Wave-CAIPI for highly accelerated 3D imaging

Purpose To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g‐factor and artifact penalties. Methods The wave‐CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the r...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 73; no. 6; pp. 2152 - 2162
Main Authors Bilgic, Berkin, Gagoski, Borjan A., Cauley, Stephen F., Fan, Audrey P., Polimeni, Jonathan R., Grant, P. Ellen, Wald, Lawrence L., Setsompop, Kawin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g‐factor and artifact penalties. Methods The wave‐CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D‐CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high‐quality image reconstruction with wave‐CAIPI is demonstrated for high‐resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave‐CAIPI enables full‐brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g‐factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D‐CAIPI and bunched phase encoding) wave‐CAIPI yields up to two‐fold reduction in maximum g‐factor for nine‐fold acceleration at both field strengths. Conclusion Wave‐CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g‐factor penalties, and may facilitate clinical application of high‐resolution volumetric imaging. Magn Reson Med 73:2152–2162, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The wave-CAIPI 3D acquisition involves playing sinusoidal [Formulaomitted] and [Formulaomitted] gradients during the readout of each [Formulaomitted] encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R=3 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. Magn Reson Med 73:2152-2162, 2015.
To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging.
Purpose To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g‐factor and artifact penalties. Methods The wave‐CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D‐CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high‐quality image reconstruction with wave‐CAIPI is demonstrated for high‐resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave‐CAIPI enables full‐brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g‐factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D‐CAIPI and bunched phase encoding) wave‐CAIPI yields up to two‐fold reduction in maximum g‐factor for nine‐fold acceleration at both field strengths. Conclusion Wave‐CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g‐factor penalties, and may facilitate clinical application of high‐resolution volumetric imaging. Magn Reson Med 73:2152–2162, 2015. © 2014 Wiley Periodicals, Inc.
To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties.PURPOSETo introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties.The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping.METHODSThe wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping.Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths.RESULTSWave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths.Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging.CONCLUSIONWave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging.
Purpose To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The wave-CAIPI 3D acquisition involves playing sinusoidal g y and g z gradients during the readout of each k x encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Results Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R=3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. Magn Reson Med 73:2152-2162, 2015. © 2014 Wiley Periodicals, Inc.
Author Cauley, Stephen F.
Grant, P. Ellen
Gagoski, Borjan A.
Fan, Audrey P.
Bilgic, Berkin
Wald, Lawrence L.
Polimeni, Jonathan R.
Setsompop, Kawin
AuthorAffiliation 5 Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
2 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
4 Department of Radiology, Harvard Medical School, Boston, MA, USA
AuthorAffiliation_xml – name: 3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 2 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
– name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
– name: 5 Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
– name: 4 Department of Radiology, Harvard Medical School, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Berkin
  surname: Bilgic
  fullname: Bilgic, Berkin
  email: berkin@nmr.mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, Charlestown, USA
– sequence: 2
  givenname: Borjan A.
  surname: Gagoski
  fullname: Gagoski, Borjan A.
  organization: Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
– sequence: 3
  givenname: Stephen F.
  surname: Cauley
  fullname: Cauley, Stephen F.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, Charlestown, USA
– sequence: 4
  givenname: Audrey P.
  surname: Fan
  fullname: Fan, Audrey P.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 5
  givenname: Jonathan R.
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 6
  givenname: P. Ellen
  surname: Grant
  fullname: Grant, P. Ellen
  organization: Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
– sequence: 7
  givenname: Lawrence L.
  surname: Wald
  fullname: Wald, Lawrence L.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 8
  givenname: Kawin
  surname: Setsompop
  fullname: Setsompop, Kawin
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24986223$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCgj-ARmIDEtP6-j2bSlWAEqkPBEWR2FieGU_iMjMu9qSQf4_TJFWpQOrGd-HvHJ17zx7a6X1vEXoJ-AAwJodd6A4Ip0w-QSPghOSEF2wHjbBkOKdQsF20F-MVxrgoJHuGdgkrlCCEjtC7qbmx-fh48nmSNT5kczebt8vMVJVtbTCDrTP6PnOdmbl-9hw9bUwb7YvN3EffPn64HH_KTy9OJuPj07ziCsv0WgOMNcBUgyvgFgQrG2pqomQBpWkaCbY2RSm4sgJE2dRUUUIM1KUAWtJ9dLT2vV6Una0r2w_BtPo6pBxhqb1x-u-f3s31zN9oRhRwUMngzcYg-J8LGwfduZg2ak1v_SJqEIpSToGIx6CEEcnlyvX1A_TKL0KfLrGigCrCeZGoV_fD36Xe3jwBh2ugCj7GYBtducEMzq92ca0GrFet6tSqvm01Kd4-UGxN_8Vu3H-51i7_D-qzL2dbRb5WuDjY33cKE35oIankenp-otl0eknO-Xf9lf4BWB-9yg
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_jmri_25853
crossref_primary_10_1002_mrm_30021
crossref_primary_10_3174_ajnr_A7191
crossref_primary_10_1002_mrm_29036
crossref_primary_10_1007_s40134_017_0204_1
crossref_primary_10_1002_mrm_28222
crossref_primary_10_3390_bioengineering9120736
crossref_primary_10_1002_mrm_30427
crossref_primary_10_1016_j_neuroimage_2022_118957
crossref_primary_10_1002_mrm_28185
crossref_primary_10_1002_mrm_26567
crossref_primary_10_1016_j_mri_2022_01_018
crossref_primary_10_1007_s00247_019_04584_1
crossref_primary_10_1002_mrm_29799
crossref_primary_10_1016_j_neuroimage_2018_04_026
crossref_primary_10_1002_mrm_27413
crossref_primary_10_1002_mrm_28907
crossref_primary_10_3174_ajnr_A5293
crossref_primary_10_1007_s10334_020_00906_9
crossref_primary_10_1002_mrm_28509
crossref_primary_10_1002_nbm_4281
crossref_primary_10_1259_bjr_20211378
crossref_primary_10_1002_mrm_27483
crossref_primary_10_1002_nbm_3478
crossref_primary_10_3174_ajnr_A6703
crossref_primary_10_1002_mrm_28971
crossref_primary_10_1007_s00330_022_08871_8
crossref_primary_10_1186_s41747_023_00351_y
crossref_primary_10_1002_mp_16425
crossref_primary_10_1002_mrm_30018
crossref_primary_10_1038_s41598_022_25725_x
crossref_primary_10_1186_s41747_021_00216_2
crossref_primary_10_1016_j_mri_2020_06_005
crossref_primary_10_1002_mrm_27766
crossref_primary_10_3174_ajnr_A7520
crossref_primary_10_1002_mrm_28979
crossref_primary_10_1148_rg_2020190112
crossref_primary_10_1002_mrm_28219
crossref_primary_10_1002_mrm_27124
crossref_primary_10_1016_j_neuroimage_2017_04_036
crossref_primary_10_1002_mrm_29786
crossref_primary_10_1002_mrm_27522
crossref_primary_10_1007_s00330_019_06574_1
crossref_primary_10_1093_braincomms_fcae359
crossref_primary_10_1016_j_conb_2018_04_026
crossref_primary_10_1016_j_nicl_2018_11_017
crossref_primary_10_3390_cells12242776
crossref_primary_10_1002_mrm_29291
crossref_primary_10_1002_nbm_4271
crossref_primary_10_1002_nbm_3620
crossref_primary_10_1016_j_neuroimage_2017_04_006
crossref_primary_10_1016_j_neuroimage_2018_01_078
crossref_primary_10_1111_jon_12893
crossref_primary_10_1002_mrm_26067
crossref_primary_10_1016_j_msard_2021_103309
crossref_primary_10_1016_j_mri_2022_11_005
crossref_primary_10_1109_TMI_2020_3021737
crossref_primary_10_1002_mrm_25897
crossref_primary_10_1002_mrm_28803
crossref_primary_10_1016_j_neuroimage_2018_09_038
crossref_primary_10_1016_j_zemedi_2021_06_004
crossref_primary_10_1002_mrm_28007
crossref_primary_10_1007_s12975_017_0591_x
crossref_primary_10_1016_j_crad_2024_106783
crossref_primary_10_1259_bjr_20200113
crossref_primary_10_3390_jimaging7120274
crossref_primary_10_1002_jmri_26678
crossref_primary_10_36017_JAHC2201_03
crossref_primary_10_1002_mrm_29046
crossref_primary_10_1002_nbm_3570
crossref_primary_10_1002_mrm_28999
crossref_primary_10_1007_s10334_024_01182_7
crossref_primary_10_1002_mrm_27147
crossref_primary_10_1016_j_acra_2021_07_011
crossref_primary_10_1016_j_neuroimage_2017_02_020
crossref_primary_10_1053_j_ro_2022_10_002
crossref_primary_10_1002_mp_16471
crossref_primary_10_1016_j_mric_2022_05_005
crossref_primary_10_1007_s00247_021_05273_8
crossref_primary_10_1016_j_pnmrs_2017_04_002
crossref_primary_10_1007_s00247_022_05529_x
crossref_primary_10_1002_mp_15788
crossref_primary_10_1002_mrm_28383
crossref_primary_10_1002_mrm_29350
crossref_primary_10_1002_mrm_26886
crossref_primary_10_1002_mrm_29117
crossref_primary_10_1002_nbm_3569
crossref_primary_10_1002_mrm_29635
crossref_primary_10_1109_ACCESS_2024_3495044
crossref_primary_10_1002_mrm_27215
crossref_primary_10_1007_s11604_024_01683_4
crossref_primary_10_2463_mrms_rev_2023_0153
crossref_primary_10_1002_mrm_26649
crossref_primary_10_1016_j_neuroimage_2024_120547
crossref_primary_10_1002_nbm_3552
crossref_primary_10_1177_02841851241245104
crossref_primary_10_1016_j_neuroimage_2021_117946
crossref_primary_10_1002_mrm_27041
crossref_primary_10_1002_mrm_28812
crossref_primary_10_1002_mrm_29865
crossref_primary_10_1016_j_jmr_2023_107544
crossref_primary_10_1007_s00381_020_04724_1
crossref_primary_10_1016_j_neuroimage_2015_08_015
crossref_primary_10_3174_ajnr_A7680
crossref_primary_10_1016_j_mri_2018_08_019
crossref_primary_10_1002_mrm_25703
crossref_primary_10_1097_RLI_0000000000000964
crossref_primary_10_3389_fradi_2023_1267615
crossref_primary_10_1162_imag_a_00175
crossref_primary_10_1016_j_media_2022_102638
crossref_primary_10_1097_RLI_0000000000001114
crossref_primary_10_1016_j_neuroimage_2023_120173
crossref_primary_10_1002_mrm_30120
crossref_primary_10_1002_jmri_25553
crossref_primary_10_3389_fnins_2021_546312
crossref_primary_10_1002_mrm_26386
crossref_primary_10_1002_mrm_29010
crossref_primary_10_1002_nbm_5322
crossref_primary_10_1002_nbm_3540
crossref_primary_10_1007_s00330_022_09243_y
crossref_primary_10_1007_s00330_022_09265_6
crossref_primary_10_1016_j_jmr_2018_01_022
crossref_primary_10_1016_j_jmr_2019_07_016
crossref_primary_10_1148_ryai_210313
crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_1002_mrm_28605
crossref_primary_10_1016_j_neuroimage_2016_12_082
crossref_primary_10_1002_mrm_26823
crossref_primary_10_1007_s00247_021_05117_5
crossref_primary_10_1038_s41598_018_36802_5
crossref_primary_10_13104_imri_2017_21_4_210
crossref_primary_10_3174_ajnr_A7777
crossref_primary_10_1007_s00330_022_08687_6
crossref_primary_10_3389_fneur_2020_587327
crossref_primary_10_1002_jmri_28421
crossref_primary_10_1002_mrm_27511
crossref_primary_10_1016_j_neuroimage_2024_120528
crossref_primary_10_1053_j_ro_2021_05_005
crossref_primary_10_1038_s41598_021_92759_y
crossref_primary_10_1002_mrm_26549
crossref_primary_10_1002_mrm_30230
crossref_primary_10_1002_jnr_25054
crossref_primary_10_1002_jmri_26871
crossref_primary_10_1002_mrm_28034
crossref_primary_10_1002_mrm_29245
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1002_mrm_27189
crossref_primary_10_1371_journal_pone_0285089
crossref_primary_10_1002_mrm_29120
crossref_primary_10_1002_nbm_3495
crossref_primary_10_1002_mrm_30119
crossref_primary_10_1007_s12021_024_09686_2
crossref_primary_10_2463_mrms_mp_2021_0065
crossref_primary_10_1002_jmri_26637
crossref_primary_10_1002_mrm_29482
crossref_primary_10_1002_mp_15427
crossref_primary_10_1002_mrm_29647
crossref_primary_10_1002_jmri_29462
crossref_primary_10_1002_mrm_27108
crossref_primary_10_1002_mrm_29645
crossref_primary_10_1002_mrm_29800
crossref_primary_10_1002_mrm_26499
crossref_primary_10_1002_mrm_28435
crossref_primary_10_1002_nbm_4349
crossref_primary_10_1088_1361_6560_ad3e5d
crossref_primary_10_1002_jmri_26991
crossref_primary_10_1007_s00247_021_05023_w
crossref_primary_10_1109_TMI_2022_3161875
crossref_primary_10_1002_mrm_28716
crossref_primary_10_3174_ajnr_A6295
Cites_doi 10.1002/mrm.21891
10.1002/mrm.20580
10.1002/mrm.1910380414
10.1016/j.neuroimage.2011.10.038
10.1016/j.neuroimage.2011.08.082
10.1002/mrm.23000
10.1006/jmre.1998.1396
10.1002/mrm.1910150117
10.1002/mrm.23152
10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
10.1002/mrm.21643
10.1002/mrm.1241
10.1002/mrm.20401
10.1073/pnas.1211075109
10.1002/jmri.24365
10.1002/mrm.22428
10.1002/jmri.22276
10.1002/mrm.21245
10.1002/mrm.22361
10.1148/radiology.156.3.4023236
10.1016/j.neuroimage.2010.01.108
10.1002/mrm.24991
10.1002/mrm.21828
10.1002/mrm.20198
10.1002/mrm.22482
10.1148/radiol.2211001712
10.1002/mrm.22187
10.1002/mrm.20787
10.1002/mrm.22816
10.1002/hbm.10062
10.1002/mrm.24116
10.1002/mrm.22463
10.1002/mrm.1910080305
10.1002/mrm.22161
10.1002/cmr.b.20034
10.1002/mrm.22600
10.1002/mrm.24875
10.1016/j.neuroimage.2010.10.070
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1371/journal.pone.0015710
10.1002/mrm.24994
10.1002/mrm.24880
10.1002/mrm.20819
10.1002/mrm.25029
10.1002/mrm.24960
10.1002/mrm.23097
10.1016/j.neuroimage.2012.06.033
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
DOI 10.1002/mrm.25347
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE

MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2162
ExternalDocumentID PMC4281518
3687850921
24986223
10_1002_mrm_25347
MRM25347
ark_67375_WNG_4WWT2N5Z_S
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health Blueprint for Neuroscience
  funderid: 1U01MH093765 (Human Connectome Project)
– fundername: National Institutes of Health
  funderid: R00EB012107; P41RR14075
– fundername: NIBIB NIH HHS
  grantid: R00EB012107
– fundername: NIBIB NIH HHS
  grantid: K01 EB011498
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NIBIB NIH HHS
  grantid: R00 EB012107
– fundername: NCRR NIH HHS
  grantid: P41RR14075
– fundername: NIMH NIH HHS
  grantid: 1U01MH093765
– fundername: NIMH NIH HHS
  grantid: U01 MH093765
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ID FETCH-LOGICAL-c5807-c5ea144f148f0c15e164bf3ad28791baff71eda9b658e616bfd38322a1db613b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:11:11 EDT 2025
Fri Jul 11 08:08:04 EDT 2025
Thu Jul 10 23:35:33 EDT 2025
Fri Jul 25 11:59:26 EDT 2025
Thu Apr 03 07:06:00 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 01:20:56 EDT 2025
Wed Jan 22 16:26:24 EST 2025
Wed Oct 30 09:57:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords parallel imaging
phase imaging
CAIPIRINHA, quantitative susceptibility mapping
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5807-c5ea144f148f0c15e164bf3ad28791baff71eda9b658e616bfd38322a1db613b3
Notes National Institutes of Health Blueprint for Neuroscience - No. 1U01MH093765 (Human Connectome Project)
istex:0260C07574BD53D5F986F26CF13EB7D70F78ED15
ark:/67375/WNG-4WWT2N5Z-S
ArticleID:MRM25347
National Institutes of Health - No. R00EB012107; No. P41RR14075
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25347
PMID 24986223
PQID 1681382559
PQPubID 1016391
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281518
proquest_miscellaneous_1683353126
proquest_miscellaneous_1682427578
proquest_journals_1681382559
pubmed_primary_24986223
crossref_citationtrail_10_1002_mrm_25347
crossref_primary_10_1002_mrm_25347
wiley_primary_10_1002_mrm_25347_MRM25347
istex_primary_ark_67375_WNG_4WWT2N5Z_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 2010;63:1144-1153.
Marques JP, Bowtell R. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B Magn Reson Eng 2005;25B:65-78.
Liu C. Susceptibility tensor imaging. Magn Reson Med 2010;63:1471-1477.
Mugler J, Brookeman J. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15:152-157.
De Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206.
Smith S. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155.
Eichner C, Jafari-Khouzani K, Cauley S, et al. Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage. Magn Reson Med 2013. doi:10.1002/mrm.24960.
Norris D, Boyacioğlu R, Schulz J, Barth M, Koopmans PJ. Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magn Reson Med 2014;71:44-49.
Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196-204.
Pruessmann K, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42.5:952-962.
Haacke E, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612-618.
Setsompop K, Gagoski B, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224.
Moriguchi H, Duerk J. Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med 2006;55.3:633-648.
Griswold M, Jakob P, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Imaging 2002;47.6:1202-1210.
Zahneisen B, Poser BA, Ernst T, Stenger VA. Three-dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework. Magn. Reson Med 2014;71:2071-2081.
Otazo R, Kim D, Axel J, Sodickson. DK. Combination of compressed sensing and parallel imaging for highly accelerated first pass cardiac perfusion MRI. Magn Reson Med 2010;64.3:767-776.
Stäb D, Ritter C, Breuer F, Weng AM, Hahn D, Köstler H. CAIPIRINHA accelerated SSFP imaging. Magn Reson Med 2011;65:157-164.
Setsompop K, Cohen-Adad J, Gagoski B, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63:569-580.
Breuer F, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55.3:549-556.
Kim T, Shin W, Zhao T, Beall EB, Lowe MJ, Bae KT. Whole brain perfusion measurements using arterial spin labeling with multiband acquisition. Magn Reson Med 2013;70:1653-1661.
Breuer F, Moriguchi H, Seiberlich N, Blaimer M, Jakob PM, Duerk JL, Griswold MA. Zigzag sampling for improved parallel imaging. Magn Reson Med 2008;60.2:474-478.
Weaver J. Simultaneous multislice acquisition of MR images. Magn Reson Med 1988;8:275-284.
Larkman D, Hajnal J, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 2001;13:313-317.
Haacke E, Tang J, Neelavalli J, Cheng Y. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663-676.
Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202.
Feinberg D, Hoenninger J, Crooks L, Kaufman L, Watts JC, Arakawa. M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747.
Norris D, Koopmans PJ, Boyacioğlu R, Barth M. Power independent of number of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation. Magn Reson Med 2011;66:1234-1240.
Feinberg D, Beckett A, Chen L. Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 2013;70:1500-1506.
Wu B, Li W, Guidon A, Liu C. Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 2012;67:137-147.
Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564.
Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 2011;54:2789-807.
Lustig M, Pauly J. SPIRiT: iterative self consistent parallel imaging reconstruction from arbitrary k space. Magn Reson Med 2010;64:457-471.
Fessler J, Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. 2003;51:560-574.
Pruessmann K, Weiger M, M., Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
Bilgic B, Fan A, Polimeni JR, Cauley SF, Bianciardi M, Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1 regularization and automatic parameter selection. Magn Reson Med 2014;72:1444-1459.
Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62.6:1574-1584.
Weller D, Polimeni J, Grady L, Wald LL, Adalsteinsson E, Goyal VK. Denoising sparse images from GRAPPA using the nullspace method. Magn Reson Med 2012;68:1176-1189.
Breuer F, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684-691.
Duyn J, Yang Y, Frank J, van der Veen J. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998;132:150-153.
Feinberg D, Moeller S, Smith S, Auerbach E, Ramanna S, Glasser MF, Miller K, Uğurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710.
Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 2012;59:2560-2568.
Seiberlich N, Breuer F, Ehses P, Moriguchi H, Blaimer M, Jakob PM, Griswold MA. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data. Magn Reson Med 2009;61.3:705-715.
Sodickson D, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603.
Bilgic B, Chatnuntawech I, Fan AP, Setsompop K, Cauley SF, Wald LL, Adalsteinsson E. Fast image reconstruction with L2-regularization. J Magn Reson Imaging 2014;40:181-191.
Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011;66:777-783.
Poser B, Koopmans P, Witzel T, Wald L, Barth M. Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 2010;51:261-266.
Kallmes D, Hui F, Mugler J. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience 1. Radiology 2001;221:251-255.
Günther M, Oshio K, Feinberg D. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson 2005;54:491-498.
Li W, Wu B, Avram AV, Liu C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 2012;59:2088-2097.
2001; 221
2002; 17
2010; 32
2008; 60.2
2012
1990; 15
2011
2010
2009; 61
2006; 55.3
2013; 70
2011; 54
2005
2012; 59
2005; 25B
1998; 132
2014; 40
2001; 46
2003; 51
2010; 63
2007; 57
2010; 64.3
2012; 109
2009; 62.6
2004; 52
2010; 64
1999; 42.5
1988; 8
1985; 156
2005; 53
2011; 66
1997; 38
2011; 65
2005; 54
2002; 47.6
2013
2012; 68
2001; 13
2010; 5
2012; 67
2014; 72
2014; 71
2010; 51
2012; 63
2009; 61.3
Pruessmann K (e_1_2_7_3_1) 1999; 42
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
Griswold M (e_1_2_7_4_1) 2002; 47
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Fessler J (e_1_2_7_40_1) 2003; 51
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
4023236 - Radiology. 1985 Sep;156(3):743-7
20872868 - Magn Reson Med. 2011 Jan;65(1):157-64
22732564 - Neuroimage. 2012 Oct 15;63(1):569-80
16470597 - Magn Reson Med. 2006 Mar;55(3):633-48
15334582 - Magn Reson Med. 2004 Sep;52(3):612-8
21040794 - Neuroimage. 2011 Feb 14;54(4):2789-807
18666134 - Magn Reson Med. 2008 Aug;60(2):474-8
21465541 - Magn Reson Med. 2011 Sep;66(3):777-83
24395184 - J Magn Reson Imaging. 2014 Jul;40(1):181-91
24150771 - Magn Reson Med. 2014 Jan;71(1):44-9
19097205 - Magn Reson Med. 2009 Jan;61(1):196-204
21671269 - Magn Reson Med. 2012 Jan;67(1):137-47
23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64
20665790 - Magn Reson Med. 2010 Aug;64(2):457-71
20512849 - Magn Reson Med. 2010 Jun;63(6):1471-7
12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
24285593 - Magn Reson Med. 2014 Sep;72(3):770-8
16032686 - Magn Reson Med. 2005 Aug;54(2):491-8
21925276 - Neuroimage. 2012 Feb 1;59(3):2560-8
20139009 - Neuroimage. 2010 May 15;51(1):261-6
15723404 - Magn Reson Med. 2005 Mar;53(3):684-91
17534910 - Magn Reson Med. 2007 Jun;57(6):1196-202
19785017 - Magn Reson Med. 2009 Dec;62(6):1574-84
12111967 - Magn Reson Med. 2002 Jun;47(6):1202-10
19953507 - Magn Reson Med. 2010 Jan;63(1):194-206
10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
22009706 - Magn Reson Med. 2011 Nov;66(5):1234-40
24130105 - Magn Reson Med. 2013 Dec;70(6):1500-6
11590639 - Magn Reson Med. 2001 Oct;46(4):638-51
16408271 - Magn Reson Med. 2006 Mar;55(3):549-56
24259479 - Magn Reson Med. 2014 Nov;72(5):1444-59
21858868 - Magn Reson Med. 2012 May;67(5):1210-24
23878098 - Magn Reson Med. 2013 Dec;70(6):1653-61
11169840 - J Magn Reson Imaging. 2001 Feb;13(2):313-7
9615415 - J Magn Reson. 1998 May;132(1):150-3
22036681 - Neuroimage. 2012 Feb 1;59(3):2088-97
2374495 - Magn Reson Med. 1990 Jul;15(1):152-7
21187930 - PLoS One. 2010;5(12):e15710
11568348 - Radiology. 2001 Oct;221(1):251-5
3205156 - Magn Reson Med. 1988 Nov;8(3):275-84
9324327 - Magn Reson Med. 1997 Oct;38(4):591-603
20432285 - Magn Reson Med. 2010 May;63(5):1144-53
20535813 - Magn Reson Med. 2010 Sep;64(3):767-76
22213069 - Magn Reson Med. 2012 Oct;68(4):1176-89
19145634 - Magn Reson Med. 2009 Mar;61(3):705-15
23878075 - Magn Reson Med. 2014 Jun;71(6):2071-81
20815065 - J Magn Reson Imaging. 2010 Sep;32(3):663-76
References_xml – reference: Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564.
– reference: Haacke E, Tang J, Neelavalli J, Cheng Y. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663-676.
– reference: Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 2012;59:2560-2568.
– reference: Marques JP, Bowtell R. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B Magn Reson Eng 2005;25B:65-78.
– reference: Kim T, Shin W, Zhao T, Beall EB, Lowe MJ, Bae KT. Whole brain perfusion measurements using arterial spin labeling with multiband acquisition. Magn Reson Med 2013;70:1653-1661.
– reference: De Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206.
– reference: Eichner C, Jafari-Khouzani K, Cauley S, et al. Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage. Magn Reson Med 2013. doi:10.1002/mrm.24960.
– reference: Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 2011;54:2789-807.
– reference: Feinberg D, Beckett A, Chen L. Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 2013;70:1500-1506.
– reference: Bilgic B, Fan A, Polimeni JR, Cauley SF, Bianciardi M, Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1 regularization and automatic parameter selection. Magn Reson Med 2014;72:1444-1459.
– reference: Sodickson D, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603.
– reference: Zahneisen B, Poser BA, Ernst T, Stenger VA. Three-dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework. Magn. Reson Med 2014;71:2071-2081.
– reference: Mugler J, Brookeman J. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15:152-157.
– reference: Norris D, Boyacioğlu R, Schulz J, Barth M, Koopmans PJ. Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magn Reson Med 2014;71:44-49.
– reference: Pruessmann K, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42.5:952-962.
– reference: Stäb D, Ritter C, Breuer F, Weng AM, Hahn D, Köstler H. CAIPIRINHA accelerated SSFP imaging. Magn Reson Med 2011;65:157-164.
– reference: Poser B, Koopmans P, Witzel T, Wald L, Barth M. Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 2010;51:261-266.
– reference: Otazo R, Kim D, Axel J, Sodickson. DK. Combination of compressed sensing and parallel imaging for highly accelerated first pass cardiac perfusion MRI. Magn Reson Med 2010;64.3:767-776.
– reference: Günther M, Oshio K, Feinberg D. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson 2005;54:491-498.
– reference: Setsompop K, Cohen-Adad J, Gagoski B, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63:569-580.
– reference: Griswold M, Jakob P, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Imaging 2002;47.6:1202-1210.
– reference: Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011;66:777-783.
– reference: Setsompop K, Gagoski B, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224.
– reference: Bilgic B, Chatnuntawech I, Fan AP, Setsompop K, Cauley SF, Wald LL, Adalsteinsson E. Fast image reconstruction with L2-regularization. J Magn Reson Imaging 2014;40:181-191.
– reference: Breuer F, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684-691.
– reference: Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196-204.
– reference: Breuer F, Moriguchi H, Seiberlich N, Blaimer M, Jakob PM, Duerk JL, Griswold MA. Zigzag sampling for improved parallel imaging. Magn Reson Med 2008;60.2:474-478.
– reference: Moriguchi H, Duerk J. Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med 2006;55.3:633-648.
– reference: Duyn J, Yang Y, Frank J, van der Veen J. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998;132:150-153.
– reference: Liu C. Susceptibility tensor imaging. Magn Reson Med 2010;63:1471-1477.
– reference: Kallmes D, Hui F, Mugler J. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience 1. Radiology 2001;221:251-255.
– reference: Haacke E, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612-618.
– reference: Smith S. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155.
– reference: Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62.6:1574-1584.
– reference: Weaver J. Simultaneous multislice acquisition of MR images. Magn Reson Med 1988;8:275-284.
– reference: Weller D, Polimeni J, Grady L, Wald LL, Adalsteinsson E, Goyal VK. Denoising sparse images from GRAPPA using the nullspace method. Magn Reson Med 2012;68:1176-1189.
– reference: Norris D, Koopmans PJ, Boyacioğlu R, Barth M. Power independent of number of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation. Magn Reson Med 2011;66:1234-1240.
– reference: Feinberg D, Hoenninger J, Crooks L, Kaufman L, Watts JC, Arakawa. M. Inner volume MR imaging: technical concepts and their application. Radiology 1985;156:743-747.
– reference: Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202.
– reference: Pruessmann K, Weiger M, M., Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
– reference: Seiberlich N, Breuer F, Ehses P, Moriguchi H, Blaimer M, Jakob PM, Griswold MA. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data. Magn Reson Med 2009;61.3:705-715.
– reference: Wu B, Li W, Guidon A, Liu C. Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 2012;67:137-147.
– reference: Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 2010;63:1144-1153.
– reference: Larkman D, Hajnal J, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 2001;13:313-317.
– reference: Fessler J, Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. 2003;51:560-574.
– reference: Li W, Wu B, Avram AV, Liu C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 2012;59:2088-2097.
– reference: Feinberg D, Moeller S, Smith S, Auerbach E, Ramanna S, Glasser MF, Miller K, Uğurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710.
– reference: Breuer F, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55.3:549-556.
– reference: Lustig M, Pauly J. SPIRiT: iterative self consistent parallel imaging reconstruction from arbitrary k space. Magn Reson Med 2010;64:457-471.
– year: 2013
  article-title: Slice accelerated gradient‐echo spin‐echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage
  publication-title: Magn Reson Med
– volume: 109
  start-page: 18559
  year: 2012
  end-page: 18564
  article-title: Fiber orientation‐dependent white matter contrast in gradient echo MRI
  publication-title: Proc Natl Acad Sci U S A
– year: 2005
– start-page: 518
  year: 2012
– volume: 71
  start-page: 44
  year: 2014
  end-page: 49
  article-title: Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head
  publication-title: Magn Reson Med
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 5
  start-page: e15710
  year: 2010
  article-title: Multiplexed echo planar imaging for sub‐second whole brain FMRI and fast diffusion imaging
  publication-title: PLoS One
– volume: 62.6
  start-page: 1574
  year: 2009
  end-page: 1584
  article-title: Accelerating SENSE using compressed sensing
  publication-title: Magn Reson Med
– volume: 59
  start-page: 2560
  year: 2012
  end-page: 2568
  article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
  publication-title: Neuroimage
– volume: 54
  start-page: 2789
  year: 2011
  end-page: 807
  article-title: Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?
  publication-title: Neuroimage
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty
  publication-title: Magn Reson Med
– volume: 59
  start-page: 2088
  year: 2012
  end-page: 2097
  article-title: Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings
  publication-title: Neuroimage
– volume: 65
  start-page: 157
  year: 2011
  end-page: 164
  article-title: CAIPIRINHA accelerated SSFP imaging
  publication-title: Magn Reson Med
– volume: 66
  start-page: 777
  year: 2011
  end-page: 783
  article-title: Morphology enabled dipole inversion (MEDI) from a single‐angle acquisition: comparison with COSMOS in human brain imaging
  publication-title: Magn Reson Med
– volume: 51
  start-page: 560
  year: 2003
  end-page: 574
  publication-title: Nonuniform fast Fourier transforms using min‐max interpolation
– volume: 55.3
  start-page: 549
  year: 2006
  end-page: 556
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1471
  year: 2010
  end-page: 1477
  article-title: Susceptibility tensor imaging
  publication-title: Magn Reson Med
– volume: 132
  start-page: 150
  year: 1998
  end-page: 153
  article-title: Simple correction method for k‐space trajectory deviations in MRI
  publication-title: J Magn Reson
– volume: 42.5
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 8
  start-page: 275
  year: 1988
  end-page: 284
  article-title: Simultaneous multislice acquisition of MR images
  publication-title: Magn Reson Med
– volume: 25B
  start-page: 65
  year: 2005
  end-page: 78
  article-title: Application of a Fourier‐based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
– volume: 72
  start-page: 1444
  year: 2014
  end-page: 1459
  article-title: Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1 regularization and automatic parameter selection
  publication-title: Magn Reson Med
– volume: 221
  start-page: 251
  year: 2001
  end-page: 255
  article-title: Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single‐slab three‐dimensional pulse sequence: initial experience 1
  publication-title: Radiology
– volume: 54
  start-page: 491
  year: 2005
  end-page: 498
  article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson
– volume: 63
  start-page: 569
  year: 2012
  end-page: 580
  article-title: Improving diffusion MRI using simultaneous multi‐slice echo planar imaging
  publication-title: Neuroimage
– volume: 68
  start-page: 1176
  year: 2012
  end-page: 1189
  article-title: Denoising sparse images from GRAPPA using the nullspace method
  publication-title: Magn Reson Med
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 15
  start-page: 152
  year: 1990
  end-page: 157
  article-title: Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE)
  publication-title: Magn Reson Med
– volume: 67
  start-page: 137
  year: 2012
  end-page: 147
  article-title: Whole brain susceptibility mapping using compressed sensing
  publication-title: Magn Reson Med
– volume: 64.3
  start-page: 767
  year: 2010
  end-page: 776
  article-title: Combination of compressed sensing and parallel imaging for highly accelerated first pass cardiac perfusion MRI
  publication-title: Magn Reson Med
– volume: 51
  start-page: 261
  year: 2010
  end-page: 266
  article-title: Three dimensional echo‐planar imaging at 7 Tesla
  publication-title: Neuroimage
– volume: 55.3
  start-page: 633
  year: 2006
  end-page: 648
  article-title: Bunched phase encoding (BPE): a new fast data acquisition method in MRI
  publication-title: Magn Reson Med
– volume: 52
  start-page: 612
  year: 2004
  end-page: 618
  article-title: Susceptibility weighted imaging (SWI)
  publication-title: Magn Reson Med
– volume: 32
  start-page: 663
  year: 2010
  end-page: 676
  article-title: Susceptibility mapping as a means to visualize veins and quantify oxygen saturation
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 457
  year: 2010
  end-page: 471
  article-title: SPIRiT: iterative self consistent parallel imaging reconstruction from arbitrary k space
  publication-title: Magn Reson Med
– volume: 63
  start-page: 194
  year: 2010
  end-page: 206
  article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging
  publication-title: Magn Reson Med
– volume: 61
  start-page: 196
  year: 2009
  end-page: 204
  article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI
  publication-title: Magn Reson Med
– volume: 13
  start-page: 313
  year: 2001
  end-page: 317
  article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– start-page: p. 478
  year: 2011
– year: 2010
– volume: 70
  start-page: 1653
  year: 2013
  end-page: 1661
  article-title: Whole brain perfusion measurements using arterial spin labeling with multiband acquisition
  publication-title: Magn Reson Med
– volume: 40
  start-page: 181
  year: 2014
  end-page: 191
  article-title: Fast image reconstruction with L2‐regularization
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 684
  year: 2005
  end-page: 691
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging
  publication-title: Magn Reson Med
– volume: 70
  start-page: 1500
  year: 2013
  end-page: 1506
  article-title: Arterial spin labeling with simultaneous multi‐slice echo planar imaging
  publication-title: Magn Reson Med
– volume: 61.3
  start-page: 705
  year: 2009
  end-page: 715
  article-title: Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non‐Cartesian data
  publication-title: Magn Reson Med
– volume: 57
  start-page: 1196
  year: 2007
  end-page: 1202
  article-title: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)
  publication-title: Magn Reson Med
– volume: 47.6
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Imaging
– volume: 156
  start-page: 743
  year: 1985
  end-page: 747
  article-title: Inner volume MR imaging: technical concepts and their application
  publication-title: Radiology
– volume: 66
  start-page: 1234
  year: 2011
  end-page: 1240
  article-title: Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation
  publication-title: Magn Reson Med
– volume: 71
  start-page: 2071
  year: 2014
  end-page: 2081
  article-title: Three‐dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework
  publication-title: Magn. Reson Med
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  article-title: Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI
  publication-title: Magn Reson Med
– volume: 60.2
  start-page: 474
  year: 2008
  end-page: 478
  article-title: Zigzag sampling for improved parallel imaging
  publication-title: Magn Reson Med
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.21891
– ident: e_1_2_7_53_1
  doi: 10.1002/mrm.20580
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.1910380414
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroimage.2011.10.038
– ident: e_1_2_7_46_1
  doi: 10.1016/j.neuroimage.2011.08.082
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.23000
– ident: e_1_2_7_41_1
  doi: 10.1006/jmre.1998.1396
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.1910150117
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.23152
– ident: e_1_2_7_5_1
  doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.21643
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.20401
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1211075109
– ident: e_1_2_7_48_1
  doi: 10.1002/jmri.24365
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.22428
– ident: e_1_2_7_32_1
  doi: 10.1002/jmri.22276
– ident: e_1_2_7_42_1
  doi: 10.1002/mrm.21245
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.22361
– ident: e_1_2_7_54_1
  doi: 10.1148/radiology.156.3.4023236
– ident: e_1_2_7_52_1
  doi: 10.1016/j.neuroimage.2010.01.108
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.24991
– ident: e_1_2_7_47_1
  doi: 10.1002/mrm.21828
– ident: e_1_2_7_43_1
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.20198
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.22482
– ident: e_1_2_7_51_1
  doi: 10.1148/radiol.2211001712
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.22187
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.20787
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.22816
– ident: e_1_2_7_44_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.24116
– ident: e_1_2_7_22_1
– ident: e_1_2_7_28_1
– volume: 47
  start-page: 1202
  year: 2002
  ident: e_1_2_7_4_1
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Imaging
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.22463
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.1910080305
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.22161
– ident: e_1_2_7_45_1
  doi: 10.1002/cmr.b.20034
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.22600
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.24875
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neuroimage.2010.10.070
– volume: 42
  start-page: 952
  year: 1999
  ident: e_1_2_7_3_1
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 51
  start-page: 560
  year: 2003
  ident: e_1_2_7_40_1
  publication-title: Nonuniform fast Fourier transforms using min‐max interpolation
– ident: e_1_2_7_7_1
  doi: 10.1371/journal.pone.0015710
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.24994
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.24880
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.20819
– ident: e_1_2_7_18_1
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.25029
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.24960
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.23097
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2012.06.033
– reference: 23878075 - Magn Reson Med. 2014 Jun;71(6):2071-81
– reference: 22732564 - Neuroimage. 2012 Oct 15;63(1):569-80
– reference: 11568348 - Radiology. 2001 Oct;221(1):251-5
– reference: 20872868 - Magn Reson Med. 2011 Jan;65(1):157-64
– reference: 21465541 - Magn Reson Med. 2011 Sep;66(3):777-83
– reference: 24150771 - Magn Reson Med. 2014 Jan;71(1):44-9
– reference: 24285593 - Magn Reson Med. 2014 Sep;72(3):770-8
– reference: 15723404 - Magn Reson Med. 2005 Mar;53(3):684-91
– reference: 21040794 - Neuroimage. 2011 Feb 14;54(4):2789-807
– reference: 2374495 - Magn Reson Med. 1990 Jul;15(1):152-7
– reference: 9324327 - Magn Reson Med. 1997 Oct;38(4):591-603
– reference: 17534910 - Magn Reson Med. 2007 Jun;57(6):1196-202
– reference: 19785017 - Magn Reson Med. 2009 Dec;62(6):1574-84
– reference: 12111967 - Magn Reson Med. 2002 Jun;47(6):1202-10
– reference: 19097205 - Magn Reson Med. 2009 Jan;61(1):196-204
– reference: 15334582 - Magn Reson Med. 2004 Sep;52(3):612-8
– reference: 16032686 - Magn Reson Med. 2005 Aug;54(2):491-8
– reference: 22009706 - Magn Reson Med. 2011 Nov;66(5):1234-40
– reference: 24259479 - Magn Reson Med. 2014 Nov;72(5):1444-59
– reference: 20535813 - Magn Reson Med. 2010 Sep;64(3):767-76
– reference: 19145634 - Magn Reson Med. 2009 Mar;61(3):705-15
– reference: 24395184 - J Magn Reson Imaging. 2014 Jul;40(1):181-91
– reference: 20815065 - J Magn Reson Imaging. 2010 Sep;32(3):663-76
– reference: 22036681 - Neuroimage. 2012 Feb 1;59(3):2088-97
– reference: 9615415 - J Magn Reson. 1998 May;132(1):150-3
– reference: 18666134 - Magn Reson Med. 2008 Aug;60(2):474-8
– reference: 20432285 - Magn Reson Med. 2010 May;63(5):1144-53
– reference: 3205156 - Magn Reson Med. 1988 Nov;8(3):275-84
– reference: 21671269 - Magn Reson Med. 2012 Jan;67(1):137-47
– reference: 21187930 - PLoS One. 2010;5(12):e15710
– reference: 4023236 - Radiology. 1985 Sep;156(3):743-7
– reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
– reference: 11169840 - J Magn Reson Imaging. 2001 Feb;13(2):313-7
– reference: 19953507 - Magn Reson Med. 2010 Jan;63(1):194-206
– reference: 23878098 - Magn Reson Med. 2013 Dec;70(6):1653-61
– reference: 23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64
– reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
– reference: 16408271 - Magn Reson Med. 2006 Mar;55(3):549-56
– reference: 16470597 - Magn Reson Med. 2006 Mar;55(3):633-48
– reference: 20139009 - Neuroimage. 2010 May 15;51(1):261-6
– reference: 21925276 - Neuroimage. 2012 Feb 1;59(3):2560-8
– reference: 24130105 - Magn Reson Med. 2013 Dec;70(6):1500-6
– reference: 20512849 - Magn Reson Med. 2010 Jun;63(6):1471-7
– reference: 22213069 - Magn Reson Med. 2012 Oct;68(4):1176-89
– reference: 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51
– reference: 20665790 - Magn Reson Med. 2010 Aug;64(2):457-71
– reference: 21858868 - Magn Reson Med. 2012 May;67(5):1210-24
SSID ssj0009974
Score 2.5584962
Snippet Purpose To introduce the wave‐CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with...
To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with...
Purpose To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2152
SubjectTerms Algorithms
Brain Mapping - methods
CAIPIRINHA
CAIPIRINHA, quantitative susceptibility mapping
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
parallel imaging
phase imaging
quantitative susceptibility mapping
Title Wave-CAIPI for highly accelerated 3D imaging
URI https://api.istex.fr/ark:/67375/WNG-4WWT2N5Z-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25347
https://www.ncbi.nlm.nih.gov/pubmed/24986223
https://www.proquest.com/docview/1681382559
https://www.proquest.com/docview/1682427578
https://www.proquest.com/docview/1683353126
https://pubmed.ncbi.nlm.nih.gov/PMC4281518
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5Ki-JL1ao1WiWKSF9yms1mc6FPpVpb4RyktpwiwrJXLO1Jy7kU9ak_wd_oL3F2c6lHq4gvIbATkp2dmf0mO_stwItSFjLHqSUiKk2jVJcmkizTkbZaM5FbYpVn-xxku4fp2yN2tACb7V6Ymh-i--HmPMPHa-fgQk42rkhDR-NRL2E0dTvJXa2WA0T7V9RRZVkzMOepizNl2rIKxclG9-TcXLTk1Pr5OqD5e73kzzjWT0Q7t-Fj24W6_uSkN5vKnvr6C7vjf_bxDiw3ADXcqi3qLiyYagVu9psl-BW44WtG1eQe9Ibiwny__La9tfduL0TwGzru49MvoVAKJzPHQaFD-io8HvmTkO7D4c7rg-3dqDl-IVKsiHO8GoHplsWEycaKMIOZlbRUaEyySiKFtTkxWpQSQYzJSCatpi4-CKIlggRJH8BidVaZhxCawooyNojltE2pUgUzlNgktsbGWioSwHo7EFw13OTuiIxTXrMqJxw1wb0mAnjeiZ7XhBzXCb30o9lJiPGJq2DLGR8O3vB0ODxIBuwDfx_AWjvcvHHeCSdZ4ZgZMdcK4FnXjG7n1lJEZc5mXgbBjTsM4K8ylGKMS7IAVmsL6j4Is17MJRMaQD5nW52Ao_2eb6mOP3n6b0wYEabhe9e96fxZC7y_3_c3j_5d9DHcQkjI6mK4NVicjmfmCcKuqXzq_esHNT0pHg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cBm3wICAENpLujiOc5F4mQajhbVCo1MnJGT5KqatGepaBDzxE_iN_BKOnSajMBDiJYrkEyW-HPv77JPvADwuZSFzXFoiotI0SnVpIskyHWmrNRO5JVZ5tc9B1t1LX-6z_SV42vwLU-tDtBtuzjP8fO0c3G1Ib5yqho4n407CaJqfgxWX0dsTqt1T8aiyrDWY89TNNGXa6ArFyUb76MJqtOIa9tNZUPP3iMmfkaxfiravwLumEnUEymFnNpUd9eUXfcf_reVVuDzHqOFmPaiuwZKpVuFCf34KvwrnfdioOrkOnZH4aL5__ba12XvdCxH_hk7--OhzKJTC9czJUOiQPgsPxj4Z0g3Y234-3OpG8wwMkWJFnOPVCGRcFjmTjRVhBsmVtFRo5FklkcLanBgtSok4xmQkk1ZTN0UIoiXiBElvwnJ1XJnbEJrCijI2COe0TalSBTOU2CS2xsZaKhLAetMTXM3lyV2WjCNeCysnHFuC-5YI4FFr-qHW5DjL6InvztZCTA5dEFvO-Gjwgqej0TAZsLf8TQBrTX_zuf-ecJIVTpwR6VYAD9ti9Dx3nCIqczzzNohvXD6Av9pQitNckgVwqx5C7Qch8UU6mdAA8oXB1Ro45e_FkurgvVcAR86ISA3fu-7Hzp9bgfd3-_7mzr-bPoCL3WF_h-_0Bq_uwiVEiKyOjVuD5elkZu4hCpvK-97ZfgCmGy05
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB2VVlR94VJuhgIGIdQXp157fRNPVUNogERVaZUKIa32qlZt3CpNEPDEJ_CNfAmz60sJFIR4sSx5LHtnZ2bPeMdnAJ4VIhcZLi0BkZQGVBU6EEmqAmWUSnhmiJGO7XOYbu_T1wfJwQK8aP6Fqfgh2g9u1jNcvLYOfqbMxgVp6Hgy7kRJTLMrsETTMLcm3d294I4qioqCOaM20BS0oRUKo4321rnFaMnq9dNlSPP3gsmfgaxbiXrX4UMzhqoA5bgzm4qO_PILveN_DvIGXKsRqr9ZmdRNWNDlKiwP6j34Vbjqikbl-S3ojPhH_f3rt63N_k7fR_TrW_Ljk88-lxJXM0tCofy46x-NXSuk27Dfe7m3tR3U_RcCmeRhhkfNMd8ymDGZUJJEY2olTMwVZlkFEdyYjGjFC4EoRqckFUbFNkBwogSiBBHfgcXytNT3wNe54UWoEcwpQ2Mp80THxESh0SZUQhIP1puJYLImJ7c9Mk5YRascMdQEc5rw4GkrelYxclwm9NzNZivBJ8e2hC1L2Gj4itHRaC8aJu_ZOw_WmulmtfeeM5LmlpoRky0PnrSX0e_sZgov9enMySC6sd0A_ioTxxjkotSDu5UFtS-EaS8mk1HsQTZnW62A5f2ev1IeHTr-b8wYEafhc9ed6fxZC2ywO3An9_9d9DEs73R77G1_-OYBrCA8TKrCuDVYnE5m-iFCsKl45FztBx_8K_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave%E2%80%90CAIPI+for+highly+accelerated+3D+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bilgic%2C+Berkin&rft.au=Gagoski%2C+Borjan+A.&rft.au=Cauley%2C+Stephen+F.&rft.au=Fan%2C+Audrey+P.&rft.date=2015-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=73&rft.issue=6&rft.spage=2152&rft.epage=2162&rft_id=info:doi/10.1002%2Fmrm.25347&rft.externalDBID=10.1002%252Fmrm.25347&rft.externalDocID=MRM25347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon