Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis

Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reve...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 15; no. 1; pp. 120 - 13
Main Authors Wu, Jun-Xi, Chen, Wen-Xing, He, Chun-Ting, Zheng, Kai, Zhuo, Lin-Ling, Zhao, Zhen-Hua, Zhang, Jie-Peng
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship. The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
AbstractList The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship. The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship. The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
HighlightsAn atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting.The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship.The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups. Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution and serves as a quasi-bifunctional catalyst for water splitting. The flexible C–OH groups generated by in situ oxidation can reversibly turn on/off the hydrogen-bonding interaction with the oxygen evolution reaction intermediates to break the conventional scaling relationship.
ArticleNumber 120
Author Zhang, Jie-Peng
Zhao, Zhen-Hua
Chen, Wen-Xing
Zhuo, Lin-Ling
Wu, Jun-Xi
He, Chun-Ting
Zheng, Kai
Author_xml – sequence: 1
  givenname: Jun-Xi
  surname: Wu
  fullname: Wu, Jun-Xi
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 2
  givenname: Wen-Xing
  surname: Chen
  fullname: Chen, Wen-Xing
  organization: Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology
– sequence: 3
  givenname: Chun-Ting
  surname: He
  fullname: He, Chun-Ting
  email: hct@jxnu.edu.cn
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University
– sequence: 4
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 5
  givenname: Lin-Ling
  surname: Zhuo
  fullname: Zhuo, Lin-Ling
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 6
  givenname: Zhen-Hua
  surname: Zhao
  fullname: Zhao, Zhen-Hua
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 7
  givenname: Jie-Peng
  surname: Zhang
  fullname: Zhang, Jie-Peng
  email: zhangjp7@mail.sysu.edu.cn
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37127819$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1O3DAUhaOKqlDKC3RRReqGTVpfJ_7JqkJAAYmqUilr68Z2BqOMPbU9VHn7ehhoCwtWcexzPh9dn7fVjg_eVtV7IJ-AEPE5dURS0hDaNgSIJM38qtqjwEjDGIOdsm4BGi4I360OUnIDYbQTVLDuTbXbCqBCQr9X4VEOS6dxmub6xKWVjcma-mSNU_PNZpzqK5dtqq9uwm_nF_W1d7_Wtv5hUWd35_Jcoy_y2ePSpWU9hlifTlbnGDQW95xcele9HnFK9uDhu19dfz39eXzeXH4_uzg-umw0kyQ3MHZy5EyYAZBRbiglHUrRC0I7Tg2KbhykHnphGIeBo-6JlBQElt8WjGz3q4st1wS8VavolhhnFdCp-40QFwpjdnqyymgA4BI46U0nqRwMCI505H3fWqFpYX3ZslbrYWmNtj5HnJ5An554d6MW4U4BAQYtgUI4fCDEUCaWsioD0naa0NuwTopKIplkot1c9vGZ9Dasoy-zKirZM9kRvlF9-D_S3yyPT1kEcivQMaQU7ai0y5hd2CR0U4mmNsVR2-KoUhx1Xxw1Fyt9Zn2kv2hqt6ZUxH5h47_YL7j-AAeC1Nk
CitedBy_id crossref_primary_10_1039_D4EE01656D
crossref_primary_10_1007_s12598_024_02911_6
crossref_primary_10_1016_j_scenem_2025_100003
crossref_primary_10_1021_acsaem_4c02951
crossref_primary_10_1002_anie_202413179
crossref_primary_10_1021_acsanm_3c03630
crossref_primary_10_1016_j_ccr_2023_215464
crossref_primary_10_1021_acsami_4c04342
crossref_primary_10_1007_s40820_023_01195_2
crossref_primary_10_1002_ange_202413179
crossref_primary_10_1002_anie_202311806
crossref_primary_10_1039_D4QI01347F
crossref_primary_10_1002_adfm_202405884
crossref_primary_10_1021_acsami_4c00084
crossref_primary_10_1007_s40820_024_01347_y
crossref_primary_10_1021_jacs_4c03576
crossref_primary_10_1016_j_jpowsour_2024_234923
crossref_primary_10_1007_s40820_024_01505_2
crossref_primary_10_1016_j_jechem_2025_02_033
crossref_primary_10_1007_s40820_023_01282_4
crossref_primary_10_1002_advs_202309927
crossref_primary_10_1002_smll_202406131
crossref_primary_10_1007_s42114_024_01052_9
crossref_primary_10_1016_j_jechem_2024_02_058
crossref_primary_10_1002_ange_202311806
crossref_primary_10_1039_D3CS00386H
Cites_doi 10.1016/j.scib.2019.12.003
10.1002/anie.201801029
10.1039/c7ee03245e
10.1002/anie.202103824
10.1002/adma.202007368
10.1021/jacs.1c08050
10.1039/c8ta00550h
10.1002/adma.201700311
10.1038/s41563-019-0571-5
10.1016/j.ccr.2021.214049
10.1021/jacs.8b04647
10.1038/s41467-020-17108-5
10.1039/c9cs00607a
10.1021/acs.chemrev.0c00576
10.1002/anie.201808049
10.1016/j.jelechem.2006.11.008
10.1021/jacs.8b04546
10.1038/s41467-021-25811-0
10.1002/anie.200503778
10.1039/d1ee01592c
10.1007/s12274-020-3219-5
10.1039/c8ta06442c
10.1007/s40820-023-01024-6
10.1021/acscatal.5b01638
10.1002/adma.201905622
10.1021/acsenergylett.7b00679
10.1021/jacs.9b05268
10.1016/j.jechem.2018.09.003
10.1016/j.chempr.2018.02.023
10.1038/s41570-018-0010-1
10.1038/s41929-018-0063-z
10.1021/jacs.9b05576
10.1016/j.gee.2020.11.023
10.1038/s41560-021-00925-3
10.1021/jacs.8b05992
10.1016/j.joule.2018.06.019
10.1021/jacs.5b10699
10.1039/c4cs00470a
10.1002/adma.201808066
10.1002/anie.201608601
10.1002/anie.202207537
10.1038/s41560-020-00709-1
10.1007/s12274-021-3680-9
10.1021/jacs.0c12740
10.1038/s41929-017-0008-y
10.1021/jacs.7b02736
10.1002/anie.201810175
10.1039/d0cs00575d
10.1007/s40820-023-01038-0
10.1039/d1gc03768d
10.1038/s41467-018-05600-y
10.1002/aenm.202203568
10.1073/pnas.0602439103
10.1002/adma.201700017
10.1038/ncomms11204
10.1038/s41467-020-16237-1
10.1039/c2ee22554a
10.1002/anie.201200699
10.1007/s12274-019-2345-4
10.1039/c8ta06069j
10.1021/jz501061n
10.1002/anie.201604802
10.1007/s41918-022-00133-x
10.1021/jacs.1c13374
10.1038/s41929-019-0325-4
10.1002/aenm.202002896
10.1002/adfm.202110910
10.1039/c9cc01717h
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-023-01080-y
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
ProQuest Materials Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 13
ExternalDocumentID oai_doaj_org_article_dc111681609d4828bd176a2f6993e7c2
PMC10151301
37127819
10_1007_s40820_023_01080_y
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c580t-1f48f657db1a526d2204a879702462da74fb8cb97d561b6ac9088217a56131d83
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:26:14 EDT 2025
Thu Aug 21 18:37:32 EDT 2025
Fri Jul 11 07:40:47 EDT 2025
Sat Aug 23 14:08:48 EDT 2025
Wed Feb 19 02:23:59 EST 2025
Tue Jul 01 00:55:49 EDT 2025
Thu Apr 24 23:05:04 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Atomically dispersed catalyst
Overall water splitting
Metal–organic frameworks
Hydrogen bond
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-1f48f657db1a526d2204a879702462da74fb8cb97d561b6ac9088217a56131d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/dc111681609d4828bd176a2f6993e7c2
PMID 37127819
PQID 2889584062
PQPubID 2044332
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_dc111681609d4828bd176a2f6993e7c2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10151301
proquest_miscellaneous_2808585732
proquest_journals_2889584062
pubmed_primary_37127819
crossref_citationtrail_10_1007_s40820_023_01080_y
crossref_primary_10_1007_s40820_023_01080_y
springer_journals_10_1007_s40820_023_01080_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Park, Ni, Côté, Choi, Huang (CR45) 2006; 103
Guan, Ryu, Hu, Zhou, Dong (CR28) 2020; 11
Zou, Wu, Liu, Liu, Li (CR32) 2018; 4
Wu, He, Li, Zhang (CR8) 2018; 6
Zhang, Shi, Wang, Zhu, Li (CR11) 2020; 65
Rossmeisl, Qu, Zhu, Kroes, Nørskov (CR42) 2007; 607
Zhang, Zhao, Xi, Zhang, Chen (CR55) 2020; 10
Zhang, Fischer, Jia, Yan, Xu (CR48) 2018; 140
Li, Wang, Liu, Li, Wang (CR66) 2016; 7
Wu, Huang, Liu, Li, Wang (CR33) 2021; 14
Wang, Sun, Ren, Yuan (CR3) 2021; 13
Jiao, Zhu, Zhang, Yang, Zhou (CR46) 2021; 143
Wang, Li, Li, Chen, Zhou (CR56) 2019; 55
Wang, Chen, Wu, Cao, Sun (CR18) 2021; 143
Guo, Ding, Huo, Wen, Ren (CR21) 2023; 15
Wang, Zhang, Yan, You, Zheng (CR22) 2023; 15
Kaiser, Chen, Faust Akl, Mitchell, Pérez-Ramírez (CR36) 2020; 120
Chen, Dang, Liang, Bi, Gerken (CR16) 2015; 137
Lu, Shi, Zhou, Zhang, Wu (CR40) 2022; 144
Park, Shao, Liu, Wang (CR6) 2012; 5
Yu, Budiyanto, Tüysüz (CR7) 2022; 61
Dionigi, Zeng, Sinev, Merzdorf, Deshpande (CR15) 2020; 11
Sun, Luo, Dai, Ma (CR19) 2021; 444
Song, Bai, Moysiadou, Lee, Hu (CR14) 2018; 140
Zhao, Dai, Yao, Chen, Wang (CR54) 2017; 139
Chen, Ren, Yuan (CR20) 2022; 24
Wan, Zhao, Wei, Triana, Li (CR63) 2021; 12
Han, Ling, Yu, Xie, Li (CR59) 2019; 31
Bai, Hsu, Alexander, Chen, Hu (CR39) 2021; 6
Fan, Mao, Liu, Zhuo, Zhao (CR26) 2018; 6
Forslund, Hardin, Rong, Abakumov, Filimonov (CR27) 2018; 9
Huang, Lin, Zhang, Chen (CR44) 2006; 45
Guan, Bai, Tang (CR68) 2021; 15
Ren, Yao, Yuan (CR9) 2021; 6
Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (CR43) 2015; 5
Li, Huang, Xi, Miao, Ding (CR50) 2018; 140
Chen, Ji, Chen, Peng, Wang (CR34) 2018; 2
Song, Wei, Huang, Liu, Zeng (CR62) 2020; 49
Pei, Lu, Zhang, Li, Luan (CR60) 2022; 61
Liu, Ding, Wu, Gan, Wang (CR47) 2018; 6
Fan, Wang, Gao, Yang, Liu (CR4) 2019; 34
Chen, Sasaki, Ma, Frenkel, Marinkovic (CR13) 2012; 51
Tian, Zhao, Sheng (CR5) 2019; 31
Danilovic, Subbaraman, Chang, Chang, Kang (CR23) 2014; 5
Wu, Sun, Song, Xi, Du (CR29) 2019; 2
Jung, Shin, Lee, Efremov, Lee (CR61) 2020; 19
Zhang, Han, Liu, Biset-Peiró, Zhang (CR57) 2021; 14
Jiao, Zheng, Jaroniec, Qiao (CR1) 2015; 44
Wu, Bag, Xu, Gong, He (CR10) 2021; 33
Bai, Hsu, Alexander, Chen, Hu (CR38) 2019; 141
Zhao, Tan, He, An, Xie (CR64) 2020; 5
Jin (CR31) 2017; 2
Wang, Li, Zhang (CR35) 2018; 2
Wu, Wei, Yu, Xia, Hong (CR67) 2022; 32
Yin, Zhang, Gao, Yao, Zhang (CR12) 2017; 29
Spöri, Kwan, Bonakdarpour, Wilkinson, Strasser (CR24) 2017; 56
Weng, Lv, Ren, Ma, Yuan (CR25) 2022; 5
Huang, Li, Huang, He, Gong (CR30) 2018; 57
Sun, Xu, Wang, Li (CR37) 2019; 12
Lu, Wang, Hu, Liu, Zhao (CR49) 2019; 58
Yin, Yao, Wu, Zheng, Lin (CR41) 2016; 55
Yang, Qiu, Zhao, Wei, Chen (CR58) 2018; 57
Xu, Cheng, Cao, Zeng (CR65) 2018; 1
Jia, Zhang, Gao, Chen, Wang (CR17) 2017; 29
Sun, Silvioli, Sahraie, Ju, Li (CR51) 2019; 141
Jiang, Siahrostami, Zheng, Hu, Hwang (CR52) 2018; 11
Wang, Gao, Kong, Kim, Choi (CR2) 2020; 49
Fei, Dong, Feng, Allen, Wan (CR53) 2018; 1
X Han (1080_CR59) 2019; 31
KS Park (1080_CR45) 2006; 103
M Yu (1080_CR7) 2022; 61
L Jiao (1080_CR46) 2021; 143
Y Zhang (1080_CR11) 2020; 65
C Wang (1080_CR22) 2023; 15
B Guo (1080_CR21) 2023; 15
C Spöri (1080_CR24) 2017; 56
X Wang (1080_CR56) 2019; 55
Y Jiao (1080_CR1) 2015; 44
N Danilovic (1080_CR23) 2014; 5
F Song (1080_CR14) 2018; 140
L Bai (1080_CR39) 2021; 6
H Xu (1080_CR65) 2018; 1
X Zou (1080_CR32) 2018; 4
A Wang (1080_CR35) 2018; 2
X Tian (1080_CR5) 2019; 31
S Park (1080_CR6) 2012; 5
H Fan (1080_CR4) 2019; 34
SK Kaiser (1080_CR36) 2020; 120
T Wu (1080_CR29) 2019; 2
C-C Weng (1080_CR25) 2022; 5
S Lu (1080_CR40) 2022; 144
D Guan (1080_CR28) 2020; 11
Z Zhang (1080_CR55) 2020; 10
J-S Li (1080_CR66) 2016; 7
J Song (1080_CR62) 2020; 49
Y Jia (1080_CR17) 2017; 29
JY Chen (1080_CR16) 2015; 137
K Jiang (1080_CR52) 2018; 11
Z Lu (1080_CR49) 2019; 58
J Yang (1080_CR58) 2018; 57
J Guan (1080_CR68) 2021; 15
Y Yin (1080_CR12) 2017; 29
F Dionigi (1080_CR15) 2020; 11
L Sun (1080_CR19) 2021; 444
O Diaz-Morales (1080_CR43) 2015; 5
Y Wu (1080_CR67) 2022; 32
L Bai (1080_CR38) 2019; 141
S Zhao (1080_CR64) 2020; 5
W-F Chen (1080_CR13) 2012; 51
T Sun (1080_CR37) 2019; 12
H Fei (1080_CR53) 2018; 1
S Jin (1080_CR31) 2017; 2
L Zhang (1080_CR48) 2018; 140
J-T Ren (1080_CR9) 2021; 6
C Zhao (1080_CR54) 2017; 139
J Wang (1080_CR2) 2020; 49
J-X Wu (1080_CR8) 2018; 6
Z Pei (1080_CR60) 2022; 61
Y Sun (1080_CR51) 2019; 141
P Yin (1080_CR41) 2016; 55
X-C Huang (1080_CR44) 2006; 45
E Jung (1080_CR61) 2020; 19
H Fan (1080_CR26) 2018; 6
Z Wu (1080_CR33) 2021; 14
Y Chen (1080_CR34) 2018; 2
H-Y Wang (1080_CR3) 2021; 13
J Huang (1080_CR30) 2018; 57
T Zhang (1080_CR57) 2021; 14
J-X Wu (1080_CR10) 2021; 33
D Liu (1080_CR47) 2018; 6
H Wang (1080_CR18) 2021; 143
X Li (1080_CR50) 2018; 140
L Chen (1080_CR20) 2022; 24
RP Forslund (1080_CR27) 2018; 9
W Wan (1080_CR63) 2021; 12
J Rossmeisl (1080_CR42) 2007; 607
References_xml – volume: 65
  start-page: 359
  year: 2020
  end-page: 366
  ident: CR11
  article-title: Vertically aligned NiS /CoS /MoS nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.12.003
– volume: 57
  start-page: 4632
  year: 2018
  end-page: 4636
  ident: CR30
  article-title: Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801029
– volume: 11
  start-page: 893
  year: 2018
  end-page: 903
  ident: CR52
  article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee03245e
– volume: 61
  start-page: 202103824
  year: 2022
  ident: CR7
  article-title: Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202103824
– volume: 33
  start-page: 2007368
  year: 2021
  ident: CR10
  article-title: Graphene-like hydrogen-bonded melamine-cyanuric acid supramolecular nanosheets as pseudo-porous catalyst support
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007368
– volume: 143
  start-page: 19417
  year: 2021
  end-page: 19424
  ident: CR46
  article-title: Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO electroreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08050
– volume: 6
  start-page: 6840
  year: 2018
  end-page: 6846
  ident: CR47
  article-title: Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta00550h
– volume: 29
  start-page: 1700311
  year: 2017
  ident: CR12
  article-title: Synergistic phase and disorder engineering in 1T-MoSe nanosheets for enhanced hydrogen-evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700311
– volume: 19
  start-page: 436
  year: 2020
  end-page: 442
  ident: CR61
  article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H O production
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 444
  start-page: 214049
  year: 2021
  ident: CR19
  article-title: Material libraries for electrocatalytic overall water splitting
  publication-title: Coordin. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214049
– volume: 140
  start-page: 10757
  year: 2018
  end-page: 10763
  ident: CR48
  article-title: Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04647
– volume: 11
  start-page: 3376
  year: 2020
  ident: CR28
  article-title: Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17108-5
– volume: 49
  start-page: 2196
  year: 2020
  end-page: 2214
  ident: CR62
  article-title: A review on fundamentals for designing oxygen evolution electrocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c9cs00607a
– volume: 120
  start-page: 11703
  year: 2020
  end-page: 11809
  ident: CR36
  article-title: Single-atom catalysts across the priodic table
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00576
– volume: 57
  start-page: 14095
  year: 2018
  end-page: 14100
  ident: CR58
  article-title: In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808049
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: CR42
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 140
  start-page: 7748
  year: 2018
  end-page: 7759
  ident: CR14
  article-title: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04546
– volume: 12
  start-page: 5589
  year: 2021
  ident: CR63
  article-title: Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25811-0
– volume: 45
  start-page: 1557
  year: 2006
  end-page: 1559
  ident: CR44
  article-title: Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503778
– volume: 14
  start-page: 4847
  year: 2021
  end-page: 4857
  ident: CR57
  article-title: Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01592c
– volume: 14
  start-page: 2264
  year: 2021
  end-page: 2267
  ident: CR33
  article-title: Surface oxidation of transition metal sulfide and phosphide nanomaterials
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3219-5
– volume: 6
  start-page: 21313
  year: 2018
  end-page: 21319
  ident: CR26
  article-title: Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta06442c
– volume: 15
  start-page: 52
  year: 2023
  ident: CR22
  article-title: Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01024-6
– volume: 5
  start-page: 5380
  year: 2015
  end-page: 5387
  ident: CR43
  article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01638
– volume: 31
  start-page: 1905622
  year: 2019
  ident: CR59
  article-title: Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905622
– volume: 2
  start-page: 1937
  year: 2017
  end-page: 1938
  ident: CR31
  article-title: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 141
  start-page: 14190
  year: 2019
  end-page: 14199
  ident: CR38
  article-title: A cobalt-iron double-atom catalyst for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05268
– volume: 34
  start-page: 64
  year: 2019
  end-page: 71
  ident: CR4
  article-title: Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.09.003
– volume: 4
  start-page: 1139
  year: 2018
  end-page: 1152
  ident: CR32
  article-title: In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.02.023
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: CR35
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: CR65
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 141
  start-page: 12372
  year: 2019
  end-page: 12381
  ident: CR51
  article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 6
  start-page: 620
  year: 2021
  end-page: 643
  ident: CR9
  article-title: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2020.11.023
– volume: 6
  start-page: 1054
  year: 2021
  end-page: 1066
  ident: CR39
  article-title: Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00925-3
– volume: 140
  start-page: 12469
  year: 2018
  end-page: 12475
  ident: CR50
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 2
  start-page: 1242
  year: 2018
  end-page: 1264
  ident: CR34
  article-title: Single-atom catalysts: synthetic strategies and electrochemical applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 137
  start-page: 15090
  year: 2015
  end-page: 15093
  ident: CR16
  article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe by Mössbauer spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10699
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: CR1
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00470a
– volume: 31
  start-page: 1808066
  year: 2019
  ident: CR5
  article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808066
– volume: 56
  start-page: 5994
  year: 2017
  end-page: 6021
  ident: CR24
  article-title: The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608601
– volume: 61
  start-page: 202207527
  year: 2022
  ident: CR60
  article-title: Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202207537
– volume: 5
  start-page: 881
  year: 2020
  end-page: 890
  ident: CR64
  article-title: Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00709-1
– volume: 15
  start-page: 818
  year: 2021
  end-page: 837
  ident: CR68
  article-title: Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3680-9
– volume: 143
  start-page: 4639
  year: 2021
  end-page: 4645
  ident: CR18
  article-title: Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12740
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  ident: CR53
  article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electr ocatalytic activities
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  ident: CR54
  article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02736
– volume: 58
  start-page: 2622
  year: 2019
  end-page: 2626
  ident: CR49
  article-title: An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201810175
– volume: 49
  start-page: 9154
  year: 2020
  end-page: 9196
  ident: CR2
  article-title: Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/d0cs00575d
– volume: 15
  start-page: 57
  year: 2023
  ident: CR21
  article-title: Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01038-0
– volume: 24
  start-page: 713
  year: 2022
  end-page: 747
  ident: CR20
  article-title: Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splittings
  publication-title: Green Chem.
  doi: 10.1039/d1gc03768d
– volume: 9
  start-page: 3150
  year: 2018
  ident: CR27
  article-title: Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La Sr Ni Fe O Ruddlesden-Popper oxides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05600-y
– volume: 13
  start-page: 2203568
  year: 2021
  ident: CR3
  article-title: Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203568
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  ident: CR45
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602439103
– volume: 29
  start-page: 1700017
  year: 2017
  ident: CR17
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 7
  start-page: 11204
  year: 2016
  ident: CR66
  article-title: Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11204
– volume: 11
  start-page: 2522
  year: 2020
  ident: CR15
  article-title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 5
  start-page: 9331
  year: 2012
  end-page: 9344
  ident: CR6
  article-title: Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22554a
– volume: 51
  start-page: 6131
  year: 2012
  end-page: 6135
  ident: CR13
  article-title: Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200699
– volume: 12
  start-page: 2067
  year: 2019
  end-page: 2080
  ident: CR37
  article-title: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2345-4
– volume: 6
  start-page: 19176
  year: 2018
  end-page: 19181
  ident: CR8
  article-title: An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu-C hybrid nanorod arrays for an efficient oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta06069j
– volume: 5
  start-page: 2474
  year: 2014
  end-page: 2478
  ident: CR23
  article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501061n
– volume: 55
  start-page: 10800
  year: 2016
  end-page: 10805
  ident: CR41
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 5
  start-page: 19
  year: 2022
  ident: CR25
  article-title: Engineering gas–solid–liquid triple-phase interfaces for electrochemical energy conversion reactions
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-022-00133-x
– volume: 144
  start-page: 3250
  year: 2022
  end-page: 3258
  ident: CR40
  article-title: Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c13374
– volume: 2
  start-page: 763
  year: 2019
  end-page: 772
  ident: CR29
  article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 10
  start-page: 2002896
  year: 2020
  ident: CR55
  article-title: Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002896
– volume: 32
  start-page: 2110910
  year: 2022
  ident: CR67
  article-title: Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110910
– volume: 55
  start-page: 6563
  year: 2019
  end-page: 6566
  ident: CR56
  article-title: 2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes
  publication-title: Chem. Commun.
  doi: 10.1039/c9cc01717h
– volume: 4
  start-page: 1139
  year: 2018
  ident: 1080_CR32
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.02.023
– volume: 137
  start-page: 15090
  year: 2015
  ident: 1080_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10699
– volume: 24
  start-page: 713
  year: 2022
  ident: 1080_CR20
  publication-title: Green Chem.
  doi: 10.1039/d1gc03768d
– volume: 31
  start-page: 1905622
  year: 2019
  ident: 1080_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905622
– volume: 65
  start-page: 359
  year: 2020
  ident: 1080_CR11
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.12.003
– volume: 607
  start-page: 83
  year: 2007
  ident: 1080_CR42
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 33
  start-page: 2007368
  year: 2021
  ident: 1080_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007368
– volume: 57
  start-page: 14095
  year: 2018
  ident: 1080_CR58
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808049
– volume: 139
  start-page: 8078
  year: 2017
  ident: 1080_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02736
– volume: 10
  start-page: 2002896
  year: 2020
  ident: 1080_CR55
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002896
– volume: 56
  start-page: 5994
  year: 2017
  ident: 1080_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608601
– volume: 2
  start-page: 763
  year: 2019
  ident: 1080_CR29
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 61
  start-page: 202103824
  year: 2022
  ident: 1080_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202103824
– volume: 6
  start-page: 21313
  year: 2018
  ident: 1080_CR26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta06442c
– volume: 58
  start-page: 2622
  year: 2019
  ident: 1080_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201810175
– volume: 44
  start-page: 2060
  year: 2015
  ident: 1080_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00470a
– volume: 55
  start-page: 6563
  year: 2019
  ident: 1080_CR56
  publication-title: Chem. Commun.
  doi: 10.1039/c9cc01717h
– volume: 61
  start-page: 202207527
  year: 2022
  ident: 1080_CR60
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202207537
– volume: 29
  start-page: 1700017
  year: 2017
  ident: 1080_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 14
  start-page: 2264
  year: 2021
  ident: 1080_CR33
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3219-5
– volume: 143
  start-page: 4639
  year: 2021
  ident: 1080_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12740
– volume: 143
  start-page: 19417
  year: 2021
  ident: 1080_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08050
– volume: 7
  start-page: 11204
  year: 2016
  ident: 1080_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11204
– volume: 140
  start-page: 12469
  year: 2018
  ident: 1080_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 5
  start-page: 9331
  year: 2012
  ident: 1080_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22554a
– volume: 11
  start-page: 2522
  year: 2020
  ident: 1080_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 45
  start-page: 1557
  year: 2006
  ident: 1080_CR44
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503778
– volume: 103
  start-page: 10186
  year: 2006
  ident: 1080_CR45
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602439103
– volume: 49
  start-page: 9154
  year: 2020
  ident: 1080_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/d0cs00575d
– volume: 140
  start-page: 10757
  year: 2018
  ident: 1080_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04647
– volume: 6
  start-page: 19176
  year: 2018
  ident: 1080_CR8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta06069j
– volume: 12
  start-page: 2067
  year: 2019
  ident: 1080_CR37
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2345-4
– volume: 15
  start-page: 818
  year: 2021
  ident: 1080_CR68
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3680-9
– volume: 2
  start-page: 1242
  year: 2018
  ident: 1080_CR34
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 15
  start-page: 52
  year: 2023
  ident: 1080_CR22
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01024-6
– volume: 6
  start-page: 620
  year: 2021
  ident: 1080_CR9
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2020.11.023
– volume: 9
  start-page: 3150
  year: 2018
  ident: 1080_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05600-y
– volume: 444
  start-page: 214049
  year: 2021
  ident: 1080_CR19
  publication-title: Coordin. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214049
– volume: 141
  start-page: 12372
  year: 2019
  ident: 1080_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 141
  start-page: 14190
  year: 2019
  ident: 1080_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05268
– volume: 19
  start-page: 436
  year: 2020
  ident: 1080_CR61
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 1
  start-page: 339
  year: 2018
  ident: 1080_CR65
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 13
  start-page: 2203568
  year: 2021
  ident: 1080_CR3
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203568
– volume: 55
  start-page: 10800
  year: 2016
  ident: 1080_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 31
  start-page: 1808066
  year: 2019
  ident: 1080_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808066
– volume: 15
  start-page: 57
  year: 2023
  ident: 1080_CR21
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01038-0
– volume: 5
  start-page: 5380
  year: 2015
  ident: 1080_CR43
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01638
– volume: 14
  start-page: 4847
  year: 2021
  ident: 1080_CR57
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01592c
– volume: 2
  start-page: 1937
  year: 2017
  ident: 1080_CR31
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 51
  start-page: 6131
  year: 2012
  ident: 1080_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200699
– volume: 5
  start-page: 2474
  year: 2014
  ident: 1080_CR23
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501061n
– volume: 11
  start-page: 893
  year: 2018
  ident: 1080_CR52
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee03245e
– volume: 5
  start-page: 881
  year: 2020
  ident: 1080_CR64
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00709-1
– volume: 57
  start-page: 4632
  year: 2018
  ident: 1080_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801029
– volume: 6
  start-page: 6840
  year: 2018
  ident: 1080_CR47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta00550h
– volume: 29
  start-page: 1700311
  year: 2017
  ident: 1080_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700311
– volume: 32
  start-page: 2110910
  year: 2022
  ident: 1080_CR67
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110910
– volume: 11
  start-page: 3376
  year: 2020
  ident: 1080_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17108-5
– volume: 34
  start-page: 64
  year: 2019
  ident: 1080_CR4
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.09.003
– volume: 2
  start-page: 65
  year: 2018
  ident: 1080_CR35
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 5
  start-page: 19
  year: 2022
  ident: 1080_CR25
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-022-00133-x
– volume: 140
  start-page: 7748
  year: 2018
  ident: 1080_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04546
– volume: 12
  start-page: 5589
  year: 2021
  ident: 1080_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25811-0
– volume: 1
  start-page: 63
  year: 2018
  ident: 1080_CR53
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 6
  start-page: 1054
  year: 2021
  ident: 1080_CR39
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00925-3
– volume: 49
  start-page: 2196
  year: 2020
  ident: 1080_CR62
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c9cs00607a
– volume: 120
  start-page: 11703
  year: 2020
  ident: 1080_CR36
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00576
– volume: 144
  start-page: 3250
  year: 2022
  ident: 1080_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c13374
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.4332762
Snippet Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ...
The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here,...
HighlightsAn atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural...
An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ structural evolution...
Highlights An atomically dispersed catalyst with unprecedented N8V4 Co-Ni dual-metal sites is synthesized, which shows interesting asymmetric in situ...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120
SubjectTerms Asymmetry
Atomically dispersed catalyst
Catalysts
Density functional theory
Dispersion
Electrocatalysis
Electrocatalysts
Engineering
Hydrogen bond
Hydrogen bonding
Hydrogen bonds
Metal–organic frameworks
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Overall water splitting
Oxidation
Oxygen evolution reactions
Pyrolysis
Reaction intermediates
Substrates
Water splitting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k2gICNxA4vYiR97Qi3dqkJqhVpW6i1yYodWWpLS3RXaf8-M4yRdHr1uJpLXM5n57LG_j5B3VksrIAcw4UzFkICOlQDzmZd1LWtdu1LgfefjE3U0z7-cy_O44baMxyr7nBgStWsr3CP_KIyZQrFMlfh09ZOhahR2V6OExl2yAynYmAnZ2Z-dfD3tI0poVGYa-4Qor5zfYKvJkdslGwnNJBKY6ZEnU4oc6nssuB2g1tjKCop1nDOlUxVv4oT7eKjenDIog7BCByjGNlvVLogC_AvJ_n0g84-ubCh2hw_Jg4hS6V4XVo_IHd88JvdvcBc-IXZv1QaqgcWGHlwi3_jSO3qwtgt27AHR0zOYuCU9u2h_gT2dB6JYeurxIgXqVVDbgPmmsRBoPyhAZzrrFHnChhLypDwl88PZt89HLOo1sEqadMV4nZtaSe1KbqVQTog0twZcADhACWd1XpemKqfaAWgrla3wjBUsiSwuYrgz2TMyadrGvyBUGwu5IqstL30uK1NmNsuFq7lKbQar-YTwfl6LKpKZo6bGohhomIMvCvBFEXxRbBLyfnjnqqPyuNV6H901WCINd_ihvf5exK-6cBWUCmVgVFOXw9q1dFwrK2oFqM_rCoa52zu7iLlhWYyRnJC3w2OYbGzV2Ma3a7RJsWGrM7B53sXGMJJMc6EByCXEbEXN1lC3nzSXF4E5HOYUQjzlCfnQB9g4rv_Pxcvb_8Yrck9gzIdDPrtksrpe-9cA1Vblm_g9_gbVFjD9
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagXOCAeBMoyEjcwNLa61eOhbaqkMqBEqm3lb22aaWwi5pEKP-eGe-rgYLENZ6VRp6x55uM5xtC3jqjnIA7gIlga4YEdMwDzGdRpaSSScEL7Hc-_axPFvLTuTrvm8JWw2v3oSSZb-qx2Q1HIxcMYgykv4Bz2PY2uaMwd8cS7cQ5LgxOY5pqgzhSWV5jqJHI51JOJGYKScvMxI2phISY3gfZDkQbLF_lKXWcM20K3Xff3KzWToTLgwBuQq9_PsL8rRKbA9zxA3K_R6b0oHOlh-RWbB6Re9f4Ch8Td7BuM73AcksPL5FjfBUDPdy4JTuNgOLpGQDYFT27aH-CPF1kclj6JWLzBM6ooK4B8W3jwLm-U4DL9KibwpP_REJulCdkcXz09eMJ62c0sFrZYs14kjZpZYLnTgkdhCiks2ACiP1aBGdk8rb2cxMAqHntanxXBWmQw8SFB1s-JXtN28TnhBrr4H4ok-M-SlVbX7pSipC4LlwJGfyM8GFfq7onMMc5GstqpF7OtqjAFlW2RbWdkXfjNz86-o5_Sn9Ac42SSL2df2ivvlX9Sa5CDeFBW9BqHiTkqz5wo51IGpBeNDWouT8Yu-rvg1UlrJ0D1Cs0LL8Zl2GzsTzjmthuUKbAIq0pQeZZ5xujJqXhwgB4mxG74zU7qu6uNJcXmS0c9hRcvOAz8n5wsEmvv-_Fi_8Tf0nuCjwD-aHPPtlbX23iK4Bra_86n85f6mgsnw
  priority: 102
  providerName: Springer Nature
Title Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis
URI https://link.springer.com/article/10.1007/s40820-023-01080-y
https://www.ncbi.nlm.nih.gov/pubmed/37127819
https://www.proquest.com/docview/2889584062
https://www.proquest.com/docview/2808585732
https://pubmed.ncbi.nlm.nih.gov/PMC10151301
https://doaj.org/article/dc111681609d4828bd176a2f6993e7c2
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucBhxZvAUhmJG1jEjmO7xz5ZIe0K7VJpb5Edx9qVSopoq1X_PTNOmrY8L1xSKZ5I1szY803H_oaQt1bnVsAewIQ3JUMCOuYA5rMqDyEPOngn8L7z2bk6nclPV_nVXqsvPBPW0AM3ivvgS1iNynCV9r2E9MB5rpUVQUFgrXQZd1-IeXvJFHiS0NiRaVcfxLbKco-lRiKnS7YjMsuRuEzv-DFzISGut4G2AdIaS1ixUx3nTOlUtTdw4j087NqcMgh_kJkDBGObgygXmwH8DsH-ehDzp2psDHLTh-S4Rad00GjlEblT1Y_Jgz3OwifEDlaLSDEw39DxDfKMLytPx2s7Z2cVIHl6CSB2SS-vF7cgT2eRIJZeVHiBAvtUUFuD-Ka24GBfKUBmOmk68cQ_kpAf5SmZTSdfRqes7dPAytykK8aDNEHl2jtuc6G8EKm0BkwA8V8Jb7UMzpSurz2ANadsiWerIBWymLxwb7Jn5Khe1NULQrWxsEdkwXJXybw0LrOZFD6A-W0GWXxC-FavRdmSmGMvjXnR0S9HWxRgiyLaotgk5F33zbeGwuOv0kM0VyeJ9NvxBThl0Tpl8S-nTMjJ1thFuycsC2FMH-BeqmD4TTcMysYSja2rxRplUizU6gxknje-0c0k01xoAHAJMQdeczDVw5H65joyhoNOwcVTnpD3WwfbzevPunj5P3TxitwXuDLiEaATcrT6vq5eA5BbuR65a6Yfe-TeYDgeTuF3ODn_fAFvR0LiU416cVX_ABzqPKY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nc9MwENWUcgAODN-kFBAzcAINlixLyoFhCmlIadMDbWZ6M7Il086kdmmS6eRP8RvZle2k4aO3XuNNRtGud5-92vcIeW11YgXkACacyRkS0LEMYD7zSVEkhS5cJnDeebivBiP59Sg5WiO_2lkYPFbZ5sSQqF2V4zvy98KYLhTLSImPZz8ZqkZhd7WV0KjDYtfPL-CRbfJhpwf-fSNEf_vw84A1qgIsT0w0ZbyQplCJdhm3iVBOiEhao7saqpUSzmpZZCbPutoBtMiUzfEkEAB3i1CbOxPD794gN2UMlRwn0_tf2vgVGnWgll1JFHOWl7hxJDLJxEv6tATp0vSSlTMREtBEU95r-K6xcRb08ThnSkeqmfsJ03-oFR0xKLoswpOCbL5SW4MEwb9w89_HP__oAYfS2r9H7jaYmG7VQXyfrPnyAblziSnxIbFb0yoQG4zntHeC7OYT72hvZsds6OH5gR6Amyb04Li6AHs6CrS09JvHsQ1Ux6C2BPN5aSGsTykAdbpd6_-E11fIyvKIjK7Fj4_JelmV_imh2ljITHFheeZlkpsstrEUruAqsrGWokN4u69p3lCno4LHOF2QPgdfpOCLNPginXfI28V3zmrikCutP6G7FpZI-h0-qM5_pE0OSV0OhUkZWFXXSXhSzhzXyopCAcb0OodlbrbOTptMNEmX902HvFpchs3GxpAtfTVDmwjbwzoGmyd1bCxWEmsuNMDGDjErUbOy1NUr5clx4CmHPYUQj3iHvGsDbLmu_-_FxtV_4yW5NTgc7qV7O_u7z8htgfEfjhdtkvXp-cw_B5A4zV6EO5OS79edCn4D9_ZqcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiE4IN4EChgJTmB17fXazoFDII3alFaIEKm3xbte00phUzWpqvwrfiIz3kcaKEgcel3PRqOZWc_njOcbQl5bnVgBewATzuQMCehYBjCfFYn3idfeZQL7nQ8O1e5Ejo6Sow3ys-mFCbfdm5Jk1dOALE3lYvvU-e228Q3HJEcM8g0chQHzsGV9rXK_WF7AoW3-fm8AHn4jxHDn68ddVs8VYHliogXjXhqvEu0ybhOhnBCRtEb3NOQrJZzV0mcmz3raAbjIlM3xLhBAd4tgmzsTw-_eIJtGweMO2ez3R-NRE8NC4yyoVWUSBzrLS_w4Etlk4hWFWoKUaXrFzJkICYiiTvEVhNdYPAsz8jhnSkeq7v252hBr-TWMIbgKO_95BfS3OnBIr8O75E6Ni2m_CuR7ZKMo75Pbl9gSHxDbX8wCucF0SQcnyHA-LxwdnNspOyjgDEHHAJ_ndHw8uwB5OgnUtPRLga0bOCGD2hLEl6WF0P5BAazTnWoGUPgLC5lZHpLJtXjyEemUs7J4Qqg2Fnan2FueFTLJTRbbWArnuYpsrKXoEt7YNc1r-nSc4jFNW-Ln4IsUfJEGX6TLLnnbvnNakYf8U_oDuquVROLv8GB29j2t95HU5ZCclAGtek7CaTlzXCsrvAKcWegc1NxqnJ3Wu9E8Fcb0AGhGCpZftctgbCwO2bKYnaNMhCViHYPM4yo2Wk1izYUG6NglZi1q1lRdXylPjgNXOdgUQjziXfKuCbCVXn-3xdP_E39Jbn4eDNNPe4f7z8gtgZ9DuHG0RTqLs_PiOeDGRfai_lQp-Xbdu8MvGyZtZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+Dispersed+Dual-Metal+Sites+Showing+Unique+Reactivity+and+Dynamism+for+Electrocatalysis&rft.jtitle=Nano-micro+letters&rft.au=Jun-Xi+Wu&rft.au=Wen-Xing+Chen&rft.au=Chun-Ting+He&rft.au=Kai+Zheng&rft.date=2023-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1007%2Fs40820-023-01080-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc111681609d4828bd176a2f6993e7c2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon