Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis
Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reve...
Saved in:
Published in | Nano-micro letters Vol. 15; no. 1; pp. 120 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting.
The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship.
The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship. |
---|---|
AbstractList | The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship. An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship. The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship. Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship. The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship. The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship. HighlightsAn atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting.The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship.The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship. Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship. |
ArticleNumber | 120 |
Author | Zhang, Jie-Peng Zhao, Zhen-Hua Chen, Wen-Xing Zhuo, Lin-Ling Wu, Jun-Xi He, Chun-Ting Zheng, Kai |
Author_xml | – sequence: 1 givenname: Jun-Xi surname: Wu fullname: Wu, Jun-Xi organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 2 givenname: Wen-Xing surname: Chen fullname: Chen, Wen-Xing organization: Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology – sequence: 3 givenname: Chun-Ting surname: He fullname: He, Chun-Ting email: hct@jxnu.edu.cn organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University – sequence: 4 givenname: Kai surname: Zheng fullname: Zheng, Kai organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 5 givenname: Lin-Ling surname: Zhuo fullname: Zhuo, Lin-Ling organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 6 givenname: Zhen-Hua surname: Zhao fullname: Zhao, Zhen-Hua organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 7 givenname: Jie-Peng surname: Zhang fullname: Zhang, Jie-Peng email: zhangjp7@mail.sysu.edu.cn organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37127819$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1O3DAUhaOKqlDKC3RRReqGTVpfJ_7JqkJAAYmqUilr68Z2BqOMPbU9VHn7ehhoCwtWcexzPh9dn7fVjg_eVtV7IJ-AEPE5dURS0hDaNgSIJM38qtqjwEjDGIOdsm4BGi4I360OUnIDYbQTVLDuTbXbCqBCQr9X4VEOS6dxmub6xKWVjcma-mSNU_PNZpzqK5dtqq9uwm_nF_W1d7_Wtv5hUWd35_Jcoy_y2ePSpWU9hlifTlbnGDQW95xcele9HnFK9uDhu19dfz39eXzeXH4_uzg-umw0kyQ3MHZy5EyYAZBRbiglHUrRC0I7Tg2KbhykHnphGIeBo-6JlBQElt8WjGz3q4st1wS8VavolhhnFdCp-40QFwpjdnqyymgA4BI46U0nqRwMCI505H3fWqFpYX3ZslbrYWmNtj5HnJ5An554d6MW4U4BAQYtgUI4fCDEUCaWsioD0naa0NuwTopKIplkot1c9vGZ9Dasoy-zKirZM9kRvlF9-D_S3yyPT1kEcivQMaQU7ai0y5hd2CR0U4mmNsVR2-KoUhx1Xxw1Fyt9Zn2kv2hqt6ZUxH5h47_YL7j-AAeC1Nk |
CitedBy_id | crossref_primary_10_1039_D4EE01656D crossref_primary_10_1007_s12598_024_02911_6 crossref_primary_10_1016_j_scenem_2025_100003 crossref_primary_10_1021_acsaem_4c02951 crossref_primary_10_1002_anie_202413179 crossref_primary_10_1021_acsanm_3c03630 crossref_primary_10_1016_j_ccr_2023_215464 crossref_primary_10_1021_acsami_4c04342 crossref_primary_10_1007_s40820_023_01195_2 crossref_primary_10_1002_ange_202413179 crossref_primary_10_1002_anie_202311806 crossref_primary_10_1039_D4QI01347F crossref_primary_10_1002_adfm_202405884 crossref_primary_10_1021_acsami_4c00084 crossref_primary_10_1007_s40820_024_01347_y crossref_primary_10_1021_jacs_4c03576 crossref_primary_10_1016_j_jpowsour_2024_234923 crossref_primary_10_1007_s40820_024_01505_2 crossref_primary_10_1016_j_jechem_2025_02_033 crossref_primary_10_1007_s40820_023_01282_4 crossref_primary_10_1002_advs_202309927 crossref_primary_10_1002_smll_202406131 crossref_primary_10_1007_s42114_024_01052_9 crossref_primary_10_1016_j_jechem_2024_02_058 crossref_primary_10_1002_ange_202311806 crossref_primary_10_1039_D3CS00386H |
Cites_doi | 10.1016/j.scib.2019.12.003 10.1002/anie.201801029 10.1039/c7ee03245e 10.1002/anie.202103824 10.1002/adma.202007368 10.1021/jacs.1c08050 10.1039/c8ta00550h 10.1002/adma.201700311 10.1038/s41563-019-0571-5 10.1016/j.ccr.2021.214049 10.1021/jacs.8b04647 10.1038/s41467-020-17108-5 10.1039/c9cs00607a 10.1021/acs.chemrev.0c00576 10.1002/anie.201808049 10.1016/j.jelechem.2006.11.008 10.1021/jacs.8b04546 10.1038/s41467-021-25811-0 10.1002/anie.200503778 10.1039/d1ee01592c 10.1007/s12274-020-3219-5 10.1039/c8ta06442c 10.1007/s40820-023-01024-6 10.1021/acscatal.5b01638 10.1002/adma.201905622 10.1021/acsenergylett.7b00679 10.1021/jacs.9b05268 10.1016/j.jechem.2018.09.003 10.1016/j.chempr.2018.02.023 10.1038/s41570-018-0010-1 10.1038/s41929-018-0063-z 10.1021/jacs.9b05576 10.1016/j.gee.2020.11.023 10.1038/s41560-021-00925-3 10.1021/jacs.8b05992 10.1016/j.joule.2018.06.019 10.1021/jacs.5b10699 10.1039/c4cs00470a 10.1002/adma.201808066 10.1002/anie.201608601 10.1002/anie.202207537 10.1038/s41560-020-00709-1 10.1007/s12274-021-3680-9 10.1021/jacs.0c12740 10.1038/s41929-017-0008-y 10.1021/jacs.7b02736 10.1002/anie.201810175 10.1039/d0cs00575d 10.1007/s40820-023-01038-0 10.1039/d1gc03768d 10.1038/s41467-018-05600-y 10.1002/aenm.202203568 10.1073/pnas.0602439103 10.1002/adma.201700017 10.1038/ncomms11204 10.1038/s41467-020-16237-1 10.1039/c2ee22554a 10.1002/anie.201200699 10.1007/s12274-019-2345-4 10.1039/c8ta06069j 10.1021/jz501061n 10.1002/anie.201604802 10.1007/s41918-022-00133-x 10.1021/jacs.1c13374 10.1038/s41929-019-0325-4 10.1002/aenm.202002896 10.1002/adfm.202110910 10.1039/c9cc01717h |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-023-01080-y |
DatabaseName | SpringerOpen CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection ProQuest Materials Science Database ProQuest Engineering Collection ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_dc111681609d4828bd176a2f6993e7c2 PMC10151301 37127819 10_1007_s40820_023_01080_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c580t-1f48f657db1a526d2204a879702462da74fb8cb97d561b6ac9088217a56131d83 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:26:14 EDT 2025 Thu Aug 21 18:37:32 EDT 2025 Fri Jul 11 07:40:47 EDT 2025 Sat Aug 23 14:08:48 EDT 2025 Wed Feb 19 02:23:59 EST 2025 Tue Jul 01 00:55:49 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Atomically dispersed catalyst Overall water splitting Metal–organic frameworks Hydrogen bond |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c580t-1f48f657db1a526d2204a879702462da74fb8cb97d561b6ac9088217a56131d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/dc111681609d4828bd176a2f6993e7c2 |
PMID | 37127819 |
PQID | 2889584062 |
PQPubID | 2044332 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc111681609d4828bd176a2f6993e7c2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10151301 proquest_miscellaneous_2808585732 proquest_journals_2889584062 pubmed_primary_37127819 crossref_citationtrail_10_1007_s40820_023_01080_y crossref_primary_10_1007_s40820_023_01080_y springer_journals_10_1007_s40820_023_01080_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Park, Ni, Côté, Choi, Huang (CR45) 2006; 103 Guan, Ryu, Hu, Zhou, Dong (CR28) 2020; 11 Zou, Wu, Liu, Liu, Li (CR32) 2018; 4 Wu, He, Li, Zhang (CR8) 2018; 6 Zhang, Shi, Wang, Zhu, Li (CR11) 2020; 65 Rossmeisl, Qu, Zhu, Kroes, Nørskov (CR42) 2007; 607 Zhang, Zhao, Xi, Zhang, Chen (CR55) 2020; 10 Zhang, Fischer, Jia, Yan, Xu (CR48) 2018; 140 Li, Wang, Liu, Li, Wang (CR66) 2016; 7 Wu, Huang, Liu, Li, Wang (CR33) 2021; 14 Wang, Sun, Ren, Yuan (CR3) 2021; 13 Jiao, Zhu, Zhang, Yang, Zhou (CR46) 2021; 143 Wang, Li, Li, Chen, Zhou (CR56) 2019; 55 Wang, Chen, Wu, Cao, Sun (CR18) 2021; 143 Guo, Ding, Huo, Wen, Ren (CR21) 2023; 15 Wang, Zhang, Yan, You, Zheng (CR22) 2023; 15 Kaiser, Chen, Faust Akl, Mitchell, Pérez-Ramírez (CR36) 2020; 120 Chen, Dang, Liang, Bi, Gerken (CR16) 2015; 137 Lu, Shi, Zhou, Zhang, Wu (CR40) 2022; 144 Park, Shao, Liu, Wang (CR6) 2012; 5 Yu, Budiyanto, Tüysüz (CR7) 2022; 61 Dionigi, Zeng, Sinev, Merzdorf, Deshpande (CR15) 2020; 11 Sun, Luo, Dai, Ma (CR19) 2021; 444 Song, Bai, Moysiadou, Lee, Hu (CR14) 2018; 140 Zhao, Dai, Yao, Chen, Wang (CR54) 2017; 139 Chen, Ren, Yuan (CR20) 2022; 24 Wan, Zhao, Wei, Triana, Li (CR63) 2021; 12 Han, Ling, Yu, Xie, Li (CR59) 2019; 31 Bai, Hsu, Alexander, Chen, Hu (CR39) 2021; 6 Fan, Mao, Liu, Zhuo, Zhao (CR26) 2018; 6 Forslund, Hardin, Rong, Abakumov, Filimonov (CR27) 2018; 9 Huang, Lin, Zhang, Chen (CR44) 2006; 45 Guan, Bai, Tang (CR68) 2021; 15 Ren, Yao, Yuan (CR9) 2021; 6 Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (CR43) 2015; 5 Li, Huang, Xi, Miao, Ding (CR50) 2018; 140 Chen, Ji, Chen, Peng, Wang (CR34) 2018; 2 Song, Wei, Huang, Liu, Zeng (CR62) 2020; 49 Pei, Lu, Zhang, Li, Luan (CR60) 2022; 61 Liu, Ding, Wu, Gan, Wang (CR47) 2018; 6 Fan, Wang, Gao, Yang, Liu (CR4) 2019; 34 Chen, Sasaki, Ma, Frenkel, Marinkovic (CR13) 2012; 51 Tian, Zhao, Sheng (CR5) 2019; 31 Danilovic, Subbaraman, Chang, Chang, Kang (CR23) 2014; 5 Wu, Sun, Song, Xi, Du (CR29) 2019; 2 Jung, Shin, Lee, Efremov, Lee (CR61) 2020; 19 Zhang, Han, Liu, Biset-Peiró, Zhang (CR57) 2021; 14 Jiao, Zheng, Jaroniec, Qiao (CR1) 2015; 44 Wu, Bag, Xu, Gong, He (CR10) 2021; 33 Bai, Hsu, Alexander, Chen, Hu (CR38) 2019; 141 Zhao, Tan, He, An, Xie (CR64) 2020; 5 Jin (CR31) 2017; 2 Wang, Li, Zhang (CR35) 2018; 2 Wu, Wei, Yu, Xia, Hong (CR67) 2022; 32 Yin, Zhang, Gao, Yao, Zhang (CR12) 2017; 29 Spöri, Kwan, Bonakdarpour, Wilkinson, Strasser (CR24) 2017; 56 Weng, Lv, Ren, Ma, Yuan (CR25) 2022; 5 Huang, Li, Huang, He, Gong (CR30) 2018; 57 Sun, Xu, Wang, Li (CR37) 2019; 12 Lu, Wang, Hu, Liu, Zhao (CR49) 2019; 58 Yin, Yao, Wu, Zheng, Lin (CR41) 2016; 55 Yang, Qiu, Zhao, Wei, Chen (CR58) 2018; 57 Xu, Cheng, Cao, Zeng (CR65) 2018; 1 Jia, Zhang, Gao, Chen, Wang (CR17) 2017; 29 Sun, Silvioli, Sahraie, Ju, Li (CR51) 2019; 141 Jiang, Siahrostami, Zheng, Hu, Hwang (CR52) 2018; 11 Wang, Gao, Kong, Kim, Choi (CR2) 2020; 49 Fei, Dong, Feng, Allen, Wan (CR53) 2018; 1 X Han (1080_CR59) 2019; 31 KS Park (1080_CR45) 2006; 103 M Yu (1080_CR7) 2022; 61 L Jiao (1080_CR46) 2021; 143 Y Zhang (1080_CR11) 2020; 65 C Wang (1080_CR22) 2023; 15 B Guo (1080_CR21) 2023; 15 C Spöri (1080_CR24) 2017; 56 X Wang (1080_CR56) 2019; 55 Y Jiao (1080_CR1) 2015; 44 N Danilovic (1080_CR23) 2014; 5 F Song (1080_CR14) 2018; 140 L Bai (1080_CR39) 2021; 6 H Xu (1080_CR65) 2018; 1 X Zou (1080_CR32) 2018; 4 A Wang (1080_CR35) 2018; 2 X Tian (1080_CR5) 2019; 31 S Park (1080_CR6) 2012; 5 H Fan (1080_CR4) 2019; 34 SK Kaiser (1080_CR36) 2020; 120 T Wu (1080_CR29) 2019; 2 C-C Weng (1080_CR25) 2022; 5 S Lu (1080_CR40) 2022; 144 D Guan (1080_CR28) 2020; 11 Z Zhang (1080_CR55) 2020; 10 J-S Li (1080_CR66) 2016; 7 J Song (1080_CR62) 2020; 49 Y Jia (1080_CR17) 2017; 29 JY Chen (1080_CR16) 2015; 137 K Jiang (1080_CR52) 2018; 11 Z Lu (1080_CR49) 2019; 58 J Yang (1080_CR58) 2018; 57 J Guan (1080_CR68) 2021; 15 Y Yin (1080_CR12) 2017; 29 F Dionigi (1080_CR15) 2020; 11 L Sun (1080_CR19) 2021; 444 O Diaz-Morales (1080_CR43) 2015; 5 Y Wu (1080_CR67) 2022; 32 L Bai (1080_CR38) 2019; 141 S Zhao (1080_CR64) 2020; 5 W-F Chen (1080_CR13) 2012; 51 T Sun (1080_CR37) 2019; 12 H Fei (1080_CR53) 2018; 1 S Jin (1080_CR31) 2017; 2 L Zhang (1080_CR48) 2018; 140 J-T Ren (1080_CR9) 2021; 6 C Zhao (1080_CR54) 2017; 139 J Wang (1080_CR2) 2020; 49 J-X Wu (1080_CR8) 2018; 6 Z Pei (1080_CR60) 2022; 61 Y Sun (1080_CR51) 2019; 141 P Yin (1080_CR41) 2016; 55 X-C Huang (1080_CR44) 2006; 45 E Jung (1080_CR61) 2020; 19 H Fan (1080_CR26) 2018; 6 Z Wu (1080_CR33) 2021; 14 Y Chen (1080_CR34) 2018; 2 H-Y Wang (1080_CR3) 2021; 13 J Huang (1080_CR30) 2018; 57 T Zhang (1080_CR57) 2021; 14 J-X Wu (1080_CR10) 2021; 33 D Liu (1080_CR47) 2018; 6 H Wang (1080_CR18) 2021; 143 X Li (1080_CR50) 2018; 140 L Chen (1080_CR20) 2022; 24 RP Forslund (1080_CR27) 2018; 9 W Wan (1080_CR63) 2021; 12 J Rossmeisl (1080_CR42) 2007; 607 |
References_xml | – volume: 65 start-page: 359 year: 2020 end-page: 366 ident: CR11 article-title: Vertically aligned NiS /CoS /MoS nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.12.003 – volume: 57 start-page: 4632 year: 2018 end-page: 4636 ident: CR30 article-title: Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801029 – volume: 11 start-page: 893 year: 2018 end-page: 903 ident: CR52 article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO reduction publication-title: Energy Environ. Sci. doi: 10.1039/c7ee03245e – volume: 61 start-page: 202103824 year: 2022 ident: CR7 article-title: Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202103824 – volume: 33 start-page: 2007368 year: 2021 ident: CR10 article-title: Graphene-like hydrogen-bonded melamine-cyanuric acid supramolecular nanosheets as pseudo-porous catalyst support publication-title: Adv. Mater. doi: 10.1002/adma.202007368 – volume: 143 start-page: 19417 year: 2021 end-page: 19424 ident: CR46 article-title: Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO electroreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08050 – volume: 6 start-page: 6840 year: 2018 end-page: 6846 ident: CR47 article-title: Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution publication-title: J. Mater. Chem. A doi: 10.1039/c8ta00550h – volume: 29 start-page: 1700311 year: 2017 ident: CR12 article-title: Synergistic phase and disorder engineering in 1T-MoSe nanosheets for enhanced hydrogen-evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201700311 – volume: 19 start-page: 436 year: 2020 end-page: 442 ident: CR61 article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H O production publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 444 start-page: 214049 year: 2021 ident: CR19 article-title: Material libraries for electrocatalytic overall water splitting publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2021.214049 – volume: 140 start-page: 10757 year: 2018 end-page: 10763 ident: CR48 article-title: Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04647 – volume: 11 start-page: 3376 year: 2020 ident: CR28 article-title: Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors publication-title: Nat. Commun. doi: 10.1038/s41467-020-17108-5 – volume: 49 start-page: 2196 year: 2020 end-page: 2214 ident: CR62 article-title: A review on fundamentals for designing oxygen evolution electrocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/c9cs00607a – volume: 120 start-page: 11703 year: 2020 end-page: 11809 ident: CR36 article-title: Single-atom catalysts across the priodic table publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00576 – volume: 57 start-page: 14095 year: 2018 end-page: 14100 ident: CR58 article-title: In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808049 – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: CR42 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 140 start-page: 7748 year: 2018 end-page: 7759 ident: CR14 article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04546 – volume: 12 start-page: 5589 year: 2021 ident: CR63 article-title: Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts publication-title: Nat. Commun. doi: 10.1038/s41467-021-25811-0 – volume: 45 start-page: 1557 year: 2006 end-page: 1559 ident: CR44 article-title: Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503778 – volume: 14 start-page: 4847 year: 2021 end-page: 4857 ident: CR57 article-title: Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01592c – volume: 14 start-page: 2264 year: 2021 end-page: 2267 ident: CR33 article-title: Surface oxidation of transition metal sulfide and phosphide nanomaterials publication-title: Nano Res. doi: 10.1007/s12274-020-3219-5 – volume: 6 start-page: 21313 year: 2018 end-page: 21319 ident: CR26 article-title: Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction publication-title: J. Mater. Chem. A doi: 10.1039/c8ta06442c – volume: 15 start-page: 52 year: 2023 ident: CR22 article-title: Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01024-6 – volume: 5 start-page: 5380 year: 2015 end-page: 5387 ident: CR43 article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.5b01638 – volume: 31 start-page: 1905622 year: 2019 ident: CR59 article-title: Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution publication-title: Adv. Mater. doi: 10.1002/adma.201905622 – volume: 2 start-page: 1937 year: 2017 end-page: 1938 ident: CR31 article-title: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 141 start-page: 14190 year: 2019 end-page: 14199 ident: CR38 article-title: A cobalt-iron double-atom catalyst for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05268 – volume: 34 start-page: 64 year: 2019 end-page: 71 ident: CR4 article-title: Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.09.003 – volume: 4 start-page: 1139 year: 2018 end-page: 1152 ident: CR32 article-title: In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting publication-title: Chem doi: 10.1016/j.chempr.2018.02.023 – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: CR35 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: CR65 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 141 start-page: 12372 year: 2019 end-page: 12381 ident: CR51 article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 6 start-page: 620 year: 2021 end-page: 643 ident: CR9 article-title: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.11.023 – volume: 6 start-page: 1054 year: 2021 end-page: 1066 ident: CR39 article-title: Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis publication-title: Nat. Energy doi: 10.1038/s41560-021-00925-3 – volume: 140 start-page: 12469 year: 2018 end-page: 12475 ident: CR50 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 2 start-page: 1242 year: 2018 end-page: 1264 ident: CR34 article-title: Single-atom catalysts: synthetic strategies and electrochemical applications publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 137 start-page: 15090 year: 2015 end-page: 15093 ident: CR16 article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe by Mössbauer spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10699 – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: CR1 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00470a – volume: 31 start-page: 1808066 year: 2019 ident: CR5 article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances publication-title: Adv. Mater. doi: 10.1002/adma.201808066 – volume: 56 start-page: 5994 year: 2017 end-page: 6021 ident: CR24 article-title: The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608601 – volume: 61 start-page: 202207527 year: 2022 ident: CR60 article-title: Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207537 – volume: 5 start-page: 881 year: 2020 end-page: 890 ident: CR64 article-title: Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction publication-title: Nat. Energy doi: 10.1038/s41560-020-00709-1 – volume: 15 start-page: 818 year: 2021 end-page: 837 ident: CR68 article-title: Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions publication-title: Nano Res. doi: 10.1007/s12274-021-3680-9 – volume: 143 start-page: 4639 year: 2021 end-page: 4645 ident: CR18 article-title: Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12740 – volume: 1 start-page: 63 year: 2018 end-page: 72 ident: CR53 article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electr ocatalytic activities publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 139 start-page: 8078 year: 2017 end-page: 8081 ident: CR54 article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 58 start-page: 2622 year: 2019 end-page: 2626 ident: CR49 article-title: An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201810175 – volume: 49 start-page: 9154 year: 2020 end-page: 9196 ident: CR2 article-title: Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances publication-title: Chem. Soc. Rev. doi: 10.1039/d0cs00575d – volume: 15 start-page: 57 year: 2023 ident: CR21 article-title: Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01038-0 – volume: 24 start-page: 713 year: 2022 end-page: 747 ident: CR20 article-title: Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splittings publication-title: Green Chem. doi: 10.1039/d1gc03768d – volume: 9 start-page: 3150 year: 2018 ident: CR27 article-title: Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La Sr Ni Fe O Ruddlesden-Popper oxides publication-title: Nat. Commun. doi: 10.1038/s41467-018-05600-y – volume: 13 start-page: 2203568 year: 2021 ident: CR3 article-title: Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203568 – volume: 103 start-page: 10186 year: 2006 end-page: 10191 ident: CR45 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602439103 – volume: 29 start-page: 1700017 year: 2017 ident: CR17 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 7 start-page: 11204 year: 2016 ident: CR66 article-title: Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/ncomms11204 – volume: 11 start-page: 2522 year: 2020 ident: CR15 article-title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 5 start-page: 9331 year: 2012 end-page: 9344 ident: CR6 article-title: Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22554a – volume: 51 start-page: 6131 year: 2012 end-page: 6135 ident: CR13 article-title: Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200699 – volume: 12 start-page: 2067 year: 2019 end-page: 2080 ident: CR37 article-title: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion publication-title: Nano Res. doi: 10.1007/s12274-019-2345-4 – volume: 6 start-page: 19176 year: 2018 end-page: 19181 ident: CR8 article-title: An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu-C hybrid nanorod arrays for an efficient oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/c8ta06069j – volume: 5 start-page: 2474 year: 2014 end-page: 2478 ident: CR23 article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501061n – volume: 55 start-page: 10800 year: 2016 end-page: 10805 ident: CR41 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604802 – volume: 5 start-page: 19 year: 2022 ident: CR25 article-title: Engineering gas–solid–liquid triple-phase interfaces for electrochemical energy conversion reactions publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00133-x – volume: 144 start-page: 3250 year: 2022 end-page: 3258 ident: CR40 article-title: Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c13374 – volume: 2 start-page: 763 year: 2019 end-page: 772 ident: CR29 article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 10 start-page: 2002896 year: 2020 ident: CR55 article-title: Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002896 – volume: 32 start-page: 2110910 year: 2022 ident: CR67 article-title: Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110910 – volume: 55 start-page: 6563 year: 2019 end-page: 6566 ident: CR56 article-title: 2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes publication-title: Chem. Commun. doi: 10.1039/c9cc01717h – volume: 4 start-page: 1139 year: 2018 ident: 1080_CR32 publication-title: Chem doi: 10.1016/j.chempr.2018.02.023 – volume: 137 start-page: 15090 year: 2015 ident: 1080_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10699 – volume: 24 start-page: 713 year: 2022 ident: 1080_CR20 publication-title: Green Chem. doi: 10.1039/d1gc03768d – volume: 31 start-page: 1905622 year: 2019 ident: 1080_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201905622 – volume: 65 start-page: 359 year: 2020 ident: 1080_CR11 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.12.003 – volume: 607 start-page: 83 year: 2007 ident: 1080_CR42 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 33 start-page: 2007368 year: 2021 ident: 1080_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202007368 – volume: 57 start-page: 14095 year: 2018 ident: 1080_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808049 – volume: 139 start-page: 8078 year: 2017 ident: 1080_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 10 start-page: 2002896 year: 2020 ident: 1080_CR55 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002896 – volume: 56 start-page: 5994 year: 2017 ident: 1080_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608601 – volume: 2 start-page: 763 year: 2019 ident: 1080_CR29 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 61 start-page: 202103824 year: 2022 ident: 1080_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202103824 – volume: 6 start-page: 21313 year: 2018 ident: 1080_CR26 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta06442c – volume: 58 start-page: 2622 year: 2019 ident: 1080_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201810175 – volume: 44 start-page: 2060 year: 2015 ident: 1080_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00470a – volume: 55 start-page: 6563 year: 2019 ident: 1080_CR56 publication-title: Chem. Commun. doi: 10.1039/c9cc01717h – volume: 61 start-page: 202207527 year: 2022 ident: 1080_CR60 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207537 – volume: 29 start-page: 1700017 year: 2017 ident: 1080_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 14 start-page: 2264 year: 2021 ident: 1080_CR33 publication-title: Nano Res. doi: 10.1007/s12274-020-3219-5 – volume: 143 start-page: 4639 year: 2021 ident: 1080_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12740 – volume: 143 start-page: 19417 year: 2021 ident: 1080_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08050 – volume: 7 start-page: 11204 year: 2016 ident: 1080_CR66 publication-title: Nat. Commun. doi: 10.1038/ncomms11204 – volume: 140 start-page: 12469 year: 2018 ident: 1080_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 5 start-page: 9331 year: 2012 ident: 1080_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22554a – volume: 11 start-page: 2522 year: 2020 ident: 1080_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 45 start-page: 1557 year: 2006 ident: 1080_CR44 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503778 – volume: 103 start-page: 10186 year: 2006 ident: 1080_CR45 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602439103 – volume: 49 start-page: 9154 year: 2020 ident: 1080_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/d0cs00575d – volume: 140 start-page: 10757 year: 2018 ident: 1080_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04647 – volume: 6 start-page: 19176 year: 2018 ident: 1080_CR8 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta06069j – volume: 12 start-page: 2067 year: 2019 ident: 1080_CR37 publication-title: Nano Res. doi: 10.1007/s12274-019-2345-4 – volume: 15 start-page: 818 year: 2021 ident: 1080_CR68 publication-title: Nano Res. doi: 10.1007/s12274-021-3680-9 – volume: 2 start-page: 1242 year: 2018 ident: 1080_CR34 publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 15 start-page: 52 year: 2023 ident: 1080_CR22 publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01024-6 – volume: 6 start-page: 620 year: 2021 ident: 1080_CR9 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.11.023 – volume: 9 start-page: 3150 year: 2018 ident: 1080_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05600-y – volume: 444 start-page: 214049 year: 2021 ident: 1080_CR19 publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2021.214049 – volume: 141 start-page: 12372 year: 2019 ident: 1080_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 141 start-page: 14190 year: 2019 ident: 1080_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05268 – volume: 19 start-page: 436 year: 2020 ident: 1080_CR61 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 1 start-page: 339 year: 2018 ident: 1080_CR65 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 13 start-page: 2203568 year: 2021 ident: 1080_CR3 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203568 – volume: 55 start-page: 10800 year: 2016 ident: 1080_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604802 – volume: 31 start-page: 1808066 year: 2019 ident: 1080_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201808066 – volume: 15 start-page: 57 year: 2023 ident: 1080_CR21 publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01038-0 – volume: 5 start-page: 5380 year: 2015 ident: 1080_CR43 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01638 – volume: 14 start-page: 4847 year: 2021 ident: 1080_CR57 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01592c – volume: 2 start-page: 1937 year: 2017 ident: 1080_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 51 start-page: 6131 year: 2012 ident: 1080_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200699 – volume: 5 start-page: 2474 year: 2014 ident: 1080_CR23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501061n – volume: 11 start-page: 893 year: 2018 ident: 1080_CR52 publication-title: Energy Environ. Sci. doi: 10.1039/c7ee03245e – volume: 5 start-page: 881 year: 2020 ident: 1080_CR64 publication-title: Nat. Energy doi: 10.1038/s41560-020-00709-1 – volume: 57 start-page: 4632 year: 2018 ident: 1080_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801029 – volume: 6 start-page: 6840 year: 2018 ident: 1080_CR47 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta00550h – volume: 29 start-page: 1700311 year: 2017 ident: 1080_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201700311 – volume: 32 start-page: 2110910 year: 2022 ident: 1080_CR67 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110910 – volume: 11 start-page: 3376 year: 2020 ident: 1080_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17108-5 – volume: 34 start-page: 64 year: 2019 ident: 1080_CR4 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.09.003 – volume: 2 start-page: 65 year: 2018 ident: 1080_CR35 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 5 start-page: 19 year: 2022 ident: 1080_CR25 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00133-x – volume: 140 start-page: 7748 year: 2018 ident: 1080_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04546 – volume: 12 start-page: 5589 year: 2021 ident: 1080_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25811-0 – volume: 1 start-page: 63 year: 2018 ident: 1080_CR53 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 6 start-page: 1054 year: 2021 ident: 1080_CR39 publication-title: Nat. Energy doi: 10.1038/s41560-021-00925-3 – volume: 49 start-page: 2196 year: 2020 ident: 1080_CR62 publication-title: Chem. Soc. Rev. doi: 10.1039/c9cs00607a – volume: 120 start-page: 11703 year: 2020 ident: 1080_CR36 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00576 – volume: 144 start-page: 3250 year: 2022 ident: 1080_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c13374 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.4332762 |
Snippet | Highlights
An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ... The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here,... HighlightsAn atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural... An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution... Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120 |
SubjectTerms | Asymmetry Atomically dispersed catalyst Catalysts Density functional theory Dispersion Electrocatalysis Electrocatalysts Engineering Hydrogen bond Hydrogen bonding Hydrogen bonds Metal–organic frameworks Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Overall water splitting Oxidation Oxygen evolution reactions Pyrolysis Reaction intermediates Substrates Water splitting |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k2gICNxA4vYiR97Qi3dqkJqhVpW6i1yYodWWpLS3RXaf8-M4yRdHr1uJpLXM5n57LG_j5B3VksrIAcw4UzFkICOlQDzmZd1LWtdu1LgfefjE3U0z7-cy_O44baMxyr7nBgStWsr3CP_KIyZQrFMlfh09ZOhahR2V6OExl2yAynYmAnZ2Z-dfD3tI0poVGYa-4Qor5zfYKvJkdslGwnNJBKY6ZEnU4oc6nssuB2g1tjKCop1nDOlUxVv4oT7eKjenDIog7BCByjGNlvVLogC_AvJ_n0g84-ubCh2hw_Jg4hS6V4XVo_IHd88JvdvcBc-IXZv1QaqgcWGHlwi3_jSO3qwtgt27AHR0zOYuCU9u2h_gT2dB6JYeurxIgXqVVDbgPmmsRBoPyhAZzrrFHnChhLypDwl88PZt89HLOo1sEqadMV4nZtaSe1KbqVQTog0twZcADhACWd1XpemKqfaAWgrla3wjBUsiSwuYrgz2TMyadrGvyBUGwu5IqstL30uK1NmNsuFq7lKbQar-YTwfl6LKpKZo6bGohhomIMvCvBFEXxRbBLyfnjnqqPyuNV6H901WCINd_ihvf5exK-6cBWUCmVgVFOXw9q1dFwrK2oFqM_rCoa52zu7iLlhWYyRnJC3w2OYbGzV2Ma3a7RJsWGrM7B53sXGMJJMc6EByCXEbEXN1lC3nzSXF4E5HOYUQjzlCfnQB9g4rv_Pxcvb_8Yrck9gzIdDPrtksrpe-9cA1Vblm_g9_gbVFjD9 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagXOCAeBMoyEjcwNLa61eOhbaqkMqBEqm3lb22aaWwi5pEKP-eGe-rgYLENZ6VRp6x55uM5xtC3jqjnIA7gIlga4YEdMwDzGdRpaSSScEL7Hc-_axPFvLTuTrvm8JWw2v3oSSZb-qx2Q1HIxcMYgykv4Bz2PY2uaMwd8cS7cQ5LgxOY5pqgzhSWV5jqJHI51JOJGYKScvMxI2phISY3gfZDkQbLF_lKXWcM20K3Xff3KzWToTLgwBuQq9_PsL8rRKbA9zxA3K_R6b0oHOlh-RWbB6Re9f4Ch8Td7BuM73AcksPL5FjfBUDPdy4JTuNgOLpGQDYFT27aH-CPF1kclj6JWLzBM6ooK4B8W3jwLm-U4DL9KibwpP_REJulCdkcXz09eMJ62c0sFrZYs14kjZpZYLnTgkdhCiks2ACiP1aBGdk8rb2cxMAqHntanxXBWmQw8SFB1s-JXtN28TnhBrr4H4ok-M-SlVbX7pSipC4LlwJGfyM8GFfq7onMMc5GstqpF7OtqjAFlW2RbWdkXfjNz86-o5_Sn9Ac42SSL2df2ivvlX9Sa5CDeFBW9BqHiTkqz5wo51IGpBeNDWouT8Yu-rvg1UlrJ0D1Cs0LL8Zl2GzsTzjmthuUKbAIq0pQeZZ5xujJqXhwgB4mxG74zU7qu6uNJcXmS0c9hRcvOAz8n5wsEmvv-_Fi_8Tf0nuCjwD-aHPPtlbX23iK4Bra_86n85f6mgsnw priority: 102 providerName: Springer Nature |
Title | Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis |
URI | https://link.springer.com/article/10.1007/s40820-023-01080-y https://www.ncbi.nlm.nih.gov/pubmed/37127819 https://www.proquest.com/docview/2889584062 https://www.proquest.com/docview/2808585732 https://pubmed.ncbi.nlm.nih.gov/PMC10151301 https://doaj.org/article/dc111681609d4828bd176a2f6993e7c2 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucBhxZvAUhmJG1jEjmO7xz5ZIe0K7VJpb5Edx9qVSopoq1X_PTNOmrY8L1xSKZ5I1szY803H_oaQt1bnVsAewIQ3JUMCOuYA5rMqDyEPOngn8L7z2bk6nclPV_nVXqsvPBPW0AM3ivvgS1iNynCV9r2E9MB5rpUVQUFgrXQZd1-IeXvJFHiS0NiRaVcfxLbKco-lRiKnS7YjMsuRuEzv-DFzISGut4G2AdIaS1ixUx3nTOlUtTdw4j087NqcMgh_kJkDBGObgygXmwH8DsH-ehDzp2psDHLTh-S4Rad00GjlEblT1Y_Jgz3OwifEDlaLSDEw39DxDfKMLytPx2s7Z2cVIHl6CSB2SS-vF7cgT2eRIJZeVHiBAvtUUFuD-Ka24GBfKUBmOmk68cQ_kpAf5SmZTSdfRqes7dPAytykK8aDNEHl2jtuc6G8EKm0BkwA8V8Jb7UMzpSurz2ANadsiWerIBWymLxwb7Jn5Khe1NULQrWxsEdkwXJXybw0LrOZFD6A-W0GWXxC-FavRdmSmGMvjXnR0S9HWxRgiyLaotgk5F33zbeGwuOv0kM0VyeJ9NvxBThl0Tpl8S-nTMjJ1thFuycsC2FMH-BeqmD4TTcMysYSja2rxRplUizU6gxknje-0c0k01xoAHAJMQdeczDVw5H65joyhoNOwcVTnpD3WwfbzevPunj5P3TxitwXuDLiEaATcrT6vq5eA5BbuR65a6Yfe-TeYDgeTuF3ODn_fAFvR0LiU416cVX_ABzqPKY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nc9MwENWUcgAODN-kFBAzcAINlixLyoFhCmlIadMDbWZ6M7Il086kdmmS6eRP8RvZle2k4aO3XuNNRtGud5-92vcIeW11YgXkACacyRkS0LEMYD7zSVEkhS5cJnDeebivBiP59Sg5WiO_2lkYPFbZ5sSQqF2V4zvy98KYLhTLSImPZz8ZqkZhd7WV0KjDYtfPL-CRbfJhpwf-fSNEf_vw84A1qgIsT0w0ZbyQplCJdhm3iVBOiEhao7saqpUSzmpZZCbPutoBtMiUzfEkEAB3i1CbOxPD794gN2UMlRwn0_tf2vgVGnWgll1JFHOWl7hxJDLJxEv6tATp0vSSlTMREtBEU95r-K6xcRb08ThnSkeqmfsJ03-oFR0xKLoswpOCbL5SW4MEwb9w89_HP__oAYfS2r9H7jaYmG7VQXyfrPnyAblziSnxIbFb0yoQG4zntHeC7OYT72hvZsds6OH5gR6Amyb04Li6AHs6CrS09JvHsQ1Ux6C2BPN5aSGsTykAdbpd6_-E11fIyvKIjK7Fj4_JelmV_imh2ljITHFheeZlkpsstrEUruAqsrGWokN4u69p3lCno4LHOF2QPgdfpOCLNPginXfI28V3zmrikCutP6G7FpZI-h0-qM5_pE0OSV0OhUkZWFXXSXhSzhzXyopCAcb0OodlbrbOTptMNEmX902HvFpchs3GxpAtfTVDmwjbwzoGmyd1bCxWEmsuNMDGDjErUbOy1NUr5clx4CmHPYUQj3iHvGsDbLmu_-_FxtV_4yW5NTgc7qV7O_u7z8htgfEfjhdtkvXp-cw_B5A4zV6EO5OS79edCn4D9_ZqcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiE4IN4EChgJTmB17fXazoFDII3alFaIEKm3xbte00phUzWpqvwrfiIz3kcaKEgcel3PRqOZWc_njOcbQl5bnVgBewATzuQMCehYBjCfFYn3idfeZQL7nQ8O1e5Ejo6Sow3ys-mFCbfdm5Jk1dOALE3lYvvU-e228Q3HJEcM8g0chQHzsGV9rXK_WF7AoW3-fm8AHn4jxHDn68ddVs8VYHliogXjXhqvEu0ybhOhnBCRtEb3NOQrJZzV0mcmz3raAbjIlM3xLhBAd4tgmzsTw-_eIJtGweMO2ez3R-NRE8NC4yyoVWUSBzrLS_w4Etlk4hWFWoKUaXrFzJkICYiiTvEVhNdYPAsz8jhnSkeq7v252hBr-TWMIbgKO_95BfS3OnBIr8O75E6Ni2m_CuR7ZKMo75Pbl9gSHxDbX8wCucF0SQcnyHA-LxwdnNspOyjgDEHHAJ_ndHw8uwB5OgnUtPRLga0bOCGD2hLEl6WF0P5BAazTnWoGUPgLC5lZHpLJtXjyEemUs7J4Qqg2Fnan2FueFTLJTRbbWArnuYpsrKXoEt7YNc1r-nSc4jFNW-Ln4IsUfJEGX6TLLnnbvnNakYf8U_oDuquVROLv8GB29j2t95HU5ZCclAGtek7CaTlzXCsrvAKcWegc1NxqnJ3Wu9E8Fcb0AGhGCpZftctgbCwO2bKYnaNMhCViHYPM4yo2Wk1izYUG6NglZi1q1lRdXylPjgNXOdgUQjziXfKuCbCVXn-3xdP_E39Jbn4eDNNPe4f7z8gtgZ9DuHG0RTqLs_PiOeDGRfai_lQp-Xbdu8MvGyZtZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+Dispersed+Dual-Metal+Sites+Showing+Unique+Reactivity+and+Dynamism+for+Electrocatalysis&rft.jtitle=Nano-micro+letters&rft.au=Jun-Xi+Wu&rft.au=Wen-Xing+Chen&rft.au=Chun-Ting+He&rft.au=Kai+Zheng&rft.date=2023-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1007%2Fs40820-023-01080-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc111681609d4828bd176a2f6993e7c2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |