Spatiotemporal ablation of myelinating glia-specific neurofascin (NfascNF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axog...
Saved in:
Published in | Journal of neuroscience research Vol. 87; no. 8; pp. 1773 - 1793 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (NfascNF155) and axonal Caspr and Cont. Here we report the generation of myelinating glia‐specific NfascNF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial NfascNF155, paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from NfascNF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP‐CreER recombinase to ablate NfascNF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of NfascNF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (NfascNF155) and axonal Caspr and Cont. Here we report the generation of myelinating glia‐specific NfascNF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial NfascNF155, paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from NfascNF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP‐CreER recombinase to ablate NfascNF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of NfascNF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. © 2009 Wiley‐Liss, Inc. The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc super(NF155)) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific Nfasc super(NF155) null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc super(NF155), paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc super(NF155) mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate Nfasc super(NF155) in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc super(NF155) protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc NF155 ) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific Nfasc NF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc NF155 , paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc NF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate Nfasc NF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc NF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc(NF155)) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific Nfasc(NF155) null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc(NF155), paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc(NF155) mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate Nfasc(NF155) in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc(NF155) protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (NfascNF155) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific NfascNF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial NfascNF155, paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from NfascNF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate NfascNF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of NfascNF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc NF155 ) and axonal Caspr and Cont. Here we report the generation of myelinating glia‐specific Nfasc NF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc NF155 , paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc NF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP‐CreER recombinase to ablate Nfasc NF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc NF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. © 2009 Wiley‐Liss, Inc. |
Author | Dupree, Jeffrey L. Cheng, Jr-Gang Thaxton, Courtney Bhat, Manzoor A. Pillai, Anilkumar M. Pribisko, Alaine L. |
AuthorAffiliation | 1 Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 5 Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 3 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 2 UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 4 Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina |
AuthorAffiliation_xml | – name: 3 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia – name: 4 Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina – name: 5 Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina – name: 2 UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina – name: 1 Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina |
Author_xml | – sequence: 1 givenname: Anilkumar M. surname: Pillai fullname: Pillai, Anilkumar M. organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina – sequence: 2 givenname: Courtney surname: Thaxton fullname: Thaxton, Courtney organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina – sequence: 3 givenname: Alaine L. surname: Pribisko fullname: Pribisko, Alaine L. organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina – sequence: 4 givenname: Jr-Gang surname: Cheng fullname: Cheng, Jr-Gang organization: UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina – sequence: 5 givenname: Jeffrey L. surname: Dupree fullname: Dupree, Jeffrey L. organization: Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia – sequence: 6 givenname: Manzoor A. surname: Bhat fullname: Bhat, Manzoor A. email: manzoor_bhat@med.unc.edu organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19185024$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhi1URKeFBS-AvAK6SOtrLhskVDGFUoa7kNhYjmMPHhI72Enp8Gx9OBxmGGABrOwjf_9_Lj4HYM95pwG4i9ExRoicrFw4JgRhfgPMMKqKjHFW7IEZojnKGMJkHxzEuEIIVRWnt8A-rnDJEWEzcP22l4P1g-56H2QLZd1OsYPewG6tW-tS6JZw2VqZxV4ra6yCTo_BGxmVdfDhYros5pjzI5jizioNg77Uso1wGWQzJtvWxzhZ9jJI55sp0ZWfPFu4Gp2aMkYoXQOVd8p3dpBugI2NPiyls992JSWVS5rGd9K6eBvcNCmLvrM9D8H7-ZN3p0-zi5dnz04fX2SKl4hnBhlWEVNjTag2RGJVG8XSBGRdUYI4bmiuCVY41xozRovCsCJntJK1MsSU9BA82vj2Y93pRmk3pFmJPthOhrXw0oo_X5z9JJb-UpCSFqTMk8GDrUHwX0YdB9HZqHTbSqf9GEWZV7ygFSOJvP9PMi9w4vL8v2DqK6ecTcUfbUAV0icEbXZ1YySm9RFpfcSP9Unsvd8b_UVu9yUBJxvgq231-u9O4nzx5qdltlHYOOirnUKGz6kXWnDxYXEm5s9fvMIcvRYf6XdBIOWO |
CitedBy_id | crossref_primary_10_1002_jnr_24052 crossref_primary_10_1038_s41467_022_33200_4 crossref_primary_10_3389_fncel_2017_00011 crossref_primary_10_1523_JNEUROSCI_4662_13_2014 crossref_primary_10_1007_s11064_013_1162_5 crossref_primary_10_1002_jnr_22157 crossref_primary_10_1038_nrneurol_2017_84 crossref_primary_10_1186_1471_2202_14_96 crossref_primary_10_1016_j_neulet_2020_135595 crossref_primary_10_1083_jcb_201308116 crossref_primary_10_1523_JNEUROSCI_1015_11_2011 crossref_primary_10_1172_JCI124694 crossref_primary_10_3390_life11010008 crossref_primary_10_1016_j_neuron_2013_03_005 crossref_primary_10_1152_physrev_00031_2018 crossref_primary_10_1016_j_bbamem_2020_183211 crossref_primary_10_1002_acn3_248 crossref_primary_10_1002_glia_23665 crossref_primary_10_1093_brain_awp341 crossref_primary_10_1523_ENEURO_0138_18_2018 crossref_primary_10_1111_jns_12568 crossref_primary_10_1111_jns_12569 crossref_primary_10_1038_s41583_020_00406_8 crossref_primary_10_1016_j_expneurol_2015_03_009 crossref_primary_10_1111_joa_13562 crossref_primary_10_1093_jnen_nlz134 crossref_primary_10_1016_j_neurol_2014_03_017 crossref_primary_10_1002_mus_22069 crossref_primary_10_1523_JNEUROSCI_5951_09_2010 crossref_primary_10_7554_eLife_64456 crossref_primary_10_1136_jnnp_2017_317192 crossref_primary_10_1016_j_neures_2016_09_010 crossref_primary_10_1038_srep23084 crossref_primary_10_2217_nmt_15_50 crossref_primary_10_1038_s41582_020_0375_x crossref_primary_10_1523_JNEUROSCI_2095_18_2018 crossref_primary_10_3389_fnmol_2021_779385 crossref_primary_10_1016_j_expneurol_2015_11_012 crossref_primary_10_1038_nn_3263 crossref_primary_10_1097_NEN_0b013e3181f3a5b1 crossref_primary_10_1016_j_neuron_2011_10_016 crossref_primary_10_1172_JCI158524 crossref_primary_10_3389_fnins_2023_1167047 crossref_primary_10_3390_biomedicines11051431 crossref_primary_10_1016_j_conb_2013_06_003 crossref_primary_10_7554_eLife_68089 crossref_primary_10_1523_JNEUROSCI_5602_11_2012 crossref_primary_10_1074_jbc_M111_266353 crossref_primary_10_1212_WNL_0000000000000205 crossref_primary_10_1371_journal_pone_0228109 crossref_primary_10_1007_s11910_023_01264_4 crossref_primary_10_1371_journal_pbio_1002258 crossref_primary_10_1002_jnr_23197 crossref_primary_10_1212_NXI_0000000000000149 crossref_primary_10_1002_cne_22367 crossref_primary_10_1016_j_devcel_2019_10_016 crossref_primary_10_1016_j_neuint_2018_12_011 crossref_primary_10_1186_s13041_020_00698_y crossref_primary_10_1096_fj_202001883R crossref_primary_10_1212_WNL_0000000000012932 crossref_primary_10_1002_acn3_539 crossref_primary_10_1038_s41598_017_08623_5 crossref_primary_10_1016_j_neuron_2010_02_004 crossref_primary_10_1016_j_neulab_2018_04_001 crossref_primary_10_1016_j_neuron_2019_12_013 crossref_primary_10_1002_brb3_1115 crossref_primary_10_3389_fimmu_2018_01029 crossref_primary_10_1096_fba_2020_00101 crossref_primary_10_1007_s00401_014_1305_z crossref_primary_10_1016_j_devcel_2015_01_017 crossref_primary_10_1016_j_neurobiolaging_2010_08_001 crossref_primary_10_1093_brain_aww062 crossref_primary_10_7554_eLife_12661 crossref_primary_10_1002_glia_23190 crossref_primary_10_1016_j_bbalip_2012_01_011 crossref_primary_10_1016_j_celrep_2023_113274 crossref_primary_10_1016_j_devcel_2021_04_006 crossref_primary_10_1002_glia_23905 crossref_primary_10_1136_jnnp_2016_315480 crossref_primary_10_1111_jns_12364 crossref_primary_10_1002_cne_23670 crossref_primary_10_1007_s00418_018_1654_0 crossref_primary_10_1111_ene_12758 crossref_primary_10_20340_mv_mn_2020_28_3__35_50 crossref_primary_10_1136_jnnp_2016_314895 crossref_primary_10_1523_JNEUROSCI_2113_17_2017 crossref_primary_10_7554_eLife_21392 crossref_primary_10_1093_hmg_ddy277 crossref_primary_10_1016_j_parkreldis_2019_02_045 crossref_primary_10_3390_life11010051 crossref_primary_10_1073_pnas_1811013115 crossref_primary_10_1073_pnas_2218823120 crossref_primary_10_1016_j_mcn_2016_11_006 crossref_primary_10_1097_NRL_0000000000000313 crossref_primary_10_1523_JNEUROSCI_2661_16_2017 crossref_primary_10_1242_jcs_186627 crossref_primary_10_1016_j_neurol_2014_10_009 crossref_primary_10_1016_j_celrep_2023_112293 crossref_primary_10_1016_j_febslet_2009_08_025 crossref_primary_10_1038_s42003_020_0854_z crossref_primary_10_1111_cen3_12444 crossref_primary_10_1038_nrneurol_2014_260 crossref_primary_10_1093_brain_awu398 crossref_primary_10_1111_cen3_12442 crossref_primary_10_1073_pnas_1619553114 crossref_primary_10_3389_fcell_2022_951809 crossref_primary_10_1111_cen3_12567 crossref_primary_10_1523_JNEUROSCI_0448_14_2014 crossref_primary_10_3389_fncel_2018_00201 crossref_primary_10_1523_JNEUROSCI_5225_09_2010 crossref_primary_10_1002_glia_24423 crossref_primary_10_1002_jnr_24352 crossref_primary_10_1016_j_jbc_2022_102272 crossref_primary_10_1177_1759091418766175 crossref_primary_10_1007_s00415_020_09823_2 crossref_primary_10_1146_annurev_cellbio_100913_013107 crossref_primary_10_1002_iub_513 crossref_primary_10_3389_fncel_2021_576609 crossref_primary_10_1093_brain_awac418 crossref_primary_10_2169_internalmedicine_0455_17 crossref_primary_10_3389_fimmu_2024_1345953 crossref_primary_10_1111_cen3_12338 crossref_primary_10_1523_JNEUROSCI_3529_15_2016 crossref_primary_10_1016_j_clinph_2020_08_004 crossref_primary_10_1111_joa_13544 crossref_primary_10_1002_glia_22511 crossref_primary_10_1016_S1773_035X_23_00135_1 crossref_primary_10_1038_s41467_022_34302_9 crossref_primary_10_1002_glia_22991 crossref_primary_10_1016_j_prostaglandins_2009_04_005 crossref_primary_10_1016_j_neuron_2010_12_016 crossref_primary_10_1083_jcb_201111127 crossref_primary_10_1111_jnc_15365 crossref_primary_10_3389_fneur_2021_665136 crossref_primary_10_1007_s00018_010_0512_6 crossref_primary_10_1002_glia_22627 crossref_primary_10_1097_WCO_0000000000000233 crossref_primary_10_1002_mus_25273 crossref_primary_10_1111_jnc_14553 |
Cites_doi | 10.1101/gr.749203 10.1111/j.1749-6632.1999.tb08574.x 10.1016/S0896-6273(01)00306-3 10.1093/emboj/16.5.978 10.1038/ng1095 10.1083/jcb.139.6.1495 10.1093/brain/awl144 10.1073/pnas.98.3.1235 10.1007/BF02166189 10.1016/S0896-6273(01)00294-X 10.1016/j.cub.2006.11.042 10.1016/S0896-6273(01)00296-3 10.1016/S0896-6273(03)00628-7 10.1016/S0960-9822(01)00680-7 10.1111/j.1749-6632.1999.tb08599.x 10.1523/JNEUROSCI.20-22-08354.2000 10.1016/j.conb.2003.09.004 10.1093/brain/awg151 10.1083/jcb.150.3.657 10.1017/S1740925X07000415 10.1385/CBB:46:1:65 10.1038/nrn1743 10.1083/jcb.135.5.1355 10.1002/glia.20165 10.1091/mbc.e06-06-0570 10.1152/ajplegacy.1939.127.2.393 10.1016/0304-3940(86)90180-1 10.1016/j.neuron.2005.10.019 10.1016/S0896-6273(00)80942-3 10.1016/S0092-8674(00)80593-0 10.1007/978-3-642-65581-4 10.1016/S0959-4388(00)00122-7 10.1046/j.1460-9568.2003.02441.x 10.1523/JNEUROSCI.0425-06.2006 10.1523/JNEUROSCI.22-15-06507.2002 10.1038/284170a0 10.1523/JNEUROSCI.3479-04.2004 10.1073/pnas.0601082103 10.1083/jcb.147.6.1145 10.1016/S0896-6273(00)81126-5 10.1523/JNEUROSCI.5383-05.2006 10.1083/jcb.200309147 10.1002/jnr.21374 10.1083/jcb.200712154 10.1002/gene.10154 10.1016/S0092-8674(00)80093-8 10.1017/S1740925X06000275 10.1023/A:1007009613484 10.1126/science.280.5369.1610 10.1017/S1740925X06000093 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. (c) 2009 Wiley-Liss, Inc. 2009 Wiley-Liss, Inc. 2009 |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: (c) 2009 Wiley-Liss, Inc. – notice: 2009 Wiley-Liss, Inc. 2009 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
DOI | 10.1002/jnr.22015 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1097-4547 |
EndPage | 1793 |
ExternalDocumentID | 10_1002_jnr_22015 19185024 JNR22015 ark_67375_WNG_FKMP150Q_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: State of North Carolina – fundername: National Institutes of Health funderid: GM63074; NS050356 – fundername: National MS Society – fundername: NIH‐NINDS Center core funderid: 5P30NS047463 – fundername: NINDS NIH HHS grantid: NS050356 – fundername: NINDS NIH HHS grantid: P30 NS047463 – fundername: NIGMS NIH HHS grantid: R01 GM063074 – fundername: NIGMS NIH HHS grantid: GM63074 – fundername: NIGMS NIH HHS grantid: R01 GM063074-08 – fundername: NINDS NIH HHS grantid: R01 NS050356 – fundername: NINDS NIH HHS grantid: R01 NS050356-04 – fundername: NINDS NIH HHS grantid: 5P30NS047463 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 YYP ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5805-f0f492fb1e23ef2a1cbfc4185ab932051d36e21c16ee144377f476439abcf2f83 |
IEDL.DBID | DR2 |
ISSN | 0360-4012 1097-4547 |
IngestDate | Tue Sep 17 21:33:26 EDT 2024 Wed Dec 04 16:06:54 EST 2024 Wed Dec 04 16:14:23 EST 2024 Wed Dec 04 08:29:32 EST 2024 Fri Dec 06 02:53:20 EST 2024 Sat Sep 28 07:50:54 EDT 2024 Sat Aug 24 00:50:55 EDT 2024 Wed Oct 30 09:55:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | (c) 2009 Wiley-Liss, Inc. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5805-f0f492fb1e23ef2a1cbfc4185ab932051d36e21c16ee144377f476439abcf2f83 |
Notes | NIH-NINDS Center core - No. 5P30NS047463 ark:/67375/WNG-FKMP150Q-Z State of North Carolina National Institutes of Health - No. GM63074; No. NS050356 National MS Society ArticleID:JNR22015 istex:B579D62786BEA220F50773CE939E2587DE8C3C27 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://cdr.lib.unc.edu/downloads/x920g430q |
PMID | 19185024 |
PQID | 20563548 |
PQPubID | 23462 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2837286 proquest_miscellaneous_869573942 proquest_miscellaneous_67139466 proquest_miscellaneous_20563548 crossref_primary_10_1002_jnr_22015 pubmed_primary_19185024 wiley_primary_10_1002_jnr_22015_JNR22015 istex_primary_ark_67375_WNG_FKMP150Q_Z |
PublicationCentury | 2000 |
PublicationDate | June 2009 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: June 2009 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of neuroscience research |
PublicationTitleAlternate | J. Neurosci. Res |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Zonta B,Tait S,Melrose S,Anderson H,Harroch S,Higginson J,Sherman DL,Brophy PJ. 2008. Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J Cell Biol 181: 1169-1177. Pillai AM,Garcia-Fresco GP,Sousa AD,Dupree JL,Philpot BD,Bhat MA. 2007. No effect of genetic deletion of contactin-associated protein (CASPR) on axonal orientation and synaptic plasticity. J Neurosci Res 85: 2318-2331. Stampfli R. 1954. A new method for measuring membrane potentials with external electrodes. Experientia 10: 508-509. Charles P,Tait S,Faivre-Sarrailh C,Barbin G,Gunn-Moore F,Denisenko-Nehrbass N,Guennoc AM,Girault JA,Brophy PJ,Lubetzki C. 2002. Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol 12: 217-220. Gasser HS,Grundfest H. 1939. Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Am J Physiol 127: 22. Gollan L,Salomon D,Salzer JL,Peles E. 2003. Caspr regulates the processing of contactin and inhibits its binding to neurofascin. J Cell Biol 163: 1213-1218. Nicholson GA. 1999. Mutation testing in Charcot-Marie-Tooth neuropathy. Ann N Y Acad Sci 883: 383-388. Liu P,Jenkins NA,Copeland NG. 2003. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13: 476-484. Bhat MA,Izaddoost S,Lu Y,Cho KO,Choi KW,Bellen HJ. 1999. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96: 833-845. Melendez-Vasquez CV,Rios JC,Zanazzi G,Lambert S,Bretscher A,Salzer JL. 2001. Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc Natl Acad Sci USA 98: 1235-1240. Pedraza L,Huang JK,Colman DR. 2001. Organizing principles of the axoglial apparatus. Neuron 30: 335-344. Einheber S,Bhat MA,Salzer JL. 2006. Disrupted axoglial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier. Neuron Glia Biol 2: 165-174. Rios JC,Melendez-Vasquez CV,Einheber S,Lustig M,Grumet M,Hemperly J,Peles E,Salzer JL. 2000. Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20: 8354-8364. Griffiths I,Klugmann M,Anderson T,Yool D,Thomson C,Schwab MH,Schneider A,Zimmermann F,McCulloch M,Nadon N,Nave KA. 1998. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280: 1610-1613. Feltri ML,D'Antonio M,Previtali S,Fasolini M,Messing A,Wrabetz L. 1999. P0-Cre transgenic mice for inactivation of adhesion molecules in Schwann cells. Ann N Y Acad Sci 883: 116-123. Garcia-Fresco GP,Sousa AD,Pillai AM,Moy SS,Crawley JN,Tessarollo L,Dupree JL,Bhat MA. 2006. Disruption of axoglial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc Natl Acad Sci USA 103: 5137-5142. Robertson JD. 1957. The ultrastructure of nodes of Ranvier in frog nerve fibres. J Physiol 137: 8P-9P. Bhat MA. 2003. Molecular organization of axoglial junctions. Curr Opin Neurobiol 13: 552-559. Ishibashi T,Dupree JL,Ikenaka K,Hirahara Y,Honke K,Peles E,Popko B,Suzuki K,Nishino H,Baba H. 2002. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22: 6507-6514. Palay SL,Palay VC. 1974. Cerebellar cortex. New York: Springer-Verlag. Peles E,Salzer JL. 2000. Molecular domains of myelinated axons. Curr Opin Neurobiol 10: 558-565. Berglund EO,Murai KK,Fredette B,Sekerkova G,Marturano B,Weber L,Mugnaini E,Ranscht B. 1999. Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 24: 739-750. Sousa AD,Bhat MA. 2007. Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons. Neuron Glia Biol 3: 169-178. Banerjee S,Pillai AM,Paik R,Li J,Bhat MA. 2006a. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila. J Neurosci 26: 3319-3329. Arroyo EJ,Xu YT,Zhou L,Messing A,Peles E,Chiu SY,Scherer SS. 1999. Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvbeta2, and Caspr. J Neurocytol 28: 333-347. Sherman DL,Tait S,Melrose S,Johnson R,Zonta B,Court FA,Macklin WB,Meek S,Smith AJ,Cottrell DF,Brophy PJ. 2005. Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48: 737-742. Bonnon C,Bel C,Goutebroze L,Maigret B,Girault JA,Faivre-Sarrailh C. 2007. PGY repeats and N-glycans govern the trafficking of paranodin and its selective association with contactin and neurofascin-155. Mol Biol Cell 18: 229-241. Coman I,Aigrot MS,Seilhean D,Reynolds R,Girault JA,Zalc B,Lubetzki C. 2006. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129: 3186-3195. Davis JQ,Lambert S,Bennett V. 1996. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. J Cell Biol 135: 1355-1367. Einheber S,Zanazzi G,Ching W,Scherer S,Milner TA,Peles E,Salzer JL. 1997. The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 139: 1495-1506. Wolswijk G,Balesar R. 2003. Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis. Brain 126: 1638-1649. Bhat MA,Rios JC,Lu Y,Garcia-Fresco GP,Ching W,St. Martin M,Li J,Einheber S,Chesler M,Rosenbluth J,Salzer JL,Bellen HJ. 2001. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/paranodin. Neuron 30: 369-383. Ogawa Y,Schafer DP,Horresh I,Bar V,Hales K,Yang Y,Susuki K,Peles E,Stankewich MC,Rasband MN. 2006. Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J Neurosci 26: 5230-5239. Rasband MN,Tayler J,Kaga Y,Yang Y,Lappe-Siefke C,Nave KA,Bansal R. 2005. CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia 50: 86-90. Menegoz M,Gaspar P,Le Bert M,Galvez T,Burgaya F,Palfrey C,Ezan P,Arnos F,Girault JA. 1997. Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 19: 319-331. Boyle ME,Berglund EO,Murai KK,Weber L,Peles E,Ranscht B. 2001. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30: 385-397. Peles E,Nativ M,Lustig M,Grumet M,Schilling J,Martinez R,Plowman GD,Schlessinger J. 1997. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 16: 978-988. Salzer JL. 2003. Polarized domains of myelinated axons. Neuron 40: 297-318. Sherman DL,Brophy PJ. 2005. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6: 683-690. Denisenko-Nehrbass N,Oguievetskaia K,Goutebroze L,Galvez T,Yamakawa H,Ohara O,Carnaud M,Girault JA. 2003. Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur J Neurosci 17: 411-416. Tait S,Gunn-Moore F,Collinson JM,Huang J,Lubetzki C,Pedraza L,Sherman DL,Colman DR,Brophy PJ. 2000. An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axoglial junction. J Cell Biol 150: 657-666. Doerflinger NH,Macklin WB,Popko B. 2003. Inducible site-specific recombination in myelinating cells. Genesis 35: 63-72. Hartline DK,Colman DR. 2007. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17: R29-R35. Dupree JL,Girault JA,Popko B. 1999. Axoglial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 147: 1145-1152. Lappe-Siefke C,Goebbels S,Gravel M,Nicksch E,Lee J,Braun PE,Griffiths IR,Nave KA. 2003. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33: 366-374. Schafer DP,Custer AW,Shrager P,Rasband MN. 2006. Early events in node of Ranvier formation during myelination and remyelination in the PNS. Neuron Glia Biol 2: 69-79. Coetzee T,Fujita N,Dupree J,Shi R,Blight A,Suzuki K,Popko B. 1996. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86: 209-219. Banerjee S,Sousa AD,Bhat MA. 2006b. Organization and function of septate junctions: an evolutionary perspective. Cell Biochem Biophys 46: 65-77. Reeh PW. 1986. Sensory receptors in mammalian skin in an in vitro preparation. Neurosci Lett 66: 141-146. Southwood C,He C,Garbern J,Kamholz J,Arroyo E,Gow A. 2004. CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. J Neurosci 24: 11215-11225. Chiu SY,Ritchie JM. 1980. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature 284: 170-171. 2007; 17 2007; 18 2006b; 46 1998; 280 1997; 139 1999; 28 2002; 12 2000; 20 2004; 24 1999; 24 2003; 13 2003; 35 2000; 150 1974 2003; 17 1999; 883 1999; 147 2006; 2 2005; 48 2003; 33 2008; 181 1957; 137 1986; 66 2000; 10 1954; 10 1939; 127 2002; 22 2006; 26 1997; 19 1997; 16 2005; 6 1999; 96 2007; 85 2005; 50 2007; 3 2003; 126 1980; 284 2006; 129 1996; 135 2003; 40 2001; 30 1996; 86 2006; 103 2006a; 26 2003; 163 2001; 98 10601330 - J Cell Biol. 1999 Dec 13;147(6):1145-52 14353097 - Experientia. 1954 Dec 15;10(12):508-9 16687515 - J Neurosci. 2006 May 10;26(19):5230-9 17208176 - Curr Biol. 2007 Jan 9;17(1):R29-35 16652168 - Neuron Glia Biol. 2006 May;2(2):69-79 11839274 - Curr Biol. 2002 Feb 5;12(3):217-20 11069942 - J Neurosci. 2000 Nov 15;20(22):8354-64 8947556 - J Cell Biol. 1996 Dec;135(5):1355-67 9118959 - EMBO J. 1997 Mar 3;16(5):978-88 3725179 - Neurosci Lett. 1986 May 15;66(2):141-6 10739575 - J Neurocytol. 1999 Apr-May;28(4-5):333-47 11395000 - Neuron. 2001 May;30(2):369-83 16136172 - Nat Rev Neurosci. 2005 Sep;6(9):683-90 15657937 - Glia. 2005 Apr 1;50(1):86-90 10102271 - Cell. 1999 Mar 19;96(6):833-45 14556710 - Neuron. 2003 Oct 9;40(2):297-318 8706126 - Cell. 1996 Jul 26;86(2):209-19 9292722 - Neuron. 1997 Aug;19(2):319-31 12618378 - Genome Res. 2003 Mar;13(3):476-84 9396755 - J Cell Biol. 1997 Dec 15;139(6):1495-506 15601927 - J Neurosci. 2004 Dec 15;24(50):11215-25 18372928 - Neuron Glia Biol. 2007 May;3(2):169-78 14676309 - J Cell Biol. 2003 Dec 22;163(6):1213-8 12481300 - Genesis. 2003 Jan;35(1):63-72 11395001 - Neuron. 2001 May;30(2):385-97 16551741 - Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5137-42 17093057 - Mol Biol Cell. 2007 Jan;18(1):229-41 10931875 - J Cell Biol. 2000 Aug 7;150(3):657-66 18573915 - J Cell Biol. 2008 Jun 30;181(7):1169-77 14630217 - Curr Opin Neurobiol. 2003 Oct;13(5):552-9 17460780 - Neuron Glia Biol. 2006 Aug;2(3):165-74 10586237 - Ann N Y Acad Sci. 1999 Sep 14;883:116-23 6244497 - Nature. 1980 Mar 13;284(5752):170-1 12542678 - Eur J Neurosci. 2003 Jan;17(2):411-6 11394997 - Neuron. 2001 May;30(2):335-44 17549747 - J Neurosci Res. 2007 Aug 15;85(11):2318-31 9616125 - Science. 1998 Jun 5;280(5369):1610-3 10595523 - Neuron. 1999 Nov;24(3):739-50 16766541 - Brain. 2006 Dec;129(Pt 12):3186-95 16337912 - Neuron. 2005 Dec 8;48(5):737-42 12151530 - J Neurosci. 2002 Aug 1;22(15):6507-14 12805111 - Brain. 2003 Jul;126(Pt 7):1638-49 16554482 - J Neurosci. 2006 Mar 22;26(12):3319-29 10586262 - Ann N Y Acad Sci. 1999 Sep 14;883:383-8 16943624 - Cell Biochem Biophys. 2006;46(1):65-77 12590258 - Nat Genet. 2003 Mar;33(3):366-74 13439596 - J Physiol. 1957 Jun 18;137(1):8-9P 11158623 - Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1235-40 11084317 - Curr Opin Neurobiol. 2000 Oct;10(5):558-65 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Gasser HS (e_1_2_6_23_1) 1939; 127 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 Robertson JD (e_1_2_6_42_1) 1957; 137 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 17 start-page: R29 year: 2007 end-page: R35 article-title: Rapid conduction and the evolution of giant axons and myelinated fibers publication-title: Curr Biol – volume: 46 start-page: 65 year: 2006b end-page: 77 article-title: Organization and function of septate junctions: an evolutionary perspective publication-title: Cell Biochem Biophys – volume: 85 start-page: 2318 year: 2007 end-page: 2331 article-title: No effect of genetic deletion of contactin‐associated protein (CASPR) on axonal orientation and synaptic plasticity publication-title: J Neurosci Res – volume: 30 start-page: 385 year: 2001 end-page: 397 article-title: Contactin orchestrates assembly of the septate‐like junctions at the paranode in myelinated peripheral nerve publication-title: Neuron – volume: 98 start-page: 1235 year: 2001 end-page: 1240 article-title: Nodes of Ranvier form in association with ezrin‐radixin‐moesin (ERM)‐positive Schwann cell processes publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 508 year: 1954 end-page: 509 article-title: A new method for measuring membrane potentials with external electrodes publication-title: Experientia – volume: 13 start-page: 552 year: 2003 end-page: 559 article-title: Molecular organization of axoglial junctions publication-title: Curr Opin Neurobiol – volume: 20 start-page: 8354 year: 2000 end-page: 8364 article-title: Contactin‐associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination publication-title: J Neurosci – volume: 139 start-page: 1495 year: 1997 end-page: 1506 article-title: The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate‐like paranodal junctions that assemble during myelination publication-title: J Cell Biol – volume: 96 start-page: 833 year: 1999 end-page: 845 article-title: Discs Lost, a novel multi‐PDZ domain protein, establishes and maintains epithelial polarity publication-title: Cell – volume: 35 start-page: 63 year: 2003 end-page: 72 article-title: Inducible site‐specific recombination in myelinating cells publication-title: Genesis – volume: 50 start-page: 86 year: 2005 end-page: 90 article-title: CNP is required for maintenance of axon–glia interactions at nodes of Ranvier in the CNS publication-title: Glia – volume: 181 start-page: 1169 year: 2008 end-page: 1177 article-title: Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system publication-title: J Cell Biol – volume: 135 start-page: 1355 year: 1996 end-page: 1367 article-title: Molecular composition of the node of Ranvier: identification of ankyrin‐binding cell adhesion molecules neurofascin (mucin /third FNIII domain ) and NrCAM at nodal axon segments publication-title: J Cell Biol – volume: 26 start-page: 3319 year: 2006a end-page: 3329 article-title: Axonal ensheathment and septate junction formation in the peripheral nervous system of publication-title: J Neurosci – volume: 2 start-page: 69 year: 2006 end-page: 79 article-title: Early events in node of Ranvier formation during myelination and remyelination in the PNS publication-title: Neuron Glia Biol – volume: 127 start-page: 22 year: 1939 article-title: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers publication-title: Am J Physiol – volume: 150 start-page: 657 year: 2000 end-page: 666 article-title: An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axoglial junction publication-title: J Cell Biol – volume: 280 start-page: 1610 year: 1998 end-page: 1613 article-title: Axonal swellings and degeneration in mice lacking the major proteolipid of myelin publication-title: Science – volume: 48 start-page: 737 year: 2005 end-page: 742 article-title: Neurofascins are required to establish axonal domains for saltatory conduction publication-title: Neuron – volume: 66 start-page: 141 year: 1986 end-page: 146 article-title: Sensory receptors in mammalian skin in an in vitro preparation publication-title: Neurosci Lett – volume: 22 start-page: 6507 year: 2002 end-page: 6514 article-title: A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation publication-title: J Neurosci – volume: 24 start-page: 739 year: 1999 end-page: 750 article-title: Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression publication-title: Neuron – volume: 28 start-page: 333 year: 1999 end-page: 347 article-title: Myelinating Schwann cells determine the internodal localization of K 1.1, K 1.2, K beta2, and Caspr publication-title: J Neurocytol – volume: 40 start-page: 297 year: 2003 end-page: 318 article-title: Polarized domains of myelinated axons publication-title: Neuron – volume: 883 start-page: 383 year: 1999 end-page: 388 article-title: Mutation testing in Charcot‐Marie‐Tooth neuropathy publication-title: Ann N Y Acad Sci – volume: 103 start-page: 5137 year: 2006 end-page: 5142 article-title: Disruption of axoglial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 978 year: 1997 end-page: 988 article-title: Identification of a novel contactin‐associated transmembrane receptor with multiple domains implicated in protein–protein interactions publication-title: EMBO J – volume: 137 start-page: 8P year: 1957 end-page: 9P article-title: The ultrastructure of nodes of Ranvier in frog nerve fibres publication-title: J Physiol – volume: 86 start-page: 209 year: 1996 end-page: 219 article-title: Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability publication-title: Cell – volume: 6 start-page: 683 year: 2005 end-page: 690 article-title: Mechanisms of axon ensheathment and myelin growth publication-title: Nat Rev Neurosci – volume: 129 start-page: 3186 year: 2006 end-page: 3195 article-title: Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis publication-title: Brain – volume: 13 start-page: 476 year: 2003 end-page: 484 article-title: A highly efficient recombineering‐based method for generating conditional knockout mutations publication-title: Genome Res – volume: 30 start-page: 369 year: 2001 end-page: 383 article-title: Axon–glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/paranodin publication-title: Neuron – volume: 30 start-page: 335 year: 2001 end-page: 344 article-title: Organizing principles of the axoglial apparatus publication-title: Neuron – volume: 2 start-page: 165 year: 2006 end-page: 174 article-title: Disrupted axoglial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier publication-title: Neuron Glia Biol – volume: 163 start-page: 1213 year: 2003 end-page: 1218 article-title: Caspr regulates the processing of contactin and inhibits its binding to neurofascin publication-title: J Cell Biol – volume: 883 start-page: 116 year: 1999 end-page: 123 article-title: P0‐Cre transgenic mice for inactivation of adhesion molecules in Schwann cells publication-title: Ann N Y Acad Sci – volume: 26 start-page: 5230 year: 2006 end-page: 5239 article-title: Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton publication-title: J Neurosci – volume: 18 start-page: 229 year: 2007 end-page: 241 article-title: PGY repeats and N‐glycans govern the trafficking of paranodin and its selective association with contactin and neurofascin‐155 publication-title: Mol Biol Cell – volume: 33 start-page: 366 year: 2003 end-page: 374 article-title: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination publication-title: Nat Genet – volume: 19 start-page: 319 year: 1997 end-page: 331 article-title: Paranodin, a glycoprotein of neuronal paranodal membranes publication-title: Neuron – volume: 24 start-page: 11215 year: 2004 end-page: 11225 article-title: CNS myelin paranodes require Nkx6–2 homeoprotein transcriptional activity for normal structure publication-title: J Neurosci – volume: 10 start-page: 558 year: 2000 end-page: 565 article-title: Molecular domains of myelinated axons publication-title: Curr Opin Neurobiol – volume: 17 start-page: 411 year: 2003 end-page: 416 article-title: Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres publication-title: Eur J Neurosci – volume: 147 start-page: 1145 year: 1999 end-page: 1152 article-title: Axoglial interactions regulate the localization of axonal paranodal proteins publication-title: J Cell Biol – volume: 12 start-page: 217 year: 2002 end-page: 220 article-title: Neurofascin is a glial receptor for the paranodin/Caspr‐contactin axonal complex at the axoglial junction publication-title: Curr Biol – year: 1974 – volume: 3 start-page: 169 year: 2007 end-page: 178 article-title: Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons publication-title: Neuron Glia Biol – volume: 284 start-page: 170 year: 1980 end-page: 171 article-title: Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres publication-title: Nature – volume: 126 start-page: 1638 year: 2003 end-page: 1649 article-title: Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis publication-title: Brain – ident: e_1_2_6_29_1 doi: 10.1101/gr.749203 – ident: e_1_2_6_21_1 doi: 10.1111/j.1749-6632.1999.tb08574.x – ident: e_1_2_6_35_1 doi: 10.1016/S0896-6273(01)00306-3 – ident: e_1_2_6_37_1 doi: 10.1093/emboj/16.5.978 – ident: e_1_2_6_28_1 doi: 10.1038/ng1095 – ident: e_1_2_6_19_1 doi: 10.1083/jcb.139.6.1495 – ident: e_1_2_6_14_1 doi: 10.1093/brain/awl144 – ident: e_1_2_6_30_1 doi: 10.1073/pnas.98.3.1235 – ident: e_1_2_6_49_1 doi: 10.1007/BF02166189 – ident: e_1_2_6_8_1 doi: 10.1016/S0896-6273(01)00294-X – ident: e_1_2_6_26_1 doi: 10.1016/j.cub.2006.11.042 – ident: e_1_2_6_10_1 doi: 10.1016/S0896-6273(01)00296-3 – ident: e_1_2_6_43_1 doi: 10.1016/S0896-6273(03)00628-7 – ident: e_1_2_6_11_1 doi: 10.1016/S0960-9822(01)00680-7 – ident: e_1_2_6_32_1 doi: 10.1111/j.1749-6632.1999.tb08599.x – ident: e_1_2_6_41_1 doi: 10.1523/JNEUROSCI.20-22-08354.2000 – ident: e_1_2_6_6_1 doi: 10.1016/j.conb.2003.09.004 – ident: e_1_2_6_51_1 doi: 10.1093/brain/awg151 – ident: e_1_2_6_50_1 doi: 10.1083/jcb.150.3.657 – ident: e_1_2_6_47_1 doi: 10.1017/S1740925X07000415 – ident: e_1_2_6_4_1 doi: 10.1385/CBB:46:1:65 – ident: e_1_2_6_45_1 doi: 10.1038/nrn1743 – ident: e_1_2_6_15_1 doi: 10.1083/jcb.135.5.1355 – ident: e_1_2_6_39_1 doi: 10.1002/glia.20165 – ident: e_1_2_6_9_1 doi: 10.1091/mbc.e06-06-0570 – volume: 127 start-page: 22 year: 1939 ident: e_1_2_6_23_1 article-title: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers publication-title: Am J Physiol doi: 10.1152/ajplegacy.1939.127.2.393 contributor: fullname: Gasser HS – ident: e_1_2_6_40_1 doi: 10.1016/0304-3940(86)90180-1 – ident: e_1_2_6_46_1 doi: 10.1016/j.neuron.2005.10.019 – ident: e_1_2_6_31_1 doi: 10.1016/S0896-6273(00)80942-3 – ident: e_1_2_6_7_1 doi: 10.1016/S0092-8674(00)80593-0 – ident: e_1_2_6_34_1 doi: 10.1007/978-3-642-65581-4 – ident: e_1_2_6_36_1 doi: 10.1016/S0959-4388(00)00122-7 – ident: e_1_2_6_16_1 doi: 10.1046/j.1460-9568.2003.02441.x – ident: e_1_2_6_33_1 doi: 10.1523/JNEUROSCI.0425-06.2006 – ident: e_1_2_6_27_1 doi: 10.1523/JNEUROSCI.22-15-06507.2002 – ident: e_1_2_6_12_1 doi: 10.1038/284170a0 – ident: e_1_2_6_48_1 doi: 10.1523/JNEUROSCI.3479-04.2004 – ident: e_1_2_6_22_1 doi: 10.1073/pnas.0601082103 – volume: 137 start-page: 8P year: 1957 ident: e_1_2_6_42_1 article-title: The ultrastructure of nodes of Ranvier in frog nerve fibres publication-title: J Physiol contributor: fullname: Robertson JD – ident: e_1_2_6_18_1 doi: 10.1083/jcb.147.6.1145 – ident: e_1_2_6_5_1 doi: 10.1016/S0896-6273(00)81126-5 – ident: e_1_2_6_3_1 doi: 10.1523/JNEUROSCI.5383-05.2006 – ident: e_1_2_6_24_1 doi: 10.1083/jcb.200309147 – ident: e_1_2_6_38_1 doi: 10.1002/jnr.21374 – ident: e_1_2_6_52_1 doi: 10.1083/jcb.200712154 – ident: e_1_2_6_17_1 doi: 10.1002/gene.10154 – ident: e_1_2_6_13_1 doi: 10.1016/S0092-8674(00)80093-8 – ident: e_1_2_6_20_1 doi: 10.1017/S1740925X06000275 – ident: e_1_2_6_2_1 doi: 10.1023/A:1007009613484 – ident: e_1_2_6_25_1 doi: 10.1126/science.280.5369.1610 – ident: e_1_2_6_44_1 doi: 10.1017/S1740925X06000093 |
SSID | ssj0009953 |
Score | 2.4068553 |
Snippet | The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains.... The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains.... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1773 |
SubjectTerms | Animals axoglial junctions axonal domains Axons - metabolism Axons - pathology Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Demyelinating Diseases - genetics Demyelinating Diseases - pathology Demyelinating Diseases - physiopathology Disease Models, Animal Mice Mice, Knockout Mice, Mutant Strains Mice, Transgenic Movement Disorders - genetics Movement Disorders - pathology Movement Disorders - physiopathology myelin Myelin Proteolipid Protein - genetics Myelin Proteolipid Protein - metabolism Myelin Sheath - metabolism Myelin Sheath - pathology myelinated axons Nerve Fibers, Myelinated - metabolism Nerve Fibers, Myelinated - pathology Nerve Growth Factors - genetics Nerve Growth Factors - metabolism Neural Conduction - genetics Neuroglia - metabolism Neuroglia - pathology paranodes Peripheral Nerves - metabolism Peripheral Nerves - pathology Peripheral Nerves - physiopathology Ranvier's Nodes - metabolism Ranvier's Nodes - pathology Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Wallerian Degeneration - genetics Wallerian Degeneration - pathology Wallerian Degeneration - physiopathology |
Title | Spatiotemporal ablation of myelinating glia-specific neurofascin (NfascNF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains |
URI | https://api.istex.fr/ark:/67375/WNG-FKMP150Q-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.22015 https://www.ncbi.nlm.nih.gov/pubmed/19185024 https://search.proquest.com/docview/20563548 https://search.proquest.com/docview/67139466 https://search.proquest.com/docview/869573942 https://pubmed.ncbi.nlm.nih.gov/PMC2837286 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWq8sILt3IJVwuhqjxkGzuOE4unCliqokZQqKgQUuQkdtl210F7kVqe-AS-iI_hS5hx9tIFVkK8ZbXjJHZmPMfOmRNCngidaMV4Fca1zEIhmQ61qk1o6lIkSqRVxLBQeD-Xu4di7yg5WiPPZrUwrT7EfMMNI8PP1xjguhxtL0RDT9ywwyF9YYE5i1Ok8704WEhHKdUqUMYygjUS4zNVoYhvz1su5aJLOKxnfwOaf_IlL-JYn4i6V8mnWRda_slpZzIuO9XX39Qd_7OP18iVKUClO61HXSdrxt0gGzsOFueDc7pJPWXU78VvkB_vPB97Km_Vp7psmXW0sXRwjpXuGlnV9Ljf0z-_fceqTmQmUS-iaTVkX0e3cjzIu4A4nlL4PYCZi6KuFMQFPR5qrBWjfRg-PCkKlbumxkudNXjWPj2BxOxjh2pXU1jdQx97-GlkikSpC5Wm2B5aYefqZqB7bnSTHHZfvn--G04_CBFWSRYloY2sUNyWzPDYWK5ZVdoK1Xd0CTAUppc6loazikljYKEYp6kVKUIuXVaW2yy-RdZd48wdQm1Ux-CklYiFEEkltJaJzpQ0yjCrahaQxzPXKL60uh9Fq_DMC3gqhX8qAdn0TjO30MNTJMqlSfEhf1V0X--_Abz9tvgYkEczryogfPGdjHammYwKuGuAfCJbbSFTAOlCyoDQFRaZVEkKNjwgt1tHXdyygtEBGBaQdMmF5waoLr78j-t99irjKIvEM7jslvfQ1aNQ7OUH_uDuv5veI5fb13K4nXWfrI-HE_MA0N24fOjD-Bc9alK7 |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gAv3MYl3GYhNI2HdInjXCzxMgGlbGsEY9MmJBQ5iT26tQ7qWmnjiZ_AL-LH8Es4x2naFaiEeEuU4yR2zrE_O9_5TMgzLkMpfFa4QRklLo986UpRKleVOQ8FjwvPx0Thbhp1Dvj2UXi0RF40uTC1PsR0wQ0jw_bXGOC4IL05Uw09McMWg_ErvEJWINx9JHS92puJRwlRa1AGkQezJJ81ukIe25wWnRuNVrBhz_8GNf9kTF5GsnYoat8gn5pK1AyU09Z4lLeKr7_pO_5vLW-S6xOMSrdqp7pFlpS5TVa3DMzPBxd0nVrWqF2OXyU_PlhK9kThqk9lXpPraKXp4AKT3SUSq-lxvyd_fvuOiZ1ITqJWR1NLGIAN3UjxIG0D6HhO4XwAnRdFaSkIDXo8lJguRvvQfnhT1Co3VYmPOq_wrn16AmOzDR8qTUlhgg-V7OHuyBS5UpeSTbE8lMLKldVA9szZHXLQfr3_suNO9oRwizDxQld7mgumc1-xQGkm_SLXBQrwyByQKPQwZRAp5hd-pBTMFYM41jxG1CXzQjOdBHfJsqmMuk-o9soA_LTgAec8LLiUUSgTESmhfC1K3yFPG9_IvtTSH1kt8swy-CqZ_SoOWbdeM7WQw1PkysVhdpi-ydo73XcAud9nHx2y1rhVBhGMv2WkUdX4LIO3BtTHk8UW4NwB7gPgELrAIolEGIMNc8i92lNnryygdQCJOSSe8-GpAQqMz18xvc9WaByVkVgCj92wLrq4FbLtdM8ePPh30zVytbPf3c1236Y7D8m1-i8drm49Isuj4Vg9BrA3yp_YmP4FMgdW3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKKyFeuJVLuNVCqCoP2SaO48TiqaIspaVRKVRUCClyErtsu-tU212p5YlP4Iv4GL6EGWcvXWAlxFtWO05iZ8Zz7Jw5IeQZV7GSISv9qBKpz0WofCUr7euq4LHkSRmEWCi8m4mtA759GB8ukBfjWphGH2Ky4YaR4eZrDPDTyqxPRUOPbb_FIH3FV8gSF0yicP7m_lQ7SspGgjISASySQjaWFQrY-qTpTDJawnE9_xvS_JMweRnIukzUvkE-j_vQEFBOWsNB0Sq__ibv-J-dvEmujxAq3Whc6hZZ0PY2Wd6wsDrvXdBV6jijbjN-mfx47wjZI32rLlVFQ62jtaG9Cyx1V0irpkfdjvr57TuWdSI1iToVTaMg_Vq6luFB1gbI8ZzC7x5MXRSFpSAw6FFfYbEY7cLw4UlRqdzWFV7qvMazdukxZGYXPFTZisLyHvrYwW8jU2RKXSo1xfbQCjtX1T3VsWd3yEH71YeXW_7oixB-GadB7JvAcMlMEWoWacNUWBamRPkdVQAOhfmlioRmYRkKrWGlGCWJ4QliLlWUhpk0uksWbW31fUJNUEXgpSWPOOdxyZUSsUql0FKHRlahR56OXSM_bYQ_8kbimeXwVHL3VDyy6pxmYqH6J8iUS-L8Y_Y6b-_s7gHgfpd_8sjK2KtyiF98KaOsrodnOdw1YD6ezrcQCaB0LoRH6ByLVMg4ARvmkXuNo05vWcLoAA7zSDLjwhMDlBef_cd2vjiZcdRFYilcds156PxRyLezfXfw4N9NV8jVvc12_vZNtvOQXGte0eHW1iOyOOgP9WNAeoPiiYvoXwGlVYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+ablation+of+myelinating+glia-specific+neurofascin+%28NfascNF155%29+in+mice+reveals+gradual+loss+of+paranodal+axoglial+junctions+and+concomitant+disorganization+of+axonal+domains&rft.jtitle=Journal+of+neuroscience+research&rft.au=Pillai%2C+Anilkumar+M&rft.au=Thaxton%2C+Courtney&rft.au=Pribisko%2C+Alaine+L&rft.au=Dupree%2C+Jeffrey+L&rft.date=2009-06-01&rft.issn=1097-4547&rft.volume=87&rft.issue=8&rft.spage=1773&rft.epage=1793&rft_id=info:doi/10.1002%2Fjnr.22015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon |