Artificial-Intelligence-Based Models Coupled with Correspondence Analysis Visualization on ART-Cases from Gombe State, Nigeria: A Comparative Study

Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using va...

Full description

Saved in:
Bibliographic Details
Published inLife (Basel, Switzerland) Vol. 13; no. 3; p. 715
Main Authors Bala, Kabiru, Etikan, Ilker, Usman, A G, Abba, S I
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.
AbstractList Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.
Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R[sup.2] (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.
Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R2 (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.
Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R 2 (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.
Audience Academic
Author Etikan, Ilker
Bala, Kabiru
Usman, A G
Abba, S I
AuthorAffiliation 4 Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Cyprus
2 Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria
3 Operational Research Centre in Healthcare, Near East University, 99138 Nicosia, Cyprus
1 Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus
5 Interdisciplinary Research Centre for Membrane and Water Security, Faculty of Petroleum and Minerals, King Fahd University, Dhahran 31261, Saudi Arabia
AuthorAffiliation_xml – name: 3 Operational Research Centre in Healthcare, Near East University, 99138 Nicosia, Cyprus
– name: 1 Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus
– name: 4 Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Cyprus
– name: 5 Interdisciplinary Research Centre for Membrane and Water Security, Faculty of Petroleum and Minerals, King Fahd University, Dhahran 31261, Saudi Arabia
– name: 2 Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria
Author_xml – sequence: 1
  givenname: Kabiru
  surname: Bala
  fullname: Bala, Kabiru
  organization: Taraba State Polytechnic Suntai, Jalingo Campus, Howayi 660213, Taraba, Nigeria
– sequence: 2
  givenname: Ilker
  orcidid: 0000-0001-9171-8269
  surname: Etikan
  fullname: Etikan, Ilker
  organization: Biostatistics Department, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus
– sequence: 3
  givenname: A G
  orcidid: 0000-0001-5660-4581
  surname: Usman
  fullname: Usman, A G
  organization: Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, Cyprus
– sequence: 4
  givenname: S I
  surname: Abba
  fullname: Abba, S I
  organization: Interdisciplinary Research Centre for Membrane and Water Security, Faculty of Petroleum and Minerals, King Fahd University, Dhahran 31261, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36983868$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpjTOKxAWkpthxnDhcUFhBWamA1Bau1sQeb10l8WInheVv8IfxdkvZRdiW_DHPvJbH7-Nkb3ADJslTSk4Yq8mrzhqkjDBSUf4gOchJxTNa5fXe1no_OQrhmsRWclqK4lGyz8paMFGKg-RX40drrLLQZfNhxK6zCxwUZm8hoE4_Oo1dSGduWnZx-92OV3HjPYalG_QaTJsBulWwIf1qwwSd_QmjdUMaR3N-mc2iTEiNd3166voW04sRRjxOP8VrvIXXaRP1-iX4mHWzjk569SR5aKALeHQ3HyZf3r-7nH3Izj6fzmfNWaa4IGNWlCByUtclFUaQEpQSrDVciao1BW9FSbQqKqEKzQ2pgULRQs0M46ZAQIPsMJlvdLWDa7n0tge_kg6svD1wfiEhVkd1KIVgiLXKAaq2aCvdllTVpa5MIZAWQketNxut5dT2qBUOo4duR3Q3MtgruXA3khLCq6LOo8KLOwXvvk0YRtnboOKHwIBuCjKv6pwTEp8V0ef_oNdu8vEfbilaloJQ_pdaQHyBHYyLF6u1qGwqTqJ_RE0jdfIfKnaNvVXRbcbG852ElzsJkRnxx7iAKQQ5vzjfZY83rPIuBI_mviCUyLWB5baBI_5su4j38B-7st85me1q
CitedBy_id crossref_primary_10_52589_AJSTE_XTWJGQQL
crossref_primary_10_3390_pr11092549
crossref_primary_10_3390_foods12142694
Cites_doi 10.1109/72.788640
10.1016/j.jhydrol.2019.123962
10.1177/002224378602300302
10.1016/j.procs.2017.11.212
10.1007/BF02309007
10.1016/j.jhydrol.2011.03.002
10.1111/j.1553-2712.2004.tb01379.x
10.1016/j.jiac.2020.09.020
10.1186/s12874-022-01625-6
10.1111/j.1467-842X.2012.00676.x
10.1016/j.jfbs.2014.01.005
10.1186/s12913-023-09052-z
10.1002/wics.10
10.15611/eada.2020.1.06
10.52339/tjet.v41i3.845
10.3390/v15010071
10.1111/j.1751-5823.2004.tb00236.x
10.1016/j.jclinepi.2009.08.008
10.1097/MD.0000000000032638
10.1016/j.jhydrol.2020.124974
10.1371/journal.pone.0276116
10.1186/s12866-023-02769-1
10.1093/jpids/piy080
10.1007/s10461-022-03949-2
10.1186/s12879-020-4836-z
10.1016/j.intimp.2023.109756
10.1001/jama.2022.23617
10.3390/app13021163
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
ISR
8FD
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.3390/life13030715
DatabaseName PubMed
CrossRef
Gale In Context: Science
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2075-1729
ExternalDocumentID oai_doaj_org_article_883ee9c2aa7b4b7db61c96d7f48e148d
A750339891
10_3390_life13030715
36983868
Genre Journal Article
GeographicLocations Nigeria
GeographicLocations_xml – name: Nigeria
GroupedDBID 53G
5VS
7XC
8FE
8FH
AADQD
AAFWJ
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
ISR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
NPM
OK1
PATMY
PGMZT
PIMPY
PROAC
PYCSY
RIG
RPM
AAYXX
CITATION
8FD
ABUWG
AZQEC
COVID
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c580t-46a82099618f806acc83bf5c87bf45b860dc478c4d5f09a1a4ba93f35f4eaefe3
IEDL.DBID RPM
ISSN 2075-1729
IngestDate Tue Oct 22 15:12:46 EDT 2024
Tue Sep 17 21:35:25 EDT 2024
Fri Oct 25 04:41:23 EDT 2024
Thu Oct 10 20:27:33 EDT 2024
Wed May 22 19:02:19 EDT 2024
Tue May 14 05:23:21 EDT 2024
Sat Sep 28 21:34:04 EDT 2024
Thu Sep 26 19:22:01 EDT 2024
Sat Sep 28 08:18:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords protease inhibitors
Nigeria
antiretroviral therapy
correspondence analysis
Gombe state
artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-46a82099618f806acc83bf5c87bf45b860dc478c4d5f09a1a4ba93f35f4eaefe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5660-4581
0000-0001-9171-8269
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057492/
PMID 36983868
PQID 2791668015
PQPubID 2032373
ParticipantIDs doaj_primary_oai_doaj_org_article_883ee9c2aa7b4b7db61c96d7f48e148d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10057492
proquest_miscellaneous_2792500860
proquest_journals_2791668015
gale_infotracmisc_A750339891
gale_infotracacademiconefile_A750339891
gale_incontextgauss_ISR_A750339891
crossref_primary_10_3390_life13030715
pubmed_primary_36983868
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Life (Basel, Switzerland)
PublicationTitleAlternate Life (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sourial (ref_30) 2010; 63
Zalla (ref_3) 2023; 329
Beh (ref_26) 2004; 72
Dimopoulos (ref_16) 1995; 2
ref_14
ref_12
Vapnik (ref_17) 1999; 10
Yindom (ref_7) 2023; 116
(ref_31) 2020; 24
He (ref_10) 2021; 27
ref_15
Jin (ref_9) 2023; 102
Farhat (ref_18) 1992; 7
(ref_24) 2015; 66
Hoffman (ref_28) 1986; 23
Puertas (ref_11) 2020; 75
Chaula (ref_13) 2022; 41
Marill (ref_22) 2004; 11
ref_1
Beh (ref_25) 2012; 54
ref_2
Nourani (ref_21) 2011; 402
Kudlats (ref_29) 2014; 5
Elkiran (ref_20) 2019; 577
Rocca (ref_8) 2019; 8
(ref_27) 2009; 1
ref_5
Abba (ref_23) 2020; 587
ref_4
Abba (ref_19) 2017; 120
ref_6
References_xml – volume: 10
  start-page: 988
  year: 1999
  ident: ref_17
  article-title: An Overview of Statistical Learning Theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788640
  contributor:
    fullname: Vapnik
– volume: 577
  start-page: 123962
  year: 2019
  ident: ref_20
  article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123962
  contributor:
    fullname: Elkiran
– volume: 23
  start-page: 213
  year: 1986
  ident: ref_28
  article-title: Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research
  publication-title: J. Mark. Res.
  doi: 10.1177/002224378602300302
  contributor:
    fullname: Hoffman
– volume: 7
  start-page: 63
  year: 1992
  ident: ref_18
  article-title: Photonit neural networks and learning mathines the role of electron-trapping materials
  publication-title: IEEE Expert-Intell. Syst. Appl.
  contributor:
    fullname: Farhat
– volume: 120
  start-page: 75
  year: 2017
  ident: ref_19
  article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.212
  contributor:
    fullname: Abba
– volume: 2
  start-page: 1
  year: 1995
  ident: ref_16
  article-title: Use of some sensitivity criteria for choosing networks with good generalization ability
  publication-title: Neural Process. Lett.
  doi: 10.1007/BF02309007
  contributor:
    fullname: Dimopoulos
– volume: 402
  start-page: 41
  year: 2011
  ident: ref_21
  article-title: Two hybrid Artificial Intelligence approaches for modeling rainfall—Runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.03.002
  contributor:
    fullname: Nourani
– volume: 11
  start-page: 94
  year: 2004
  ident: ref_22
  article-title: Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/j.1553-2712.2004.tb01379.x
  contributor:
    fullname: Marill
– volume: 27
  start-page: 218
  year: 2021
  ident: ref_10
  article-title: Multidrug-resistant Staphylococcus aureus nasal carriage among HIV-positive outpatients in Guangzhou, China: Prevalence, risk factors, phenotypic and molecular characteristics
  publication-title: J. Infect. Chemother.
  doi: 10.1016/j.jiac.2020.09.020
  contributor:
    fullname: He
– ident: ref_12
  doi: 10.1186/s12874-022-01625-6
– volume: 66
  start-page: 45
  year: 2015
  ident: ref_24
  article-title: Multiple linear regression
  publication-title: EAS Publ. Ser.
– volume: 54
  start-page: 137
  year: 2012
  ident: ref_25
  article-title: A genealogy of correspondence analysis
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/j.1467-842X.2012.00676.x
  contributor:
    fullname: Beh
– volume: 5
  start-page: 30
  year: 2014
  ident: ref_29
  article-title: Correspondence analysis: A promising technique to interpret qualitative data in family business research
  publication-title: J. Fam. Bus. Strategy
  doi: 10.1016/j.jfbs.2014.01.005
  contributor:
    fullname: Kudlats
– ident: ref_6
  doi: 10.1186/s12913-023-09052-z
– volume: 1
  start-page: 128
  year: 2009
  ident: ref_27
  article-title: Journal of statistical software
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.10
– volume: 24
  start-page: 71
  year: 2020
  ident: ref_31
  article-title: The analysis of the structure of university positions in Poland using classification methods
  publication-title: Econometrics
  doi: 10.15611/eada.2020.1.06
– volume: 41
  start-page: 64
  year: 2022
  ident: ref_13
  article-title: A Robust Random Forest Prediction Model for Mother-to-Child HIV Transmission Based on Individual Medical History
  publication-title: Tanzan. J. Eng. Technol.
  doi: 10.52339/tjet.v41i3.845
  contributor:
    fullname: Chaula
– ident: ref_1
  doi: 10.3390/v15010071
– volume: 72
  start-page: 257
  year: 2004
  ident: ref_26
  article-title: Simple correspondence analysis: A bibliographic review
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2004.tb00236.x
  contributor:
    fullname: Beh
– volume: 63
  start-page: 638
  year: 2010
  ident: ref_30
  article-title: Correspondence analysis is a useful tool to uncover the relationships among categorical variables
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2009.08.008
  contributor:
    fullname: Sourial
– volume: 102
  start-page: e32638
  year: 2023
  ident: ref_9
  article-title: Association between serum amylase levels and CD4 cell counts in newly diagnosed people living with HIV: A case-control study
  publication-title: Medicine
  doi: 10.1097/MD.0000000000032638
  contributor:
    fullname: Jin
– volume: 587
  start-page: 124974
  year: 2020
  ident: ref_23
  article-title: Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124974
  contributor:
    fullname: Abba
– ident: ref_15
  doi: 10.1371/journal.pone.0276116
– ident: ref_5
  doi: 10.1186/s12866-023-02769-1
– volume: 8
  start-page: 433
  year: 2019
  ident: ref_8
  article-title: Human Immunodeficiency Virus (HIV)-Antibody repertoire estimates reservoir size and time of antiretroviral therapy initiation in virally suppressed perinatally HIV-infected children
  publication-title: J. Pediatr. Infect. Dis. Soc.
  doi: 10.1093/jpids/piy080
  contributor:
    fullname: Rocca
– volume: 75
  start-page: 2258
  year: 2020
  ident: ref_11
  article-title: HIV-1 DNA decay dynamics in early treated individuals: Practical considerations for clinical trial design
  publication-title: J. Antimicrob. Chemother.
  contributor:
    fullname: Puertas
– ident: ref_2
  doi: 10.1007/s10461-022-03949-2
– ident: ref_4
  doi: 10.1186/s12879-020-4836-z
– volume: 116
  start-page: 109756
  year: 2023
  ident: ref_7
  article-title: The effect of 48-weeks azithromycin therapy on levels of soluble biomarkers associated with HIV-associated chronic lung disease
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2023.109756
  contributor:
    fullname: Yindom
– volume: 329
  start-page: 52
  year: 2023
  ident: ref_3
  article-title: Association of Race and Ethnicity with Initial Prescription of Antiretroviral Therapy Among People with HIV in the US
  publication-title: JAMA
  doi: 10.1001/jama.2022.23617
  contributor:
    fullname: Zalla
– ident: ref_14
  doi: 10.3390/app13021163
SSID ssj0000651684
Score 2.3085296
Snippet Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 715
SubjectTerms Accuracy
Acquired immune deficiency syndrome
Adaptive systems
AIDS
AIDS (Disease)
AIDS research
Algorithms
Antiretroviral agents
Antiretroviral therapy
Antiviral agents
Artificial intelligence
Artificial neural networks
Chi-square test
Comparative analysis
Comparative studies
Contingency
correspondence analysis
Drug therapy
Drugs
Ethnicity
Fuzzy logic
Fuzzy systems
Gombe state
Highly active antiretroviral therapy
HIV
HIV (Viruses)
HIV patients
Human immunodeficiency virus
Internet
Machine learning
Neural networks
Neurons
Nigeria
Patient compliance
Patient outcomes
Patients
protease inhibitors
Regression analysis
Regression models
Safety and security measures
Severe acute respiratory syndrome coronavirus 2
Statistics
Support vector machines
Teaching hospitals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQSkhcEP8EFmQQiAvR5sd2bG7dimUXiT0Ai_Zm2Y4NlUpSbdrD3vYh4AV5EmbitCTiwAWpl9TTtPaMZz6nM98Q8sJ6XluW-dQI71JWO9hS1vBUcMecKn3IFBY4fzgVx2fs_Tk_H7X6wpywSA8cF-5AytJ75QpjKstsVVuROyXqKjDpAcrXvffN1OgwFX0wz4VkMdO9hHP9wXIRPPprCKl8EoN6qv6_HfIoIk2zJUfh5-gWuTngRjqLv_c2ueabO-R67CR5eZf8xIFIBpGejFg200OIUjXFjmfLjs7bzWoJl_jwFS6wL8eqbfquonTLTkK_LDostIzlmRReAHl_Xf2Yw406itUo9F373Xraw9TX9BS-CIz4DZ3R-R8mcYr5iZf3yNnR28_z43TouJA6LrN1yoSRWEsrchlkJoxzsrSBO1nZwLiVIqsdq6RjNQclmtwwa1QZSh6YNz748j7Za9rGPyQUefnLgtfO-sCKkPUPoEUO97QG1GcS8nKrA72KxBoaDiSoKz3WVUIOUUE7GaTD7t8AI9GDkeh_GUlCnqN6NRJeNJhR89Vsuk6ffPqoZ_0fuUqqPCGvBqHQgqKdGQoUYD7IkTWR3J9Iwo500-GtFenBI3S6qACIC8ADMKNnu2H8JGa5Nb7d9DKASOGQmSXkQTS63bxLoWQphUyInJjjZGGmI83iW88XnmPFMVPFo_-xlI_JjQJwXkzD2yd764uNfwK4bG2f9lvwNxvGO1o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKyQuiDeBBRkE4kK0ediOwwW11S67SKzQwqK9WbZjL5VKUjbtYW_8CPiD_BJmErfbCAmpl9TTPDrjeWXmG0JeGscrwxIXa-FszCoLW8poHgtumS1z55MSG5w_HovDU_bhjJ-FhFsbyirXOrFT1FVjMUe-lxXgyAjQp_zd4keMU6Pw7WoYoXGd7GQQKSQjsjPZP_50ssmygIFNhWR9xXsO8f3efOYd6m0wrXxgizrI_n8V85ZlGlZNbpmhg9vkVvAf6bhn-B1yzdV3yY1-ouTlPfIbF3pQiPhoC20znoC1qihOPpu3dNqsFnM4xCQsHOB8jkVTd9NF6RqlhH6dtdhw2bdpUviA6_vn568pnKil2JVC3zffjaOdu_qGHsOFQJjf0jGdXiGKU6xTvLxPTg_2v0wP4zB5IbZcJsuYCS2xp1ak0stEaGtlbjy3sjCecSNFUllWSMsqDszUqWZGl7nPuWdOO-_yB2RUN7V7RCji8-cZr6xxnmU-6RLRIoVzGi2qQkfk1ZoHatEDbCgITJBXaptXEZkggzY0CIvdfdFcnKuwy5SUuXOlzbQuDDNFZURqS7iKZ9JB3FdF5AWyVyHwRY2VNed61bbq6POJGncvdEtZphF5HYh8A4y2OjQqwPMgVtaAcndACTvTDpfXUqSCZmjVlRxH5PlmGX-J1W61a1YdDXimEGwmEXnYC93muXNRylwKGRE5EMfBHzNcqWffOtzwFDuPWZk9_v99PSE3M_Dk-kK7XTJaXqzcU_C8luZZ2F5_AQwVMzo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxJuUggwCcSGQh-04SAhtV5QWiR6ARb1ZtmOXlbbJstmV2Bs_Av4gv4SZPJaNyhEpl8STRPbMeGaSmW8IeWIcLwyLXKiFsyErLKiU0TwU3DKbp85HORY4fzgRRxP2_pSf7pC-22i3gPU_QzvsJzVZzF58_7Z-Awr_GiNOCNlfzqbe4VYM1pJfIpcTBjE6JvF1jn67J_NYSNZmvl-4aWCTGuj-ixv0loUaZk9umaPD6-Ra50fSUcv4G2THlTfJlbaz5PoW-YUDLThEeLyFuhkegNUqKHZAm9V0XK3mMzjFj7Fwgn065lXZdBmlPVoJ_TKtsfCyLdekcIAL_PvHzzE8qKZYnULfVefG0cZtfU5P4EUg1K_oiI7_IotTzFdc3yaTw7efx0dh14EhtFxGy5AJLbG2VsTSy0hoa2VqPLcyM55xI0VUWJZJywoOTNWxZkbnqU-5Z04779I7ZLesSnePUMTpTxNeWOM8S3zUfJAWMTzTaFFkOiBPex6oeQu0oSBAQV6pbV4F5AAZtKFBeOzmQrU4U522KSlT53KbaJ0ZZrLCiNjm8BbPpIP4rwjIY2SvQgCMEjNszvSqrtXxp49q1PzYzWUeB-RZR-QrYLTVXcECzAcxswaU-wNK0FA7HO6lSPUCrpIMHHMB_gHM6NFmGO_ErLfSVauGBjxUCDqjgNxthW4z71TkMpVCBkQOxHGwMMORcvq1wQ-PsQKZ5cne_1jK--RqAn5fm5a3T3aXi5V7AH7a0jxsVPAPe7ZB6g
  priority: 102
  providerName: Scholars Portal
Title Artificial-Intelligence-Based Models Coupled with Correspondence Analysis Visualization on ART-Cases from Gombe State, Nigeria: A Comparative Study
URI https://www.ncbi.nlm.nih.gov/pubmed/36983868
https://www.proquest.com/docview/2791668015
https://search.proquest.com/docview/2792500860
https://pubmed.ncbi.nlm.nih.gov/PMC10057492
https://doaj.org/article/883ee9c2aa7b4b7db61c96d7f48e148d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2ISReEP-XbVQGgXgha_44jsNbGzZWpJZpsGlvke3Yo1KbVEv7sDc-BHxBPglnJymJeEOqWqW-JHXvznfn3P0OoTdCRbkgnnI5VdIluQSVEjxyaSSJTEKlvcQUOE9n9OySfL6OrncQbWthbNK-FPPjYrE8LubfbW7laimHbZ7Y8Hya-qaEkiTBcBftgoR2YvR6_Y18ykid5R5CTD9czLUyazWYU9OpJqQJC5kBV-2YIovY_--63DFM_aTJjhU6fYQeNu4jHtU_8zHaUcUTdL9uKHn3FP0yAzUmhDvpgG26YzBWOTaNzxYVTsvNagGHZg8WDkx7jlVZ2OaiuAUpwVfzytRb1lWaGF7g-f7-8TOFC1XYFKXgT-VSKGy91fd4BjcCWf6ARzj9CyiOTZri3TN0eXryLT1zm8YLroyYt3YJ5cyU1FKfaeZRLiULhY4ki4UmkWDUyyWJmSR5BLzkPieCJ6EOI00UV1qFz9FeURZqH2EDzx8GUS6F0iTQnt2Hpj5cU3Cax9xBb1seZKsaXyODuMSwLeuyzUFjw6AtjUHFtl-UtzdZIxsZY6FSiQw4jwURcS6oLxO4iyZMQdiXO-i1YW9mcC8Kk1hzwzdVlU2-XmQj-zw3YYnvoHcNkS6B0ZI3dQowHwOV1aM86lGCYsr-cCtFWbMwVFkQgz9OwS2AGb3aDpszTbJbocqNpQHHFGJNz0EvaqHbzruVXQexnjj2_pj-CGiRhQ1vtebg_089RA8CcPLqHLwjtLe-3aiX4JStxQDdG5_Mzi_gM_1yNfk4sJsb8D4lbGD18w_-xEA7
link.rule.ids 230,315,730,783,787,867,888,2109,2228,21400,24330,27936,27937,33756,33757,38528,43817,43907,53804,53806,74636,74746
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENZAOwxceD8MBQQDwwW3fkiyzIVJAyWBNsxA2-lNI8lyyRDsUCeHcuJHwB_kl7BrO2kMMxyYycXR2o7iT7ur9e63hDwxjmeGBc7XwlmfZRaWlNHcF9wym8YuD1IscN4bicEBe3vEj9qAW9WmVS50Yq2os9JijHwrSsCREaBP-cvpVx-7RuHb1baFxnmyDoY1gM3Xev_94fDVMsoCBjYUkjUZ7zGIbE3GuUO9DaaVd2xRTdn_t2JesUzdrMkVM7RzhajFBJrsk8-b85nZtN_-4Hb8_xleJZdbD5X2GkhdI-dccZ1caHpWnt4gP3GgoZ3whyt8nv422MOMYm-1SUX75Xw6gUMM88IBdgCZlkXdv5QueFDo4bjCks6mEJTCB5zrX99_9OFCFcW6F_qm_GIcrR3i53QEN4Ll8oL2aP-Ms5xiJuTpTXKw83q_P_Db3g6-5TKY-UxoiVW7IpS5DIS2VsYm51YmJmfcSBFkliXSsowDXHSomdFpnMc8Z0673MW3yFpRFu4OodgBII54Zo3LWZQHdahbhHBNo0WWaI88XTxlNW0oPBRsfRANahUNHtlGCCxlkHi7_qI8OVbtOlZSxs6lNtI6McwkmRGhTeEuOZMOdpaZRx4jgBRSaxSYu3Os51Wlhh8_qF79yjiVaeiRZ61QXgKUrG5LIWA-yMbVkdzoSMLat93hBZRUq3sqdYYjjzxaDuOZmE9XuHJey4DvC9vZwCO3G1gv5x2LVMZSSI_IDuA7f0x3pBh_qpnJQ6xtZml099-_6yG5ONjf21W7w9G7e-RSBH5jk9a3QdZmJ3N3H_y8mXnQLubfyo9ZGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKxAXxJvAAgaBuBA1D9txuKC2bNnyqFYLi_YW2Y69W6mblE172Bs_Av4gv4SZJO02QkLKJfHkOU87M98Q8lJbnmsWWF8Ja3yWG1AprbgvuGEmja0LUixw_jIV-0fs4zE_bvOfqjatcm0Ta0OdlwbXyPtRAoGMAHvK-65Nizh4P363-OFjByn809q207hKdhJEweqRneHe9OBws-ICzjYUkjXZ7zHM9fvzmbNow8HN8o5fquH7_zXSW16qm0G55ZLGt8jNNpakg4b5t8kVW9wh15rukhd3yW8caAAi_MkW8qY_BM-VU-yCNq_oqFwt5rCLC7Kwg706FmVRdxqla8QS-n1WYfFlU7JJYYMw-M_PXyO4UEWxQoV-KM-0pXXo-oZO4UYg2G_pgI4u0cUp5ixe3CNH471vo32_7cLgGy6Dpc-EklhfK0LpZCCUMTLWjhuZaMe4liLIDUukYTkHxqpQMa3S2MXcMauss_F90ivKwj4kFLH644jnRlvHIhfUi9IihGtqJfJEeeTVmgfZogHbyGCSgrzKtnnlkSEyaEODENn1gfL8JGs1LpMytjY1kVKJZjrJtQhNCndxTFqYA-YeeYHszRAEo0BxOlGrqsomXw-zQf1zN5Vp6JHXLZErgdFGtUUL8D6Im9Wh3O1Qgpaa7vBairLWSlTZpUx75PlmGM_EzLfClquaBqJUmHgGHnnQCN3mvWORylgK6RHZEcfOh-mOFLPTGkM8xCpklkaP_v9cz8h10LLs82T66TG5EUGA1-Tf7ZLe8nxln0BAttRPW037CzaaOmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial-Intelligence-Based+Models+Coupled+with+Correspondence+Analysis+Visualization+on+ART%E2%80%94Cases+from+Gombe+State%2C+Nigeria%3A+A+Comparative+Study&rft.jtitle=Life+%28Basel%2C+Switzerland%29&rft.au=Kabiru+Bala&rft.au=Ilker+Etikan&rft.au=A.+G.+Usman&rft.au=S.+I.+Abba&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2075-1729&rft.volume=13&rft.issue=3&rft.spage=715&rft_id=info:doi/10.3390%2Flife13030715&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_883ee9c2aa7b4b7db61c96d7f48e148d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1729&client=summon