Spatiotemporal ablation of myelinating glia-specific neurofascin (NfascNF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains

The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axog...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience research Vol. 87; no. 8; pp. 1773 - 1793
Main Authors Pillai, Anilkumar M., Thaxton, Courtney, Pribisko, Alaine L., Cheng, Jr-Gang, Dupree, Jeffrey L., Bhat, Manzoor A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (NfascNF155) and axonal Caspr and Cont. Here we report the generation of myelinating glia‐specific NfascNF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial NfascNF155, paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from NfascNF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP‐CreER recombinase to ablate NfascNF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of NfascNF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. © 2009 Wiley‐Liss, Inc.
AbstractList The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (NfascNF155) and axonal Caspr and Cont. Here we report the generation of myelinating glia‐specific NfascNF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial NfascNF155, paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from NfascNF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP‐CreER recombinase to ablate NfascNF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of NfascNF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. © 2009 Wiley‐Liss, Inc.
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc super(NF155)) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific Nfasc super(NF155) null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc super(NF155), paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc super(NF155) mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate Nfasc super(NF155) in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc super(NF155) protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons.
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc NF155 ) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific Nfasc NF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc NF155 , paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc NF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate Nfasc NF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc NF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons.
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc(NF155)) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific Nfasc(NF155) null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc(NF155), paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc(NF155) mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate Nfasc(NF155) in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc(NF155) protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons.
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (NfascNF155) and axonal Caspr and Cont. Here we report the generation of myelinating glia-specific NfascNF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial NfascNF155, paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from NfascNF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP-CreER recombinase to ablate NfascNF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of NfascNF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons.
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains. These domains include the node of Ranvier flanked by highly specialized paranodal domains where myelin loops and axolemma orchestrate the axoglial septate junctions. These junctions are formed by interactions between a glial isoform of neurofascin (Nfasc NF155 ) and axonal Caspr and Cont. Here we report the generation of myelinating glia‐specific Nfasc NF155 null mouse mutants. These mice exhibit severe ataxia, motor paresis, and death before the third postnatal week. In the absence of glial Nfasc NF155 , paranodal axoglial junctions fail to form, axonal domains fail to segregate, and myelinated axons undergo degeneration. Electrophysiological measurements of peripheral nerves from Nfasc NF155 mutants revealed dramatic reductions in nerve conduction velocities. By using inducible PLP‐CreER recombinase to ablate Nfasc NF155 in adult myelinating glia, we demonstrate that paranodal axoglial junctions disorganize gradually as the levels of Nfasc NF155 protein at the paranodes begin to drop. This coincides with the loss of the paranodal region and concomitant disorganization of the axonal domains. Our results provide the first direct evidence that the maintenance of axonal domains requires the fence function of the paranodal axoglial junctions. Together, our studies establish a central role for paranodal axoglial junctions in both the organization and the maintenance of axonal domains in myelinated axons. © 2009 Wiley‐Liss, Inc.
Author Dupree, Jeffrey L.
Cheng, Jr-Gang
Thaxton, Courtney
Bhat, Manzoor A.
Pillai, Anilkumar M.
Pribisko, Alaine L.
AuthorAffiliation 1 Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
5 Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
3 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
2 UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
4 Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
AuthorAffiliation_xml – name: 3 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
– name: 4 Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– name: 5 Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– name: 2 UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– name: 1 Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
Author_xml – sequence: 1
  givenname: Anilkumar M.
  surname: Pillai
  fullname: Pillai, Anilkumar M.
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– sequence: 2
  givenname: Courtney
  surname: Thaxton
  fullname: Thaxton, Courtney
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– sequence: 3
  givenname: Alaine L.
  surname: Pribisko
  fullname: Pribisko, Alaine L.
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– sequence: 4
  givenname: Jr-Gang
  surname: Cheng
  fullname: Cheng, Jr-Gang
  organization: UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
– sequence: 5
  givenname: Jeffrey L.
  surname: Dupree
  fullname: Dupree, Jeffrey L.
  organization: Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
– sequence: 6
  givenname: Manzoor A.
  surname: Bhat
  fullname: Bhat, Manzoor A.
  email: manzoor_bhat@med.unc.edu
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19185024$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhi1URKeFBS-AvAK6SOtrLhskVDGFUoa7kNhYjmMPHhI72Enp8Gx9OBxmGGABrOwjf_9_Lj4HYM95pwG4i9ExRoicrFw4JgRhfgPMMKqKjHFW7IEZojnKGMJkHxzEuEIIVRWnt8A-rnDJEWEzcP22l4P1g-56H2QLZd1OsYPewG6tW-tS6JZw2VqZxV4ra6yCTo_BGxmVdfDhYros5pjzI5jizioNg77Uso1wGWQzJtvWxzhZ9jJI55sp0ZWfPFu4Gp2aMkYoXQOVd8p3dpBugI2NPiyls992JSWVS5rGd9K6eBvcNCmLvrM9D8H7-ZN3p0-zi5dnz04fX2SKl4hnBhlWEVNjTag2RGJVG8XSBGRdUYI4bmiuCVY41xozRovCsCJntJK1MsSU9BA82vj2Y93pRmk3pFmJPthOhrXw0oo_X5z9JJb-UpCSFqTMk8GDrUHwX0YdB9HZqHTbSqf9GEWZV7ygFSOJvP9PMi9w4vL8v2DqK6ecTcUfbUAV0icEbXZ1YySm9RFpfcSP9Unsvd8b_UVu9yUBJxvgq231-u9O4nzx5qdltlHYOOirnUKGz6kXWnDxYXEm5s9fvMIcvRYf6XdBIOWO
CitedBy_id crossref_primary_10_1002_jnr_24052
crossref_primary_10_1038_s41467_022_33200_4
crossref_primary_10_3389_fncel_2017_00011
crossref_primary_10_1523_JNEUROSCI_4662_13_2014
crossref_primary_10_1007_s11064_013_1162_5
crossref_primary_10_1002_jnr_22157
crossref_primary_10_1038_nrneurol_2017_84
crossref_primary_10_1186_1471_2202_14_96
crossref_primary_10_1016_j_neulet_2020_135595
crossref_primary_10_1083_jcb_201308116
crossref_primary_10_1523_JNEUROSCI_1015_11_2011
crossref_primary_10_1172_JCI124694
crossref_primary_10_3390_life11010008
crossref_primary_10_1016_j_neuron_2013_03_005
crossref_primary_10_1152_physrev_00031_2018
crossref_primary_10_1016_j_bbamem_2020_183211
crossref_primary_10_1002_acn3_248
crossref_primary_10_1002_glia_23665
crossref_primary_10_1093_brain_awp341
crossref_primary_10_1523_ENEURO_0138_18_2018
crossref_primary_10_1111_jns_12568
crossref_primary_10_1111_jns_12569
crossref_primary_10_1038_s41583_020_00406_8
crossref_primary_10_1016_j_expneurol_2015_03_009
crossref_primary_10_1111_joa_13562
crossref_primary_10_1093_jnen_nlz134
crossref_primary_10_1016_j_neurol_2014_03_017
crossref_primary_10_1002_mus_22069
crossref_primary_10_1523_JNEUROSCI_5951_09_2010
crossref_primary_10_7554_eLife_64456
crossref_primary_10_1136_jnnp_2017_317192
crossref_primary_10_1016_j_neures_2016_09_010
crossref_primary_10_1038_srep23084
crossref_primary_10_2217_nmt_15_50
crossref_primary_10_1038_s41582_020_0375_x
crossref_primary_10_1523_JNEUROSCI_2095_18_2018
crossref_primary_10_3389_fnmol_2021_779385
crossref_primary_10_1016_j_expneurol_2015_11_012
crossref_primary_10_1038_nn_3263
crossref_primary_10_1097_NEN_0b013e3181f3a5b1
crossref_primary_10_1016_j_neuron_2011_10_016
crossref_primary_10_1172_JCI158524
crossref_primary_10_3389_fnins_2023_1167047
crossref_primary_10_3390_biomedicines11051431
crossref_primary_10_1016_j_conb_2013_06_003
crossref_primary_10_7554_eLife_68089
crossref_primary_10_1523_JNEUROSCI_5602_11_2012
crossref_primary_10_1074_jbc_M111_266353
crossref_primary_10_1212_WNL_0000000000000205
crossref_primary_10_1371_journal_pone_0228109
crossref_primary_10_1007_s11910_023_01264_4
crossref_primary_10_1371_journal_pbio_1002258
crossref_primary_10_1002_jnr_23197
crossref_primary_10_1212_NXI_0000000000000149
crossref_primary_10_1002_cne_22367
crossref_primary_10_1016_j_devcel_2019_10_016
crossref_primary_10_1016_j_neuint_2018_12_011
crossref_primary_10_1186_s13041_020_00698_y
crossref_primary_10_1096_fj_202001883R
crossref_primary_10_1212_WNL_0000000000012932
crossref_primary_10_1002_acn3_539
crossref_primary_10_1038_s41598_017_08623_5
crossref_primary_10_1016_j_neuron_2010_02_004
crossref_primary_10_1016_j_neulab_2018_04_001
crossref_primary_10_1016_j_neuron_2019_12_013
crossref_primary_10_1002_brb3_1115
crossref_primary_10_3389_fimmu_2018_01029
crossref_primary_10_1096_fba_2020_00101
crossref_primary_10_1007_s00401_014_1305_z
crossref_primary_10_1016_j_devcel_2015_01_017
crossref_primary_10_1016_j_neurobiolaging_2010_08_001
crossref_primary_10_1093_brain_aww062
crossref_primary_10_7554_eLife_12661
crossref_primary_10_1002_glia_23190
crossref_primary_10_1016_j_bbalip_2012_01_011
crossref_primary_10_1016_j_celrep_2023_113274
crossref_primary_10_1016_j_devcel_2021_04_006
crossref_primary_10_1002_glia_23905
crossref_primary_10_1136_jnnp_2016_315480
crossref_primary_10_1111_jns_12364
crossref_primary_10_1002_cne_23670
crossref_primary_10_1007_s00418_018_1654_0
crossref_primary_10_1111_ene_12758
crossref_primary_10_20340_mv_mn_2020_28_3__35_50
crossref_primary_10_1136_jnnp_2016_314895
crossref_primary_10_1523_JNEUROSCI_2113_17_2017
crossref_primary_10_7554_eLife_21392
crossref_primary_10_1093_hmg_ddy277
crossref_primary_10_1016_j_parkreldis_2019_02_045
crossref_primary_10_3390_life11010051
crossref_primary_10_1073_pnas_1811013115
crossref_primary_10_1073_pnas_2218823120
crossref_primary_10_1016_j_mcn_2016_11_006
crossref_primary_10_1097_NRL_0000000000000313
crossref_primary_10_1523_JNEUROSCI_2661_16_2017
crossref_primary_10_1242_jcs_186627
crossref_primary_10_1016_j_neurol_2014_10_009
crossref_primary_10_1016_j_celrep_2023_112293
crossref_primary_10_1016_j_febslet_2009_08_025
crossref_primary_10_1038_s42003_020_0854_z
crossref_primary_10_1111_cen3_12444
crossref_primary_10_1038_nrneurol_2014_260
crossref_primary_10_1093_brain_awu398
crossref_primary_10_1111_cen3_12442
crossref_primary_10_1073_pnas_1619553114
crossref_primary_10_3389_fcell_2022_951809
crossref_primary_10_1111_cen3_12567
crossref_primary_10_1523_JNEUROSCI_0448_14_2014
crossref_primary_10_3389_fncel_2018_00201
crossref_primary_10_1523_JNEUROSCI_5225_09_2010
crossref_primary_10_1002_glia_24423
crossref_primary_10_1002_jnr_24352
crossref_primary_10_1016_j_jbc_2022_102272
crossref_primary_10_1177_1759091418766175
crossref_primary_10_1007_s00415_020_09823_2
crossref_primary_10_1146_annurev_cellbio_100913_013107
crossref_primary_10_1002_iub_513
crossref_primary_10_3389_fncel_2021_576609
crossref_primary_10_1093_brain_awac418
crossref_primary_10_2169_internalmedicine_0455_17
crossref_primary_10_3389_fimmu_2024_1345953
crossref_primary_10_1111_cen3_12338
crossref_primary_10_1523_JNEUROSCI_3529_15_2016
crossref_primary_10_1016_j_clinph_2020_08_004
crossref_primary_10_1111_joa_13544
crossref_primary_10_1002_glia_22511
crossref_primary_10_1016_S1773_035X_23_00135_1
crossref_primary_10_1038_s41467_022_34302_9
crossref_primary_10_1002_glia_22991
crossref_primary_10_1016_j_prostaglandins_2009_04_005
crossref_primary_10_1016_j_neuron_2010_12_016
crossref_primary_10_1083_jcb_201111127
crossref_primary_10_1111_jnc_15365
crossref_primary_10_3389_fneur_2021_665136
crossref_primary_10_1007_s00018_010_0512_6
crossref_primary_10_1002_glia_22627
crossref_primary_10_1097_WCO_0000000000000233
crossref_primary_10_1002_mus_25273
crossref_primary_10_1111_jnc_14553
Cites_doi 10.1101/gr.749203
10.1111/j.1749-6632.1999.tb08574.x
10.1016/S0896-6273(01)00306-3
10.1093/emboj/16.5.978
10.1038/ng1095
10.1083/jcb.139.6.1495
10.1093/brain/awl144
10.1073/pnas.98.3.1235
10.1007/BF02166189
10.1016/S0896-6273(01)00294-X
10.1016/j.cub.2006.11.042
10.1016/S0896-6273(01)00296-3
10.1016/S0896-6273(03)00628-7
10.1016/S0960-9822(01)00680-7
10.1111/j.1749-6632.1999.tb08599.x
10.1523/JNEUROSCI.20-22-08354.2000
10.1016/j.conb.2003.09.004
10.1093/brain/awg151
10.1083/jcb.150.3.657
10.1017/S1740925X07000415
10.1385/CBB:46:1:65
10.1038/nrn1743
10.1083/jcb.135.5.1355
10.1002/glia.20165
10.1091/mbc.e06-06-0570
10.1152/ajplegacy.1939.127.2.393
10.1016/0304-3940(86)90180-1
10.1016/j.neuron.2005.10.019
10.1016/S0896-6273(00)80942-3
10.1016/S0092-8674(00)80593-0
10.1007/978-3-642-65581-4
10.1016/S0959-4388(00)00122-7
10.1046/j.1460-9568.2003.02441.x
10.1523/JNEUROSCI.0425-06.2006
10.1523/JNEUROSCI.22-15-06507.2002
10.1038/284170a0
10.1523/JNEUROSCI.3479-04.2004
10.1073/pnas.0601082103
10.1083/jcb.147.6.1145
10.1016/S0896-6273(00)81126-5
10.1523/JNEUROSCI.5383-05.2006
10.1083/jcb.200309147
10.1002/jnr.21374
10.1083/jcb.200712154
10.1002/gene.10154
10.1016/S0092-8674(00)80093-8
10.1017/S1740925X06000275
10.1023/A:1007009613484
10.1126/science.280.5369.1610
10.1017/S1740925X06000093
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
(c) 2009 Wiley-Liss, Inc.
2009 Wiley-Liss, Inc. 2009
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: (c) 2009 Wiley-Liss, Inc.
– notice: 2009 Wiley-Liss, Inc. 2009
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
DOI 10.1002/jnr.22015
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts

MEDLINE
Neurosciences Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1097-4547
EndPage 1793
ExternalDocumentID 10_1002_jnr_22015
19185024
JNR22015
ark_67375_WNG_FKMP150Q_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: State of North Carolina
– fundername: National Institutes of Health
  funderid: GM63074; NS050356
– fundername: National MS Society
– fundername: NIH‐NINDS Center core
  funderid: 5P30NS047463
– fundername: NINDS NIH HHS
  grantid: NS050356
– fundername: NINDS NIH HHS
  grantid: P30 NS047463
– fundername: NIGMS NIH HHS
  grantid: R01 GM063074
– fundername: NIGMS NIH HHS
  grantid: GM63074
– fundername: NIGMS NIH HHS
  grantid: R01 GM063074-08
– fundername: NINDS NIH HHS
  grantid: R01 NS050356
– fundername: NINDS NIH HHS
  grantid: R01 NS050356-04
– fundername: NINDS NIH HHS
  grantid: 5P30NS047463
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
YYP
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7TK
7X8
5PM
ID FETCH-LOGICAL-c5805-f0f492fb1e23ef2a1cbfc4185ab932051d36e21c16ee144377f476439abcf2f83
IEDL.DBID DR2
ISSN 0360-4012
1097-4547
IngestDate Tue Sep 17 21:33:26 EDT 2024
Wed Dec 04 16:06:54 EST 2024
Wed Dec 04 16:14:23 EST 2024
Wed Dec 04 08:29:32 EST 2024
Fri Dec 06 02:53:20 EST 2024
Sat Sep 28 07:50:54 EDT 2024
Sat Aug 24 00:50:55 EDT 2024
Wed Oct 30 09:55:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License (c) 2009 Wiley-Liss, Inc.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5805-f0f492fb1e23ef2a1cbfc4185ab932051d36e21c16ee144377f476439abcf2f83
Notes NIH-NINDS Center core - No. 5P30NS047463
ark:/67375/WNG-FKMP150Q-Z
State of North Carolina
National Institutes of Health - No. GM63074; No. NS050356
National MS Society
ArticleID:JNR22015
istex:B579D62786BEA220F50773CE939E2587DE8C3C27
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://cdr.lib.unc.edu/downloads/x920g430q
PMID 19185024
PQID 20563548
PQPubID 23462
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2837286
proquest_miscellaneous_869573942
proquest_miscellaneous_67139466
proquest_miscellaneous_20563548
crossref_primary_10_1002_jnr_22015
pubmed_primary_19185024
wiley_primary_10_1002_jnr_22015_JNR22015
istex_primary_ark_67375_WNG_FKMP150Q_Z
PublicationCentury 2000
PublicationDate June 2009
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: June 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of neuroscience research
PublicationTitleAlternate J. Neurosci. Res
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Zonta B,Tait S,Melrose S,Anderson H,Harroch S,Higginson J,Sherman DL,Brophy PJ. 2008. Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J Cell Biol 181: 1169-1177.
Pillai AM,Garcia-Fresco GP,Sousa AD,Dupree JL,Philpot BD,Bhat MA. 2007. No effect of genetic deletion of contactin-associated protein (CASPR) on axonal orientation and synaptic plasticity. J Neurosci Res 85: 2318-2331.
Stampfli R. 1954. A new method for measuring membrane potentials with external electrodes. Experientia 10: 508-509.
Charles P,Tait S,Faivre-Sarrailh C,Barbin G,Gunn-Moore F,Denisenko-Nehrbass N,Guennoc AM,Girault JA,Brophy PJ,Lubetzki C. 2002. Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol 12: 217-220.
Gasser HS,Grundfest H. 1939. Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Am J Physiol 127: 22.
Gollan L,Salomon D,Salzer JL,Peles E. 2003. Caspr regulates the processing of contactin and inhibits its binding to neurofascin. J Cell Biol 163: 1213-1218.
Nicholson GA. 1999. Mutation testing in Charcot-Marie-Tooth neuropathy. Ann N Y Acad Sci 883: 383-388.
Liu P,Jenkins NA,Copeland NG. 2003. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13: 476-484.
Bhat MA,Izaddoost S,Lu Y,Cho KO,Choi KW,Bellen HJ. 1999. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96: 833-845.
Melendez-Vasquez CV,Rios JC,Zanazzi G,Lambert S,Bretscher A,Salzer JL. 2001. Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc Natl Acad Sci USA 98: 1235-1240.
Pedraza L,Huang JK,Colman DR. 2001. Organizing principles of the axoglial apparatus. Neuron 30: 335-344.
Einheber S,Bhat MA,Salzer JL. 2006. Disrupted axoglial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier. Neuron Glia Biol 2: 165-174.
Rios JC,Melendez-Vasquez CV,Einheber S,Lustig M,Grumet M,Hemperly J,Peles E,Salzer JL. 2000. Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20: 8354-8364.
Griffiths I,Klugmann M,Anderson T,Yool D,Thomson C,Schwab MH,Schneider A,Zimmermann F,McCulloch M,Nadon N,Nave KA. 1998. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280: 1610-1613.
Feltri ML,D'Antonio M,Previtali S,Fasolini M,Messing A,Wrabetz L. 1999. P0-Cre transgenic mice for inactivation of adhesion molecules in Schwann cells. Ann N Y Acad Sci 883: 116-123.
Garcia-Fresco GP,Sousa AD,Pillai AM,Moy SS,Crawley JN,Tessarollo L,Dupree JL,Bhat MA. 2006. Disruption of axoglial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc Natl Acad Sci USA 103: 5137-5142.
Robertson JD. 1957. The ultrastructure of nodes of Ranvier in frog nerve fibres. J Physiol 137: 8P-9P.
Bhat MA. 2003. Molecular organization of axoglial junctions. Curr Opin Neurobiol 13: 552-559.
Ishibashi T,Dupree JL,Ikenaka K,Hirahara Y,Honke K,Peles E,Popko B,Suzuki K,Nishino H,Baba H. 2002. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22: 6507-6514.
Palay SL,Palay VC. 1974. Cerebellar cortex. New York: Springer-Verlag.
Peles E,Salzer JL. 2000. Molecular domains of myelinated axons. Curr Opin Neurobiol 10: 558-565.
Berglund EO,Murai KK,Fredette B,Sekerkova G,Marturano B,Weber L,Mugnaini E,Ranscht B. 1999. Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 24: 739-750.
Sousa AD,Bhat MA. 2007. Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons. Neuron Glia Biol 3: 169-178.
Banerjee S,Pillai AM,Paik R,Li J,Bhat MA. 2006a. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila. J Neurosci 26: 3319-3329.
Arroyo EJ,Xu YT,Zhou L,Messing A,Peles E,Chiu SY,Scherer SS. 1999. Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvbeta2, and Caspr. J Neurocytol 28: 333-347.
Sherman DL,Tait S,Melrose S,Johnson R,Zonta B,Court FA,Macklin WB,Meek S,Smith AJ,Cottrell DF,Brophy PJ. 2005. Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48: 737-742.
Bonnon C,Bel C,Goutebroze L,Maigret B,Girault JA,Faivre-Sarrailh C. 2007. PGY repeats and N-glycans govern the trafficking of paranodin and its selective association with contactin and neurofascin-155. Mol Biol Cell 18: 229-241.
Coman I,Aigrot MS,Seilhean D,Reynolds R,Girault JA,Zalc B,Lubetzki C. 2006. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129: 3186-3195.
Davis JQ,Lambert S,Bennett V. 1996. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. J Cell Biol 135: 1355-1367.
Einheber S,Zanazzi G,Ching W,Scherer S,Milner TA,Peles E,Salzer JL. 1997. The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 139: 1495-1506.
Wolswijk G,Balesar R. 2003. Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis. Brain 126: 1638-1649.
Bhat MA,Rios JC,Lu Y,Garcia-Fresco GP,Ching W,St. Martin M,Li J,Einheber S,Chesler M,Rosenbluth J,Salzer JL,Bellen HJ. 2001. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/paranodin. Neuron 30: 369-383.
Ogawa Y,Schafer DP,Horresh I,Bar V,Hales K,Yang Y,Susuki K,Peles E,Stankewich MC,Rasband MN. 2006. Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J Neurosci 26: 5230-5239.
Rasband MN,Tayler J,Kaga Y,Yang Y,Lappe-Siefke C,Nave KA,Bansal R. 2005. CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia 50: 86-90.
Menegoz M,Gaspar P,Le Bert M,Galvez T,Burgaya F,Palfrey C,Ezan P,Arnos F,Girault JA. 1997. Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 19: 319-331.
Boyle ME,Berglund EO,Murai KK,Weber L,Peles E,Ranscht B. 2001. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30: 385-397.
Peles E,Nativ M,Lustig M,Grumet M,Schilling J,Martinez R,Plowman GD,Schlessinger J. 1997. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 16: 978-988.
Salzer JL. 2003. Polarized domains of myelinated axons. Neuron 40: 297-318.
Sherman DL,Brophy PJ. 2005. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6: 683-690.
Denisenko-Nehrbass N,Oguievetskaia K,Goutebroze L,Galvez T,Yamakawa H,Ohara O,Carnaud M,Girault JA. 2003. Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur J Neurosci 17: 411-416.
Tait S,Gunn-Moore F,Collinson JM,Huang J,Lubetzki C,Pedraza L,Sherman DL,Colman DR,Brophy PJ. 2000. An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axoglial junction. J Cell Biol 150: 657-666.
Doerflinger NH,Macklin WB,Popko B. 2003. Inducible site-specific recombination in myelinating cells. Genesis 35: 63-72.
Hartline DK,Colman DR. 2007. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17: R29-R35.
Dupree JL,Girault JA,Popko B. 1999. Axoglial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 147: 1145-1152.
Lappe-Siefke C,Goebbels S,Gravel M,Nicksch E,Lee J,Braun PE,Griffiths IR,Nave KA. 2003. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33: 366-374.
Schafer DP,Custer AW,Shrager P,Rasband MN. 2006. Early events in node of Ranvier formation during myelination and remyelination in the PNS. Neuron Glia Biol 2: 69-79.
Coetzee T,Fujita N,Dupree J,Shi R,Blight A,Suzuki K,Popko B. 1996. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86: 209-219.
Banerjee S,Sousa AD,Bhat MA. 2006b. Organization and function of septate junctions: an evolutionary perspective. Cell Biochem Biophys 46: 65-77.
Reeh PW. 1986. Sensory receptors in mammalian skin in an in vitro preparation. Neurosci Lett 66: 141-146.
Southwood C,He C,Garbern J,Kamholz J,Arroyo E,Gow A. 2004. CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. J Neurosci 24: 11215-11225.
Chiu SY,Ritchie JM. 1980. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature 284: 170-171.
2007; 17
2007; 18
2006b; 46
1998; 280
1997; 139
1999; 28
2002; 12
2000; 20
2004; 24
1999; 24
2003; 13
2003; 35
2000; 150
1974
2003; 17
1999; 883
1999; 147
2006; 2
2005; 48
2003; 33
2008; 181
1957; 137
1986; 66
2000; 10
1954; 10
1939; 127
2002; 22
2006; 26
1997; 19
1997; 16
2005; 6
1999; 96
2007; 85
2005; 50
2007; 3
2003; 126
1980; 284
2006; 129
1996; 135
2003; 40
2001; 30
1996; 86
2006; 103
2006a; 26
2003; 163
2001; 98
10601330 - J Cell Biol. 1999 Dec 13;147(6):1145-52
14353097 - Experientia. 1954 Dec 15;10(12):508-9
16687515 - J Neurosci. 2006 May 10;26(19):5230-9
17208176 - Curr Biol. 2007 Jan 9;17(1):R29-35
16652168 - Neuron Glia Biol. 2006 May;2(2):69-79
11839274 - Curr Biol. 2002 Feb 5;12(3):217-20
11069942 - J Neurosci. 2000 Nov 15;20(22):8354-64
8947556 - J Cell Biol. 1996 Dec;135(5):1355-67
9118959 - EMBO J. 1997 Mar 3;16(5):978-88
3725179 - Neurosci Lett. 1986 May 15;66(2):141-6
10739575 - J Neurocytol. 1999 Apr-May;28(4-5):333-47
11395000 - Neuron. 2001 May;30(2):369-83
16136172 - Nat Rev Neurosci. 2005 Sep;6(9):683-90
15657937 - Glia. 2005 Apr 1;50(1):86-90
10102271 - Cell. 1999 Mar 19;96(6):833-45
14556710 - Neuron. 2003 Oct 9;40(2):297-318
8706126 - Cell. 1996 Jul 26;86(2):209-19
9292722 - Neuron. 1997 Aug;19(2):319-31
12618378 - Genome Res. 2003 Mar;13(3):476-84
9396755 - J Cell Biol. 1997 Dec 15;139(6):1495-506
15601927 - J Neurosci. 2004 Dec 15;24(50):11215-25
18372928 - Neuron Glia Biol. 2007 May;3(2):169-78
14676309 - J Cell Biol. 2003 Dec 22;163(6):1213-8
12481300 - Genesis. 2003 Jan;35(1):63-72
11395001 - Neuron. 2001 May;30(2):385-97
16551741 - Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5137-42
17093057 - Mol Biol Cell. 2007 Jan;18(1):229-41
10931875 - J Cell Biol. 2000 Aug 7;150(3):657-66
18573915 - J Cell Biol. 2008 Jun 30;181(7):1169-77
14630217 - Curr Opin Neurobiol. 2003 Oct;13(5):552-9
17460780 - Neuron Glia Biol. 2006 Aug;2(3):165-74
10586237 - Ann N Y Acad Sci. 1999 Sep 14;883:116-23
6244497 - Nature. 1980 Mar 13;284(5752):170-1
12542678 - Eur J Neurosci. 2003 Jan;17(2):411-6
11394997 - Neuron. 2001 May;30(2):335-44
17549747 - J Neurosci Res. 2007 Aug 15;85(11):2318-31
9616125 - Science. 1998 Jun 5;280(5369):1610-3
10595523 - Neuron. 1999 Nov;24(3):739-50
16766541 - Brain. 2006 Dec;129(Pt 12):3186-95
16337912 - Neuron. 2005 Dec 8;48(5):737-42
12151530 - J Neurosci. 2002 Aug 1;22(15):6507-14
12805111 - Brain. 2003 Jul;126(Pt 7):1638-49
16554482 - J Neurosci. 2006 Mar 22;26(12):3319-29
10586262 - Ann N Y Acad Sci. 1999 Sep 14;883:383-8
16943624 - Cell Biochem Biophys. 2006;46(1):65-77
12590258 - Nat Genet. 2003 Mar;33(3):366-74
13439596 - J Physiol. 1957 Jun 18;137(1):8-9P
11158623 - Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1235-40
11084317 - Curr Opin Neurobiol. 2000 Oct;10(5):558-65
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Gasser HS (e_1_2_6_23_1) 1939; 127
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
Robertson JD (e_1_2_6_42_1) 1957; 137
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 17
  start-page: R29
  year: 2007
  end-page: R35
  article-title: Rapid conduction and the evolution of giant axons and myelinated fibers
  publication-title: Curr Biol
– volume: 46
  start-page: 65
  year: 2006b
  end-page: 77
  article-title: Organization and function of septate junctions: an evolutionary perspective
  publication-title: Cell Biochem Biophys
– volume: 85
  start-page: 2318
  year: 2007
  end-page: 2331
  article-title: No effect of genetic deletion of contactin‐associated protein (CASPR) on axonal orientation and synaptic plasticity
  publication-title: J Neurosci Res
– volume: 30
  start-page: 385
  year: 2001
  end-page: 397
  article-title: Contactin orchestrates assembly of the septate‐like junctions at the paranode in myelinated peripheral nerve
  publication-title: Neuron
– volume: 98
  start-page: 1235
  year: 2001
  end-page: 1240
  article-title: Nodes of Ranvier form in association with ezrin‐radixin‐moesin (ERM)‐positive Schwann cell processes
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 508
  year: 1954
  end-page: 509
  article-title: A new method for measuring membrane potentials with external electrodes
  publication-title: Experientia
– volume: 13
  start-page: 552
  year: 2003
  end-page: 559
  article-title: Molecular organization of axoglial junctions
  publication-title: Curr Opin Neurobiol
– volume: 20
  start-page: 8354
  year: 2000
  end-page: 8364
  article-title: Contactin‐associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination
  publication-title: J Neurosci
– volume: 139
  start-page: 1495
  year: 1997
  end-page: 1506
  article-title: The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate‐like paranodal junctions that assemble during myelination
  publication-title: J Cell Biol
– volume: 96
  start-page: 833
  year: 1999
  end-page: 845
  article-title: Discs Lost, a novel multi‐PDZ domain protein, establishes and maintains epithelial polarity
  publication-title: Cell
– volume: 35
  start-page: 63
  year: 2003
  end-page: 72
  article-title: Inducible site‐specific recombination in myelinating cells
  publication-title: Genesis
– volume: 50
  start-page: 86
  year: 2005
  end-page: 90
  article-title: CNP is required for maintenance of axon–glia interactions at nodes of Ranvier in the CNS
  publication-title: Glia
– volume: 181
  start-page: 1169
  year: 2008
  end-page: 1177
  article-title: Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system
  publication-title: J Cell Biol
– volume: 135
  start-page: 1355
  year: 1996
  end-page: 1367
  article-title: Molecular composition of the node of Ranvier: identification of ankyrin‐binding cell adhesion molecules neurofascin (mucin /third FNIII domain ) and NrCAM at nodal axon segments
  publication-title: J Cell Biol
– volume: 26
  start-page: 3319
  year: 2006a
  end-page: 3329
  article-title: Axonal ensheathment and septate junction formation in the peripheral nervous system of
  publication-title: J Neurosci
– volume: 2
  start-page: 69
  year: 2006
  end-page: 79
  article-title: Early events in node of Ranvier formation during myelination and remyelination in the PNS
  publication-title: Neuron Glia Biol
– volume: 127
  start-page: 22
  year: 1939
  article-title: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers
  publication-title: Am J Physiol
– volume: 150
  start-page: 657
  year: 2000
  end-page: 666
  article-title: An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axoglial junction
  publication-title: J Cell Biol
– volume: 280
  start-page: 1610
  year: 1998
  end-page: 1613
  article-title: Axonal swellings and degeneration in mice lacking the major proteolipid of myelin
  publication-title: Science
– volume: 48
  start-page: 737
  year: 2005
  end-page: 742
  article-title: Neurofascins are required to establish axonal domains for saltatory conduction
  publication-title: Neuron
– volume: 66
  start-page: 141
  year: 1986
  end-page: 146
  article-title: Sensory receptors in mammalian skin in an in vitro preparation
  publication-title: Neurosci Lett
– volume: 22
  start-page: 6507
  year: 2002
  end-page: 6514
  article-title: A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation
  publication-title: J Neurosci
– volume: 24
  start-page: 739
  year: 1999
  end-page: 750
  article-title: Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression
  publication-title: Neuron
– volume: 28
  start-page: 333
  year: 1999
  end-page: 347
  article-title: Myelinating Schwann cells determine the internodal localization of K 1.1, K 1.2, K beta2, and Caspr
  publication-title: J Neurocytol
– volume: 40
  start-page: 297
  year: 2003
  end-page: 318
  article-title: Polarized domains of myelinated axons
  publication-title: Neuron
– volume: 883
  start-page: 383
  year: 1999
  end-page: 388
  article-title: Mutation testing in Charcot‐Marie‐Tooth neuropathy
  publication-title: Ann N Y Acad Sci
– volume: 103
  start-page: 5137
  year: 2006
  end-page: 5142
  article-title: Disruption of axoglial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 978
  year: 1997
  end-page: 988
  article-title: Identification of a novel contactin‐associated transmembrane receptor with multiple domains implicated in protein–protein interactions
  publication-title: EMBO J
– volume: 137
  start-page: 8P
  year: 1957
  end-page: 9P
  article-title: The ultrastructure of nodes of Ranvier in frog nerve fibres
  publication-title: J Physiol
– volume: 86
  start-page: 209
  year: 1996
  end-page: 219
  article-title: Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability
  publication-title: Cell
– volume: 6
  start-page: 683
  year: 2005
  end-page: 690
  article-title: Mechanisms of axon ensheathment and myelin growth
  publication-title: Nat Rev Neurosci
– volume: 129
  start-page: 3186
  year: 2006
  end-page: 3195
  article-title: Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis
  publication-title: Brain
– volume: 13
  start-page: 476
  year: 2003
  end-page: 484
  article-title: A highly efficient recombineering‐based method for generating conditional knockout mutations
  publication-title: Genome Res
– volume: 30
  start-page: 369
  year: 2001
  end-page: 383
  article-title: Axon–glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/paranodin
  publication-title: Neuron
– volume: 30
  start-page: 335
  year: 2001
  end-page: 344
  article-title: Organizing principles of the axoglial apparatus
  publication-title: Neuron
– volume: 2
  start-page: 165
  year: 2006
  end-page: 174
  article-title: Disrupted axoglial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier
  publication-title: Neuron Glia Biol
– volume: 163
  start-page: 1213
  year: 2003
  end-page: 1218
  article-title: Caspr regulates the processing of contactin and inhibits its binding to neurofascin
  publication-title: J Cell Biol
– volume: 883
  start-page: 116
  year: 1999
  end-page: 123
  article-title: P0‐Cre transgenic mice for inactivation of adhesion molecules in Schwann cells
  publication-title: Ann N Y Acad Sci
– volume: 26
  start-page: 5230
  year: 2006
  end-page: 5239
  article-title: Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton
  publication-title: J Neurosci
– volume: 18
  start-page: 229
  year: 2007
  end-page: 241
  article-title: PGY repeats and N‐glycans govern the trafficking of paranodin and its selective association with contactin and neurofascin‐155
  publication-title: Mol Biol Cell
– volume: 33
  start-page: 366
  year: 2003
  end-page: 374
  article-title: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination
  publication-title: Nat Genet
– volume: 19
  start-page: 319
  year: 1997
  end-page: 331
  article-title: Paranodin, a glycoprotein of neuronal paranodal membranes
  publication-title: Neuron
– volume: 24
  start-page: 11215
  year: 2004
  end-page: 11225
  article-title: CNS myelin paranodes require Nkx6–2 homeoprotein transcriptional activity for normal structure
  publication-title: J Neurosci
– volume: 10
  start-page: 558
  year: 2000
  end-page: 565
  article-title: Molecular domains of myelinated axons
  publication-title: Curr Opin Neurobiol
– volume: 17
  start-page: 411
  year: 2003
  end-page: 416
  article-title: Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres
  publication-title: Eur J Neurosci
– volume: 147
  start-page: 1145
  year: 1999
  end-page: 1152
  article-title: Axoglial interactions regulate the localization of axonal paranodal proteins
  publication-title: J Cell Biol
– volume: 12
  start-page: 217
  year: 2002
  end-page: 220
  article-title: Neurofascin is a glial receptor for the paranodin/Caspr‐contactin axonal complex at the axoglial junction
  publication-title: Curr Biol
– year: 1974
– volume: 3
  start-page: 169
  year: 2007
  end-page: 178
  article-title: Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons
  publication-title: Neuron Glia Biol
– volume: 284
  start-page: 170
  year: 1980
  end-page: 171
  article-title: Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres
  publication-title: Nature
– volume: 126
  start-page: 1638
  year: 2003
  end-page: 1649
  article-title: Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis
  publication-title: Brain
– ident: e_1_2_6_29_1
  doi: 10.1101/gr.749203
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1749-6632.1999.tb08574.x
– ident: e_1_2_6_35_1
  doi: 10.1016/S0896-6273(01)00306-3
– ident: e_1_2_6_37_1
  doi: 10.1093/emboj/16.5.978
– ident: e_1_2_6_28_1
  doi: 10.1038/ng1095
– ident: e_1_2_6_19_1
  doi: 10.1083/jcb.139.6.1495
– ident: e_1_2_6_14_1
  doi: 10.1093/brain/awl144
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.98.3.1235
– ident: e_1_2_6_49_1
  doi: 10.1007/BF02166189
– ident: e_1_2_6_8_1
  doi: 10.1016/S0896-6273(01)00294-X
– ident: e_1_2_6_26_1
  doi: 10.1016/j.cub.2006.11.042
– ident: e_1_2_6_10_1
  doi: 10.1016/S0896-6273(01)00296-3
– ident: e_1_2_6_43_1
  doi: 10.1016/S0896-6273(03)00628-7
– ident: e_1_2_6_11_1
  doi: 10.1016/S0960-9822(01)00680-7
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1749-6632.1999.tb08599.x
– ident: e_1_2_6_41_1
  doi: 10.1523/JNEUROSCI.20-22-08354.2000
– ident: e_1_2_6_6_1
  doi: 10.1016/j.conb.2003.09.004
– ident: e_1_2_6_51_1
  doi: 10.1093/brain/awg151
– ident: e_1_2_6_50_1
  doi: 10.1083/jcb.150.3.657
– ident: e_1_2_6_47_1
  doi: 10.1017/S1740925X07000415
– ident: e_1_2_6_4_1
  doi: 10.1385/CBB:46:1:65
– ident: e_1_2_6_45_1
  doi: 10.1038/nrn1743
– ident: e_1_2_6_15_1
  doi: 10.1083/jcb.135.5.1355
– ident: e_1_2_6_39_1
  doi: 10.1002/glia.20165
– ident: e_1_2_6_9_1
  doi: 10.1091/mbc.e06-06-0570
– volume: 127
  start-page: 22
  year: 1939
  ident: e_1_2_6_23_1
  article-title: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1939.127.2.393
  contributor:
    fullname: Gasser HS
– ident: e_1_2_6_40_1
  doi: 10.1016/0304-3940(86)90180-1
– ident: e_1_2_6_46_1
  doi: 10.1016/j.neuron.2005.10.019
– ident: e_1_2_6_31_1
  doi: 10.1016/S0896-6273(00)80942-3
– ident: e_1_2_6_7_1
  doi: 10.1016/S0092-8674(00)80593-0
– ident: e_1_2_6_34_1
  doi: 10.1007/978-3-642-65581-4
– ident: e_1_2_6_36_1
  doi: 10.1016/S0959-4388(00)00122-7
– ident: e_1_2_6_16_1
  doi: 10.1046/j.1460-9568.2003.02441.x
– ident: e_1_2_6_33_1
  doi: 10.1523/JNEUROSCI.0425-06.2006
– ident: e_1_2_6_27_1
  doi: 10.1523/JNEUROSCI.22-15-06507.2002
– ident: e_1_2_6_12_1
  doi: 10.1038/284170a0
– ident: e_1_2_6_48_1
  doi: 10.1523/JNEUROSCI.3479-04.2004
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.0601082103
– volume: 137
  start-page: 8P
  year: 1957
  ident: e_1_2_6_42_1
  article-title: The ultrastructure of nodes of Ranvier in frog nerve fibres
  publication-title: J Physiol
  contributor:
    fullname: Robertson JD
– ident: e_1_2_6_18_1
  doi: 10.1083/jcb.147.6.1145
– ident: e_1_2_6_5_1
  doi: 10.1016/S0896-6273(00)81126-5
– ident: e_1_2_6_3_1
  doi: 10.1523/JNEUROSCI.5383-05.2006
– ident: e_1_2_6_24_1
  doi: 10.1083/jcb.200309147
– ident: e_1_2_6_38_1
  doi: 10.1002/jnr.21374
– ident: e_1_2_6_52_1
  doi: 10.1083/jcb.200712154
– ident: e_1_2_6_17_1
  doi: 10.1002/gene.10154
– ident: e_1_2_6_13_1
  doi: 10.1016/S0092-8674(00)80093-8
– ident: e_1_2_6_20_1
  doi: 10.1017/S1740925X06000275
– ident: e_1_2_6_2_1
  doi: 10.1023/A:1007009613484
– ident: e_1_2_6_25_1
  doi: 10.1126/science.280.5369.1610
– ident: e_1_2_6_44_1
  doi: 10.1017/S1740925X06000093
SSID ssj0009953
Score 2.4068553
Snippet The evolutionary demand for rapid nerve impulse conduction led to the process of myelination‐dependent organization of axons into distinct molecular domains....
The evolutionary demand for rapid nerve impulse conduction led to the process of myelination-dependent organization of axons into distinct molecular domains....
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1773
SubjectTerms Animals
axoglial junctions
axonal domains
Axons - metabolism
Axons - pathology
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Demyelinating Diseases - genetics
Demyelinating Diseases - pathology
Demyelinating Diseases - physiopathology
Disease Models, Animal
Mice
Mice, Knockout
Mice, Mutant Strains
Mice, Transgenic
Movement Disorders - genetics
Movement Disorders - pathology
Movement Disorders - physiopathology
myelin
Myelin Proteolipid Protein - genetics
Myelin Proteolipid Protein - metabolism
Myelin Sheath - metabolism
Myelin Sheath - pathology
myelinated axons
Nerve Fibers, Myelinated - metabolism
Nerve Fibers, Myelinated - pathology
Nerve Growth Factors - genetics
Nerve Growth Factors - metabolism
Neural Conduction - genetics
Neuroglia - metabolism
Neuroglia - pathology
paranodes
Peripheral Nerves - metabolism
Peripheral Nerves - pathology
Peripheral Nerves - physiopathology
Ranvier's Nodes - metabolism
Ranvier's Nodes - pathology
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Wallerian Degeneration - genetics
Wallerian Degeneration - pathology
Wallerian Degeneration - physiopathology
Title Spatiotemporal ablation of myelinating glia-specific neurofascin (NfascNF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains
URI https://api.istex.fr/ark:/67375/WNG-FKMP150Q-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.22015
https://www.ncbi.nlm.nih.gov/pubmed/19185024
https://search.proquest.com/docview/20563548
https://search.proquest.com/docview/67139466
https://search.proquest.com/docview/869573942
https://pubmed.ncbi.nlm.nih.gov/PMC2837286
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWq8sILt3IJVwuhqjxkGzuOE4unCliqokZQqKgQUuQkdtl210F7kVqe-AS-iI_hS5hx9tIFVkK8ZbXjJHZmPMfOmRNCngidaMV4Fca1zEIhmQ61qk1o6lIkSqRVxLBQeD-Xu4di7yg5WiPPZrUwrT7EfMMNI8PP1xjguhxtL0RDT9ywwyF9YYE5i1Ok8704WEhHKdUqUMYygjUS4zNVoYhvz1su5aJLOKxnfwOaf_IlL-JYn4i6V8mnWRda_slpZzIuO9XX39Qd_7OP18iVKUClO61HXSdrxt0gGzsOFueDc7pJPWXU78VvkB_vPB97Km_Vp7psmXW0sXRwjpXuGlnV9Ljf0z-_fceqTmQmUS-iaTVkX0e3cjzIu4A4nlL4PYCZi6KuFMQFPR5qrBWjfRg-PCkKlbumxkudNXjWPj2BxOxjh2pXU1jdQx97-GlkikSpC5Wm2B5aYefqZqB7bnSTHHZfvn--G04_CBFWSRYloY2sUNyWzPDYWK5ZVdoK1Xd0CTAUppc6loazikljYKEYp6kVKUIuXVaW2yy-RdZd48wdQm1Ux-CklYiFEEkltJaJzpQ0yjCrahaQxzPXKL60uh9Fq_DMC3gqhX8qAdn0TjO30MNTJMqlSfEhf1V0X--_Abz9tvgYkEczryogfPGdjHammYwKuGuAfCJbbSFTAOlCyoDQFRaZVEkKNjwgt1tHXdyygtEBGBaQdMmF5waoLr78j-t99irjKIvEM7jslvfQ1aNQ7OUH_uDuv5veI5fb13K4nXWfrI-HE_MA0N24fOjD-Bc9alK7
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gAv3MYl3GYhNI2HdInjXCzxMgGlbGsEY9MmJBQ5iT26tQ7qWmnjiZ_AL-LH8Es4x2naFaiEeEuU4yR2zrE_O9_5TMgzLkMpfFa4QRklLo986UpRKleVOQ8FjwvPx0Thbhp1Dvj2UXi0RF40uTC1PsR0wQ0jw_bXGOC4IL05Uw09McMWg_ErvEJWINx9JHS92puJRwlRa1AGkQezJJ81ukIe25wWnRuNVrBhz_8GNf9kTF5GsnYoat8gn5pK1AyU09Z4lLeKr7_pO_5vLW-S6xOMSrdqp7pFlpS5TVa3DMzPBxd0nVrWqF2OXyU_PlhK9kThqk9lXpPraKXp4AKT3SUSq-lxvyd_fvuOiZ1ITqJWR1NLGIAN3UjxIG0D6HhO4XwAnRdFaSkIDXo8lJguRvvQfnhT1Co3VYmPOq_wrn16AmOzDR8qTUlhgg-V7OHuyBS5UpeSTbE8lMLKldVA9szZHXLQfr3_suNO9oRwizDxQld7mgumc1-xQGkm_SLXBQrwyByQKPQwZRAp5hd-pBTMFYM41jxG1CXzQjOdBHfJsqmMuk-o9soA_LTgAec8LLiUUSgTESmhfC1K3yFPG9_IvtTSH1kt8swy-CqZ_SoOWbdeM7WQw1PkysVhdpi-ydo73XcAud9nHx2y1rhVBhGMv2WkUdX4LIO3BtTHk8UW4NwB7gPgELrAIolEGIMNc8i92lNnryygdQCJOSSe8-GpAQqMz18xvc9WaByVkVgCj92wLrq4FbLtdM8ePPh30zVytbPf3c1236Y7D8m1-i8drm49Isuj4Vg9BrA3yp_YmP4FMgdW3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKKyFeuJVLuNVCqCoP2SaO48TiqaIspaVRKVRUCClyErtsu-tU212p5YlP4Iv4GL6EGWcvXWAlxFtWO05iZ8Zz7Jw5IeQZV7GSISv9qBKpz0WofCUr7euq4LHkSRmEWCi8m4mtA759GB8ukBfjWphGH2Ky4YaR4eZrDPDTyqxPRUOPbb_FIH3FV8gSF0yicP7m_lQ7SspGgjISASySQjaWFQrY-qTpTDJawnE9_xvS_JMweRnIukzUvkE-j_vQEFBOWsNB0Sq__ibv-J-dvEmujxAq3Whc6hZZ0PY2Wd6wsDrvXdBV6jijbjN-mfx47wjZI32rLlVFQ62jtaG9Cyx1V0irpkfdjvr57TuWdSI1iToVTaMg_Vq6luFB1gbI8ZzC7x5MXRSFpSAw6FFfYbEY7cLw4UlRqdzWFV7qvMazdukxZGYXPFTZisLyHvrYwW8jU2RKXSo1xfbQCjtX1T3VsWd3yEH71YeXW_7oixB-GadB7JvAcMlMEWoWacNUWBamRPkdVQAOhfmlioRmYRkKrWGlGCWJ4QliLlWUhpk0uksWbW31fUJNUEXgpSWPOOdxyZUSsUql0FKHRlahR56OXSM_bYQ_8kbimeXwVHL3VDyy6pxmYqH6J8iUS-L8Y_Y6b-_s7gHgfpd_8sjK2KtyiF98KaOsrodnOdw1YD6ezrcQCaB0LoRH6ByLVMg4ARvmkXuNo05vWcLoAA7zSDLjwhMDlBef_cd2vjiZcdRFYilcds156PxRyLezfXfw4N9NV8jVvc12_vZNtvOQXGte0eHW1iOyOOgP9WNAeoPiiYvoXwGlVYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+ablation+of+myelinating+glia-specific+neurofascin+%28NfascNF155%29+in+mice+reveals+gradual+loss+of+paranodal+axoglial+junctions+and+concomitant+disorganization+of+axonal+domains&rft.jtitle=Journal+of+neuroscience+research&rft.au=Pillai%2C+Anilkumar+M&rft.au=Thaxton%2C+Courtney&rft.au=Pribisko%2C+Alaine+L&rft.au=Dupree%2C+Jeffrey+L&rft.date=2009-06-01&rft.issn=1097-4547&rft.volume=87&rft.issue=8&rft.spage=1773&rft.epage=1793&rft_id=info:doi/10.1002%2Fjnr.22015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon