Biology of AQP4 and Anti-AQP4 Antibody: Therapeutic Implications for NMO

The water channel aquaporin‐4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4‐IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointe...

Full description

Saved in:
Bibliographic Details
Published inBrain pathology (Zurich, Switzerland) Vol. 23; no. 6; pp. 684 - 695
Main Authors Verkman, A. S., Phuan, Puay-Wah, Asavapanumas, Nithi, Tradtrantip, Lukmanee
Format Journal Article
LanguageEnglish
Published Switzerland Blackwell Publishing Ltd 01.11.2013
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The water channel aquaporin‐4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4‐IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4‐IgG is pathogenic in NMO by a mechanism involving complement‐ and cell‐mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4‐IgG binding to AQP4 and greatly enhance complement‐dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4‐IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4‐IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4‐IgG pathogenicity.
AbstractList The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity.
The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity.The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity.
The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity. [PUBLICATION ABSTRACT]
The water channel aquaporin‐4 ( AQP 4) is the target of the immunoglobulin G autoantibody ( AQP 4‐ IgG ) in neuromyelitis optica ( NMO ). AQP 4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP 4 knockout mice indicates the involvement of AQP 4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP 4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP 4‐ IgG is pathogenic in NMO by a mechanism involving complement‐ and cell‐mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP 4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP 4‐ IgG binding to AQP 4 and greatly enhance complement‐dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP 4‐ IgG or AQP 4, including aquaporumab monoclonal antibodies and small molecules that block AQP 4‐ IgG binding to AQP 4, and enzymatic inactivation strategies to neutralize AQP 4‐ IgG pathogenicity.
Author Verkman, A. S.
Tradtrantip, Lukmanee
Asavapanumas, Nithi
Phuan, Puay-Wah
AuthorAffiliation 2 Department of Physiology University of California San Francisco CA
1 Department of Medicine University of California San Francisco CA
AuthorAffiliation_xml – name: 1 Department of Medicine University of California San Francisco CA
– name: 2 Department of Physiology University of California San Francisco CA
Author_xml – sequence: 1
  givenname: A. S.
  surname: Verkman
  fullname: Verkman, A. S.
  email: A. S. Verkman, MD, PhD, 1246 Health Sciences East Tower, University of California San Francisco, San Francisco, CA 94143-0521 ( ), alan.verkman@ucsf.edu
  organization: Department of Medicine, University of California, San Francisco, CA
– sequence: 2
  givenname: Puay-Wah
  surname: Phuan
  fullname: Phuan, Puay-Wah
  organization: Department of Medicine, University of California, San Francisco, CA
– sequence: 3
  givenname: Nithi
  surname: Asavapanumas
  fullname: Asavapanumas, Nithi
  organization: Department of Medicine, University of California, San Francisco, CA
– sequence: 4
  givenname: Lukmanee
  surname: Tradtrantip
  fullname: Tradtrantip, Lukmanee
  organization: Department of Medicine, University of California, San Francisco, CA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24118484$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEYhC1URNvAgT-AVuICh239vTYHpKQqSaXSplIRR8vreFuXjb3Yu9D8e5ykjaASCF_8Wn5mNPYcgj0fvAXgNYJHKK_jutNHCEPBnoEDVDFYEk7kXp4hYiUnkO2Dw5TuIESSS_YC7GOKkKCCHoDZxIU23KyK0BTjqzkttF8UY9-7cnNaT3VYrD4U17c26s4OvTPF2bJrndG9Cz4VTYjFxefLl-B5o9tkXz3sI_Dl0-n1yaw8v5yenYzPS8MEzGkQ1LVYcEygbDS1tawo1EbiHBkLLSpYIWoJlszASktDuK255g3FHGLOKRmBj1vfbqiXdmGs76NuVRfdUseVCtqpP2-8u1U34YciQkKCq2zw7sEghu-DTb1aumRs22pvw5AUolRgzHKE_0EJxWJtPAJvn6B3YYg-_8SaQhwzQVmm3vwefpf6sY8MvN8CJoaUom12CIJq3bXKXatN15k9fsIa129Kye927b8UP11rV3-3VpP5-FFRbhUu9fZ-p9Dxm-IVqZj6ejFVVzM4nc_RRE3JLz53xQk
CitedBy_id crossref_primary_10_1021_acs_jpcb_3c04529
crossref_primary_10_1080_14712598_2021_1884223
crossref_primary_10_3389_fneur_2020_604445
crossref_primary_10_3390_ijms17081195
crossref_primary_10_1016_j_jneuroim_2015_10_005
crossref_primary_10_3390_ijms20071589
crossref_primary_10_3390_ph14101031
crossref_primary_10_1016_j_msard_2022_104212
crossref_primary_10_1080_10799893_2020_1830109
crossref_primary_10_1097_MD_0000000000014229
crossref_primary_10_3390_brainsci14010036
crossref_primary_10_3390_ijms22105192
crossref_primary_10_1016_j_jaut_2022_102892
crossref_primary_10_1016_j_yexmp_2018_05_004
crossref_primary_10_3390_cancers12010210
crossref_primary_10_1111_bpa_12086
crossref_primary_10_1186_s12987_021_00282_z
crossref_primary_10_7555_JBR_37_20230264
crossref_primary_10_2174_1389450120666190214115309
crossref_primary_10_3389_fneur_2020_00627
crossref_primary_10_3389_fneur_2021_746959
crossref_primary_10_1007_s40265_018_1039_7
crossref_primary_10_1038_s41584_018_0156_8
crossref_primary_10_3390_antib11020039
crossref_primary_10_1186_s12929_024_01002_z
crossref_primary_10_12968_hmed_2020_0049
crossref_primary_10_1016_j_rdc_2021_09_002
crossref_primary_10_1016_j_pnpbp_2020_110086
crossref_primary_10_3390_ijms17081306
crossref_primary_10_1186_s12974_016_0642_3
crossref_primary_10_1002_cmdc_201500546
crossref_primary_10_3390_ijms18102164
crossref_primary_10_1002_cyto_a_24905
crossref_primary_10_1097_WCO_0000000000000093
crossref_primary_10_1186_s40478_016_0309_4
crossref_primary_10_1080_19336896_2019_1660487
crossref_primary_10_1007_s11940_021_00667_3
crossref_primary_10_12677_JPS_2014_24004
crossref_primary_10_3988_jcn_2017_13_2_175
crossref_primary_10_3390_ph14010037
crossref_primary_10_1016_j_jns_2020_116671
crossref_primary_10_1177_09612033231191180
crossref_primary_10_1093_brain_awx189
crossref_primary_10_3390_brainsci7100138
crossref_primary_10_1007_s40265_020_01297_w
crossref_primary_10_1177_1533033820985868
crossref_primary_10_1155_2015_638968
crossref_primary_10_1039_C8MT00072G
crossref_primary_10_1016_j_radcr_2024_05_055
crossref_primary_10_3233_JAD_150949
crossref_primary_10_1016_j_msard_2021_103227
crossref_primary_10_1007_s00401_017_1682_1
crossref_primary_10_1007_s12035_024_04595_6
crossref_primary_10_1038_nrneurol_2014_129
crossref_primary_10_1007_s10753_019_01002_4
crossref_primary_10_1016_j_msard_2020_102726
crossref_primary_10_2174_1381612827666210329101335
crossref_primary_10_3389_fncel_2019_00142
crossref_primary_10_3390_ijms21155304
crossref_primary_10_1016_j_nrl_2021_01_008
crossref_primary_10_1167_iovs_18_23994
crossref_primary_10_1186_s12974_015_0403_8
crossref_primary_10_1007_s10753_018_0862_z
crossref_primary_10_1177_13524585231172145
crossref_primary_10_1097_WNO_0000000000000338
crossref_primary_10_1007_s12031_020_01576_x
crossref_primary_10_1186_s12974_020_01874_6
crossref_primary_10_3390_cells8020090
crossref_primary_10_1007_s00296_023_05397_0
crossref_primary_10_1007_s11882_016_0619_4
crossref_primary_10_1007_s40291_016_0211_6
crossref_primary_10_1038_s41598_019_52506_w
crossref_primary_10_1016_j_nrleng_2023_10_003
crossref_primary_10_3389_fimmu_2020_01188
crossref_primary_10_1016_j_rmed_2020_106193
crossref_primary_10_3390_ijms21145021
crossref_primary_10_1016_j_bbrep_2016_05_017
crossref_primary_10_1016_j_jns_2020_117225
crossref_primary_10_3390_ijms20225810
crossref_primary_10_3390_ijms241511923
crossref_primary_10_1016_j_jneuroim_2021_577697
crossref_primary_10_1016_j_bpj_2017_03_012
crossref_primary_10_1186_s40893_016_0008_9
crossref_primary_10_1016_j_neuropharm_2018_02_002
crossref_primary_10_1021_acsomega_8b02230
crossref_primary_10_1111_nan_12574
Cites_doi 10.1172/JCI67554
10.1073/pnas.93.20.10908
10.1091/mbc.E08-03-0322
10.1093/brain/awp309
10.1242/jcs.110.22.2855
10.1084/jem.20081241
10.1007/978-3-540-79885-9_1
10.1007/s00441-009-0812-z
10.1074/jbc.M110.123000
10.1242/jcs.02680
10.1124/mol.113.086470
10.1021/bi990941s
10.1074/jbc.M112.408716
10.1073/pnas.2235843100
10.1093/brain/awq177
10.1016/j.bpj.2011.05.012
10.1096/fj.10-177279
10.1074/jbc.M111.297275
10.1038/nature03460
10.1002/glia.21169
10.1242/jcs.109603
10.1002/ana.22551
10.1016/S1474-4422(12)70133-3
10.1016/j.bbrc.2009.06.085
10.1002/glia.22417
10.1074/jbc.271.9.4577
10.1096/fj.06-5930fje
10.1242/jcs.02519
10.1242/jcs.108.9.2993
10.1096/fj.11-201608
10.1016/j.bbrc.2010.02.157
10.1073/pnas.0902725106
10.1002/ana.21837
10.1038/72256
10.1016/S0021-9258(17)37486-0
10.1146/annurev.physiol.70.113006.100452
10.1111/j.1600-0854.2011.01299.x
10.1097/WNR.0b013e32835ab480
10.1074/jbc.M109.093948
10.1111/j.1471-4159.2005.03362.x
10.1007/s00018-009-0218-9
10.1136/jnnp.72.2.262
10.1152/ajpcell.00298.2003
10.1096/fj.06-6848com
10.1242/jcs.042341
10.1002/jnr.22822
10.1002/glia.20318
10.1074/jbc.270.39.22907
10.1002/ana.23741
10.1073/pnas.0605796103
10.1085/jgp.201210883
10.1007/s00109-008-0303-9
10.1016/j.bbrc.2011.08.019
10.1007/978-3-540-79885-9_2
10.1073/pnas.1109980108
10.1002/ana.22686
10.1002/glia.21177
10.1007/s00424-007-0357-5
10.1074/jbc.M801425200
10.1016/j.bpj.2009.09.017
10.1083/jcb.60.1.316
10.1016/j.jmb.2005.10.081
10.1074/jbc.M109.071670
10.1096/fj.07-104836
10.1038/sj.jcbfm.9600306
10.1371/journal.pone.0027412
10.1074/jbc.272.26.16140
10.1002/glia.20855
10.1093/brain/awf151
10.1074/jbc.M104368200
10.1038/nrn3468
10.1212/01.WNL.0000289761.64862.ce
10.1074/jbc.M111.227298
10.1007/s00401-012-0986-4
10.1016/B978-0-12-386043-9.00001-3
10.1002/ana.21802
10.3988/jcn.2011.7.3.115
10.1096/fj.04-1723fje
10.1073/pnas.95.20.11981
10.1016/j.jmb.2008.07.089
10.4049/jimmunol.181.8.5730
10.1146/annurev-med-043010-193843
10.1074/jbc.M112.344325
10.1016/j.jneuroim.2011.04.007
10.1126/scitranslmed.3003748
10.1523/JNEUROSCI.17-01-00171.1997
10.1038/nmeth801
10.1002/ana.22657
10.1152/ajprenal.00439.2003
ContentType Journal Article
Copyright 2013 International Society of Neuropathology
2013 International Society of Neuropathology.
Brain Pathology © 2013 International Society of Neuropathology
Copyright_xml – notice: 2013 International Society of Neuropathology
– notice: 2013 International Society of Neuropathology.
– notice: Brain Pathology © 2013 International Society of Neuropathology
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
JQ2
K9.
7X8
5PM
DOI 10.1111/bpa.12085
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate AQP4 and AQP4‐IgG in NMO
EISSN 1750-3639
EndPage 695
ExternalDocumentID PMC3890327
3097477571
24118484
10_1111_bpa_12085
BPA12085
ark_67375_WNG_QH0GPP1B_G
Genre article
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Guthy‐Jackson Charitable Foundation
– fundername: National Institutes of Health
  funderid: EY13574; EB00415; DK35124; HL73856; DK86125; DK72517
– fundername: NHLBI NIH HHS
  grantid: R01 HL073856
– fundername: NEI NIH HHS
  grantid: R01 EY013574
– fundername: NIDDK NIH HHS
  grantid: P30 DK072517
– fundername: NHLBI NIH HHS
  grantid: HL73856
– fundername: NEI NIH HHS
  grantid: EY13574
– fundername: NIDDK NIH HHS
  grantid: DK72517
– fundername: NIBIB NIH HHS
  grantid: R37 EB000415
– fundername: NIDDK NIH HHS
  grantid: R37 DK035124
– fundername: NIBIB NIH HHS
  grantid: EB00415
– fundername: NIDDK NIH HHS
  grantid: DK35124
– fundername: National Institutes of Health
  grantid: EY13574; EB00415; DK35124; HL73856; DK86125; DK72517
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23N
24P
31~
33P
36B
3SF
3UE
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5RS
5VS
66C
6P2
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABLJU
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADPDF
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHEFC
AHMBA
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
GROUPED_DOAJ
GSXLS
H.X
HCIFZ
HF~
HMCUK
HVGLF
HZ~
IAO
IHR
IPY
IX1
J0M
K48
K7-
LATKE
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PTHSS
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SJN
SUPJJ
SV3
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
ZZTAW
~IA
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7TK
JQ2
K9.
WIN
7X8
5PM
ID FETCH-LOGICAL-c5805-610ab8d62309fa4eb9740ac9236328a870714e3295c07a9c36eb6a6f426026643
IEDL.DBID DR2
ISSN 1015-6305
1750-3639
IngestDate Thu Aug 21 18:01:21 EDT 2025
Fri Jul 11 08:56:29 EDT 2025
Fri Jul 11 05:45:03 EDT 2025
Wed Aug 13 09:39:30 EDT 2025
Mon Jul 21 05:37:30 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Tue Jul 01 02:42:11 EDT 2025
Wed Jan 22 16:28:12 EST 2025
Wed Oct 30 09:56:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords orthogonal array
autoimmunity
aquaporin
complement
astrocyte
neuromyelitis optica
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 International Society of Neuropathology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5805-610ab8d62309fa4eb9740ac9236328a870714e3295c07a9c36eb6a6f426026643
Notes istex:002C9E2325FD21C60DC191CE771BCE387105E6AE
ark:/67375/WNG-QH0GPP1B-G
ArticleID:BPA12085
Guthy-Jackson Charitable Foundation
National Institutes of Health - No. EY13574; No. EB00415; No. DK35124; No. HL73856; No. DK86125; No. DK72517
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1111/bpa.12085
PMID 24118484
PQID 1441625845
PQPubID 976340
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3890327
proquest_miscellaneous_1448225329
proquest_miscellaneous_1443428890
proquest_journals_1441625845
pubmed_primary_24118484
crossref_primary_10_1111_bpa_12085
crossref_citationtrail_10_1111_bpa_12085
wiley_primary_10_1111_bpa_12085_BPA12085
istex_primary_ark_67375_WNG_QH0GPP1B_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2013
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Indianapolis
– name: Hoboken
PublicationTitle Brain pathology (Zurich, Switzerland)
PublicationTitleAlternate Brain Pathology
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Jin BJ, Zhang H, Binder DK, Verkman AS (2013) Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J Gen Physiol 141:119-132.
Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527-1537.
Kim W, Kim SH, Kim HJ (2011) New insights into neuromyelitis optica. J Clin Neurol 7:115-127.
Saadoun S, Papadopoulos MC, Davies DC, Krisha S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262-265.
Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291-1293.
Tajima M, Crane JM, Verkman AS (2010) Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 285:8163-8170.
Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2010) Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun 394:205-210.
Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M et al (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133:2578-2591.
Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M et al (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630-643.
Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426-C432.
Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233-31237.
Pisani F, Mastrototaro M, Rossi A, Nicchia GP, Tortorella C, Ruggieri M et al (2011) Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding. J Biol Chem 286:9216-9224.
Yang B, Verkman AS (1997) Water and glycerol permeability of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140-16146.
Crane JM, Verkman AS (2009) Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J Cell Sci 122:813-821.
Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855-3860.
Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450-1461.
Landis DM, Reese TS (1974) Arrays of particles in freeze-fractured astrocytic membranes. J Cell Biol 60:316-320.
Rossi A, Ratelade J, Papadopoulos MC, Bennett JL, Verkman AS (2012) Neuromyelitis optica (NMO) IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content or supramolecular assembly. Glia 60:2027-2039.
Zhang H, Verkman AS (2013) Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 123:2306-2316.
Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573-579.
Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol 11:535-544.
Melamud L, Fernandez JM, Rivarola V, Di Giusto G, Ford P, Villa A, Capurro C (2012) Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin-4 expression and water permeability of the astrocyte plasma membrane. J Neurosci Res 90:1240-1248.
Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M et al (2009) Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57:1363-1373.
Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25:1556-1566.
Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973-980.
Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA et al (2009) Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci U S A 106:7437-7442.
Crane JM, Bennett JL, Verkman AS (2009) Live cell analysis of aquaporin-4 M1/M23 interactions and regulated orthogonal array assembly in glial cells. J Biol Chem 284:35850-35860.
Crane JM, Van Hoek AN, Skach WR, Verkman AS (2008) Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Mol Biol Cell 19:3369-3378.
Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70:943-954.
Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270:22907-22913.
Yang B, Zador Z, Verkman AS (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem 283:15280-15286.
Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631-636.
Rossi A, Crane JM, Verkman AS (2011) Aquaporin-4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding. Glia 59:1056-1063.
Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691-5698.
Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303-316.
Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829-840.
Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyeroporins. Ann Rev Physiol 70:301-327.
Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69:2221-2231.
Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245-1250.
Saadoun S, Waters P, Macdonald C, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2012) Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 71:323-333.
Tradtrantip L, Zhang H, Anderson MO, Saadoun S, Phuan PW, Papadopoulos MC et al (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J 26:2197-2208.
Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS (2007) Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 21:108-116.
Crane JM, Verkman AS (2009) Reversible, temperature-dependent supramolecular assembly of aquaporin-4 orthogonal arrays in live cell membranes. Biophys J 97:3010-3018.
Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216-3223.
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF (2011) Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 287:1-41.
Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3-28.
Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225-3232.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111.
Papadopoulos MC, Saadoun MC, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693-700.
Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2:825-827.
Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66:617-629.
Crane JM, Lam C, Rossi A, Gupta T, Bennett JL, Verkman AS (2011) Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J Biol Chem 286:16516-16524.
Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2009) Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun 386:623-627.
Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171-180.
Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20:1892-1894.
Rossi A, Moritz TJ, Ratelade J, Verkman AS (2012) Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J Cell Sci 125:4405-4412.
Rossi A, Baumgart F, van Hoek AN, Verkman AS (2012) Post-Golgi s
2012; 60
2004; 287
2011; 236
2004; 286
2012; 287
2012; 123
2000; 6
1997; 272
1997; 110
2013; 123
2011; 59
2012; 125
2012; 13
2008; 70
2012; 11
2008; 382
2010; 67
2012; 71
2009; 57
2006; 20
2013; 14
2009; 97
1994; 269
2011; 70
2002; 43
2006; 26
2009; 122
2010; 394
1997; 17
2008; 22
2009; 284
2011; 25
2012; 26
2007; 21
1998; 95
2012; 23
2007; 69
2011; 287
2011; 286
2012; 63
2009; 66
2011; 412
2006; 53
2002; 72
2008; 19
2005; 434
2013; 83
2005; 118
1996; 93
2008; 205
2010; 285
2013; 141
2011; 6
2011; 7
1995; 270
2008; 283
2012; 109
2006; 355
2009; 337
2001; 276
2008; 181
2012; 90
2009; 190
2004; 18
1974; 60
2013; 73
2002; 125
1999; 38
1995; 108
2005; 95
2009; 386
2010; 133
1996; 271
2008; 456
2005; 2
2008; 86
2012; 4
2003; 100
2011; 100
2006; 103
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Li J (e_1_2_10_34_1) 2002; 43
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
22989877 - J Biol Chem. 2012 Oct 26;287(44):36837-44
22374891 - Ann Neurol. 2012 Mar;71(3):323-33
12076996 - Brain. 2002 Jul;125(Pt 7):1450-61
7509789 - J Biol Chem. 1994 Feb 25;269(8):5497-500
9751776 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11981-6
22248325 - Annu Rev Med. 2012;63:303-16
21257712 - FASEB J. 2011 May;25(5):1556-66
14597700 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13609-14
16181429 - J Neurochem. 2005 Oct;95(1):254-62
16079275 - J Cell Sci. 2005 Aug 1;118(Pt 15):3225-32
21621279 - J Neuroimmunol. 2011 Jul;236(1-2):65-71
22128336 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1245-50
22087205 - J Clin Neurol. 2011 Sep;7(3):115-27
22069320 - J Biol Chem. 2011 Dec 30;286(52):45156-64
16278651 - Nat Methods. 2005 Nov;2(11):825-7
22319008 - FASEB J. 2012 May;26(5):2197-208
22069219 - Ann Neurol. 2011 Dec;70(6):943-54
22608667 - Lancet Neurol. 2012 Jun;11(6):535-44
23108041 - Neuroreport. 2012 Dec 19;23(18):1044-7
10460172 - Biochemistry. 1999 Aug 24;38(34):11156-63
23571414 - Mol Pharmacol. 2013 Jun;83(6):1268-75
11796780 - J Neurol Neurosurg Psychiatry. 2002 Feb;72(2):262-5
20688809 - Brain. 2010 Sep;133(9):2578-91
18311471 - J Mol Med (Berl). 2008 May;86(5):523-9
16470808 - Glia. 2006 Apr 15;53(6):631-6
9427293 - J Cell Sci. 1997 Nov;110 ( Pt 22):2855-60
21414585 - Int Rev Cell Mol Biol. 2011;287:1-41
23055279 - Ann Neurol. 2013 Jan;73(1):77-85
20047900 - Brain. 2010 Feb;133(Pt 2):349-61
20071343 - J Biol Chem. 2010 Mar 12;285(11):8163-70
19938104 - Ann Neurol. 2009 Nov;66(5):617-29
23563310 - J Clin Invest. 2013 May;123(5):2306-16
21491501 - Glia. 2011 Jul;59(7):1056-63
10655103 - Nat Med. 2000 Feb;6(2):159-63
18495865 - Mol Biol Cell. 2008 Aug;19(8):3369-78
14576087 - Am J Physiol Cell Physiol. 2004 Feb;286(2):C426-32
23481483 - Nat Rev Neurosci. 2013 Apr;14(4):265-77
21856282 - Biochem Biophys Res Commun. 2011 Sep 9;412(4):654-9
18708067 - J Mol Biol. 2008 Oct 24;382(5):1136-43
22718347 - J Cell Sci. 2012 Sep 15;125(Pt 18):4405-12
4809245 - J Cell Biol. 1974 Jan;60(1):316-20
22271321 - Ann Neurol. 2012 Mar;71(3):314-22
17968585 - Pflugers Arch. 2008 Jul;456(4):693-700
15149973 - Am J Physiol Renal Physiol. 2004 Sep;287(3):F501-11
16938871 - Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13532-6
16325200 - J Mol Biol. 2006 Jan 27;355(4):628-39
19096771 - Handb Exp Pharmacol. 2009;(190):31-56
19096770 - Handb Exp Pharmacol. 2009;(190):3-28
20188706 - Biochem Biophys Res Commun. 2010 Mar 26;394(1):205-10
19843522 - J Biol Chem. 2009 Dec 18;284(51):35850-60
9195910 - J Biol Chem. 1997 Jun 27;272(26):16140-6
11406631 - J Biol Chem. 2001 Aug 17;276(33):31233-7
19449033 - Cell Tissue Res. 2009 Aug;337(2):185-95
22076159 - PLoS One. 2011;6(11):e27412
18375385 - J Biol Chem. 2008 May 30;283(22):15280-6
16818469 - FASEB J. 2006 Sep;20(11):1892-4
19383790 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7437-42
18832732 - J Immunol. 2008 Oct 15;181(8):5730-7
17928579 - Neurology. 2007 Dec 11;69(24):2221-31
22526022 - Acta Neuropathol. 2012 Jun;123(6):861-72
22354518 - J Neurosci Res. 2012 Jun;90(6):1240-8
22393049 - J Biol Chem. 2012 Apr 20;287(17):13829-39
15815633 - Nature. 2005 Apr 7;434(7034):786-92
17961083 - Annu Rev Physiol. 2008;70:301-27
22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111
11818406 - Invest Ophthalmol Vis Sci. 2002 Feb;43(2):573-9
15208268 - FASEB J. 2004 Aug;18(11):1291-3
8537439 - J Cell Sci. 1995 Sep;108 ( Pt 9):2993-3002
21981006 - Traffic. 2012 Jan;13(1):43-53
16552421 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1527-37
20013023 - Cell Mol Life Sci. 2010 Mar;67(5):829-40
21689527 - Biophys J. 2011 Jun 22;100(12):2936-45
19948131 - Biophys J. 2009 Dec 2;97(11):3010-8
8855281 - Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10908-12
8617713 - J Biol Chem. 1996 Mar 1;271(9):4577-80
22987455 - Glia. 2012 Dec;60(12):2027-39
8987746 - J Neurosci. 1997 Jan 1;17(1):171-80
19545538 - Biochem Biophys Res Commun. 2009 Sep 4;386(4):623-7
18511552 - FASEB J. 2008 Sep;22(9):3216-23
21446052 - Glia. 2011 Jun;59(6):973-80
19937948 - Ann Neurol. 2009 Nov;66(5):630-43
21212277 - J Biol Chem. 2011 Mar 18;286(11):9216-24
17135365 - FASEB J. 2007 Jan;21(1):108-16
19240114 - J Cell Sci. 2009 Mar 15;122(Pt 6):813-21
16303850 - J Cell Sci. 2005 Dec 15;118(Pt 24):5691-8
7559426 - J Biol Chem. 1995 Sep 29;270(39):22907-13
23277478 - J Gen Physiol. 2013 Jan;141(1):119-32
21454592 - J Biol Chem. 2011 May 6;286(18):16516-24
18838545 - J Exp Med. 2008 Oct 27;205(11):2473-81
19229993 - Glia. 2009 Oct;57(13):1363-73
References_xml – reference: Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A, Antel JP (2008) Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 181:5730-5737.
– reference: Jin BJ, Rossi A, Verkman AS (2011) Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms. Biophys J 100:2936-2945.
– reference: Ratelade J, Bennett JL, Verkman AS (2011) Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS One 6:e27412.
– reference: Crane JM, Verkman AS (2009) Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J Cell Sci 122:813-821.
– reference: Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225-3232.
– reference: Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111.
– reference: Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2009) Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun 386:623-627.
– reference: Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nature Rev Neurosci 14:265-277.
– reference: Ratelade J, Bennett JL, Verkman AS (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J Biol Chem 286:45156-45164.
– reference: Kim W, Kim SH, Kim HJ (2011) New insights into neuromyelitis optica. J Clin Neurol 7:115-127.
– reference: Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426-C432.
– reference: Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20:1892-1894.
– reference: Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573-579.
– reference: Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M et al (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630-643.
– reference: Phuan PW, Anderson MO, Tradtrantip L, Zhang H, Tan J, Bennett JL, Verkman AS (2012) A small molecule screen yields idiotype-specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin-4. J Biol Chem 287:36837-36844.
– reference: Tajima M, Crane JM, Verkman AS (2010) Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 285:8163-8170.
– reference: Walz T, Fujiyoshi Y, Engel A (2009) The AQP structure and functional implications. Handb Exp Pharmacol 190:31-56.
– reference: Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3-28.
– reference: Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245-1250.
– reference: Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303-316.
– reference: Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF (2011) Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 287:1-41.
– reference: Saadoun S, Bridges LR, Verkman AS, Papadopoulos MC (2012) Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions. Neuroreport 23:1044-1047.
– reference: Pisani F, Mastrototaro M, Rossi A, Nicchia GP, Tortorella C, Ruggieri M et al (2011) Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding. J Biol Chem 286:9216-9224.
– reference: Rossi A, Baumgart F, van Hoek AN, Verkman AS (2012) Post-Golgi supramolecular assembly of aquaporin-4 in orthogonal arrays. Traffic 13:43-53.
– reference: Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108:2993-3002.
– reference: Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69:2221-2231.
– reference: Landis DM, Reese TS (1974) Arrays of particles in freeze-fractured astrocytic membranes. J Cell Biol 60:316-320.
– reference: Cui Y, Bastien DA (2011) Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem Biophys Res Commun 412:654-659.
– reference: Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171-180.
– reference: Papadopoulos MC, Saadoun MC, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693-700.
– reference: Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66:617-629.
– reference: Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973-980.
– reference: Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M et al (2009) Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57:1363-1373.
– reference: Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA et al (2009) Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci U S A 106:7437-7442.
– reference: Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855-3860.
– reference: Silberstein C, Bouley R, Huang Y, Fang P, Pastor-Soler N, Brown D, Van Hoek AN (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol 287:F501-F511.
– reference: Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25:1556-1566.
– reference: Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2:825-827.
– reference: Yang B, Verkman AS (1997) Water and glycerol permeability of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140-16146.
– reference: Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691-5698.
– reference: Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527-1537.
– reference: Crane JM, Verkman AS (2009) Reversible, temperature-dependent supramolecular assembly of aquaporin-4 orthogonal arrays in live cell membranes. Biophys J 97:3010-3018.
– reference: Lu M, Lee MD, Smith BL, Jung JS, Agre P, Verdijk MA et al (1996) The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc Natl Acad Sci U S A 93:10908-10912.
– reference: Tradtrantip L, Ratelade J, Zhang H, Verkman AS (2013) Enzymatic deglycosylation converts neuromyelitis optica anti-AQP4 IgG into a therapeutic blocking antibody. Ann Neurol 73:77-85.
– reference: Rossi A, Ratelade J, Papadopoulos MC, Bennett JL, Verkman AS (2012) Neuromyelitis optica (NMO) IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content or supramolecular assembly. Glia 60:2027-2039.
– reference: Tradtrantip L, Asavapanumas N, Verkman AS (2013) Therapeutic cleavage of anti-aquaporin-4 autoantibodies in neuromyelitis optica by an IgG-selective proteinase. Mol Pharmacol 83:1268-1275.
– reference: Ratelade J, Zhang H, Saadoun S, Bennett JL, Papadopoulos MC, Verkman AS (2012) Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol 123:861-872.
– reference: Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159-163.
– reference: Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291-1293.
– reference: Rossi A, Crane JM, Verkman AS (2011) Aquaporin-4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding. Glia 59:1056-1063.
– reference: Furman CS, Gorelick-Feldman DA, Davidson KG, Yasumura T, Neely JD, Agre P, Rash JE (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A 100:13609-13614.
– reference: Phuan PW, Ratelade J, Rossi A, Tradtrantip L, Verkman AS (2012) Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 assembly in orthogonal arrays. J Biol Chem 287:13829-13839.
– reference: Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829-840.
– reference: Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyeroporins. Ann Rev Physiol 70:301-327.
– reference: Rossi A, Moritz TJ, Ratelade J, Verkman AS (2012) Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J Cell Sci 125:4405-4412.
– reference: Verkman AS, Hara-Chikuma M, Papadopoulos MC (2008) Aquaporins-new players in cancer biology. J Mol Med (Berl) 86:523-529.
– reference: Tradtrantip L, Zhang H, Anderson MO, Saadoun S, Phuan PW, Papadopoulos MC et al (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J 26:2197-2208.
– reference: Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577-4580.
– reference: Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2010) Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun 394:205-210.
– reference: Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233-31237.
– reference: Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631-636.
– reference: Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981-11986.
– reference: Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628-639.
– reference: Hinson SR, Roemer SF, Lucchinetti CF, Fryer JP, Kryzer TJ, Chamberlain JL et al (2008) Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205:2473-2481.
– reference: Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol 11:535-544.
– reference: Crane JM, Van Hoek AN, Skach WR, Verkman AS (2008) Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Mol Biol Cell 19:3369-3378.
– reference: Saadoun S, Waters P, Macdonald C, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2012) Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 71:323-333.
– reference: Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS (1994) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269:5497-5500.
– reference: Neely JD, Christensen BM, Nielsen S, Agre P (1999) Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38:11156-11163.
– reference: Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC et al (2012) Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 71:314-322.
– reference: Frydenlund DS, Bhardwaj A, Otsuka T, Mylonakou MN, Yasumura T, Davidson KG et al (2006) Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA 103:13532-13536.
– reference: Zhang H, Verkman AS (2013) Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 123:2306-2316.
– reference: Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M et al (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133:2578-2591.
– reference: Bloch O, Papadopoulos MC, Manley GT, Verkman AS (2005) Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 95:254-262.
– reference: Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270:22907-22913.
– reference: Yang B, Zador Z, Verkman AS (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem 283:15280-15286.
– reference: Crane JM, Lam C, Rossi A, Gupta T, Bennett JL, Verkman AS (2011) Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J Biol Chem 286:16516-16524.
– reference: Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133:349-361.
– reference: Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216-3223.
– reference: Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450-1461.
– reference: Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786-792.
– reference: Zhang H, Verkman AS (2008) Evidence against involvement of aquaporin-4 in cell-cell adhesion. J Mol Biol 382:1136-1143.
– reference: Crane JM, Bennett JL, Verkman AS (2009) Live cell analysis of aquaporin-4 M1/M23 interactions and regulated orthogonal array assembly in glial cells. J Biol Chem 284:35850-35860.
– reference: Jin BJ, Zhang H, Binder DK, Verkman AS (2013) Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J Gen Physiol 141:119-132.
– reference: Saadoun S, Papadopoulos MC, Davies DC, Krisha S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262-265.
– reference: Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70:943-954.
– reference: Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS (2007) Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 21:108-116.
– reference: Melamud L, Fernandez JM, Rivarola V, Di Giusto G, Ford P, Villa A, Capurro C (2012) Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin-4 expression and water permeability of the astrocyte plasma membrane. J Neurosci Res 90:1240-1248.
– reference: Noell S, Fallier-Becker P, Deutsch U, Mack AF, Wolburg H (2009) Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell Tissue Res 337:185-195.
– reference: Yu X, Green M, Gilden D, Lam C, Bautista K, Bennett JL (2011) Identification of peptide targets in neuromyelitis optica. J Neuroimmunol 236:65-71.
– volume: 108
  start-page: 2993
  year: 1995
  end-page: 3002
  article-title: Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues
  publication-title: J Cell Sci
– volume: 286
  start-page: 45156
  year: 2011
  end-page: 45164
  article-title: Evidence against cellular internalization of NMO‐IgG, aquaporin‐4, and excitatory amino acid transporter 2 in neuromyelitis optica
  publication-title: J Biol Chem
– volume: 57
  start-page: 1363
  year: 2009
  end-page: 1373
  article-title: Aquaporin‐4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies
  publication-title: Glia
– volume: 97
  start-page: 3010
  year: 2009
  end-page: 3018
  article-title: Reversible, temperature‐dependent supramolecular assembly of aquaporin‐4 orthogonal arrays in live cell membranes
  publication-title: Biophys J
– volume: 60
  start-page: 316
  year: 1974
  end-page: 320
  article-title: Arrays of particles in freeze‐fractured astrocytic membranes
  publication-title: J Cell Biol
– volume: 106
  start-page: 7437
  year: 2009
  end-page: 7442
  article-title: Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 265
  year: 2013
  end-page: 277
  article-title: Aquaporin water channels in the nervous system
  publication-title: Nature Rev Neurosci
– volume: 72
  start-page: 262
  year: 2002
  end-page: 265
  article-title: Aquaporin‐4 expression is increased in oedematous human brain tumours
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 271
  start-page: 4577
  year: 1996
  end-page: 4580
  article-title: The mercurial insensitive water channel (AQP‐4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells
  publication-title: J Biol Chem
– volume: 43
  start-page: 573
  year: 2002
  end-page: 579
  article-title: Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin‐4 water channels
  publication-title: Invest Ophthalmol Vis Sci
– volume: 67
  start-page: 829
  year: 2010
  end-page: 840
  article-title: Differential water permeability and regulation of three aquaporin 4 isoforms
  publication-title: Cell Mol Life Sci
– volume: 4
  start-page: 147ra111
  year: 2012
  article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
  publication-title: Sci Transl Med
– volume: 66
  start-page: 617
  year: 2009
  end-page: 629
  article-title: Intrathecal pathogenic anti‐aquaporin‐4 antibodies in early neuromyelitis optica
  publication-title: Ann Neurol
– volume: 22
  start-page: 3216
  year: 2008
  end-page: 3223
  article-title: Impaired olfaction in mice lacking aquaporin‐4 water channels
  publication-title: FASEB J
– volume: 125
  start-page: 1450
  year: 2002
  end-page: 1461
  article-title: A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica
  publication-title: Brain
– volume: 19
  start-page: 3369
  year: 2008
  end-page: 3378
  article-title: Aquaporin‐4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking
  publication-title: Mol Biol Cell
– volume: 17
  start-page: 171
  year: 1997
  end-page: 180
  article-title: Specialized membrane domains for water transport in glial cells: high‐resolution immunogold cytochemistry of aquaporin‐4 in rat brain
  publication-title: J Neurosci
– volume: 60
  start-page: 2027
  year: 2012
  end-page: 2039
  article-title: Neuromyelitis optica (NMO) IgG does not alter aquaporin‐4 water permeability, plasma membrane M1/M23 isoform content or supramolecular assembly
  publication-title: Glia
– volume: 133
  start-page: 2578
  year: 2010
  end-page: 2591
  article-title: Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury
  publication-title: Brain
– volume: 269
  start-page: 5497
  year: 1994
  end-page: 5500
  article-title: Molecular cloning of a mercurial‐insensitive water channel expressed in selected water‐transporting tissues
  publication-title: J Biol Chem
– volume: 73
  start-page: 77
  year: 2013
  end-page: 85
  article-title: Enzymatic deglycosylation converts neuromyelitis optica anti‐AQP4 IgG into a therapeutic blocking antibody
  publication-title: Ann Neurol
– volume: 103
  start-page: 13532
  year: 2006
  end-page: 13536
  article-title: Temporary loss of perivascular aquaporin‐4 in neocortex after transient middle cerebral artery occlusion in mice
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 159
  year: 2000
  end-page: 163
  article-title: Aquaporin‐4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke
  publication-title: Nat Med
– volume: 286
  start-page: 16516
  year: 2011
  end-page: 16524
  article-title: Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin‐4 M1/M23 isoforms and orthogonal arrays
  publication-title: J Biol Chem
– volume: 125
  start-page: 4405
  year: 2012
  end-page: 4412
  article-title: Super‐resolution imaging of aquaporin‐4 orthogonal arrays of particles in cell membranes
  publication-title: J Cell Sci
– volume: 70
  start-page: 301
  year: 2008
  end-page: 327
  article-title: A current view of the mammalian aquaglyeroporins
  publication-title: Ann Rev Physiol
– volume: 95
  start-page: 11981
  year: 1998
  end-page: 11986
  article-title: Direct immunogold labeling of aquaporin‐4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord
  publication-title: Proc Natl Acad Sci U S A
– volume: 285
  start-page: 8163
  year: 2010
  end-page: 8170
  article-title: Aquaporin‐4 (AQP4) associations and array dynamics probed by photobleaching and single‐molecule analysis of green fluorescent protein‐AQP4 chimeras
  publication-title: J Biol Chem
– volume: 205
  start-page: 2473
  year: 2008
  end-page: 2481
  article-title: Aquaporin‐4‐binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down‐regulating EAAT2
  publication-title: J Exp Med
– volume: 456
  start-page: 693
  year: 2008
  end-page: 700
  article-title: Aquaporins and cell migration
  publication-title: Pflugers Arch
– volume: 287
  start-page: 13829
  year: 2012
  end-page: 13839
  article-title: Complement‐dependent cytotoxicity in neuromyelitis optica requires aquaporin‐4 assembly in orthogonal arrays
  publication-title: J Biol Chem
– volume: 412
  start-page: 654
  year: 2011
  end-page: 659
  article-title: Water transport in human aquaporin‐4: molecular dynamics (MD) simulations
  publication-title: Biochem Biophys Res Commun
– volume: 434
  start-page: 786
  year: 2005
  end-page: 792
  article-title: Impairment of angiogenesis and cell migration by targeted aquaporin‐1 gene disruption
  publication-title: Nature
– volume: 118
  start-page: 3225
  year: 2005
  end-page: 3232
  article-title: More than just water channels: unexpected cellular roles of aquaporins
  publication-title: J Cell Sci
– volume: 93
  start-page: 10908
  year: 1996
  end-page: 10912
  article-title: The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 123
  start-page: 861
  year: 2012
  end-page: 872
  article-title: Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss
  publication-title: Acta Neuropathol
– volume: 141
  start-page: 119
  year: 2013
  end-page: 132
  article-title: Aquaporin‐4‐dependent K and water transport modeled in brain extracellular space following neuroexcitation
  publication-title: J Gen Physiol
– volume: 95
  start-page: 254
  year: 2005
  end-page: 262
  article-title: Aquaporin‐4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess
  publication-title: J Neurochem
– volume: 122
  start-page: 813
  year: 2009
  end-page: 821
  article-title: Determinants of aquaporin‐4 assembly in orthogonal arrays revealed by live‐cell single‐molecule fluorescence imaging
  publication-title: J Cell Sci
– volume: 386
  start-page: 623
  year: 2009
  end-page: 627
  article-title: Neuromyelitis optica: passive transfer to rats by human immunoglobulin
  publication-title: Biochem Biophys Res Commun
– volume: 286
  start-page: C426
  year: 2004
  end-page: C432
  article-title: Sevenfold‐reduced osmotic water permeability in primary astrocyte cultures from AQP‐4‐deficient mice, measured by a fluorescence quenching method
  publication-title: Am J Physiol Cell Physiol
– volume: 70
  start-page: 943
  year: 2011
  end-page: 954
  article-title: Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms
  publication-title: Ann Neurol
– volume: 276
  start-page: 31233
  year: 2001
  end-page: 31237
  article-title: Impaired hearing in mice lacking aquaporin‐4 water channels
  publication-title: J Biol Chem
– volume: 2
  start-page: 825
  year: 2005
  end-page: 827
  article-title: K waves in brain cortex visualized using a long‐wavelength K ‐sensing fluorescent indicator
  publication-title: Nat Methods
– volume: 100
  start-page: 2936
  year: 2011
  end-page: 2945
  article-title: Model of aquaporin‐4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1‐M23 isoforms
  publication-title: Biophys J
– volume: 38
  start-page: 11156
  year: 1999
  end-page: 11163
  article-title: Heterotetrameric composition of aquaporin‐4 water channels
  publication-title: Biochemistry
– volume: 26
  start-page: 2197
  year: 2012
  end-page: 2208
  article-title: Small‐molecule inhibitors of NMO‐IgG binding to aquaporin‐4 reduce astrocyte cytotoxicity in neuromyelitis optica
  publication-title: FASEB J
– volume: 83
  start-page: 1268
  year: 2013
  end-page: 1275
  article-title: Therapeutic cleavage of anti‐aquaporin‐4 autoantibodies in neuromyelitis optica by an IgG‐selective proteinase
  publication-title: Mol Pharmacol
– volume: 123
  start-page: 2306
  year: 2013
  end-page: 2316
  article-title: Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica
  publication-title: J Clin Invest
– volume: 286
  start-page: 9216
  year: 2011
  end-page: 9224
  article-title: Identification of two major conformational aquaporin‐4 epitopes for neuromyelitis optica autoantibody binding
  publication-title: J Biol Chem
– volume: 11
  start-page: 535
  year: 2012
  end-page: 544
  article-title: Aquaporin 4 and neuromyelitis optica
  publication-title: Lancet Neurol
– volume: 53
  start-page: 631
  year: 2006
  end-page: 636
  article-title: Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin‐4 water channels
  publication-title: Glia
– volume: 21
  start-page: 108
  year: 2007
  end-page: 116
  article-title: Greatly impaired migration of implanted aquaporin‐4‐deficient astroglial cells in mouse brain toward a site of injury
  publication-title: FASEB J
– volume: 109
  start-page: 1245
  year: 2012
  end-page: 1250
  article-title: Molecular outcomes of neuromyelitis optica (NMO)‐IgG binding to aquaporin‐4 in astrocytes
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 115
  year: 2011
  end-page: 127
  article-title: New insights into neuromyelitis optica
  publication-title: J Clin Neurol
– volume: 394
  start-page: 205
  year: 2010
  end-page: 210
  article-title: Anti‐aquaporin‐4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen‐specific T cells
  publication-title: Biochem Biophys Res Commun
– volume: 13
  start-page: 43
  year: 2012
  end-page: 53
  article-title: Post‐Golgi supramolecular assembly of aquaporin‐4 in orthogonal arrays
  publication-title: Traffic
– volume: 59
  start-page: 1056
  year: 2011
  end-page: 1063
  article-title: Aquaporin‐4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding
  publication-title: Glia
– volume: 284
  start-page: 35850
  year: 2009
  end-page: 35860
  article-title: Live cell analysis of aquaporin‐4 M1/M23 interactions and regulated orthogonal array assembly in glial cells
  publication-title: J Biol Chem
– volume: 133
  start-page: 349
  year: 2010
  end-page: 361
  article-title: Intra‐cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice
  publication-title: Brain
– volume: 272
  start-page: 16140
  year: 1997
  end-page: 16146
  article-title: Water and glycerol permeability of aquaporins 1‐5 and MIP determined quantitatively by expression of epitope‐tagged constructs in Xenopus oocytes
  publication-title: J Biol Chem
– volume: 337
  start-page: 185
  year: 2009
  end-page: 195
  article-title: Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes
  publication-title: Cell Tissue Res
– volume: 63
  start-page: 303
  year: 2012
  end-page: 316
  article-title: Aquaporins in clinical medicine
  publication-title: Annu Rev Med
– volume: 26
  start-page: 1527
  year: 2006
  end-page: 1537
  article-title: Accelerated progression of kaolin‐induced hydrocephalus in aquaporin‐4‐deficient mice
  publication-title: J Cereb Blood Flow Metab
– volume: 6
  start-page: e27412
  year: 2011
  article-title: Intravenous neuromyelitis optica autoantibody in mice targets aquaporin‐4 in peripheral organs and area postrema
  publication-title: PLoS One
– volume: 118
  start-page: 5691
  year: 2005
  end-page: 5698
  article-title: Involvement of aquaporin‐4 in astroglial cell migration and glial scar formation
  publication-title: J Cell Sci
– volume: 86
  start-page: 523
  year: 2008
  end-page: 529
  article-title: Aquaporins—new players in cancer biology
  publication-title: J Mol Med (Berl)
– volume: 181
  start-page: 5730
  year: 2008
  end-page: 5737
  article-title: Functional consequences of neuromyelitis optica‐IgG astrocyte interactions on blood‐brain barrier permeability and granulocyte recruitment
  publication-title: J Immunol
– volume: 287
  start-page: 1
  year: 2011
  end-page: 41
  article-title: Structure and functions of aquaporin‐4‐based orthogonal arrays of particles
  publication-title: Int Rev Cell Mol Biol
– volume: 283
  start-page: 15280
  year: 2008
  end-page: 15286
  article-title: Glial cell aquaporin‐4 overexpression in transgenic mice accelerates cytotoxic brain swelling
  publication-title: J Biol Chem
– volume: 71
  start-page: 314
  year: 2012
  end-page: 322
  article-title: Anti‐aquaporin‐4 monoclonal antibody blocker therapy for neuromyelitis optica
  publication-title: Ann Neurol
– volume: 287
  start-page: 36837
  year: 2012
  end-page: 36844
  article-title: A small molecule screen yields idiotype‐specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin‐4
  publication-title: J Biol Chem
– volume: 18
  start-page: 1291
  year: 2004
  end-page: 1293
  article-title: Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema
  publication-title: FASEB J
– volume: 236
  start-page: 65
  year: 2011
  end-page: 71
  article-title: Identification of peptide targets in neuromyelitis optica
  publication-title: J Neuroimmunol
– volume: 66
  start-page: 630
  year: 2009
  end-page: 643
  article-title: Neuromyelitis optica: pathogenicity of patient immunoglobulin
  publication-title: Ann Neurol
– volume: 382
  start-page: 1136
  year: 2008
  end-page: 1143
  article-title: Evidence against involvement of aquaporin‐4 in cell‐cell adhesion
  publication-title: J Mol Biol
– volume: 355
  start-page: 628
  year: 2006
  end-page: 639
  article-title: Implications of the aquaporin‐4 structure on array formation and cell adhesion
  publication-title: J Mol Biol
– volume: 90
  start-page: 1240
  year: 2012
  end-page: 1248
  article-title: Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin‐4 expression and water permeability of the astrocyte plasma membrane
  publication-title: J Neurosci Res
– volume: 110
  start-page: 2855
  year: 1997
  end-page: 3860
  article-title: Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin‐4
  publication-title: J Cell Sci
– volume: 100
  start-page: 13609
  year: 2003
  end-page: 13614
  article-title: Aquaporin‐4 square array assembly: opposing actions of M1 and M23 isoforms
  publication-title: Proc Natl Acad Sci U S A
– volume: 23
  start-page: 1044
  year: 2012
  end-page: 1047
  article-title: Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions
  publication-title: Neuroreport
– volume: 287
  start-page: F501
  year: 2004
  end-page: F511
  article-title: Membrane organization and function of M1 and M23 isoforms of aquaporin‐4 in epithelial cells
  publication-title: Am J Physiol
– volume: 20
  start-page: 1892
  year: 2006
  end-page: 1894
  article-title: Increased migration and metastatic potential of tumor cells expressing aquaporin water channels
  publication-title: FASEB J
– volume: 71
  start-page: 323
  year: 2012
  end-page: 333
  article-title: Neutrophil protease inhibition reduces neuromyelitis optica‐immunoglobulin G‐induced damage in mouse brain
  publication-title: Ann Neurol
– volume: 25
  start-page: 1556
  year: 2011
  end-page: 1566
  article-title: Proinflammatory role of aquaporin‐4 in autoimmune neuroinflammation
  publication-title: FASEB J
– volume: 59
  start-page: 973
  year: 2011
  end-page: 980
  article-title: Impact of aquaporin‐4 channels on K buffering and gap junction coupling in the hippocampus
  publication-title: Glia
– volume: 190
  start-page: 31
  year: 2009
  end-page: 56
  article-title: The AQP structure and functional implications
  publication-title: Handb Exp Pharmacol
– volume: 270
  start-page: 22907
  year: 1995
  end-page: 22913
  article-title: cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units
  publication-title: J Biol Chem
– volume: 69
  start-page: 2221
  year: 2007
  end-page: 2231
  article-title: Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica
  publication-title: Neurology
– volume: 190
  start-page: 3
  year: 2009
  end-page: 28
  article-title: Discovery of the aquaporins and development of the field
  publication-title: Handb Exp Pharmacol
– ident: e_1_2_10_90_1
  doi: 10.1172/JCI67554
– ident: e_1_2_10_37_1
  doi: 10.1073/pnas.93.20.10908
– ident: e_1_2_10_13_1
  doi: 10.1091/mbc.E08-03-0322
– ident: e_1_2_10_66_1
  doi: 10.1093/brain/awp309
– ident: e_1_2_10_77_1
  doi: 10.1242/jcs.110.22.2855
– ident: e_1_2_10_21_1
  doi: 10.1084/jem.20081241
– ident: e_1_2_10_8_1
  doi: 10.1007/978-3-540-79885-9_1
– ident: e_1_2_10_45_1
  doi: 10.1007/s00441-009-0812-z
– ident: e_1_2_10_53_1
  doi: 10.1074/jbc.M110.123000
– ident: e_1_2_10_65_1
  doi: 10.1242/jcs.02680
– ident: e_1_2_10_75_1
  doi: 10.1124/mol.113.086470
– ident: e_1_2_10_42_1
  doi: 10.1021/bi990941s
– ident: e_1_2_10_51_1
  doi: 10.1074/jbc.M112.408716
– ident: e_1_2_10_18_1
  doi: 10.1073/pnas.2235843100
– ident: e_1_2_10_40_1
  doi: 10.1093/brain/awq177
– ident: e_1_2_10_27_1
  doi: 10.1016/j.bpj.2011.05.012
– ident: e_1_2_10_35_1
  doi: 10.1096/fj.10-177279
– ident: e_1_2_10_55_1
  doi: 10.1074/jbc.M111.297275
– ident: e_1_2_10_64_1
  doi: 10.1038/nature03460
– ident: e_1_2_10_71_1
  doi: 10.1002/glia.21169
– ident: e_1_2_10_61_1
  doi: 10.1242/jcs.109603
– ident: e_1_2_10_91_1
  doi: 10.1002/ana.22551
– ident: e_1_2_10_47_1
  doi: 10.1016/S1474-4422(12)70133-3
– ident: e_1_2_10_30_1
  doi: 10.1016/j.bbrc.2009.06.085
– ident: e_1_2_10_62_1
  doi: 10.1002/glia.22417
– ident: e_1_2_10_86_1
  doi: 10.1074/jbc.271.9.4577
– ident: e_1_2_10_25_1
  doi: 10.1096/fj.06-5930fje
– ident: e_1_2_10_79_1
  doi: 10.1242/jcs.02519
– ident: e_1_2_10_17_1
  doi: 10.1242/jcs.108.9.2993
– ident: e_1_2_10_73_1
  doi: 10.1096/fj.11-201608
– ident: e_1_2_10_31_1
  doi: 10.1016/j.bbrc.2010.02.157
– ident: e_1_2_10_24_1
  doi: 10.1073/pnas.0902725106
– volume: 43
  start-page: 573
  year: 2002
  ident: e_1_2_10_34_1
  article-title: Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin‐4 water channels
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_10_7_1
  doi: 10.1002/ana.21837
– ident: e_1_2_10_39_1
  doi: 10.1038/72256
– ident: e_1_2_10_19_1
  doi: 10.1016/S0021-9258(17)37486-0
– ident: e_1_2_10_58_1
  doi: 10.1146/annurev.physiol.70.113006.100452
– ident: e_1_2_10_60_1
  doi: 10.1111/j.1600-0854.2011.01299.x
– ident: e_1_2_10_67_1
  doi: 10.1097/WNR.0b013e32835ab480
– ident: e_1_2_10_72_1
  doi: 10.1074/jbc.M109.093948
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1471-4159.2005.03362.x
– ident: e_1_2_10_15_1
  doi: 10.1007/s00018-009-0218-9
– ident: e_1_2_10_63_1
  doi: 10.1136/jnnp.72.2.262
– ident: e_1_2_10_70_1
  doi: 10.1152/ajpcell.00298.2003
– ident: e_1_2_10_2_1
  doi: 10.1096/fj.06-6848com
– ident: e_1_2_10_11_1
  doi: 10.1242/jcs.042341
– ident: e_1_2_10_41_1
  doi: 10.1002/jnr.22822
– ident: e_1_2_10_4_1
  doi: 10.1002/glia.20318
– ident: e_1_2_10_85_1
  doi: 10.1074/jbc.270.39.22907
– ident: e_1_2_10_76_1
  doi: 10.1002/ana.23741
– ident: e_1_2_10_16_1
  doi: 10.1073/pnas.0605796103
– ident: e_1_2_10_28_1
  doi: 10.1085/jgp.201210883
– ident: e_1_2_10_80_1
  doi: 10.1007/s00109-008-0303-9
– ident: e_1_2_10_14_1
  doi: 10.1016/j.bbrc.2011.08.019
– ident: e_1_2_10_82_1
  doi: 10.1007/978-3-540-79885-9_2
– ident: e_1_2_10_22_1
  doi: 10.1073/pnas.1109980108
– ident: e_1_2_10_68_1
  doi: 10.1002/ana.22686
– ident: e_1_2_10_59_1
  doi: 10.1002/glia.21177
– ident: e_1_2_10_50_1
  doi: 10.1007/s00424-007-0357-5
– ident: e_1_2_10_87_1
  doi: 10.1074/jbc.M801425200
– ident: e_1_2_10_12_1
  doi: 10.1016/j.bpj.2009.09.017
– ident: e_1_2_10_32_1
  doi: 10.1083/jcb.60.1.316
– ident: e_1_2_10_23_1
  doi: 10.1016/j.jmb.2005.10.081
– ident: e_1_2_10_9_1
  doi: 10.1074/jbc.M109.071670
– ident: e_1_2_10_36_1
  doi: 10.1096/fj.07-104836
– ident: e_1_2_10_6_1
  doi: 10.1038/sj.jcbfm.9600306
– ident: e_1_2_10_56_1
  doi: 10.1371/journal.pone.0027412
– ident: e_1_2_10_84_1
  doi: 10.1074/jbc.272.26.16140
– ident: e_1_2_10_43_1
  doi: 10.1002/glia.20855
– ident: e_1_2_10_38_1
  doi: 10.1093/brain/awf151
– ident: e_1_2_10_33_1
  doi: 10.1074/jbc.M104368200
– ident: e_1_2_10_48_1
  doi: 10.1038/nrn3468
– ident: e_1_2_10_20_1
  doi: 10.1212/01.WNL.0000289761.64862.ce
– ident: e_1_2_10_10_1
  doi: 10.1074/jbc.M111.227298
– ident: e_1_2_10_57_1
  doi: 10.1007/s00401-012-0986-4
– ident: e_1_2_10_83_1
  doi: 10.1016/B978-0-12-386043-9.00001-3
– ident: e_1_2_10_3_1
  doi: 10.1002/ana.21802
– ident: e_1_2_10_29_1
  doi: 10.3988/jcn.2011.7.3.115
– ident: e_1_2_10_49_1
  doi: 10.1096/fj.04-1723fje
– ident: e_1_2_10_54_1
  doi: 10.1073/pnas.95.20.11981
– ident: e_1_2_10_89_1
  doi: 10.1016/j.jmb.2008.07.089
– ident: e_1_2_10_81_1
  doi: 10.4049/jimmunol.181.8.5730
– ident: e_1_2_10_78_1
  doi: 10.1146/annurev-med-043010-193843
– ident: e_1_2_10_52_1
  doi: 10.1074/jbc.M112.344325
– ident: e_1_2_10_88_1
  doi: 10.1016/j.jneuroim.2011.04.007
– ident: e_1_2_10_26_1
  doi: 10.1126/scitranslmed.3003748
– ident: e_1_2_10_44_1
  doi: 10.1523/JNEUROSCI.17-01-00171.1997
– ident: e_1_2_10_46_1
  doi: 10.1038/nmeth801
– ident: e_1_2_10_74_1
  doi: 10.1002/ana.22657
– ident: e_1_2_10_69_1
  doi: 10.1152/ajprenal.00439.2003
– reference: 17928579 - Neurology. 2007 Dec 11;69(24):2221-31
– reference: 14576087 - Am J Physiol Cell Physiol. 2004 Feb;286(2):C426-32
– reference: 20071343 - J Biol Chem. 2010 Mar 12;285(11):8163-70
– reference: 21689527 - Biophys J. 2011 Jun 22;100(12):2936-45
– reference: 20013023 - Cell Mol Life Sci. 2010 Mar;67(5):829-40
– reference: 23277478 - J Gen Physiol. 2013 Jan;141(1):119-32
– reference: 15815633 - Nature. 2005 Apr 7;434(7034):786-92
– reference: 19545538 - Biochem Biophys Res Commun. 2009 Sep 4;386(4):623-7
– reference: 18832732 - J Immunol. 2008 Oct 15;181(8):5730-7
– reference: 19948131 - Biophys J. 2009 Dec 2;97(11):3010-8
– reference: 22128336 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1245-50
– reference: 22069320 - J Biol Chem. 2011 Dec 30;286(52):45156-64
– reference: 15149973 - Am J Physiol Renal Physiol. 2004 Sep;287(3):F501-11
– reference: 21414585 - Int Rev Cell Mol Biol. 2011;287:1-41
– reference: 23571414 - Mol Pharmacol. 2013 Jun;83(6):1268-75
– reference: 23055279 - Ann Neurol. 2013 Jan;73(1):77-85
– reference: 10460172 - Biochemistry. 1999 Aug 24;38(34):11156-63
– reference: 22987455 - Glia. 2012 Dec;60(12):2027-39
– reference: 18375385 - J Biol Chem. 2008 May 30;283(22):15280-6
– reference: 14597700 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13609-14
– reference: 22526022 - Acta Neuropathol. 2012 Jun;123(6):861-72
– reference: 21621279 - J Neuroimmunol. 2011 Jul;236(1-2):65-71
– reference: 19096771 - Handb Exp Pharmacol. 2009;(190):31-56
– reference: 23563310 - J Clin Invest. 2013 May;123(5):2306-16
– reference: 9427293 - J Cell Sci. 1997 Nov;110 ( Pt 22):2855-60
– reference: 22271321 - Ann Neurol. 2012 Mar;71(3):314-22
– reference: 22393049 - J Biol Chem. 2012 Apr 20;287(17):13829-39
– reference: 19240114 - J Cell Sci. 2009 Mar 15;122(Pt 6):813-21
– reference: 17135365 - FASEB J. 2007 Jan;21(1):108-16
– reference: 22248325 - Annu Rev Med. 2012;63:303-16
– reference: 22069219 - Ann Neurol. 2011 Dec;70(6):943-54
– reference: 11818406 - Invest Ophthalmol Vis Sci. 2002 Feb;43(2):573-9
– reference: 12076996 - Brain. 2002 Jul;125(Pt 7):1450-61
– reference: 21454592 - J Biol Chem. 2011 May 6;286(18):16516-24
– reference: 17961083 - Annu Rev Physiol. 2008;70:301-27
– reference: 21981006 - Traffic. 2012 Jan;13(1):43-53
– reference: 21257712 - FASEB J. 2011 May;25(5):1556-66
– reference: 11796780 - J Neurol Neurosurg Psychiatry. 2002 Feb;72(2):262-5
– reference: 22374891 - Ann Neurol. 2012 Mar;71(3):323-33
– reference: 8617713 - J Biol Chem. 1996 Mar 1;271(9):4577-80
– reference: 16303850 - J Cell Sci. 2005 Dec 15;118(Pt 24):5691-8
– reference: 7559426 - J Biol Chem. 1995 Sep 29;270(39):22907-13
– reference: 17968585 - Pflugers Arch. 2008 Jul;456(4):693-700
– reference: 16818469 - FASEB J. 2006 Sep;20(11):1892-4
– reference: 19096770 - Handb Exp Pharmacol. 2009;(190):3-28
– reference: 18708067 - J Mol Biol. 2008 Oct 24;382(5):1136-43
– reference: 21491501 - Glia. 2011 Jul;59(7):1056-63
– reference: 22354518 - J Neurosci Res. 2012 Jun;90(6):1240-8
– reference: 20688809 - Brain. 2010 Sep;133(9):2578-91
– reference: 23481483 - Nat Rev Neurosci. 2013 Apr;14(4):265-77
– reference: 16470808 - Glia. 2006 Apr 15;53(6):631-6
– reference: 20188706 - Biochem Biophys Res Commun. 2010 Mar 26;394(1):205-10
– reference: 16552421 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1527-37
– reference: 11406631 - J Biol Chem. 2001 Aug 17;276(33):31233-7
– reference: 16181429 - J Neurochem. 2005 Oct;95(1):254-62
– reference: 22608667 - Lancet Neurol. 2012 Jun;11(6):535-44
– reference: 7509789 - J Biol Chem. 1994 Feb 25;269(8):5497-500
– reference: 8855281 - Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10908-12
– reference: 22087205 - J Clin Neurol. 2011 Sep;7(3):115-27
– reference: 16278651 - Nat Methods. 2005 Nov;2(11):825-7
– reference: 22319008 - FASEB J. 2012 May;26(5):2197-208
– reference: 19937948 - Ann Neurol. 2009 Nov;66(5):630-43
– reference: 18838545 - J Exp Med. 2008 Oct 27;205(11):2473-81
– reference: 21856282 - Biochem Biophys Res Commun. 2011 Sep 9;412(4):654-9
– reference: 15208268 - FASEB J. 2004 Aug;18(11):1291-3
– reference: 19938104 - Ann Neurol. 2009 Nov;66(5):617-29
– reference: 18311471 - J Mol Med (Berl). 2008 May;86(5):523-9
– reference: 9195910 - J Biol Chem. 1997 Jun 27;272(26):16140-6
– reference: 21212277 - J Biol Chem. 2011 Mar 18;286(11):9216-24
– reference: 19383790 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7437-42
– reference: 22718347 - J Cell Sci. 2012 Sep 15;125(Pt 18):4405-12
– reference: 22076159 - PLoS One. 2011;6(11):e27412
– reference: 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111
– reference: 9751776 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11981-6
– reference: 4809245 - J Cell Biol. 1974 Jan;60(1):316-20
– reference: 8987746 - J Neurosci. 1997 Jan 1;17(1):171-80
– reference: 18511552 - FASEB J. 2008 Sep;22(9):3216-23
– reference: 10655103 - Nat Med. 2000 Feb;6(2):159-63
– reference: 16938871 - Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13532-6
– reference: 22989877 - J Biol Chem. 2012 Oct 26;287(44):36837-44
– reference: 19229993 - Glia. 2009 Oct;57(13):1363-73
– reference: 21446052 - Glia. 2011 Jun;59(6):973-80
– reference: 23108041 - Neuroreport. 2012 Dec 19;23(18):1044-7
– reference: 16079275 - J Cell Sci. 2005 Aug 1;118(Pt 15):3225-32
– reference: 8537439 - J Cell Sci. 1995 Sep;108 ( Pt 9):2993-3002
– reference: 20047900 - Brain. 2010 Feb;133(Pt 2):349-61
– reference: 19843522 - J Biol Chem. 2009 Dec 18;284(51):35850-60
– reference: 18495865 - Mol Biol Cell. 2008 Aug;19(8):3369-78
– reference: 16325200 - J Mol Biol. 2006 Jan 27;355(4):628-39
– reference: 19449033 - Cell Tissue Res. 2009 Aug;337(2):185-95
SSID ssj0019695
Score 2.395409
SecondaryResourceType review_article
Snippet The water channel aquaporin‐4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4‐IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot...
The water channel aquaporin‐4 ( AQP 4) is the target of the immunoglobulin G autoantibody ( AQP 4‐ IgG ) in neuromyelitis optica ( NMO ). AQP 4 is expressed in...
The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 684
SubjectTerms Animals
aquaporin
Aquaporin 4 - immunology
Aquaporin 4 - metabolism
astrocyte
Astrocytes - metabolism
autoimmunity
complement
Cytotoxicity
Humans
Immunoglobulin G - immunology
Immunoglobulin G - metabolism
Medical research
Mice
Mini‐Symposium: Neuromyelitis Optica (NMO), Part 1
neuromyelitis optica
Neuromyelitis Optica - immunology
Neuromyelitis Optica - metabolism
Neuromyelitis Optica - therapy
orthogonal array
Rodents
Title Biology of AQP4 and Anti-AQP4 Antibody: Therapeutic Implications for NMO
URI https://api.istex.fr/ark:/67375/WNG-QH0GPP1B-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbpa.12085
https://www.ncbi.nlm.nih.gov/pubmed/24118484
https://www.proquest.com/docview/1441625845
https://www.proquest.com/docview/1443428890
https://www.proquest.com/docview/1448225329
https://pubmed.ncbi.nlm.nih.gov/PMC3890327
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VrYR44X5JKZVBCPGSlZPYsQNPKaK7VNpli7pQIaTIztqiapWt2l2J8sQn8I18CWPnwi4UhHhL5EmUTGbGZ-LxGYAnIk6zyBgVxpaLkMUG42AZybC0mklrFcZH92tgOEoHE7Z3yA_X4EW7F6bmh-h-uDnP8PHaObjS50tOrk9VL3IdJjH-ulotB4jedtRRjvWF-5XOiIcpGnXDKuSqeLorV-aiDafWz5cBzd_rJZdxrJ-Idq_Dx_YV6vqT495irnvll1_YHf_zHW_AtQagkry2qJuwZqpbcGXYLMHfhr26e-UFmVmS748ZUdWU5NX86PvXb_7cHevZ9OI5Ofi5t4u8XqpcJwiUyWj45g5Mdl8dvByETUOGsOSSoh4jqrScImKimVXMaExGqCoRI6ZJLBW6voiYSeKMl1SorExSo1OVWseCj0CAJXdhvZpV5j4QgemwjlSWKm4ZFzSTNEtsKWMrMiWSKIBn7acpyoat3DXNOCnarAV1U3jdBPC4Ez2tKTouE3rqv28noc6OXU2b4MX7Ub_YH9D-eBztFP0AtloDKBp3Pi9c1omJomR4n0fdMDqiW11RlZktvEyCuZzM6F9lEJBx1FAA92qb6h4IoRRm25IFIFasrRNwROCrI9XRJ08IjqCTJrFAnXlj-rMWip1x7g82_130AVyNXQsQv_9yC9bnZwvzEIHYXG_DRv5u8mGy7T3vB-KtLLg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVgIu_P8YCiwIEBdH6_Wud43EIaU0SduEtEpFb2btrEVV5FRtIggnHoEH4VV4CZ6E2bVjEiiISw_cbHnkn9mZ2W_Ws98APJYsigNjtM9yIX3ODMbBLFB-lqdc5bnG-GiXBrq9qL3HN_fF_hJ8ne2FKfkh6gU36xkuXlsHtwvSc16eHulGYFtMViWVW2b6ARO2kxeddRzdJ4xtvBq8bPtVTwE_E4oKzJSoTtUQJ30a55qbFPE01RnCnChkSqP1yoCbkMUio1LHWRiZNNJRbonccS7jId73HKzYDuKWqX99tyarsjwzwv1bDfAx6EYVj5GtG6pfdWH2W7ED-fE0aPt7heY8cnZT38Zl-DZTWlnxctiYjNNG9ukXPsn_RatX4FKFwUmzdJqrsGSKa3C-W1UZXIfNskHnlIxy0tzpc6KLIWkW44Pvn7-4c3ucjobT52Twc_sa6cwV5xPMBUiv-_oG7J3Jl9yE5WJUmNtAJGb8aaDjSIucC0ljReMwzxTLZaxlGHjwbGYLSVYRstu-IO-TWWKGY5G4sfDgUS16VLKQnCb01BlULaGPD23ZnhTJm14r2WnTVr8frCUtD1ZnFpdUEesksYk15sKK430e1pcx1tgfSLowo4mTCTFdVTH9qwxiToEa8uBWacT1CyFaDBRX3AO5YN61gOU6X7xSHLxznOeIq2nIJOrMWe-ftZCs9Zvu4M6_iz6AC-1BdzvZ7vS27sJFZjueuO2mq7A8Pp6Ye4g7x-l95-4E3p61J_wAnueE0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VXanigvgnUMAgQFwWOYkdJ0gcUsr-tOySSl2ouBgna4sKlF21W8HeeATeg7fiSRg72bArCuLSWyKPnGh-PN_Y4xmARyKIEl9r1QkMFx0WaFwHCz_uFCZnsTEK10e7NTAcRf0x2z3khxvwY3kXpqoP0Wy4Wctw67U18NnErBh5PlPPfNthss6o3NOLLxivnbwY7KBwHwdB99XBy36nbinQKXhMOQZKVOXxBH0-TYxiOkc4TVWBKCcKg1ih8gqf6TBIeEGFSoow0nmkImPruKMrYyHOewHaHL0gbUE7fTt-P24OLZLINXlBJccPoR3VhYxs4lDzs2vur20l-fUsbPtniuYqdHa-r3sZLtWglaSVll2BDV1ehc1hfSx_DXarjpYLMjUk3c8YUeWEpOX86Oe37-7dPufTyeI5Ofh934sMVrLZCYJnMhq-uQ7jc-HoDWiV01LfAiIwRM59lUSKG8YFTWKahKaIAyMSJULfg6dL3smirmBuG2l8lstIBtksHZs9eNiQzqqyHWcRPXECaCjU8Seb5ya4fDfqyf0-7WWZvy17HmwtJSRrEz-RNhLF4DFmOM-DZhiN0564qFJPTx1NiPFdnNB_0iBI48ghD25WQm9-COEVRuAx80CsqUNDYIuDr4-URx9dkXAEojQMBPLMKc7fuSC3s9Q93P5_0vuwme105evBaO8OXAxshxB3PXMLWvPjU30Xcdo8v1fbB4EP522SvwCEQ0Zx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+of+AQP4+and+Anti%E2%80%90AQP4+Antibody%3A+Therapeutic+Implications+for+NMO&rft.jtitle=Brain+pathology+%28Zurich%2C+Switzerland%29&rft.au=Verkman%2C+A.+S.&rft.au=Phuan%2C+Puay%E2%80%90Wah&rft.au=Asavapanumas%2C+Nithi&rft.au=Tradtrantip%2C+Lukmanee&rft.date=2013-11-01&rft.issn=1015-6305&rft.eissn=1750-3639&rft.volume=23&rft.issue=6&rft.spage=684&rft.epage=695&rft_id=info:doi/10.1111%2Fbpa.12085&rft.externalDBID=10.1111%252Fbpa.12085&rft.externalDocID=BPA12085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-6305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-6305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-6305&client=summon