Wave-CAIPI for highly accelerated 3D imaging
Purpose To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g‐factor and artifact penalties. Methods The wave‐CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the r...
Saved in:
Published in | Magnetic resonance in medicine Vol. 73; no. 6; pp. 2152 - 2162 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g‐factor and artifact penalties.
Methods
The wave‐CAIPI 3D acquisition involves playing sinusoidal
gy and
gz gradients during the readout of each
kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D‐CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high‐quality image reconstruction with wave‐CAIPI is demonstrated for high‐resolution magnitude and phase imaging and quantitative susceptibility mapping.
Results
Wave‐CAIPI enables full‐brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g‐factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D‐CAIPI and bunched phase encoding) wave‐CAIPI yields up to two‐fold reduction in maximum g‐factor for nine‐fold acceleration at both field strengths.
Conclusion
Wave‐CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g‐factor penalties, and may facilitate clinical application of high‐resolution volumetric imaging. Magn Reson Med 73:2152–2162, 2015. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The wave-CAIPI 3D acquisition involves playing sinusoidal [Formulaomitted] and [Formulaomitted] gradients during the readout of each [Formulaomitted] encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R=3 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. Magn Reson Med 73:2152-2162, 2015. To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. Purpose To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g‐factor and artifact penalties. Methods The wave‐CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D‐CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high‐quality image reconstruction with wave‐CAIPI is demonstrated for high‐resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave‐CAIPI enables full‐brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g‐factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D‐CAIPI and bunched phase encoding) wave‐CAIPI yields up to two‐fold reduction in maximum g‐factor for nine‐fold acceleration at both field strengths. Conclusion Wave‐CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g‐factor penalties, and may facilitate clinical application of high‐resolution volumetric imaging. Magn Reson Med 73:2152–2162, 2015. © 2014 Wiley Periodicals, Inc. To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties.PURPOSETo introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties.The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping.METHODSThe wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping.Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths.RESULTSWave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths.Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging.CONCLUSIONWave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. Purpose To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The wave-CAIPI 3D acquisition involves playing sinusoidal g y and g z gradients during the readout of each k x encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R=3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. Magn Reson Med 73:2152-2162, 2015. © 2014 Wiley Periodicals, Inc. |
Author | Cauley, Stephen F. Grant, P. Ellen Gagoski, Borjan A. Fan, Audrey P. Bilgic, Berkin Wald, Lawrence L. Polimeni, Jonathan R. Setsompop, Kawin |
AuthorAffiliation | 5 Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA 2 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA 3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA 4 Department of Radiology, Harvard Medical School, Boston, MA, USA |
AuthorAffiliation_xml | – name: 3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 2 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA – name: 5 Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA – name: 4 Department of Radiology, Harvard Medical School, Boston, MA, USA |
Author_xml | – sequence: 1 givenname: Berkin surname: Bilgic fullname: Bilgic, Berkin email: berkin@nmr.mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, Charlestown, USA – sequence: 2 givenname: Borjan A. surname: Gagoski fullname: Gagoski, Borjan A. organization: Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA – sequence: 3 givenname: Stephen F. surname: Cauley fullname: Cauley, Stephen F. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, Charlestown, USA – sequence: 4 givenname: Audrey P. surname: Fan fullname: Fan, Audrey P. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 5 givenname: Jonathan R. surname: Polimeni fullname: Polimeni, Jonathan R. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 6 givenname: P. Ellen surname: Grant fullname: Grant, P. Ellen organization: Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA – sequence: 7 givenname: Lawrence L. surname: Wald fullname: Wald, Lawrence L. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 8 givenname: Kawin surname: Setsompop fullname: Setsompop, Kawin organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24986223$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URNPCgj-ARmIDEtP6-j2bSlWAEqkPBEWR2FieGU_iMjMu9qSQf4_TJFWpQOrGd-HvHJ17zx7a6X1vEXoJ-AAwJodd6A4Ip0w-QSPghOSEF2wHjbBkOKdQsF20F-MVxrgoJHuGdgkrlCCEjtC7qbmx-fh48nmSNT5kczebt8vMVJVtbTCDrTP6PnOdmbl-9hw9bUwb7YvN3EffPn64HH_KTy9OJuPj07ziCsv0WgOMNcBUgyvgFgQrG2pqomQBpWkaCbY2RSm4sgJE2dRUUUIM1KUAWtJ9dLT2vV6Una0r2w_BtPo6pBxhqb1x-u-f3s31zN9oRhRwUMngzcYg-J8LGwfduZg2ak1v_SJqEIpSToGIx6CEEcnlyvX1A_TKL0KfLrGigCrCeZGoV_fD36Xe3jwBh2ugCj7GYBtducEMzq92ca0GrFet6tSqvm01Kd4-UGxN_8Vu3H-51i7_D-qzL2dbRb5WuDjY33cKE35oIankenp-otl0eknO-Xf9lf4BWB-9yg |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1002_jmri_25853 crossref_primary_10_1002_mrm_30021 crossref_primary_10_3174_ajnr_A7191 crossref_primary_10_1002_mrm_29036 crossref_primary_10_1007_s40134_017_0204_1 crossref_primary_10_1002_mrm_28222 crossref_primary_10_3390_bioengineering9120736 crossref_primary_10_1002_mrm_30427 crossref_primary_10_1016_j_neuroimage_2022_118957 crossref_primary_10_1002_mrm_28185 crossref_primary_10_1002_mrm_26567 crossref_primary_10_1016_j_mri_2022_01_018 crossref_primary_10_1007_s00247_019_04584_1 crossref_primary_10_1002_mrm_29799 crossref_primary_10_1016_j_neuroimage_2018_04_026 crossref_primary_10_1002_mrm_27413 crossref_primary_10_1002_mrm_28907 crossref_primary_10_3174_ajnr_A5293 crossref_primary_10_1007_s10334_020_00906_9 crossref_primary_10_1002_mrm_28509 crossref_primary_10_1002_nbm_4281 crossref_primary_10_1259_bjr_20211378 crossref_primary_10_1002_mrm_27483 crossref_primary_10_1002_nbm_3478 crossref_primary_10_3174_ajnr_A6703 crossref_primary_10_1002_mrm_28971 crossref_primary_10_1007_s00330_022_08871_8 crossref_primary_10_1186_s41747_023_00351_y crossref_primary_10_1002_mp_16425 crossref_primary_10_1002_mrm_30018 crossref_primary_10_1038_s41598_022_25725_x crossref_primary_10_1186_s41747_021_00216_2 crossref_primary_10_1016_j_mri_2020_06_005 crossref_primary_10_1002_mrm_27766 crossref_primary_10_3174_ajnr_A7520 crossref_primary_10_1002_mrm_28979 crossref_primary_10_1148_rg_2020190112 crossref_primary_10_1002_mrm_28219 crossref_primary_10_1002_mrm_27124 crossref_primary_10_1016_j_neuroimage_2017_04_036 crossref_primary_10_1002_mrm_29786 crossref_primary_10_1002_mrm_27522 crossref_primary_10_1007_s00330_019_06574_1 crossref_primary_10_1093_braincomms_fcae359 crossref_primary_10_1016_j_conb_2018_04_026 crossref_primary_10_1016_j_nicl_2018_11_017 crossref_primary_10_3390_cells12242776 crossref_primary_10_1002_mrm_29291 crossref_primary_10_1002_nbm_4271 crossref_primary_10_1002_nbm_3620 crossref_primary_10_1016_j_neuroimage_2017_04_006 crossref_primary_10_1016_j_neuroimage_2018_01_078 crossref_primary_10_1111_jon_12893 crossref_primary_10_1002_mrm_26067 crossref_primary_10_1016_j_msard_2021_103309 crossref_primary_10_1016_j_mri_2022_11_005 crossref_primary_10_1109_TMI_2020_3021737 crossref_primary_10_1002_mrm_25897 crossref_primary_10_1002_mrm_28803 crossref_primary_10_1016_j_neuroimage_2018_09_038 crossref_primary_10_1016_j_zemedi_2021_06_004 crossref_primary_10_1002_mrm_28007 crossref_primary_10_1007_s12975_017_0591_x crossref_primary_10_1016_j_crad_2024_106783 crossref_primary_10_1259_bjr_20200113 crossref_primary_10_3390_jimaging7120274 crossref_primary_10_1002_jmri_26678 crossref_primary_10_36017_JAHC2201_03 crossref_primary_10_1002_mrm_29046 crossref_primary_10_1002_nbm_3570 crossref_primary_10_1002_mrm_28999 crossref_primary_10_1007_s10334_024_01182_7 crossref_primary_10_1002_mrm_27147 crossref_primary_10_1016_j_acra_2021_07_011 crossref_primary_10_1016_j_neuroimage_2017_02_020 crossref_primary_10_1053_j_ro_2022_10_002 crossref_primary_10_1002_mp_16471 crossref_primary_10_1016_j_mric_2022_05_005 crossref_primary_10_1007_s00247_021_05273_8 crossref_primary_10_1016_j_pnmrs_2017_04_002 crossref_primary_10_1007_s00247_022_05529_x crossref_primary_10_1002_mp_15788 crossref_primary_10_1002_mrm_28383 crossref_primary_10_1002_mrm_29350 crossref_primary_10_1002_mrm_26886 crossref_primary_10_1002_mrm_29117 crossref_primary_10_1002_nbm_3569 crossref_primary_10_1002_mrm_29635 crossref_primary_10_1109_ACCESS_2024_3495044 crossref_primary_10_1002_mrm_27215 crossref_primary_10_1007_s11604_024_01683_4 crossref_primary_10_2463_mrms_rev_2023_0153 crossref_primary_10_1002_mrm_26649 crossref_primary_10_1016_j_neuroimage_2024_120547 crossref_primary_10_1002_nbm_3552 crossref_primary_10_1177_02841851241245104 crossref_primary_10_1016_j_neuroimage_2021_117946 crossref_primary_10_1002_mrm_27041 crossref_primary_10_1002_mrm_28812 crossref_primary_10_1002_mrm_29865 crossref_primary_10_1016_j_jmr_2023_107544 crossref_primary_10_1007_s00381_020_04724_1 crossref_primary_10_1016_j_neuroimage_2015_08_015 crossref_primary_10_3174_ajnr_A7680 crossref_primary_10_1016_j_mri_2018_08_019 crossref_primary_10_1002_mrm_25703 crossref_primary_10_1097_RLI_0000000000000964 crossref_primary_10_3389_fradi_2023_1267615 crossref_primary_10_1162_imag_a_00175 crossref_primary_10_1016_j_media_2022_102638 crossref_primary_10_1097_RLI_0000000000001114 crossref_primary_10_1016_j_neuroimage_2023_120173 crossref_primary_10_1002_mrm_30120 crossref_primary_10_1002_jmri_25553 crossref_primary_10_3389_fnins_2021_546312 crossref_primary_10_1002_mrm_26386 crossref_primary_10_1002_mrm_29010 crossref_primary_10_1002_nbm_5322 crossref_primary_10_1002_nbm_3540 crossref_primary_10_1007_s00330_022_09243_y crossref_primary_10_1007_s00330_022_09265_6 crossref_primary_10_1016_j_jmr_2018_01_022 crossref_primary_10_1016_j_jmr_2019_07_016 crossref_primary_10_1148_ryai_210313 crossref_primary_10_1088_1361_6560_acc0cd crossref_primary_10_1002_mrm_28605 crossref_primary_10_1016_j_neuroimage_2016_12_082 crossref_primary_10_1002_mrm_26823 crossref_primary_10_1007_s00247_021_05117_5 crossref_primary_10_1038_s41598_018_36802_5 crossref_primary_10_13104_imri_2017_21_4_210 crossref_primary_10_3174_ajnr_A7777 crossref_primary_10_1007_s00330_022_08687_6 crossref_primary_10_3389_fneur_2020_587327 crossref_primary_10_1002_jmri_28421 crossref_primary_10_1002_mrm_27511 crossref_primary_10_1016_j_neuroimage_2024_120528 crossref_primary_10_1053_j_ro_2021_05_005 crossref_primary_10_1038_s41598_021_92759_y crossref_primary_10_1002_mrm_26549 crossref_primary_10_1002_mrm_30230 crossref_primary_10_1002_jnr_25054 crossref_primary_10_1002_jmri_26871 crossref_primary_10_1002_mrm_28034 crossref_primary_10_1002_mrm_29245 crossref_primary_10_1016_j_pnmrs_2018_06_001 crossref_primary_10_1002_mrm_27189 crossref_primary_10_1371_journal_pone_0285089 crossref_primary_10_1002_mrm_29120 crossref_primary_10_1002_nbm_3495 crossref_primary_10_1002_mrm_30119 crossref_primary_10_1007_s12021_024_09686_2 crossref_primary_10_2463_mrms_mp_2021_0065 crossref_primary_10_1002_jmri_26637 crossref_primary_10_1002_mrm_29482 crossref_primary_10_1002_mp_15427 crossref_primary_10_1002_mrm_29647 crossref_primary_10_1002_jmri_29462 crossref_primary_10_1002_mrm_27108 crossref_primary_10_1002_mrm_29645 crossref_primary_10_1002_mrm_29800 crossref_primary_10_1002_mrm_26499 crossref_primary_10_1002_mrm_28435 crossref_primary_10_1002_nbm_4349 crossref_primary_10_1088_1361_6560_ad3e5d crossref_primary_10_1002_jmri_26991 crossref_primary_10_1007_s00247_021_05023_w crossref_primary_10_1109_TMI_2022_3161875 crossref_primary_10_1002_mrm_28716 crossref_primary_10_3174_ajnr_A6295 |
Cites_doi | 10.1002/mrm.21891 10.1002/mrm.20580 10.1002/mrm.1910380414 10.1016/j.neuroimage.2011.10.038 10.1016/j.neuroimage.2011.08.082 10.1002/mrm.23000 10.1006/jmre.1998.1396 10.1002/mrm.1910150117 10.1002/mrm.23152 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W 10.1002/mrm.21643 10.1002/mrm.1241 10.1002/mrm.20401 10.1073/pnas.1211075109 10.1002/jmri.24365 10.1002/mrm.22428 10.1002/jmri.22276 10.1002/mrm.21245 10.1002/mrm.22361 10.1148/radiology.156.3.4023236 10.1016/j.neuroimage.2010.01.108 10.1002/mrm.24991 10.1002/mrm.21828 10.1002/mrm.20198 10.1002/mrm.22482 10.1148/radiol.2211001712 10.1002/mrm.22187 10.1002/mrm.20787 10.1002/mrm.22816 10.1002/hbm.10062 10.1002/mrm.24116 10.1002/mrm.22463 10.1002/mrm.1910080305 10.1002/mrm.22161 10.1002/cmr.b.20034 10.1002/mrm.22600 10.1002/mrm.24875 10.1016/j.neuroimage.2010.10.070 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1371/journal.pone.0015710 10.1002/mrm.24994 10.1002/mrm.24880 10.1002/mrm.20819 10.1002/mrm.25029 10.1002/mrm.24960 10.1002/mrm.23097 10.1016/j.neuroimage.2012.06.033 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM |
DOI | 10.1002/mrm.25347 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2162 |
ExternalDocumentID | PMC4281518 3687850921 24986223 10_1002_mrm_25347 MRM25347 ark_67375_WNG_4WWT2N5Z_S |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health Blueprint for Neuroscience funderid: 1U01MH093765 (Human Connectome Project) – fundername: National Institutes of Health funderid: R00EB012107; P41RR14075 – fundername: NIBIB NIH HHS grantid: R00EB012107 – fundername: NIBIB NIH HHS grantid: K01 EB011498 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NIBIB NIH HHS grantid: R00 EB012107 – fundername: NCRR NIH HHS grantid: P41RR14075 – fundername: NIMH NIH HHS grantid: 1U01MH093765 – fundername: NIMH NIH HHS grantid: U01 MH093765 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c5807-c5ea144f148f0c15e164bf3ad28791baff71eda9b658e616bfd38322a1db613b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:11:11 EDT 2025 Fri Jul 11 08:08:04 EDT 2025 Thu Jul 10 23:35:33 EDT 2025 Fri Jul 25 11:59:26 EDT 2025 Thu Apr 03 07:06:00 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 01:20:56 EDT 2025 Wed Jan 22 16:26:24 EST 2025 Wed Oct 30 09:57:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | parallel imaging phase imaging CAIPIRINHA, quantitative susceptibility mapping |
Language | English |
License | 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5807-c5ea144f148f0c15e164bf3ad28791baff71eda9b658e616bfd38322a1db613b3 |
Notes | National Institutes of Health Blueprint for Neuroscience - No. 1U01MH093765 (Human Connectome Project) istex:0260C07574BD53D5F986F26CF13EB7D70F78ED15 ark:/67375/WNG-4WWT2N5Z-S ArticleID:MRM25347 National Institutes of Health - No. R00EB012107; No. P41RR14075 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25347 |
PMID | 24986223 |
PQID | 1681382559 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281518 proquest_miscellaneous_1683353126 proquest_miscellaneous_1682427578 proquest_journals_1681382559 pubmed_primary_24986223 crossref_citationtrail_10_1002_mrm_25347 crossref_primary_10_1002_mrm_25347 wiley_primary_10_1002_mrm_25347_MRM25347 istex_primary_ark_67375_WNG_4WWT2N5Z_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2015 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 2010;63:1144-1153. Marques JP, Bowtell R. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B Magn Reson Eng 2005;25B:65-78. Liu C. Susceptibility tensor imaging. Magn Reson Med 2010;63:1471-1477. Mugler J, Brookeman J. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15:152-157. De Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206. Smith S. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155. Eichner C, Jafari-Khouzani K, Cauley S, et al. Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage. Magn Reson Med 2013. doi:10.1002/mrm.24960. Norris D, Boyacioğlu R, Schulz J, Barth M, Koopmans PJ. Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magn Reson Med 2014;71:44-49. Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196-204. Pruessmann K, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42.5:952-962. Haacke E, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612-618. Setsompop K, Gagoski B, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224. Moriguchi H, Duerk J. Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med 2006;55.3:633-648. Griswold M, Jakob P, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Imaging 2002;47.6:1202-1210. Zahneisen B, Poser BA, Ernst T, Stenger VA. Three-dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework. Magn. Reson Med 2014;71:2071-2081. Otazo R, Kim D, Axel J, Sodickson. DK. Combination of compressed sensing and parallel imaging for highly accelerated first pass cardiac perfusion MRI. Magn Reson Med 2010;64.3:767-776. Stäb D, Ritter C, Breuer F, Weng AM, Hahn D, Köstler H. CAIPIRINHA accelerated SSFP imaging. Magn Reson Med 2011;65:157-164. Setsompop K, Cohen-Adad J, Gagoski B, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63:569-580. Breuer F, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55.3:549-556. Kim T, Shin W, Zhao T, Beall EB, Lowe MJ, Bae KT. Whole brain perfusion measurements using arterial spin labeling with multiband acquisition. Magn Reson Med 2013;70:1653-1661. Breuer F, Moriguchi H, Seiberlich N, Blaimer M, Jakob PM, Duerk JL, Griswold MA. Zigzag sampling for improved parallel imaging. Magn Reson Med 2008;60.2:474-478. Weaver J. Simultaneous multislice acquisition of MR images. Magn Reson Med 1988;8:275-284. Larkman D, Hajnal J, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 2001;13:313-317. Haacke E, Tang J, Neelavalli J, Cheng Y. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663-676. Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202. Feinberg D, Hoenninger J, Crooks L, Kaufman L, Watts JC, Arakawa. M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747. Norris D, Koopmans PJ, Boyacioğlu R, Barth M. Power independent of number of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation. Magn Reson Med 2011;66:1234-1240. Feinberg D, Beckett A, Chen L. Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 2013;70:1500-1506. Wu B, Li W, Guidon A, Liu C. Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 2012;67:137-147. Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564. Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 2011;54:2789-807. Lustig M, Pauly J. SPIRiT: iterative self consistent parallel imaging reconstruction from arbitrary k space. Magn Reson Med 2010;64:457-471. Fessler J, Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. 2003;51:560-574. Pruessmann K, Weiger M, M., Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. Bilgic B, Fan A, Polimeni JR, Cauley SF, Bianciardi M, Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1 regularization and automatic parameter selection. Magn Reson Med 2014;72:1444-1459. Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62.6:1574-1584. Weller D, Polimeni J, Grady L, Wald LL, Adalsteinsson E, Goyal VK. Denoising sparse images from GRAPPA using the nullspace method. Magn Reson Med 2012;68:1176-1189. Breuer F, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684-691. Duyn J, Yang Y, Frank J, van der Veen J. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998;132:150-153. Feinberg D, Moeller S, Smith S, Auerbach E, Ramanna S, Glasser MF, Miller K, Uğurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710. Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 2012;59:2560-2568. Seiberlich N, Breuer F, Ehses P, Moriguchi H, Blaimer M, Jakob PM, Griswold MA. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data. Magn Reson Med 2009;61.3:705-715. Sodickson D, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603. Bilgic B, Chatnuntawech I, Fan AP, Setsompop K, Cauley SF, Wald LL, Adalsteinsson E. Fast image reconstruction with L2-regularization. J Magn Reson Imaging 2014;40:181-191. Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011;66:777-783. Poser B, Koopmans P, Witzel T, Wald L, Barth M. Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 2010;51:261-266. Kallmes D, Hui F, Mugler J. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience 1. Radiology 2001;221:251-255. Günther M, Oshio K, Feinberg D. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson 2005;54:491-498. Li W, Wu B, Avram AV, Liu C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 2012;59:2088-2097. 2001; 221 2002; 17 2010; 32 2008; 60.2 2012 1990; 15 2011 2010 2009; 61 2006; 55.3 2013; 70 2011; 54 2005 2012; 59 2005; 25B 1998; 132 2014; 40 2001; 46 2003; 51 2010; 63 2007; 57 2010; 64.3 2012; 109 2009; 62.6 2004; 52 2010; 64 1999; 42.5 1988; 8 1985; 156 2005; 53 2011; 66 1997; 38 2011; 65 2005; 54 2002; 47.6 2013 2012; 68 2001; 13 2010; 5 2012; 67 2014; 72 2014; 71 2010; 51 2012; 63 2009; 61.3 Pruessmann K (e_1_2_7_3_1) 1999; 42 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_7_1 Griswold M (e_1_2_7_4_1) 2002; 47 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 Fessler J (e_1_2_7_40_1) 2003; 51 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 4023236 - Radiology. 1985 Sep;156(3):743-7 20872868 - Magn Reson Med. 2011 Jan;65(1):157-64 22732564 - Neuroimage. 2012 Oct 15;63(1):569-80 16470597 - Magn Reson Med. 2006 Mar;55(3):633-48 15334582 - Magn Reson Med. 2004 Sep;52(3):612-8 21040794 - Neuroimage. 2011 Feb 14;54(4):2789-807 18666134 - Magn Reson Med. 2008 Aug;60(2):474-8 21465541 - Magn Reson Med. 2011 Sep;66(3):777-83 24395184 - J Magn Reson Imaging. 2014 Jul;40(1):181-91 24150771 - Magn Reson Med. 2014 Jan;71(1):44-9 19097205 - Magn Reson Med. 2009 Jan;61(1):196-204 21671269 - Magn Reson Med. 2012 Jan;67(1):137-47 23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64 20665790 - Magn Reson Med. 2010 Aug;64(2):457-71 20512849 - Magn Reson Med. 2010 Jun;63(6):1471-7 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 24285593 - Magn Reson Med. 2014 Sep;72(3):770-8 16032686 - Magn Reson Med. 2005 Aug;54(2):491-8 21925276 - Neuroimage. 2012 Feb 1;59(3):2560-8 20139009 - Neuroimage. 2010 May 15;51(1):261-6 15723404 - Magn Reson Med. 2005 Mar;53(3):684-91 17534910 - Magn Reson Med. 2007 Jun;57(6):1196-202 19785017 - Magn Reson Med. 2009 Dec;62(6):1574-84 12111967 - Magn Reson Med. 2002 Jun;47(6):1202-10 19953507 - Magn Reson Med. 2010 Jan;63(1):194-206 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62 22009706 - Magn Reson Med. 2011 Nov;66(5):1234-40 24130105 - Magn Reson Med. 2013 Dec;70(6):1500-6 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51 16408271 - Magn Reson Med. 2006 Mar;55(3):549-56 24259479 - Magn Reson Med. 2014 Nov;72(5):1444-59 21858868 - Magn Reson Med. 2012 May;67(5):1210-24 23878098 - Magn Reson Med. 2013 Dec;70(6):1653-61 11169840 - J Magn Reson Imaging. 2001 Feb;13(2):313-7 9615415 - J Magn Reson. 1998 May;132(1):150-3 22036681 - Neuroimage. 2012 Feb 1;59(3):2088-97 2374495 - Magn Reson Med. 1990 Jul;15(1):152-7 21187930 - PLoS One. 2010;5(12):e15710 11568348 - Radiology. 2001 Oct;221(1):251-5 3205156 - Magn Reson Med. 1988 Nov;8(3):275-84 9324327 - Magn Reson Med. 1997 Oct;38(4):591-603 20432285 - Magn Reson Med. 2010 May;63(5):1144-53 20535813 - Magn Reson Med. 2010 Sep;64(3):767-76 22213069 - Magn Reson Med. 2012 Oct;68(4):1176-89 19145634 - Magn Reson Med. 2009 Mar;61(3):705-15 23878075 - Magn Reson Med. 2014 Jun;71(6):2071-81 20815065 - J Magn Reson Imaging. 2010 Sep;32(3):663-76 |
References_xml | – reference: Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564. – reference: Haacke E, Tang J, Neelavalli J, Cheng Y. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663-676. – reference: Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 2012;59:2560-2568. – reference: Marques JP, Bowtell R. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B Magn Reson Eng 2005;25B:65-78. – reference: Kim T, Shin W, Zhao T, Beall EB, Lowe MJ, Bae KT. Whole brain perfusion measurements using arterial spin labeling with multiband acquisition. Magn Reson Med 2013;70:1653-1661. – reference: De Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206. – reference: Eichner C, Jafari-Khouzani K, Cauley S, et al. Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage. Magn Reson Med 2013. doi:10.1002/mrm.24960. – reference: Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 2011;54:2789-807. – reference: Feinberg D, Beckett A, Chen L. Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 2013;70:1500-1506. – reference: Bilgic B, Fan A, Polimeni JR, Cauley SF, Bianciardi M, Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1 regularization and automatic parameter selection. Magn Reson Med 2014;72:1444-1459. – reference: Sodickson D, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603. – reference: Zahneisen B, Poser BA, Ernst T, Stenger VA. Three-dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework. Magn. Reson Med 2014;71:2071-2081. – reference: Mugler J, Brookeman J. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15:152-157. – reference: Norris D, Boyacioğlu R, Schulz J, Barth M, Koopmans PJ. Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magn Reson Med 2014;71:44-49. – reference: Pruessmann K, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42.5:952-962. – reference: Stäb D, Ritter C, Breuer F, Weng AM, Hahn D, Köstler H. CAIPIRINHA accelerated SSFP imaging. Magn Reson Med 2011;65:157-164. – reference: Poser B, Koopmans P, Witzel T, Wald L, Barth M. Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 2010;51:261-266. – reference: Otazo R, Kim D, Axel J, Sodickson. DK. Combination of compressed sensing and parallel imaging for highly accelerated first pass cardiac perfusion MRI. Magn Reson Med 2010;64.3:767-776. – reference: Günther M, Oshio K, Feinberg D. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson 2005;54:491-498. – reference: Setsompop K, Cohen-Adad J, Gagoski B, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63:569-580. – reference: Griswold M, Jakob P, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Imaging 2002;47.6:1202-1210. – reference: Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011;66:777-783. – reference: Setsompop K, Gagoski B, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224. – reference: Bilgic B, Chatnuntawech I, Fan AP, Setsompop K, Cauley SF, Wald LL, Adalsteinsson E. Fast image reconstruction with L2-regularization. J Magn Reson Imaging 2014;40:181-191. – reference: Breuer F, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684-691. – reference: Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196-204. – reference: Breuer F, Moriguchi H, Seiberlich N, Blaimer M, Jakob PM, Duerk JL, Griswold MA. Zigzag sampling for improved parallel imaging. Magn Reson Med 2008;60.2:474-478. – reference: Moriguchi H, Duerk J. Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med 2006;55.3:633-648. – reference: Duyn J, Yang Y, Frank J, van der Veen J. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998;132:150-153. – reference: Liu C. Susceptibility tensor imaging. Magn Reson Med 2010;63:1471-1477. – reference: Kallmes D, Hui F, Mugler J. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience 1. Radiology 2001;221:251-255. – reference: Haacke E, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612-618. – reference: Smith S. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155. – reference: Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62.6:1574-1584. – reference: Weaver J. Simultaneous multislice acquisition of MR images. Magn Reson Med 1988;8:275-284. – reference: Weller D, Polimeni J, Grady L, Wald LL, Adalsteinsson E, Goyal VK. Denoising sparse images from GRAPPA using the nullspace method. Magn Reson Med 2012;68:1176-1189. – reference: Norris D, Koopmans PJ, Boyacioğlu R, Barth M. Power independent of number of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation. Magn Reson Med 2011;66:1234-1240. – reference: Feinberg D, Hoenninger J, Crooks L, Kaufman L, Watts JC, Arakawa. M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747. – reference: Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202. – reference: Pruessmann K, Weiger M, M., Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. – reference: Seiberlich N, Breuer F, Ehses P, Moriguchi H, Blaimer M, Jakob PM, Griswold MA. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data. Magn Reson Med 2009;61.3:705-715. – reference: Wu B, Li W, Guidon A, Liu C. Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 2012;67:137-147. – reference: Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 2010;63:1144-1153. – reference: Larkman D, Hajnal J, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 2001;13:313-317. – reference: Fessler J, Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. 2003;51:560-574. – reference: Li W, Wu B, Avram AV, Liu C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 2012;59:2088-2097. – reference: Feinberg D, Moeller S, Smith S, Auerbach E, Ramanna S, Glasser MF, Miller K, Uğurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710. – reference: Breuer F, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55.3:549-556. – reference: Lustig M, Pauly J. SPIRiT: iterative self consistent parallel imaging reconstruction from arbitrary k space. Magn Reson Med 2010;64:457-471. – year: 2013 article-title: Slice accelerated gradient‐echo spin‐echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage publication-title: Magn Reson Med – volume: 109 start-page: 18559 year: 2012 end-page: 18564 article-title: Fiber orientation‐dependent white matter contrast in gradient echo MRI publication-title: Proc Natl Acad Sci U S A – year: 2005 – start-page: 518 year: 2012 – volume: 71 start-page: 44 year: 2014 end-page: 49 article-title: Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head publication-title: Magn Reson Med – volume: 38 start-page: 591 year: 1997 end-page: 603 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med – volume: 5 start-page: e15710 year: 2010 article-title: Multiplexed echo planar imaging for sub‐second whole brain FMRI and fast diffusion imaging publication-title: PLoS One – volume: 62.6 start-page: 1574 year: 2009 end-page: 1584 article-title: Accelerating SENSE using compressed sensing publication-title: Magn Reson Med – volume: 59 start-page: 2560 year: 2012 end-page: 2568 article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map publication-title: Neuroimage – volume: 54 start-page: 2789 year: 2011 end-page: 807 article-title: Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? publication-title: Neuroimage – volume: 67 start-page: 1210 year: 2012 end-page: 1224 article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty publication-title: Magn Reson Med – volume: 59 start-page: 2088 year: 2012 end-page: 2097 article-title: Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings publication-title: Neuroimage – volume: 65 start-page: 157 year: 2011 end-page: 164 article-title: CAIPIRINHA accelerated SSFP imaging publication-title: Magn Reson Med – volume: 66 start-page: 777 year: 2011 end-page: 783 article-title: Morphology enabled dipole inversion (MEDI) from a single‐angle acquisition: comparison with COSMOS in human brain imaging publication-title: Magn Reson Med – volume: 51 start-page: 560 year: 2003 end-page: 574 publication-title: Nonuniform fast Fourier transforms using min‐max interpolation – volume: 55.3 start-page: 549 year: 2006 end-page: 556 article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) publication-title: Magn Reson Med – volume: 63 start-page: 1471 year: 2010 end-page: 1477 article-title: Susceptibility tensor imaging publication-title: Magn Reson Med – volume: 132 start-page: 150 year: 1998 end-page: 153 article-title: Simple correction method for k‐space trajectory deviations in MRI publication-title: J Magn Reson – volume: 42.5 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 8 start-page: 275 year: 1988 end-page: 284 article-title: Simultaneous multislice acquisition of MR images publication-title: Magn Reson Med – volume: 25B start-page: 65 year: 2005 end-page: 78 article-title: Application of a Fourier‐based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility publication-title: Concepts Magn Reson Part B Magn Reson Eng – volume: 72 start-page: 1444 year: 2014 end-page: 1459 article-title: Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1 regularization and automatic parameter selection publication-title: Magn Reson Med – volume: 221 start-page: 251 year: 2001 end-page: 255 article-title: Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single‐slab three‐dimensional pulse sequence: initial experience 1 publication-title: Radiology – volume: 54 start-page: 491 year: 2005 end-page: 498 article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson – volume: 63 start-page: 569 year: 2012 end-page: 580 article-title: Improving diffusion MRI using simultaneous multi‐slice echo planar imaging publication-title: Neuroimage – volume: 68 start-page: 1176 year: 2012 end-page: 1189 article-title: Denoising sparse images from GRAPPA using the nullspace method publication-title: Magn Reson Med – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories publication-title: Magn Reson Med – volume: 15 start-page: 152 year: 1990 end-page: 157 article-title: Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) publication-title: Magn Reson Med – volume: 67 start-page: 137 year: 2012 end-page: 147 article-title: Whole brain susceptibility mapping using compressed sensing publication-title: Magn Reson Med – volume: 64.3 start-page: 767 year: 2010 end-page: 776 article-title: Combination of compressed sensing and parallel imaging for highly accelerated first pass cardiac perfusion MRI publication-title: Magn Reson Med – volume: 51 start-page: 261 year: 2010 end-page: 266 article-title: Three dimensional echo‐planar imaging at 7 Tesla publication-title: Neuroimage – volume: 55.3 start-page: 633 year: 2006 end-page: 648 article-title: Bunched phase encoding (BPE): a new fast data acquisition method in MRI publication-title: Magn Reson Med – volume: 52 start-page: 612 year: 2004 end-page: 618 article-title: Susceptibility weighted imaging (SWI) publication-title: Magn Reson Med – volume: 32 start-page: 663 year: 2010 end-page: 676 article-title: Susceptibility mapping as a means to visualize veins and quantify oxygen saturation publication-title: J Magn Reson Imaging – volume: 64 start-page: 457 year: 2010 end-page: 471 article-title: SPIRiT: iterative self consistent parallel imaging reconstruction from arbitrary k space publication-title: Magn Reson Med – volume: 63 start-page: 194 year: 2010 end-page: 206 article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging publication-title: Magn Reson Med – volume: 61 start-page: 196 year: 2009 end-page: 204 article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI publication-title: Magn Reson Med – volume: 13 start-page: 313 year: 2001 end-page: 317 article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited publication-title: J Magn Reson Imaging – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – start-page: p. 478 year: 2011 – year: 2010 – volume: 70 start-page: 1653 year: 2013 end-page: 1661 article-title: Whole brain perfusion measurements using arterial spin labeling with multiband acquisition publication-title: Magn Reson Med – volume: 40 start-page: 181 year: 2014 end-page: 191 article-title: Fast image reconstruction with L2‐regularization publication-title: J Magn Reson Imaging – volume: 53 start-page: 684 year: 2005 end-page: 691 article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging publication-title: Magn Reson Med – volume: 70 start-page: 1500 year: 2013 end-page: 1506 article-title: Arterial spin labeling with simultaneous multi‐slice echo planar imaging publication-title: Magn Reson Med – volume: 61.3 start-page: 705 year: 2009 end-page: 715 article-title: Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non‐Cartesian data publication-title: Magn Reson Med – volume: 57 start-page: 1196 year: 2007 end-page: 1202 article-title: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE) publication-title: Magn Reson Med – volume: 47.6 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Imaging – volume: 156 start-page: 743 year: 1985 end-page: 747 article-title: Inner volume MR imaging: technical concepts and their application publication-title: Radiology – volume: 66 start-page: 1234 year: 2011 end-page: 1240 article-title: Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation publication-title: Magn Reson Med – volume: 71 start-page: 2071 year: 2014 end-page: 2081 article-title: Three‐dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework publication-title: Magn. Reson Med – volume: 63 start-page: 1144 year: 2010 end-page: 1153 article-title: Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI publication-title: Magn Reson Med – volume: 60.2 start-page: 474 year: 2008 end-page: 478 article-title: Zigzag sampling for improved parallel imaging publication-title: Magn Reson Med – ident: e_1_2_7_21_1 doi: 10.1002/mrm.21891 – ident: e_1_2_7_53_1 doi: 10.1002/mrm.20580 – ident: e_1_2_7_2_1 doi: 10.1002/mrm.1910380414 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroimage.2011.10.038 – ident: e_1_2_7_46_1 doi: 10.1016/j.neuroimage.2011.08.082 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.23000 – ident: e_1_2_7_41_1 doi: 10.1006/jmre.1998.1396 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.1910150117 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.23152 – ident: e_1_2_7_5_1 doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W – ident: e_1_2_7_23_1 doi: 10.1002/mrm.21643 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.1241 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.20401 – ident: e_1_2_7_30_1 doi: 10.1073/pnas.1211075109 – ident: e_1_2_7_48_1 doi: 10.1002/jmri.24365 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.22428 – ident: e_1_2_7_32_1 doi: 10.1002/jmri.22276 – ident: e_1_2_7_42_1 doi: 10.1002/mrm.21245 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.22361 – ident: e_1_2_7_54_1 doi: 10.1148/radiology.156.3.4023236 – ident: e_1_2_7_52_1 doi: 10.1016/j.neuroimage.2010.01.108 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.24991 – ident: e_1_2_7_47_1 doi: 10.1002/mrm.21828 – ident: e_1_2_7_43_1 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.20198 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.22482 – ident: e_1_2_7_51_1 doi: 10.1148/radiol.2211001712 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.22187 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.20787 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.22816 – ident: e_1_2_7_44_1 doi: 10.1002/hbm.10062 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.24116 – ident: e_1_2_7_22_1 – ident: e_1_2_7_28_1 – volume: 47 start-page: 1202 year: 2002 ident: e_1_2_7_4_1 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Imaging – ident: e_1_2_7_26_1 doi: 10.1002/mrm.22463 – ident: e_1_2_7_49_1 doi: 10.1002/mrm.1910080305 – ident: e_1_2_7_27_1 doi: 10.1002/mrm.22161 – ident: e_1_2_7_45_1 doi: 10.1002/cmr.b.20034 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.22600 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.24875 – ident: e_1_2_7_34_1 doi: 10.1016/j.neuroimage.2010.10.070 – volume: 42 start-page: 952 year: 1999 ident: e_1_2_7_3_1 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 51 start-page: 560 year: 2003 ident: e_1_2_7_40_1 publication-title: Nonuniform fast Fourier transforms using min‐max interpolation – ident: e_1_2_7_7_1 doi: 10.1371/journal.pone.0015710 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.24994 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.24880 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.20819 – ident: e_1_2_7_18_1 – ident: e_1_2_7_39_1 doi: 10.1002/mrm.25029 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.24960 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.23097 – ident: e_1_2_7_13_1 doi: 10.1016/j.neuroimage.2012.06.033 – reference: 23878075 - Magn Reson Med. 2014 Jun;71(6):2071-81 – reference: 22732564 - Neuroimage. 2012 Oct 15;63(1):569-80 – reference: 11568348 - Radiology. 2001 Oct;221(1):251-5 – reference: 20872868 - Magn Reson Med. 2011 Jan;65(1):157-64 – reference: 21465541 - Magn Reson Med. 2011 Sep;66(3):777-83 – reference: 24150771 - Magn Reson Med. 2014 Jan;71(1):44-9 – reference: 24285593 - Magn Reson Med. 2014 Sep;72(3):770-8 – reference: 15723404 - Magn Reson Med. 2005 Mar;53(3):684-91 – reference: 21040794 - Neuroimage. 2011 Feb 14;54(4):2789-807 – reference: 2374495 - Magn Reson Med. 1990 Jul;15(1):152-7 – reference: 9324327 - Magn Reson Med. 1997 Oct;38(4):591-603 – reference: 17534910 - Magn Reson Med. 2007 Jun;57(6):1196-202 – reference: 19785017 - Magn Reson Med. 2009 Dec;62(6):1574-84 – reference: 12111967 - Magn Reson Med. 2002 Jun;47(6):1202-10 – reference: 19097205 - Magn Reson Med. 2009 Jan;61(1):196-204 – reference: 15334582 - Magn Reson Med. 2004 Sep;52(3):612-8 – reference: 16032686 - Magn Reson Med. 2005 Aug;54(2):491-8 – reference: 22009706 - Magn Reson Med. 2011 Nov;66(5):1234-40 – reference: 24259479 - Magn Reson Med. 2014 Nov;72(5):1444-59 – reference: 20535813 - Magn Reson Med. 2010 Sep;64(3):767-76 – reference: 19145634 - Magn Reson Med. 2009 Mar;61(3):705-15 – reference: 24395184 - J Magn Reson Imaging. 2014 Jul;40(1):181-91 – reference: 20815065 - J Magn Reson Imaging. 2010 Sep;32(3):663-76 – reference: 22036681 - Neuroimage. 2012 Feb 1;59(3):2088-97 – reference: 9615415 - J Magn Reson. 1998 May;132(1):150-3 – reference: 18666134 - Magn Reson Med. 2008 Aug;60(2):474-8 – reference: 20432285 - Magn Reson Med. 2010 May;63(5):1144-53 – reference: 3205156 - Magn Reson Med. 1988 Nov;8(3):275-84 – reference: 21671269 - Magn Reson Med. 2012 Jan;67(1):137-47 – reference: 21187930 - PLoS One. 2010;5(12):e15710 – reference: 4023236 - Radiology. 1985 Sep;156(3):743-7 – reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62 – reference: 11169840 - J Magn Reson Imaging. 2001 Feb;13(2):313-7 – reference: 19953507 - Magn Reson Med. 2010 Jan;63(1):194-206 – reference: 23878098 - Magn Reson Med. 2013 Dec;70(6):1653-61 – reference: 23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64 – reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 – reference: 16408271 - Magn Reson Med. 2006 Mar;55(3):549-56 – reference: 16470597 - Magn Reson Med. 2006 Mar;55(3):633-48 – reference: 20139009 - Neuroimage. 2010 May 15;51(1):261-6 – reference: 21925276 - Neuroimage. 2012 Feb 1;59(3):2560-8 – reference: 24130105 - Magn Reson Med. 2013 Dec;70(6):1500-6 – reference: 20512849 - Magn Reson Med. 2010 Jun;63(6):1471-7 – reference: 22213069 - Magn Reson Med. 2012 Oct;68(4):1176-89 – reference: 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51 – reference: 20665790 - Magn Reson Med. 2010 Aug;64(2):457-71 – reference: 21858868 - Magn Reson Med. 2012 May;67(5):1210-24 |
SSID | ssj0009974 |
Score | 2.5584962 |
Snippet | Purpose
To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with... To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with... Purpose To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2152 |
SubjectTerms | Algorithms Brain Mapping - methods CAIPIRINHA CAIPIRINHA, quantitative susceptibility mapping Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods parallel imaging phase imaging quantitative susceptibility mapping |
Title | Wave-CAIPI for highly accelerated 3D imaging |
URI | https://api.istex.fr/ark:/67375/WNG-4WWT2N5Z-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25347 https://www.ncbi.nlm.nih.gov/pubmed/24986223 https://www.proquest.com/docview/1681382559 https://www.proquest.com/docview/1682427578 https://www.proquest.com/docview/1683353126 https://pubmed.ncbi.nlm.nih.gov/PMC4281518 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5Ki-JL1ao1WiWKSF9yms1mc6FPpVpb4RyktpwiwrJXLO1Jy7kU9ak_wd_oL3F2c6lHq4gvIbATkp2dmf0mO_stwItSFjLHqSUiKk2jVJcmkizTkbZaM5FbYpVn-xxku4fp2yN2tACb7V6Ymh-i--HmPMPHa-fgQk42rkhDR-NRL2E0dTvJXa2WA0T7V9RRZVkzMOepizNl2rIKxclG9-TcXLTk1Pr5OqD5e73kzzjWT0Q7t-Fj24W6_uSkN5vKnvr6C7vjf_bxDiw3ADXcqi3qLiyYagVu9psl-BW44WtG1eQe9Ibiwny__La9tfduL0TwGzru49MvoVAKJzPHQaFD-io8HvmTkO7D4c7rg-3dqDl-IVKsiHO8GoHplsWEycaKMIOZlbRUaEyySiKFtTkxWpQSQYzJSCatpi4-CKIlggRJH8BidVaZhxCawooyNojltE2pUgUzlNgktsbGWioSwHo7EFw13OTuiIxTXrMqJxw1wb0mAnjeiZ7XhBzXCb30o9lJiPGJq2DLGR8O3vB0ODxIBuwDfx_AWjvcvHHeCSdZ4ZgZMdcK4FnXjG7n1lJEZc5mXgbBjTsM4K8ylGKMS7IAVmsL6j4Is17MJRMaQD5nW52Ao_2eb6mOP3n6b0wYEabhe9e96fxZC7y_3_c3j_5d9DHcQkjI6mK4NVicjmfmCcKuqXzq_esHNT0pHg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cBm3wICAENpLujiOc5F4mQajhbVCo1MnJGT5KqatGepaBDzxE_iN_BKOnSajMBDiJYrkEyW-HPv77JPvADwuZSFzXFoiotI0SnVpIskyHWmrNRO5JVZ5tc9B1t1LX-6z_SV42vwLU-tDtBtuzjP8fO0c3G1Ib5yqho4n407CaJqfgxWX0dsTqt1T8aiyrDWY89TNNGXa6ArFyUb76MJqtOIa9tNZUPP3iMmfkaxfiravwLumEnUEymFnNpUd9eUXfcf_reVVuDzHqOFmPaiuwZKpVuFCf34KvwrnfdioOrkOnZH4aL5__ba12XvdCxH_hk7--OhzKJTC9czJUOiQPgsPxj4Z0g3Y234-3OpG8wwMkWJFnOPVCGRcFjmTjRVhBsmVtFRo5FklkcLanBgtSok4xmQkk1ZTN0UIoiXiBElvwnJ1XJnbEJrCijI2COe0TalSBTOU2CS2xsZaKhLAetMTXM3lyV2WjCNeCysnHFuC-5YI4FFr-qHW5DjL6InvztZCTA5dEFvO-Gjwgqej0TAZsLf8TQBrTX_zuf-ecJIVTpwR6VYAD9ti9Dx3nCIqczzzNohvXD6Av9pQitNckgVwqx5C7Qch8UU6mdAA8oXB1Ro45e_FkurgvVcAR86ISA3fu-7Hzp9bgfd3-_7mzr-bPoCL3WF_h-_0Bq_uwiVEiKyOjVuD5elkZu4hCpvK-97ZfgCmGy05 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB2VVlR94VJuhgIGIdQXp157fRNPVUNogERVaZUKIa32qlZt3CpNEPDEJ_CNfAmz60sJFIR4sSx5LHtnZ2bPeMdnAJ4VIhcZLi0BkZQGVBU6EEmqAmWUSnhmiJGO7XOYbu_T1wfJwQK8aP6Fqfgh2g9u1jNcvLYOfqbMxgVp6Hgy7kRJTLMrsETTMLcm3d294I4qioqCOaM20BS0oRUKo4321rnFaMnq9dNlSPP3gsmfgaxbiXrX4UMzhqoA5bgzm4qO_PILveN_DvIGXKsRqr9ZmdRNWNDlKiwP6j34Vbjqikbl-S3ojPhH_f3rt63N_k7fR_TrW_Ljk88-lxJXM0tCofy46x-NXSuk27Dfe7m3tR3U_RcCmeRhhkfNMd8ymDGZUJJEY2olTMwVZlkFEdyYjGjFC4EoRqckFUbFNkBwogSiBBHfgcXytNT3wNe54UWoEcwpQ2Mp80THxESh0SZUQhIP1puJYLImJ7c9Mk5YRascMdQEc5rw4GkrelYxclwm9NzNZivBJ8e2hC1L2Gj4itHRaC8aJu_ZOw_WmulmtfeeM5LmlpoRky0PnrSX0e_sZgov9enMySC6sd0A_ioTxxjkotSDu5UFtS-EaS8mk1HsQTZnW62A5f2ev1IeHTr-b8wYEafhc9ed6fxZC2ywO3An9_9d9DEs73R77G1_-OYBrCA8TKrCuDVYnE5m-iFCsKl45FztBx_8K_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave%E2%80%90CAIPI+for+highly+accelerated+3D+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bilgic%2C+Berkin&rft.au=Gagoski%2C+Borjan+A.&rft.au=Cauley%2C+Stephen+F.&rft.au=Fan%2C+Audrey+P.&rft.date=2015-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=73&rft.issue=6&rft.spage=2152&rft.epage=2162&rft_id=info:doi/10.1002%2Fmrm.25347&rft.externalDBID=10.1002%252Fmrm.25347&rft.externalDocID=MRM25347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |