disease Adaptive immunity Immunology Imprinting |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c580t-47625cd76933ebb9d8d0f5928b67be8be32fafcf74ddf9e1b4641cbf9a44fdf13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7305-7401 0000-0003-3847-0422 0000-0003-0563-8815 0000-0001-7700-3654 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11645145 |
PMID | 39680460 |
PQID | 3146911375 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11645145 proquest_miscellaneous_3146911375 gale_infotracmisc_A822789153 gale_infotracgeneralonefile_A822789153 gale_infotracacademiconefile_A822789153 gale_incontextgauss_ISR_A822789153 gale_incontextgauss_IOV_A822789153 gale_healthsolutions_A822789153 pubmed_primary_39680460 crossref_citationtrail_10_1172_JCI179563 crossref_primary_10_1172_JCI179563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-16 |
PublicationDateYYYYMMDD | 2024-12-16 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 2024 |
Publisher | American Society for Clinical Investigation |
Publisher_xml | – name: American Society for Clinical Investigation |
References | B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B11 doi: 10.1126/science.1118948 – ident: B19 doi: 10.1016/j.immuni.2018.01.006 – ident: B32 doi: 10.1073/pnas.0900473106 – ident: B57 doi: 10.12688/f1000research.22139.1 – ident: B25 doi: 10.4049/jimmunol.1500153 – ident: B43 doi: 10.1016/j.cell.2020.07.040 – ident: B2 doi: 10.3390/microorganisms8121936 – ident: B34 doi: 10.1203/01.PDR.0000047528.79014.CF – ident: B39 doi: 10.3389/fimmu.2020.581713 – ident: B14 doi: 10.1172/JCI65938 – ident: B44 doi: 10.1016/j.cell.2016.08.072 – ident: B21 doi: 10.1371/journal.ppat.1010647 – ident: B64 doi: 10.1016/0003-2697(89)90115-2 – ident: B61 doi: 10.1093/bioinformatics/btaa611 – ident: B28 doi: 10.4049/jimmunol.1401329 – ident: B46 doi: 10.3389/fimmu.2021.724379 – ident: B17 doi: 10.1093/glycob/cwaa018 – ident: B42 doi: 10.1038/mi.2015.66 – ident: B48 doi: 10.1073/pnas.2003621117 – ident: B50 doi: 10.1126/sciimmunol.adf7702 – ident: B15 doi: 10.1016/j.cell.2017.11.041 – ident: B41 doi: 10.3389/fimmu.2020.620339 – ident: B8 doi: 10.1016/j.chom.2017.08.008 – ident: B12 doi: 10.1126/science.1129594 – ident: B24 doi: 10.4049/jimmunol.1001307 – ident: B30 doi: 10.3389/fpls.2022.893994 – ident: B13 doi: 10.1038/nm.2862 – ident: B1 doi: 10.1093/femsre/fuz030 – ident: B10 doi: 10.1016/j.xcrm.2023.101360 – ident: B4 doi: 10.1038/nature11724 – ident: B59 doi: 10.1093/bioinformatics/btv359 – ident: B35 doi: 10.1146/annurev.immunol.19.1.683 – ident: B52 doi: 10.1073/pnas.2301538120 – ident: B23 doi: 10.1093/infdis/jis552 – ident: B37 doi: 10.4049/jimmunol.1502232 – ident: B5 doi: 10.1038/s41586-018-0730-x – ident: B6 doi: 10.1084/jem.20020552 – ident: B38 doi: 10.1128/IAI.00494-19 – ident: B58 doi: 10.1128/mBio.02473-19 – ident: B18 doi: 10.1038/ni.3579 – ident: B49 doi: 10.1172/JCI114364 – ident: B53 doi: 10.1038/s41564-017-0005-6 – ident: B36 doi: 10.4049/jimmunol.180.9.5771 – ident: B68 doi: 10.1021/pr7008252 – ident: B47 doi: 10.1016/j.jaci.2020.04.059 – ident: B27 doi: 10.1038/nri2656 – ident: B55 doi: 10.1084/jem.20150074 – ident: B40 doi: 10.3389/fimmu.2018.00455 – ident: B3 doi: 10.1128/JCM.00641-08 – ident: B65 doi: 10.1006/abio.1995.1468 – ident: B63 doi: 10.1038/s41592-019-0686-2 – ident: B51 doi: 10.5812/ircmj.28271 – ident: B16 doi: 10.1126/science.1154315 – ident: B29 doi: 10.3389/fimmu.2022.818736 – ident: B20 doi: 10.1001/jama.2013.3010 – ident: B62 doi: 10.1186/s12859-016-0930-z – ident: B9 doi: 10.1016/j.chom.2022.06.006 – ident: B56 doi: 10.1038/s41598-021-85200-x – ident: B67 doi: 10.1016/j.jpba.2010.03.045 – ident: B7 doi: 10.1084/jem.20141404 – ident: B22 doi: 10.1038/s41564-020-0756-3 – ident: B31 doi: 10.1093/bfgp/elt028 – ident: B54 doi: 10.1016/j.celrep.2019.11.001 – ident: B26 doi: 10.1128/IAI.74.4.2215-2223.2006 – ident: B45 doi: 10.1038/s41586-022-04816-9 – ident: B33 doi: 10.1007/82_2019_152 – ident: B66 doi: 10.1016/j.ab.2015.06.006 – ident: B60 doi: 10.1073/pnas.1417683112 |
SSID | ssj0014454 |
Score | 2.4831886 |
Snippet | The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism... The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Antibodies, Bacterial - immunology B cells B-Lymphocytes - immunology Care and treatment Diagnosis Female Glycosylation Health aspects Humans Interleukin-10 Interleukin-10 - immunology Interleukin-10 - metabolism Mice Sialic acids Sialyltransferases - immunology Sialyltransferases - metabolism Staphylococcal Infections - immunology Staphylococcal Infections - microbiology Staphylococcal Infections - prevention & control Staphylococcal Vaccines - immunology Staphylococcus aureus - immunology Staphylococcus aureus infections STAT3 Transcription Factor - immunology STAT3 Transcription Factor - metabolism Testing Vaccination |
Title | Pathobiont-driven antibody sialylation through IL-10 undermines vaccination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39680460 https://www.proquest.com/docview/3146911375 https://pubmed.ncbi.nlm.nih.gov/PMC11645145 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6TUK8IH5TGCUgBEhVStI4sfMI1dA66JhGB32LYjtZM6EUNS3SEH8859hxEtqHwktUxdfE8X05n5277xB6yQT3h2ng2TF1iI059W0Wh9zGInQS7DmCUpmNPDkNji_wycyfdTq_m9klKzbgv7bmlfyPVuEc6FVmyf6DZs1F4QT8Bv3CETQMx510fAbum6RRyle2WEqz1YdxythCXPcLuPu1inMztXjGn8AcloVvZQBMUvR_xpxnea2bqxo6DUfVJE9mNSdH_fF-WqiC1qN5Nrcn1URY2rQrBbbxspjHot40HcWyMriK0R2YD03wf711Lbdfsrz_bTBtbkkMS-JDlTHZyAKQ5qkReDqq-jre6GuVVuDaIVFUL8Y0641OhUGVbL1p84nkkD0ZjcG2-Npatni1x5-_tk8qvl9aZgGDxd9DB0NYZJSp4jMTIAQrTV9zeKuOaV4quN1bc7OWN_P3nN5watoBtw0PZnob3dIatd4pHN1BnSS_i25MdHDFPfRxA05WBSerASdLw8kq4WTVcLIacLqPLj4cTUfHtq61YXOfOisbw6TocyErY3oJY6Ggwkn9cEhZQFhCWeIN0zjlKcFCpGHiMhxgl7M0jDFORep6D9B-vsiTR8jCIQGzDgt5zyMY2ikhDuapy8FbcoM46aI31ZhFXBPRy3oo36NyQUqGkRneLnphRH8o9pVtQs_kwEcqcdi811GtYLhMKSH5TnIZUHUZr4siAlzsIPTlvCX0WgulC-gzj3USCzy55FFrSb5qSV4qFvltgoctQTDvvNX8vMJTJJtkTGSeLNZF5IGTA66KR_wueqjwZQbJCwMqQx66iLaQZwQkq3y7Jc_mJbu86wYYVlH-410G7Qm6WRuAQ7S_Wq6Tp-Clr1gP7ZEZ6aGD90enZ-e98tX6A-mg7Yk |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathobiont-driven+antibody+sialylation+through+IL-10+undermines+vaccination&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Tsai%2C+Chih-Ming&rft.au=Hajam%2C+Irshad+A&rft.au=Caldera%2C+J.R&rft.au=Chiang%2C+Austin+W.T&rft.date=2024-12-16&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.volume=134&rft.issue=24&rft_id=info:doi/10.1172%2FJCI179563&rft.externalDBID=IOV&rft.externalDocID=A822789153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon |