Artificial-Intelligence-Based Models Coupled with Correspondence Analysis Visualization on ART-Cases from Gombe State, Nigeria: A Comparative Study
Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using va...
Saved in:
Published in | Life (Basel, Switzerland) Vol. 13; no. 3; p. 715 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R
(0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables. |
---|---|
AbstractList | Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R
(0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables. Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R[sup.2] (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables. Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R2 (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables. Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R 2 (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables. |
Audience | Academic |
Author | Etikan, Ilker Bala, Kabiru Usman, A G Abba, S I |
AuthorAffiliation | 4 Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Cyprus 2 Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria 3 Operational Research Centre in Healthcare, Near East University, 99138 Nicosia, Cyprus 1 Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus 5 Interdisciplinary Research Centre for Membrane and Water Security, Faculty of Petroleum and Minerals, King Fahd University, Dhahran 31261, Saudi Arabia |
AuthorAffiliation_xml | – name: 3 Operational Research Centre in Healthcare, Near East University, 99138 Nicosia, Cyprus – name: 1 Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus – name: 4 Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Cyprus – name: 5 Interdisciplinary Research Centre for Membrane and Water Security, Faculty of Petroleum and Minerals, King Fahd University, Dhahran 31261, Saudi Arabia – name: 2 Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria |
Author_xml | – sequence: 1 givenname: Kabiru surname: Bala fullname: Bala, Kabiru organization: Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria – sequence: 2 givenname: Ilker orcidid: 0000-0001-9171-8269 surname: Etikan fullname: Etikan, Ilker organization: Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus – sequence: 3 givenname: A G orcidid: 0000-0001-5660-4581 surname: Usman fullname: Usman, A G organization: Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Cyprus – sequence: 4 givenname: S I surname: Abba fullname: Abba, S I organization: Interdisciplinary Research Centre for Membrane and Water Security, Faculty of Petroleum and Minerals, King Fahd University, Dhahran 31261, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36983868$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNUREvpjTOKxAWkpthxnDhcUFhBWamA1Bau1sQeb10l8WInheVv8IfxdkvZRdiW_DHPvJbH7-Nkb3ADJslTSk4Yq8mrzhqkjDBSUf4gOchJxTNa5fXe1no_OQrhmsRWclqK4lGyz8paMFGKg-RX40drrLLQZfNhxK6zCxwUZm8hoE4_Oo1dSGduWnZx-92OV3HjPYalG_QaTJsBulWwIf1qwwSd_QmjdUMaR3N-mc2iTEiNd3166voW04sRRjxOP8VrvIXXaRP1-iX4mHWzjk569SR5aKALeHQ3HyZf3r-7nH3Izj6fzmfNWaa4IGNWlCByUtclFUaQEpQSrDVciao1BW9FSbQqKqEKzQ2pgULRQs0M46ZAQIPsMJlvdLWDa7n0tge_kg6svD1wfiEhVkd1KIVgiLXKAaq2aCvdllTVpa5MIZAWQketNxut5dT2qBUOo4duR3Q3MtgruXA3khLCq6LOo8KLOwXvvk0YRtnboOKHwIBuCjKv6pwTEp8V0ef_oNdu8vEfbilaloJQ_pdaQHyBHYyLF6u1qGwqTqJ_RE0jdfIfKnaNvVXRbcbG852ElzsJkRnxx7iAKQQ5vzjfZY83rPIuBI_mviCUyLWB5baBI_5su4j38B-7st85me1q |
CitedBy_id | crossref_primary_10_52589_AJSTE_XTWJGQQL crossref_primary_10_3390_pr11092549 crossref_primary_10_3390_foods12142694 |
Cites_doi | 10.1109/72.788640 10.1016/j.jhydrol.2019.123962 10.1177/002224378602300302 10.1016/j.procs.2017.11.212 10.1007/BF02309007 10.1016/j.jhydrol.2011.03.002 10.1111/j.1553-2712.2004.tb01379.x 10.1016/j.jiac.2020.09.020 10.1186/s12874-022-01625-6 10.1111/j.1467-842X.2012.00676.x 10.1016/j.jfbs.2014.01.005 10.1186/s12913-023-09052-z 10.1002/wics.10 10.15611/eada.2020.1.06 10.52339/tjet.v41i3.845 10.3390/v15010071 10.1111/j.1751-5823.2004.tb00236.x 10.1016/j.jclinepi.2009.08.008 10.1097/MD.0000000000032638 10.1016/j.jhydrol.2020.124974 10.1371/journal.pone.0276116 10.1186/s12866-023-02769-1 10.1093/jpids/piy080 10.1007/s10461-022-03949-2 10.1186/s12879-020-4836-z 10.1016/j.intimp.2023.109756 10.1001/jama.2022.23617 10.3390/app13021163 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION ISR 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA |
DOI | 10.3390/life13030715 |
DatabaseName | PubMed CrossRef Gale In Context: Science Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
EISSN | 2075-1729 |
ExternalDocumentID | oai_doaj_org_article_883ee9c2aa7b4b7db61c96d7f48e148d A750339891 10_3390_life13030715 36983868 |
Genre | Journal Article |
GeographicLocations | Nigeria |
GeographicLocations_xml | – name: Nigeria |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK ESX GROUPED_DOAJ HCIFZ HYE IAO ISR ITC KQ8 LK8 M48 M7P MODMG M~E NPM OK1 PATMY PGMZT PIMPY PROAC PYCSY RIG RPM AAYXX CITATION 8FD ABUWG AZQEC COVID DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c580t-46a82099618f806acc83bf5c87bf45b860dc478c4d5f09a1a4ba93f35f4eaefe3 |
IEDL.DBID | RPM |
ISSN | 2075-1729 |
IngestDate | Tue Oct 22 15:12:46 EDT 2024 Tue Sep 17 21:35:25 EDT 2024 Fri Oct 25 04:41:23 EDT 2024 Thu Oct 10 20:27:33 EDT 2024 Wed May 22 19:02:19 EDT 2024 Tue May 14 05:23:21 EDT 2024 Sat Sep 28 21:34:04 EDT 2024 Thu Sep 26 19:22:01 EDT 2024 Sat Sep 28 08:18:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | protease inhibitors Nigeria antiretroviral therapy correspondence analysis Gombe state artificial intelligence |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c580t-46a82099618f806acc83bf5c87bf45b860dc478c4d5f09a1a4ba93f35f4eaefe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5660-4581 0000-0001-9171-8269 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057492/ |
PMID | 36983868 |
PQID | 2791668015 |
PQPubID | 2032373 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_883ee9c2aa7b4b7db61c96d7f48e148d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10057492 proquest_miscellaneous_2792500860 proquest_journals_2791668015 gale_infotracmisc_A750339891 gale_infotracacademiconefile_A750339891 gale_incontextgauss_ISR_A750339891 crossref_primary_10_3390_life13030715 pubmed_primary_36983868 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Life (Basel, Switzerland) |
PublicationTitleAlternate | Life (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sourial (ref_30) 2010; 63 Zalla (ref_3) 2023; 329 Beh (ref_26) 2004; 72 Dimopoulos (ref_16) 1995; 2 ref_14 ref_12 Vapnik (ref_17) 1999; 10 Yindom (ref_7) 2023; 116 (ref_31) 2020; 24 He (ref_10) 2021; 27 ref_15 Jin (ref_9) 2023; 102 Farhat (ref_18) 1992; 7 (ref_24) 2015; 66 Hoffman (ref_28) 1986; 23 Puertas (ref_11) 2020; 75 Chaula (ref_13) 2022; 41 Marill (ref_22) 2004; 11 ref_1 Beh (ref_25) 2012; 54 ref_2 Nourani (ref_21) 2011; 402 Kudlats (ref_29) 2014; 5 Elkiran (ref_20) 2019; 577 Rocca (ref_8) 2019; 8 (ref_27) 2009; 1 ref_5 Abba (ref_23) 2020; 587 ref_4 Abba (ref_19) 2017; 120 ref_6 |
References_xml | – volume: 10 start-page: 988 year: 1999 ident: ref_17 article-title: An Overview of Statistical Learning Theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788640 contributor: fullname: Vapnik – volume: 577 start-page: 123962 year: 2019 ident: ref_20 article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123962 contributor: fullname: Elkiran – volume: 23 start-page: 213 year: 1986 ident: ref_28 article-title: Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research publication-title: J. Mark. Res. doi: 10.1177/002224378602300302 contributor: fullname: Hoffman – volume: 7 start-page: 63 year: 1992 ident: ref_18 article-title: Photonit neural networks and learning mathines the role of electron-trapping materials publication-title: IEEE Expert-Intell. Syst. Appl. contributor: fullname: Farhat – volume: 120 start-page: 75 year: 2017 ident: ref_19 article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.212 contributor: fullname: Abba – volume: 2 start-page: 1 year: 1995 ident: ref_16 article-title: Use of some sensitivity criteria for choosing networks with good generalization ability publication-title: Neural Process. Lett. doi: 10.1007/BF02309007 contributor: fullname: Dimopoulos – volume: 402 start-page: 41 year: 2011 ident: ref_21 article-title: Two hybrid Artificial Intelligence approaches for modeling rainfall—Runoff process publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.03.002 contributor: fullname: Nourani – volume: 11 start-page: 94 year: 2004 ident: ref_22 article-title: Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression publication-title: Acad. Emerg. Med. doi: 10.1111/j.1553-2712.2004.tb01379.x contributor: fullname: Marill – volume: 27 start-page: 218 year: 2021 ident: ref_10 article-title: Multidrug-resistant Staphylococcus aureus nasal carriage among HIV-positive outpatients in Guangzhou, China: Prevalence, risk factors, phenotypic and molecular characteristics publication-title: J. Infect. Chemother. doi: 10.1016/j.jiac.2020.09.020 contributor: fullname: He – ident: ref_12 doi: 10.1186/s12874-022-01625-6 – volume: 66 start-page: 45 year: 2015 ident: ref_24 article-title: Multiple linear regression publication-title: EAS Publ. Ser. – volume: 54 start-page: 137 year: 2012 ident: ref_25 article-title: A genealogy of correspondence analysis publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2012.00676.x contributor: fullname: Beh – volume: 5 start-page: 30 year: 2014 ident: ref_29 article-title: Correspondence analysis: A promising technique to interpret qualitative data in family business research publication-title: J. Fam. Bus. Strategy doi: 10.1016/j.jfbs.2014.01.005 contributor: fullname: Kudlats – ident: ref_6 doi: 10.1186/s12913-023-09052-z – volume: 1 start-page: 128 year: 2009 ident: ref_27 article-title: Journal of statistical software publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.10 – volume: 24 start-page: 71 year: 2020 ident: ref_31 article-title: The analysis of the structure of university positions in Poland using classification methods publication-title: Econometrics doi: 10.15611/eada.2020.1.06 – volume: 41 start-page: 64 year: 2022 ident: ref_13 article-title: A Robust Random Forest Prediction Model for Mother-to-Child HIV Transmission Based on Individual Medical History publication-title: Tanzan. J. Eng. Technol. doi: 10.52339/tjet.v41i3.845 contributor: fullname: Chaula – ident: ref_1 doi: 10.3390/v15010071 – volume: 72 start-page: 257 year: 2004 ident: ref_26 article-title: Simple correspondence analysis: A bibliographic review publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2004.tb00236.x contributor: fullname: Beh – volume: 63 start-page: 638 year: 2010 ident: ref_30 article-title: Correspondence analysis is a useful tool to uncover the relationships among categorical variables publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2009.08.008 contributor: fullname: Sourial – volume: 102 start-page: e32638 year: 2023 ident: ref_9 article-title: Association between serum amylase levels and CD4 cell counts in newly diagnosed people living with HIV: A case-control study publication-title: Medicine doi: 10.1097/MD.0000000000032638 contributor: fullname: Jin – volume: 587 start-page: 124974 year: 2020 ident: ref_23 article-title: Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124974 contributor: fullname: Abba – ident: ref_15 doi: 10.1371/journal.pone.0276116 – ident: ref_5 doi: 10.1186/s12866-023-02769-1 – volume: 8 start-page: 433 year: 2019 ident: ref_8 article-title: Human Immunodeficiency Virus (HIV)-Antibody repertoire estimates reservoir size and time of antiretroviral therapy initiation in virally suppressed perinatally HIV-infected children publication-title: J. Pediatr. Infect. Dis. Soc. doi: 10.1093/jpids/piy080 contributor: fullname: Rocca – volume: 75 start-page: 2258 year: 2020 ident: ref_11 article-title: HIV-1 DNA decay dynamics in early treated individuals: Practical considerations for clinical trial design publication-title: J. Antimicrob. Chemother. contributor: fullname: Puertas – ident: ref_2 doi: 10.1007/s10461-022-03949-2 – ident: ref_4 doi: 10.1186/s12879-020-4836-z – volume: 116 start-page: 109756 year: 2023 ident: ref_7 article-title: The effect of 48-weeks azithromycin therapy on levels of soluble biomarkers associated with HIV-associated chronic lung disease publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2023.109756 contributor: fullname: Yindom – volume: 329 start-page: 52 year: 2023 ident: ref_3 article-title: Association of Race and Ethnicity with Initial Prescription of Antiretroviral Therapy Among People with HIV in the US publication-title: JAMA doi: 10.1001/jama.2022.23617 contributor: fullname: Zalla – ident: ref_14 doi: 10.3390/app13021163 |
SSID | ssj0000651684 |
Score | 2.3085296 |
Snippet | Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 715 |
SubjectTerms | Accuracy Acquired immune deficiency syndrome Adaptive systems AIDS AIDS (Disease) AIDS research Algorithms Antiretroviral agents Antiretroviral therapy Antiviral agents Artificial intelligence Artificial neural networks Chi-square test Comparative analysis Comparative studies Contingency correspondence analysis Drug therapy Drugs Ethnicity Fuzzy logic Fuzzy systems Gombe state Highly active antiretroviral therapy HIV HIV (Viruses) HIV patients Human immunodeficiency virus Internet Machine learning Neural networks Neurons Nigeria Patient compliance Patient outcomes Patients protease inhibitors Regression analysis Regression models Safety and security measures Severe acute respiratory syndrome coronavirus 2 Statistics Support vector machines Teaching hospitals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQSkhcEP8EFmQQiAvR5sd2bG7dimUXiT0Ai_Zm2Y4NlUpSbdrD3vYh4AV5EmbitCTiwAWpl9TTtPaMZz6nM98Q8sJ6XluW-dQI71JWO9hS1vBUcMecKn3IFBY4fzgVx2fs_Tk_H7X6wpywSA8cF-5AytJ75QpjKstsVVuROyXqKjDpAcrXvffN1OgwFX0wz4VkMdO9hHP9wXIRPPprCKl8EoN6qv6_HfIoIk2zJUfh5-gWuTngRjqLv_c2ueabO-R67CR5eZf8xIFIBpGejFg200OIUjXFjmfLjs7bzWoJl_jwFS6wL8eqbfquonTLTkK_LDostIzlmRReAHl_Xf2Yw406itUo9F373Xraw9TX9BS-CIz4DZ3R-R8mcYr5iZf3yNnR28_z43TouJA6LrN1yoSRWEsrchlkJoxzsrSBO1nZwLiVIqsdq6RjNQclmtwwa1QZSh6YNz748j7Za9rGPyQUefnLgtfO-sCKkPUPoEUO97QG1GcS8nKrA72KxBoaDiSoKz3WVUIOUUE7GaTD7t8AI9GDkeh_GUlCnqN6NRJeNJhR89Vsuk6ffPqoZ_0fuUqqPCGvBqHQgqKdGQoUYD7IkTWR3J9Iwo500-GtFenBI3S6qACIC8ADMKNnu2H8JGa5Nb7d9DKASOGQmSXkQTS63bxLoWQphUyInJjjZGGmI83iW88XnmPFMVPFo_-xlI_JjQJwXkzD2yd764uNfwK4bG2f9lvwNxvGO1o priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKyQuiDeBBRkE4kK0ediOwwW11S67SKzQwqK9WbZjL5VKUjbtYW_8CPiD_BJmErfbCAmpl9TTPDrjeWXmG0JeGscrwxIXa-FszCoLW8poHgtumS1z55MSG5w_HovDU_bhjJ-FhFsbyirXOrFT1FVjMUe-lxXgyAjQp_zd4keMU6Pw7WoYoXGd7GQQKSQjsjPZP_50ssmygIFNhWR9xXsO8f3efOYd6m0wrXxgizrI_n8V85ZlGlZNbpmhg9vkVvAf6bhn-B1yzdV3yY1-ouTlPfIbF3pQiPhoC20znoC1qihOPpu3dNqsFnM4xCQsHOB8jkVTd9NF6RqlhH6dtdhw2bdpUviA6_vn568pnKil2JVC3zffjaOdu_qGHsOFQJjf0jGdXiGKU6xTvLxPTg_2v0wP4zB5IbZcJsuYCS2xp1ak0stEaGtlbjy3sjCecSNFUllWSMsqDszUqWZGl7nPuWdOO-_yB2RUN7V7RCji8-cZr6xxnmU-6RLRIoVzGi2qQkfk1ZoHatEDbCgITJBXaptXEZkggzY0CIvdfdFcnKuwy5SUuXOlzbQuDDNFZURqS7iKZ9JB3FdF5AWyVyHwRY2VNed61bbq6POJGncvdEtZphF5HYh8A4y2OjQqwPMgVtaAcndACTvTDpfXUqSCZmjVlRxH5PlmGX-J1W61a1YdDXimEGwmEXnYC93muXNRylwKGRE5EMfBHzNcqWffOtzwFDuPWZk9_v99PSE3M_Dk-kK7XTJaXqzcU_C8luZZ2F5_AQwVMzo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxJuUggwCcSGQh-04SAhtV5QWiR6ARb1ZtmOXlbbJstmV2Bs_Av4gv4SZPJaNyhEpl8STRPbMeGaSmW8IeWIcLwyLXKiFsyErLKiU0TwU3DKbp85HORY4fzgRRxP2_pSf7pC-22i3gPU_QzvsJzVZzF58_7Z-Awr_GiNOCNlfzqbe4VYM1pJfIpcTBjE6JvF1jn67J_NYSNZmvl-4aWCTGuj-ixv0loUaZk9umaPD6-Ra50fSUcv4G2THlTfJlbaz5PoW-YUDLThEeLyFuhkegNUqKHZAm9V0XK3mMzjFj7Fwgn065lXZdBmlPVoJ_TKtsfCyLdekcIAL_PvHzzE8qKZYnULfVefG0cZtfU5P4EUg1K_oiI7_IotTzFdc3yaTw7efx0dh14EhtFxGy5AJLbG2VsTSy0hoa2VqPLcyM55xI0VUWJZJywoOTNWxZkbnqU-5Z04779I7ZLesSnePUMTpTxNeWOM8S3zUfJAWMTzTaFFkOiBPex6oeQu0oSBAQV6pbV4F5AAZtKFBeOzmQrU4U522KSlT53KbaJ0ZZrLCiNjm8BbPpIP4rwjIY2SvQgCMEjNszvSqrtXxp49q1PzYzWUeB-RZR-QrYLTVXcECzAcxswaU-wNK0FA7HO6lSPUCrpIMHHMB_gHM6NFmGO_ErLfSVauGBjxUCDqjgNxthW4z71TkMpVCBkQOxHGwMMORcvq1wQ-PsQKZ5cne_1jK--RqAn5fm5a3T3aXi5V7AH7a0jxsVPAPe7ZB6g priority: 102 providerName: Scholars Portal |
Title | Artificial-Intelligence-Based Models Coupled with Correspondence Analysis Visualization on ART-Cases from Gombe State, Nigeria: A Comparative Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36983868 https://www.proquest.com/docview/2791668015 https://search.proquest.com/docview/2792500860 https://pubmed.ncbi.nlm.nih.gov/PMC10057492 https://doaj.org/article/883ee9c2aa7b4b7db61c96d7f48e148d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2ISReEP-XbVQGgXgha_44jsNbGzZWpJZpsGlvke3Yo1KbVEv7sDc-BHxBPglnJymJeEOqWqW-JHXvznfn3P0OoTdCRbkgnnI5VdIluQSVEjxyaSSJTEKlvcQUOE9n9OySfL6OrncQbWthbNK-FPPjYrE8LubfbW7laimHbZ7Y8Hya-qaEkiTBcBftgoR2YvR6_Y18ykid5R5CTD9czLUyazWYU9OpJqQJC5kBV-2YIovY_--63DFM_aTJjhU6fYQeNu4jHtU_8zHaUcUTdL9uKHn3FP0yAzUmhDvpgG26YzBWOTaNzxYVTsvNagGHZg8WDkx7jlVZ2OaiuAUpwVfzytRb1lWaGF7g-f7-8TOFC1XYFKXgT-VSKGy91fd4BjcCWf6ARzj9CyiOTZri3TN0eXryLT1zm8YLroyYt3YJ5cyU1FKfaeZRLiULhY4ki4UmkWDUyyWJmSR5BLzkPieCJ6EOI00UV1qFz9FeURZqH2EDzx8GUS6F0iTQnt2Hpj5cU3Cax9xBb1seZKsaXyODuMSwLeuyzUFjw6AtjUHFtl-UtzdZIxsZY6FSiQw4jwURcS6oLxO4iyZMQdiXO-i1YW9mcC8Kk1hzwzdVlU2-XmQj-zw3YYnvoHcNkS6B0ZI3dQowHwOV1aM86lGCYsr-cCtFWbMwVFkQgz9OwS2AGb3aDpszTbJbocqNpQHHFGJNz0EvaqHbzruVXQexnjj2_pj-CGiRhQ1vtebg_089RA8CcPLqHLwjtLe-3aiX4JStxQDdG5_Mzi_gM_1yNfk4sJsb8D4lbGD18w_-xEA7 |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,21400,24330,27936,27937,33756,33757,38528,43817,43907,53804,53806,74636,74746 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENZAOwxceD8MBQQDwwW3fkiyzIVJAyWBNsxA2-lNI8lyyRDsUCeHcuJHwB_kl7BrO2kMMxyYycXR2o7iT7ur9e63hDwxjmeGBc7XwlmfZRaWlNHcF9wym8YuD1IscN4bicEBe3vEj9qAW9WmVS50Yq2os9JijHwrSsCREaBP-cvpVx-7RuHb1baFxnmyDoY1gM3Xev_94fDVMsoCBjYUkjUZ7zGIbE3GuUO9DaaVd2xRTdn_t2JesUzdrMkVM7RzhajFBJrsk8-b85nZtN_-4Hb8_xleJZdbD5X2GkhdI-dccZ1caHpWnt4gP3GgoZ3whyt8nv422MOMYm-1SUX75Xw6gUMM88IBdgCZlkXdv5QueFDo4bjCks6mEJTCB5zrX99_9OFCFcW6F_qm_GIcrR3i53QEN4Ll8oL2aP-Ms5xiJuTpTXKw83q_P_Db3g6-5TKY-UxoiVW7IpS5DIS2VsYm51YmJmfcSBFkliXSsowDXHSomdFpnMc8Z0673MW3yFpRFu4OodgBII54Zo3LWZQHdahbhHBNo0WWaI88XTxlNW0oPBRsfRANahUNHtlGCCxlkHi7_qI8OVbtOlZSxs6lNtI6McwkmRGhTeEuOZMOdpaZRx4jgBRSaxSYu3Os51Wlhh8_qF79yjiVaeiRZ61QXgKUrG5LIWA-yMbVkdzoSMLat93hBZRUq3sqdYYjjzxaDuOZmE9XuHJey4DvC9vZwCO3G1gv5x2LVMZSSI_IDuA7f0x3pBh_qpnJQ6xtZml099-_6yG5ONjf21W7w9G7e-RSBH5jk9a3QdZmJ3N3H_y8mXnQLubfyo9ZGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKxAXxJvAAgaBuBA1D9txuKC2bNnyqFYLi_YW2Y69W6mblE172Bs_Av4gv4SZJO02QkLKJfHkOU87M98Q8lJbnmsWWF8Ja3yWG1AprbgvuGEmja0LUixw_jIV-0fs4zE_bvOfqjatcm0Ta0OdlwbXyPtRAoGMAHvK-65Nizh4P363-OFjByn809q207hKdhJEweqRneHe9OBws-ICzjYUkjXZ7zHM9fvzmbNow8HN8o5fquH7_zXSW16qm0G55ZLGt8jNNpakg4b5t8kVW9wh15rukhd3yW8caAAi_MkW8qY_BM-VU-yCNq_oqFwt5rCLC7Kwg706FmVRdxqla8QS-n1WYfFlU7JJYYMw-M_PXyO4UEWxQoV-KM-0pXXo-oZO4UYg2G_pgI4u0cUp5ixe3CNH471vo32_7cLgGy6Dpc-EklhfK0LpZCCUMTLWjhuZaMe4liLIDUukYTkHxqpQMa3S2MXcMauss_F90ivKwj4kFLH644jnRlvHIhfUi9IihGtqJfJEeeTVmgfZogHbyGCSgrzKtnnlkSEyaEODENn1gfL8JGs1LpMytjY1kVKJZjrJtQhNCndxTFqYA-YeeYHszRAEo0BxOlGrqsomXw-zQf1zN5Vp6JHXLZErgdFGtUUL8D6Im9Wh3O1Qgpaa7vBairLWSlTZpUx75PlmGM_EzLfClquaBqJUmHgGHnnQCN3mvWORylgK6RHZEcfOh-mOFLPTGkM8xCpklkaP_v9cz8h10LLs82T66TG5EUGA1-Tf7ZLe8nxln0BAttRPW037CzaaOmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial-Intelligence-Based+Models+Coupled+with+Correspondence+Analysis+Visualization+on+ART%E2%80%94Cases+from+Gombe+State%2C+Nigeria%3A+A+Comparative+Study&rft.jtitle=Life+%28Basel%2C+Switzerland%29&rft.au=Kabiru+Bala&rft.au=Ilker+Etikan&rft.au=A.+G.+Usman&rft.au=S.+I.+Abba&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2075-1729&rft.volume=13&rft.issue=3&rft.spage=715&rft_id=info:doi/10.3390%2Flife13030715&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_883ee9c2aa7b4b7db61c96d7f48e148d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1729&client=summon |