Biology of AQP4 and Anti-AQP4 Antibody: Therapeutic Implications for NMO
The water channel aquaporin‐4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4‐IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointe...
Saved in:
Published in | Brain pathology (Zurich, Switzerland) Vol. 23; no. 6; pp. 684 - 695 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Blackwell Publishing Ltd
01.11.2013
John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The water channel aquaporin‐4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4‐IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4‐IgG is pathogenic in NMO by a mechanism involving complement‐ and cell‐mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4‐IgG binding to AQP4 and greatly enhance complement‐dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4‐IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4‐IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4‐IgG pathogenicity. |
---|---|
AbstractList | The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity. The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity.The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity. The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity. [PUBLICATION ABSTRACT] The water channel aquaporin‐4 ( AQP 4) is the target of the immunoglobulin G autoantibody ( AQP 4‐ IgG ) in neuromyelitis optica ( NMO ). AQP 4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP 4 knockout mice indicates the involvement of AQP 4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP 4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP 4‐ IgG is pathogenic in NMO by a mechanism involving complement‐ and cell‐mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP 4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP 4‐ IgG binding to AQP 4 and greatly enhance complement‐dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP 4‐ IgG or AQP 4, including aquaporumab monoclonal antibodies and small molecules that block AQP 4‐ IgG binding to AQP 4, and enzymatic inactivation strategies to neutralize AQP 4‐ IgG pathogenicity. |
Author | Verkman, A. S. Tradtrantip, Lukmanee Asavapanumas, Nithi Phuan, Puay-Wah |
AuthorAffiliation | 2 Department of Physiology University of California San Francisco CA 1 Department of Medicine University of California San Francisco CA |
AuthorAffiliation_xml | – name: 1 Department of Medicine University of California San Francisco CA – name: 2 Department of Physiology University of California San Francisco CA |
Author_xml | – sequence: 1 givenname: A. S. surname: Verkman fullname: Verkman, A. S. email: A. S. Verkman, MD, PhD, 1246 Health Sciences East Tower, University of California San Francisco, San Francisco, CA 94143-0521 ( ), alan.verkman@ucsf.edu organization: Department of Medicine, University of California, San Francisco, CA – sequence: 2 givenname: Puay-Wah surname: Phuan fullname: Phuan, Puay-Wah organization: Department of Medicine, University of California, San Francisco, CA – sequence: 3 givenname: Nithi surname: Asavapanumas fullname: Asavapanumas, Nithi organization: Department of Medicine, University of California, San Francisco, CA – sequence: 4 givenname: Lukmanee surname: Tradtrantip fullname: Tradtrantip, Lukmanee organization: Department of Medicine, University of California, San Francisco, CA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24118484$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vEzEYhC1URNvAgT-AVuICh239vTYHpKQqSaXSplIRR8vreFuXjb3Yu9D8e5ykjaASCF_8Wn5mNPYcgj0fvAXgNYJHKK_jutNHCEPBnoEDVDFYEk7kXp4hYiUnkO2Dw5TuIESSS_YC7GOKkKCCHoDZxIU23KyK0BTjqzkttF8UY9-7cnNaT3VYrD4U17c26s4OvTPF2bJrndG9Cz4VTYjFxefLl-B5o9tkXz3sI_Dl0-n1yaw8v5yenYzPS8MEzGkQ1LVYcEygbDS1tawo1EbiHBkLLSpYIWoJlszASktDuK255g3FHGLOKRmBj1vfbqiXdmGs76NuVRfdUseVCtqpP2-8u1U34YciQkKCq2zw7sEghu-DTb1aumRs22pvw5AUolRgzHKE_0EJxWJtPAJvn6B3YYg-_8SaQhwzQVmm3vwefpf6sY8MvN8CJoaUom12CIJq3bXKXatN15k9fsIa129Kye927b8UP11rV3-3VpP5-FFRbhUu9fZ-p9Dxm-IVqZj6ejFVVzM4nc_RRE3JLz53xQk |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_3c04529 crossref_primary_10_1080_14712598_2021_1884223 crossref_primary_10_3389_fneur_2020_604445 crossref_primary_10_3390_ijms17081195 crossref_primary_10_1016_j_jneuroim_2015_10_005 crossref_primary_10_3390_ijms20071589 crossref_primary_10_3390_ph14101031 crossref_primary_10_1016_j_msard_2022_104212 crossref_primary_10_1080_10799893_2020_1830109 crossref_primary_10_1097_MD_0000000000014229 crossref_primary_10_3390_brainsci14010036 crossref_primary_10_3390_ijms22105192 crossref_primary_10_1016_j_jaut_2022_102892 crossref_primary_10_1016_j_yexmp_2018_05_004 crossref_primary_10_3390_cancers12010210 crossref_primary_10_1111_bpa_12086 crossref_primary_10_1186_s12987_021_00282_z crossref_primary_10_7555_JBR_37_20230264 crossref_primary_10_2174_1389450120666190214115309 crossref_primary_10_3389_fneur_2020_00627 crossref_primary_10_3389_fneur_2021_746959 crossref_primary_10_1007_s40265_018_1039_7 crossref_primary_10_1038_s41584_018_0156_8 crossref_primary_10_3390_antib11020039 crossref_primary_10_1186_s12929_024_01002_z crossref_primary_10_12968_hmed_2020_0049 crossref_primary_10_1016_j_rdc_2021_09_002 crossref_primary_10_1016_j_pnpbp_2020_110086 crossref_primary_10_3390_ijms17081306 crossref_primary_10_1186_s12974_016_0642_3 crossref_primary_10_1002_cmdc_201500546 crossref_primary_10_3390_ijms18102164 crossref_primary_10_1002_cyto_a_24905 crossref_primary_10_1097_WCO_0000000000000093 crossref_primary_10_1186_s40478_016_0309_4 crossref_primary_10_1080_19336896_2019_1660487 crossref_primary_10_1007_s11940_021_00667_3 crossref_primary_10_12677_JPS_2014_24004 crossref_primary_10_3988_jcn_2017_13_2_175 crossref_primary_10_3390_ph14010037 crossref_primary_10_1016_j_jns_2020_116671 crossref_primary_10_1177_09612033231191180 crossref_primary_10_1093_brain_awx189 crossref_primary_10_3390_brainsci7100138 crossref_primary_10_1007_s40265_020_01297_w crossref_primary_10_1177_1533033820985868 crossref_primary_10_1155_2015_638968 crossref_primary_10_1039_C8MT00072G crossref_primary_10_1016_j_radcr_2024_05_055 crossref_primary_10_3233_JAD_150949 crossref_primary_10_1016_j_msard_2021_103227 crossref_primary_10_1007_s00401_017_1682_1 crossref_primary_10_1007_s12035_024_04595_6 crossref_primary_10_1038_nrneurol_2014_129 crossref_primary_10_1007_s10753_019_01002_4 crossref_primary_10_1016_j_msard_2020_102726 crossref_primary_10_2174_1381612827666210329101335 crossref_primary_10_3389_fncel_2019_00142 crossref_primary_10_3390_ijms21155304 crossref_primary_10_1016_j_nrl_2021_01_008 crossref_primary_10_1167_iovs_18_23994 crossref_primary_10_1186_s12974_015_0403_8 crossref_primary_10_1007_s10753_018_0862_z crossref_primary_10_1177_13524585231172145 crossref_primary_10_1097_WNO_0000000000000338 crossref_primary_10_1007_s12031_020_01576_x crossref_primary_10_1186_s12974_020_01874_6 crossref_primary_10_3390_cells8020090 crossref_primary_10_1007_s00296_023_05397_0 crossref_primary_10_1007_s11882_016_0619_4 crossref_primary_10_1007_s40291_016_0211_6 crossref_primary_10_1038_s41598_019_52506_w crossref_primary_10_1016_j_nrleng_2023_10_003 crossref_primary_10_3389_fimmu_2020_01188 crossref_primary_10_1016_j_rmed_2020_106193 crossref_primary_10_3390_ijms21145021 crossref_primary_10_1016_j_bbrep_2016_05_017 crossref_primary_10_1016_j_jns_2020_117225 crossref_primary_10_3390_ijms20225810 crossref_primary_10_3390_ijms241511923 crossref_primary_10_1016_j_jneuroim_2021_577697 crossref_primary_10_1016_j_bpj_2017_03_012 crossref_primary_10_1186_s40893_016_0008_9 crossref_primary_10_1016_j_neuropharm_2018_02_002 crossref_primary_10_1021_acsomega_8b02230 crossref_primary_10_1111_nan_12574 |
Cites_doi | 10.1172/JCI67554 10.1073/pnas.93.20.10908 10.1091/mbc.E08-03-0322 10.1093/brain/awp309 10.1242/jcs.110.22.2855 10.1084/jem.20081241 10.1007/978-3-540-79885-9_1 10.1007/s00441-009-0812-z 10.1074/jbc.M110.123000 10.1242/jcs.02680 10.1124/mol.113.086470 10.1021/bi990941s 10.1074/jbc.M112.408716 10.1073/pnas.2235843100 10.1093/brain/awq177 10.1016/j.bpj.2011.05.012 10.1096/fj.10-177279 10.1074/jbc.M111.297275 10.1038/nature03460 10.1002/glia.21169 10.1242/jcs.109603 10.1002/ana.22551 10.1016/S1474-4422(12)70133-3 10.1016/j.bbrc.2009.06.085 10.1002/glia.22417 10.1074/jbc.271.9.4577 10.1096/fj.06-5930fje 10.1242/jcs.02519 10.1242/jcs.108.9.2993 10.1096/fj.11-201608 10.1016/j.bbrc.2010.02.157 10.1073/pnas.0902725106 10.1002/ana.21837 10.1038/72256 10.1016/S0021-9258(17)37486-0 10.1146/annurev.physiol.70.113006.100452 10.1111/j.1600-0854.2011.01299.x 10.1097/WNR.0b013e32835ab480 10.1074/jbc.M109.093948 10.1111/j.1471-4159.2005.03362.x 10.1007/s00018-009-0218-9 10.1136/jnnp.72.2.262 10.1152/ajpcell.00298.2003 10.1096/fj.06-6848com 10.1242/jcs.042341 10.1002/jnr.22822 10.1002/glia.20318 10.1074/jbc.270.39.22907 10.1002/ana.23741 10.1073/pnas.0605796103 10.1085/jgp.201210883 10.1007/s00109-008-0303-9 10.1016/j.bbrc.2011.08.019 10.1007/978-3-540-79885-9_2 10.1073/pnas.1109980108 10.1002/ana.22686 10.1002/glia.21177 10.1007/s00424-007-0357-5 10.1074/jbc.M801425200 10.1016/j.bpj.2009.09.017 10.1083/jcb.60.1.316 10.1016/j.jmb.2005.10.081 10.1074/jbc.M109.071670 10.1096/fj.07-104836 10.1038/sj.jcbfm.9600306 10.1371/journal.pone.0027412 10.1074/jbc.272.26.16140 10.1002/glia.20855 10.1093/brain/awf151 10.1074/jbc.M104368200 10.1038/nrn3468 10.1212/01.WNL.0000289761.64862.ce 10.1074/jbc.M111.227298 10.1007/s00401-012-0986-4 10.1016/B978-0-12-386043-9.00001-3 10.1002/ana.21802 10.3988/jcn.2011.7.3.115 10.1096/fj.04-1723fje 10.1073/pnas.95.20.11981 10.1016/j.jmb.2008.07.089 10.4049/jimmunol.181.8.5730 10.1146/annurev-med-043010-193843 10.1074/jbc.M112.344325 10.1016/j.jneuroim.2011.04.007 10.1126/scitranslmed.3003748 10.1523/JNEUROSCI.17-01-00171.1997 10.1038/nmeth801 10.1002/ana.22657 10.1152/ajprenal.00439.2003 |
ContentType | Journal Article |
Copyright | 2013 International Society of Neuropathology 2013 International Society of Neuropathology. Brain Pathology © 2013 International Society of Neuropathology |
Copyright_xml | – notice: 2013 International Society of Neuropathology – notice: 2013 International Society of Neuropathology. – notice: Brain Pathology © 2013 International Society of Neuropathology |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK JQ2 K9. 7X8 5PM |
DOI | 10.1111/bpa.12085 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | AQP4 and AQP4‐IgG in NMO |
EISSN | 1750-3639 |
EndPage | 695 |
ExternalDocumentID | PMC3890327 3097477571 24118484 10_1111_bpa_12085 BPA12085 ark_67375_WNG_QH0GPP1B_G |
Genre | article Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Guthy‐Jackson Charitable Foundation – fundername: National Institutes of Health funderid: EY13574; EB00415; DK35124; HL73856; DK86125; DK72517 – fundername: NHLBI NIH HHS grantid: R01 HL073856 – fundername: NEI NIH HHS grantid: R01 EY013574 – fundername: NIDDK NIH HHS grantid: P30 DK072517 – fundername: NHLBI NIH HHS grantid: HL73856 – fundername: NEI NIH HHS grantid: EY13574 – fundername: NIDDK NIH HHS grantid: DK72517 – fundername: NIBIB NIH HHS grantid: R37 EB000415 – fundername: NIDDK NIH HHS grantid: R37 DK035124 – fundername: NIBIB NIH HHS grantid: EB00415 – fundername: NIDDK NIH HHS grantid: DK35124 – fundername: National Institutes of Health grantid: EY13574; EB00415; DK35124; HL73856; DK86125; DK72517 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 24P 31~ 33P 36B 3SF 3UE 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5RS 5VS 66C 6P2 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AAONW AAZKR ABCQN ABCUV ABEML ABJCF ABLJU ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACMXC ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADPDF ADXAS ADZCM ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AHEFC AHMBA AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMXJE BROTX BRXPI BSCLL BY8 C45 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA GROUPED_DOAJ GSXLS H.X HCIFZ HF~ HMCUK HVGLF HZ~ IAO IHR IPY IX1 J0M K48 K7- LATKE LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P M7S MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PTHSS Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPM RX1 SAMSI SJN SUPJJ SV3 TEORI UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 ZZTAW ~IA ~WT AANHP ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7TK JQ2 K9. WIN 7X8 5PM |
ID | FETCH-LOGICAL-c5805-610ab8d62309fa4eb9740ac9236328a870714e3295c07a9c36eb6a6f426026643 |
IEDL.DBID | DR2 |
ISSN | 1015-6305 1750-3639 |
IngestDate | Thu Aug 21 18:01:21 EDT 2025 Fri Jul 11 08:56:29 EDT 2025 Fri Jul 11 05:45:03 EDT 2025 Wed Aug 13 09:39:30 EDT 2025 Mon Jul 21 05:37:30 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Tue Jul 01 02:42:11 EDT 2025 Wed Jan 22 16:28:12 EST 2025 Wed Oct 30 09:56:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | orthogonal array autoimmunity aquaporin complement astrocyte neuromyelitis optica |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 International Society of Neuropathology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5805-610ab8d62309fa4eb9740ac9236328a870714e3295c07a9c36eb6a6f426026643 |
Notes | istex:002C9E2325FD21C60DC191CE771BCE387105E6AE ark:/67375/WNG-QH0GPP1B-G ArticleID:BPA12085 Guthy-Jackson Charitable Foundation National Institutes of Health - No. EY13574; No. EB00415; No. DK35124; No. HL73856; No. DK86125; No. DK72517 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://doi.org/10.1111/bpa.12085 |
PMID | 24118484 |
PQID | 1441625845 |
PQPubID | 976340 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3890327 proquest_miscellaneous_1448225329 proquest_miscellaneous_1443428890 proquest_journals_1441625845 pubmed_primary_24118484 crossref_primary_10_1111_bpa_12085 crossref_citationtrail_10_1111_bpa_12085 wiley_primary_10_1111_bpa_12085_BPA12085 istex_primary_ark_67375_WNG_QH0GPP1B_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2013 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Indianapolis – name: Hoboken |
PublicationTitle | Brain pathology (Zurich, Switzerland) |
PublicationTitleAlternate | Brain Pathology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Jin BJ, Zhang H, Binder DK, Verkman AS (2013) Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J Gen Physiol 141:119-132. Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527-1537. Kim W, Kim SH, Kim HJ (2011) New insights into neuromyelitis optica. J Clin Neurol 7:115-127. Saadoun S, Papadopoulos MC, Davies DC, Krisha S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262-265. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291-1293. Tajima M, Crane JM, Verkman AS (2010) Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 285:8163-8170. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2010) Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun 394:205-210. Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M et al (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133:2578-2591. Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M et al (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630-643. Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426-C432. Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233-31237. Pisani F, Mastrototaro M, Rossi A, Nicchia GP, Tortorella C, Ruggieri M et al (2011) Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding. J Biol Chem 286:9216-9224. Yang B, Verkman AS (1997) Water and glycerol permeability of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140-16146. Crane JM, Verkman AS (2009) Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J Cell Sci 122:813-821. Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855-3860. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450-1461. Landis DM, Reese TS (1974) Arrays of particles in freeze-fractured astrocytic membranes. J Cell Biol 60:316-320. Rossi A, Ratelade J, Papadopoulos MC, Bennett JL, Verkman AS (2012) Neuromyelitis optica (NMO) IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content or supramolecular assembly. Glia 60:2027-2039. Zhang H, Verkman AS (2013) Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 123:2306-2316. Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573-579. Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol 11:535-544. Melamud L, Fernandez JM, Rivarola V, Di Giusto G, Ford P, Villa A, Capurro C (2012) Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin-4 expression and water permeability of the astrocyte plasma membrane. J Neurosci Res 90:1240-1248. Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M et al (2009) Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57:1363-1373. Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25:1556-1566. Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973-980. Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA et al (2009) Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci U S A 106:7437-7442. Crane JM, Bennett JL, Verkman AS (2009) Live cell analysis of aquaporin-4 M1/M23 interactions and regulated orthogonal array assembly in glial cells. J Biol Chem 284:35850-35860. Crane JM, Van Hoek AN, Skach WR, Verkman AS (2008) Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Mol Biol Cell 19:3369-3378. Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70:943-954. Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270:22907-22913. Yang B, Zador Z, Verkman AS (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem 283:15280-15286. Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631-636. Rossi A, Crane JM, Verkman AS (2011) Aquaporin-4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding. Glia 59:1056-1063. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691-5698. Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303-316. Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829-840. Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyeroporins. Ann Rev Physiol 70:301-327. Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69:2221-2231. Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245-1250. Saadoun S, Waters P, Macdonald C, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2012) Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 71:323-333. Tradtrantip L, Zhang H, Anderson MO, Saadoun S, Phuan PW, Papadopoulos MC et al (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J 26:2197-2208. Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS (2007) Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 21:108-116. Crane JM, Verkman AS (2009) Reversible, temperature-dependent supramolecular assembly of aquaporin-4 orthogonal arrays in live cell membranes. Biophys J 97:3010-3018. Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216-3223. Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF (2011) Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 287:1-41. Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3-28. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225-3232. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. Papadopoulos MC, Saadoun MC, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693-700. Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2:825-827. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66:617-629. Crane JM, Lam C, Rossi A, Gupta T, Bennett JL, Verkman AS (2011) Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J Biol Chem 286:16516-16524. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2009) Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun 386:623-627. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171-180. Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20:1892-1894. Rossi A, Moritz TJ, Ratelade J, Verkman AS (2012) Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J Cell Sci 125:4405-4412. Rossi A, Baumgart F, van Hoek AN, Verkman AS (2012) Post-Golgi s 2012; 60 2004; 287 2011; 236 2004; 286 2012; 287 2012; 123 2000; 6 1997; 272 1997; 110 2013; 123 2011; 59 2012; 125 2012; 13 2008; 70 2012; 11 2008; 382 2010; 67 2012; 71 2009; 57 2006; 20 2013; 14 2009; 97 1994; 269 2011; 70 2002; 43 2006; 26 2009; 122 2010; 394 1997; 17 2008; 22 2009; 284 2011; 25 2012; 26 2007; 21 1998; 95 2012; 23 2007; 69 2011; 287 2011; 286 2012; 63 2009; 66 2011; 412 2006; 53 2002; 72 2008; 19 2005; 434 2013; 83 2005; 118 1996; 93 2008; 205 2010; 285 2013; 141 2011; 6 2011; 7 1995; 270 2008; 283 2012; 109 2006; 355 2009; 337 2001; 276 2008; 181 2012; 90 2009; 190 2004; 18 1974; 60 2013; 73 2002; 125 1999; 38 1995; 108 2005; 95 2009; 386 2010; 133 1996; 271 2008; 456 2005; 2 2008; 86 2012; 4 2003; 100 2011; 100 2006; 103 2009; 106 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Li J (e_1_2_10_34_1) 2002; 43 e_1_2_10_91_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 e_1_2_10_89_1 22989877 - J Biol Chem. 2012 Oct 26;287(44):36837-44 22374891 - Ann Neurol. 2012 Mar;71(3):323-33 12076996 - Brain. 2002 Jul;125(Pt 7):1450-61 7509789 - J Biol Chem. 1994 Feb 25;269(8):5497-500 9751776 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11981-6 22248325 - Annu Rev Med. 2012;63:303-16 21257712 - FASEB J. 2011 May;25(5):1556-66 14597700 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13609-14 16181429 - J Neurochem. 2005 Oct;95(1):254-62 16079275 - J Cell Sci. 2005 Aug 1;118(Pt 15):3225-32 21621279 - J Neuroimmunol. 2011 Jul;236(1-2):65-71 22128336 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1245-50 22087205 - J Clin Neurol. 2011 Sep;7(3):115-27 22069320 - J Biol Chem. 2011 Dec 30;286(52):45156-64 16278651 - Nat Methods. 2005 Nov;2(11):825-7 22319008 - FASEB J. 2012 May;26(5):2197-208 22069219 - Ann Neurol. 2011 Dec;70(6):943-54 22608667 - Lancet Neurol. 2012 Jun;11(6):535-44 23108041 - Neuroreport. 2012 Dec 19;23(18):1044-7 10460172 - Biochemistry. 1999 Aug 24;38(34):11156-63 23571414 - Mol Pharmacol. 2013 Jun;83(6):1268-75 11796780 - J Neurol Neurosurg Psychiatry. 2002 Feb;72(2):262-5 20688809 - Brain. 2010 Sep;133(9):2578-91 18311471 - J Mol Med (Berl). 2008 May;86(5):523-9 16470808 - Glia. 2006 Apr 15;53(6):631-6 9427293 - J Cell Sci. 1997 Nov;110 ( Pt 22):2855-60 21414585 - Int Rev Cell Mol Biol. 2011;287:1-41 23055279 - Ann Neurol. 2013 Jan;73(1):77-85 20047900 - Brain. 2010 Feb;133(Pt 2):349-61 20071343 - J Biol Chem. 2010 Mar 12;285(11):8163-70 19938104 - Ann Neurol. 2009 Nov;66(5):617-29 23563310 - J Clin Invest. 2013 May;123(5):2306-16 21491501 - Glia. 2011 Jul;59(7):1056-63 10655103 - Nat Med. 2000 Feb;6(2):159-63 18495865 - Mol Biol Cell. 2008 Aug;19(8):3369-78 14576087 - Am J Physiol Cell Physiol. 2004 Feb;286(2):C426-32 23481483 - Nat Rev Neurosci. 2013 Apr;14(4):265-77 21856282 - Biochem Biophys Res Commun. 2011 Sep 9;412(4):654-9 18708067 - J Mol Biol. 2008 Oct 24;382(5):1136-43 22718347 - J Cell Sci. 2012 Sep 15;125(Pt 18):4405-12 4809245 - J Cell Biol. 1974 Jan;60(1):316-20 22271321 - Ann Neurol. 2012 Mar;71(3):314-22 17968585 - Pflugers Arch. 2008 Jul;456(4):693-700 15149973 - Am J Physiol Renal Physiol. 2004 Sep;287(3):F501-11 16938871 - Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13532-6 16325200 - J Mol Biol. 2006 Jan 27;355(4):628-39 19096771 - Handb Exp Pharmacol. 2009;(190):31-56 19096770 - Handb Exp Pharmacol. 2009;(190):3-28 20188706 - Biochem Biophys Res Commun. 2010 Mar 26;394(1):205-10 19843522 - J Biol Chem. 2009 Dec 18;284(51):35850-60 9195910 - J Biol Chem. 1997 Jun 27;272(26):16140-6 11406631 - J Biol Chem. 2001 Aug 17;276(33):31233-7 19449033 - Cell Tissue Res. 2009 Aug;337(2):185-95 22076159 - PLoS One. 2011;6(11):e27412 18375385 - J Biol Chem. 2008 May 30;283(22):15280-6 16818469 - FASEB J. 2006 Sep;20(11):1892-4 19383790 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7437-42 18832732 - J Immunol. 2008 Oct 15;181(8):5730-7 17928579 - Neurology. 2007 Dec 11;69(24):2221-31 22526022 - Acta Neuropathol. 2012 Jun;123(6):861-72 22354518 - J Neurosci Res. 2012 Jun;90(6):1240-8 22393049 - J Biol Chem. 2012 Apr 20;287(17):13829-39 15815633 - Nature. 2005 Apr 7;434(7034):786-92 17961083 - Annu Rev Physiol. 2008;70:301-27 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111 11818406 - Invest Ophthalmol Vis Sci. 2002 Feb;43(2):573-9 15208268 - FASEB J. 2004 Aug;18(11):1291-3 8537439 - J Cell Sci. 1995 Sep;108 ( Pt 9):2993-3002 21981006 - Traffic. 2012 Jan;13(1):43-53 16552421 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1527-37 20013023 - Cell Mol Life Sci. 2010 Mar;67(5):829-40 21689527 - Biophys J. 2011 Jun 22;100(12):2936-45 19948131 - Biophys J. 2009 Dec 2;97(11):3010-8 8855281 - Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10908-12 8617713 - J Biol Chem. 1996 Mar 1;271(9):4577-80 22987455 - Glia. 2012 Dec;60(12):2027-39 8987746 - J Neurosci. 1997 Jan 1;17(1):171-80 19545538 - Biochem Biophys Res Commun. 2009 Sep 4;386(4):623-7 18511552 - FASEB J. 2008 Sep;22(9):3216-23 21446052 - Glia. 2011 Jun;59(6):973-80 19937948 - Ann Neurol. 2009 Nov;66(5):630-43 21212277 - J Biol Chem. 2011 Mar 18;286(11):9216-24 17135365 - FASEB J. 2007 Jan;21(1):108-16 19240114 - J Cell Sci. 2009 Mar 15;122(Pt 6):813-21 16303850 - J Cell Sci. 2005 Dec 15;118(Pt 24):5691-8 7559426 - J Biol Chem. 1995 Sep 29;270(39):22907-13 23277478 - J Gen Physiol. 2013 Jan;141(1):119-32 21454592 - J Biol Chem. 2011 May 6;286(18):16516-24 18838545 - J Exp Med. 2008 Oct 27;205(11):2473-81 19229993 - Glia. 2009 Oct;57(13):1363-73 |
References_xml | – reference: Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A, Antel JP (2008) Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 181:5730-5737. – reference: Jin BJ, Rossi A, Verkman AS (2011) Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms. Biophys J 100:2936-2945. – reference: Ratelade J, Bennett JL, Verkman AS (2011) Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS One 6:e27412. – reference: Crane JM, Verkman AS (2009) Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J Cell Sci 122:813-821. – reference: Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225-3232. – reference: Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. – reference: Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2009) Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun 386:623-627. – reference: Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nature Rev Neurosci 14:265-277. – reference: Ratelade J, Bennett JL, Verkman AS (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J Biol Chem 286:45156-45164. – reference: Kim W, Kim SH, Kim HJ (2011) New insights into neuromyelitis optica. J Clin Neurol 7:115-127. – reference: Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426-C432. – reference: Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20:1892-1894. – reference: Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573-579. – reference: Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M et al (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630-643. – reference: Phuan PW, Anderson MO, Tradtrantip L, Zhang H, Tan J, Bennett JL, Verkman AS (2012) A small molecule screen yields idiotype-specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin-4. J Biol Chem 287:36837-36844. – reference: Tajima M, Crane JM, Verkman AS (2010) Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 285:8163-8170. – reference: Walz T, Fujiyoshi Y, Engel A (2009) The AQP structure and functional implications. Handb Exp Pharmacol 190:31-56. – reference: Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3-28. – reference: Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245-1250. – reference: Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303-316. – reference: Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF (2011) Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 287:1-41. – reference: Saadoun S, Bridges LR, Verkman AS, Papadopoulos MC (2012) Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions. Neuroreport 23:1044-1047. – reference: Pisani F, Mastrototaro M, Rossi A, Nicchia GP, Tortorella C, Ruggieri M et al (2011) Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding. J Biol Chem 286:9216-9224. – reference: Rossi A, Baumgart F, van Hoek AN, Verkman AS (2012) Post-Golgi supramolecular assembly of aquaporin-4 in orthogonal arrays. Traffic 13:43-53. – reference: Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108:2993-3002. – reference: Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69:2221-2231. – reference: Landis DM, Reese TS (1974) Arrays of particles in freeze-fractured astrocytic membranes. J Cell Biol 60:316-320. – reference: Cui Y, Bastien DA (2011) Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem Biophys Res Commun 412:654-659. – reference: Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171-180. – reference: Papadopoulos MC, Saadoun MC, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693-700. – reference: Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66:617-629. – reference: Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973-980. – reference: Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M et al (2009) Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57:1363-1373. – reference: Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA et al (2009) Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci U S A 106:7437-7442. – reference: Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855-3860. – reference: Silberstein C, Bouley R, Huang Y, Fang P, Pastor-Soler N, Brown D, Van Hoek AN (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol 287:F501-F511. – reference: Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25:1556-1566. – reference: Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2:825-827. – reference: Yang B, Verkman AS (1997) Water and glycerol permeability of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140-16146. – reference: Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691-5698. – reference: Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527-1537. – reference: Crane JM, Verkman AS (2009) Reversible, temperature-dependent supramolecular assembly of aquaporin-4 orthogonal arrays in live cell membranes. Biophys J 97:3010-3018. – reference: Lu M, Lee MD, Smith BL, Jung JS, Agre P, Verdijk MA et al (1996) The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc Natl Acad Sci U S A 93:10908-10912. – reference: Tradtrantip L, Ratelade J, Zhang H, Verkman AS (2013) Enzymatic deglycosylation converts neuromyelitis optica anti-AQP4 IgG into a therapeutic blocking antibody. Ann Neurol 73:77-85. – reference: Rossi A, Ratelade J, Papadopoulos MC, Bennett JL, Verkman AS (2012) Neuromyelitis optica (NMO) IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content or supramolecular assembly. Glia 60:2027-2039. – reference: Tradtrantip L, Asavapanumas N, Verkman AS (2013) Therapeutic cleavage of anti-aquaporin-4 autoantibodies in neuromyelitis optica by an IgG-selective proteinase. Mol Pharmacol 83:1268-1275. – reference: Ratelade J, Zhang H, Saadoun S, Bennett JL, Papadopoulos MC, Verkman AS (2012) Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol 123:861-872. – reference: Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159-163. – reference: Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291-1293. – reference: Rossi A, Crane JM, Verkman AS (2011) Aquaporin-4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding. Glia 59:1056-1063. – reference: Furman CS, Gorelick-Feldman DA, Davidson KG, Yasumura T, Neely JD, Agre P, Rash JE (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A 100:13609-13614. – reference: Phuan PW, Ratelade J, Rossi A, Tradtrantip L, Verkman AS (2012) Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 assembly in orthogonal arrays. J Biol Chem 287:13829-13839. – reference: Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829-840. – reference: Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyeroporins. Ann Rev Physiol 70:301-327. – reference: Rossi A, Moritz TJ, Ratelade J, Verkman AS (2012) Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J Cell Sci 125:4405-4412. – reference: Verkman AS, Hara-Chikuma M, Papadopoulos MC (2008) Aquaporins-new players in cancer biology. J Mol Med (Berl) 86:523-529. – reference: Tradtrantip L, Zhang H, Anderson MO, Saadoun S, Phuan PW, Papadopoulos MC et al (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J 26:2197-2208. – reference: Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577-4580. – reference: Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2010) Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun 394:205-210. – reference: Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233-31237. – reference: Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631-636. – reference: Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981-11986. – reference: Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628-639. – reference: Hinson SR, Roemer SF, Lucchinetti CF, Fryer JP, Kryzer TJ, Chamberlain JL et al (2008) Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205:2473-2481. – reference: Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol 11:535-544. – reference: Crane JM, Van Hoek AN, Skach WR, Verkman AS (2008) Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Mol Biol Cell 19:3369-3378. – reference: Saadoun S, Waters P, Macdonald C, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2012) Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 71:323-333. – reference: Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS (1994) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269:5497-5500. – reference: Neely JD, Christensen BM, Nielsen S, Agre P (1999) Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38:11156-11163. – reference: Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC et al (2012) Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 71:314-322. – reference: Frydenlund DS, Bhardwaj A, Otsuka T, Mylonakou MN, Yasumura T, Davidson KG et al (2006) Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA 103:13532-13536. – reference: Zhang H, Verkman AS (2013) Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 123:2306-2316. – reference: Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M et al (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133:2578-2591. – reference: Bloch O, Papadopoulos MC, Manley GT, Verkman AS (2005) Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 95:254-262. – reference: Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270:22907-22913. – reference: Yang B, Zador Z, Verkman AS (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem 283:15280-15286. – reference: Crane JM, Lam C, Rossi A, Gupta T, Bennett JL, Verkman AS (2011) Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J Biol Chem 286:16516-16524. – reference: Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133:349-361. – reference: Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216-3223. – reference: Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450-1461. – reference: Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786-792. – reference: Zhang H, Verkman AS (2008) Evidence against involvement of aquaporin-4 in cell-cell adhesion. J Mol Biol 382:1136-1143. – reference: Crane JM, Bennett JL, Verkman AS (2009) Live cell analysis of aquaporin-4 M1/M23 interactions and regulated orthogonal array assembly in glial cells. J Biol Chem 284:35850-35860. – reference: Jin BJ, Zhang H, Binder DK, Verkman AS (2013) Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J Gen Physiol 141:119-132. – reference: Saadoun S, Papadopoulos MC, Davies DC, Krisha S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262-265. – reference: Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70:943-954. – reference: Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS (2007) Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 21:108-116. – reference: Melamud L, Fernandez JM, Rivarola V, Di Giusto G, Ford P, Villa A, Capurro C (2012) Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin-4 expression and water permeability of the astrocyte plasma membrane. J Neurosci Res 90:1240-1248. – reference: Noell S, Fallier-Becker P, Deutsch U, Mack AF, Wolburg H (2009) Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell Tissue Res 337:185-195. – reference: Yu X, Green M, Gilden D, Lam C, Bautista K, Bennett JL (2011) Identification of peptide targets in neuromyelitis optica. J Neuroimmunol 236:65-71. – volume: 108 start-page: 2993 year: 1995 end-page: 3002 article-title: Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues publication-title: J Cell Sci – volume: 286 start-page: 45156 year: 2011 end-page: 45164 article-title: Evidence against cellular internalization of NMO‐IgG, aquaporin‐4, and excitatory amino acid transporter 2 in neuromyelitis optica publication-title: J Biol Chem – volume: 57 start-page: 1363 year: 2009 end-page: 1373 article-title: Aquaporin‐4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies publication-title: Glia – volume: 97 start-page: 3010 year: 2009 end-page: 3018 article-title: Reversible, temperature‐dependent supramolecular assembly of aquaporin‐4 orthogonal arrays in live cell membranes publication-title: Biophys J – volume: 60 start-page: 316 year: 1974 end-page: 320 article-title: Arrays of particles in freeze‐fractured astrocytic membranes publication-title: J Cell Biol – volume: 106 start-page: 7437 year: 2009 end-page: 7442 article-title: Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 265 year: 2013 end-page: 277 article-title: Aquaporin water channels in the nervous system publication-title: Nature Rev Neurosci – volume: 72 start-page: 262 year: 2002 end-page: 265 article-title: Aquaporin‐4 expression is increased in oedematous human brain tumours publication-title: J Neurol Neurosurg Psychiatry – volume: 271 start-page: 4577 year: 1996 end-page: 4580 article-title: The mercurial insensitive water channel (AQP‐4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells publication-title: J Biol Chem – volume: 43 start-page: 573 year: 2002 end-page: 579 article-title: Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin‐4 water channels publication-title: Invest Ophthalmol Vis Sci – volume: 67 start-page: 829 year: 2010 end-page: 840 article-title: Differential water permeability and regulation of three aquaporin 4 isoforms publication-title: Cell Mol Life Sci – volume: 4 start-page: 147ra111 year: 2012 article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta publication-title: Sci Transl Med – volume: 66 start-page: 617 year: 2009 end-page: 629 article-title: Intrathecal pathogenic anti‐aquaporin‐4 antibodies in early neuromyelitis optica publication-title: Ann Neurol – volume: 22 start-page: 3216 year: 2008 end-page: 3223 article-title: Impaired olfaction in mice lacking aquaporin‐4 water channels publication-title: FASEB J – volume: 125 start-page: 1450 year: 2002 end-page: 1461 article-title: A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica publication-title: Brain – volume: 19 start-page: 3369 year: 2008 end-page: 3378 article-title: Aquaporin‐4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking publication-title: Mol Biol Cell – volume: 17 start-page: 171 year: 1997 end-page: 180 article-title: Specialized membrane domains for water transport in glial cells: high‐resolution immunogold cytochemistry of aquaporin‐4 in rat brain publication-title: J Neurosci – volume: 60 start-page: 2027 year: 2012 end-page: 2039 article-title: Neuromyelitis optica (NMO) IgG does not alter aquaporin‐4 water permeability, plasma membrane M1/M23 isoform content or supramolecular assembly publication-title: Glia – volume: 133 start-page: 2578 year: 2010 end-page: 2591 article-title: Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury publication-title: Brain – volume: 269 start-page: 5497 year: 1994 end-page: 5500 article-title: Molecular cloning of a mercurial‐insensitive water channel expressed in selected water‐transporting tissues publication-title: J Biol Chem – volume: 73 start-page: 77 year: 2013 end-page: 85 article-title: Enzymatic deglycosylation converts neuromyelitis optica anti‐AQP4 IgG into a therapeutic blocking antibody publication-title: Ann Neurol – volume: 103 start-page: 13532 year: 2006 end-page: 13536 article-title: Temporary loss of perivascular aquaporin‐4 in neocortex after transient middle cerebral artery occlusion in mice publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 159 year: 2000 end-page: 163 article-title: Aquaporin‐4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke publication-title: Nat Med – volume: 286 start-page: 16516 year: 2011 end-page: 16524 article-title: Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin‐4 M1/M23 isoforms and orthogonal arrays publication-title: J Biol Chem – volume: 125 start-page: 4405 year: 2012 end-page: 4412 article-title: Super‐resolution imaging of aquaporin‐4 orthogonal arrays of particles in cell membranes publication-title: J Cell Sci – volume: 70 start-page: 301 year: 2008 end-page: 327 article-title: A current view of the mammalian aquaglyeroporins publication-title: Ann Rev Physiol – volume: 95 start-page: 11981 year: 1998 end-page: 11986 article-title: Direct immunogold labeling of aquaporin‐4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord publication-title: Proc Natl Acad Sci U S A – volume: 285 start-page: 8163 year: 2010 end-page: 8170 article-title: Aquaporin‐4 (AQP4) associations and array dynamics probed by photobleaching and single‐molecule analysis of green fluorescent protein‐AQP4 chimeras publication-title: J Biol Chem – volume: 205 start-page: 2473 year: 2008 end-page: 2481 article-title: Aquaporin‐4‐binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down‐regulating EAAT2 publication-title: J Exp Med – volume: 456 start-page: 693 year: 2008 end-page: 700 article-title: Aquaporins and cell migration publication-title: Pflugers Arch – volume: 287 start-page: 13829 year: 2012 end-page: 13839 article-title: Complement‐dependent cytotoxicity in neuromyelitis optica requires aquaporin‐4 assembly in orthogonal arrays publication-title: J Biol Chem – volume: 412 start-page: 654 year: 2011 end-page: 659 article-title: Water transport in human aquaporin‐4: molecular dynamics (MD) simulations publication-title: Biochem Biophys Res Commun – volume: 434 start-page: 786 year: 2005 end-page: 792 article-title: Impairment of angiogenesis and cell migration by targeted aquaporin‐1 gene disruption publication-title: Nature – volume: 118 start-page: 3225 year: 2005 end-page: 3232 article-title: More than just water channels: unexpected cellular roles of aquaporins publication-title: J Cell Sci – volume: 93 start-page: 10908 year: 1996 end-page: 10912 article-title: The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain publication-title: Proc Natl Acad Sci U S A – volume: 123 start-page: 861 year: 2012 end-page: 872 article-title: Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss publication-title: Acta Neuropathol – volume: 141 start-page: 119 year: 2013 end-page: 132 article-title: Aquaporin‐4‐dependent K and water transport modeled in brain extracellular space following neuroexcitation publication-title: J Gen Physiol – volume: 95 start-page: 254 year: 2005 end-page: 262 article-title: Aquaporin‐4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess publication-title: J Neurochem – volume: 122 start-page: 813 year: 2009 end-page: 821 article-title: Determinants of aquaporin‐4 assembly in orthogonal arrays revealed by live‐cell single‐molecule fluorescence imaging publication-title: J Cell Sci – volume: 386 start-page: 623 year: 2009 end-page: 627 article-title: Neuromyelitis optica: passive transfer to rats by human immunoglobulin publication-title: Biochem Biophys Res Commun – volume: 286 start-page: C426 year: 2004 end-page: C432 article-title: Sevenfold‐reduced osmotic water permeability in primary astrocyte cultures from AQP‐4‐deficient mice, measured by a fluorescence quenching method publication-title: Am J Physiol Cell Physiol – volume: 70 start-page: 943 year: 2011 end-page: 954 article-title: Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms publication-title: Ann Neurol – volume: 276 start-page: 31233 year: 2001 end-page: 31237 article-title: Impaired hearing in mice lacking aquaporin‐4 water channels publication-title: J Biol Chem – volume: 2 start-page: 825 year: 2005 end-page: 827 article-title: K waves in brain cortex visualized using a long‐wavelength K ‐sensing fluorescent indicator publication-title: Nat Methods – volume: 100 start-page: 2936 year: 2011 end-page: 2945 article-title: Model of aquaporin‐4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1‐M23 isoforms publication-title: Biophys J – volume: 38 start-page: 11156 year: 1999 end-page: 11163 article-title: Heterotetrameric composition of aquaporin‐4 water channels publication-title: Biochemistry – volume: 26 start-page: 2197 year: 2012 end-page: 2208 article-title: Small‐molecule inhibitors of NMO‐IgG binding to aquaporin‐4 reduce astrocyte cytotoxicity in neuromyelitis optica publication-title: FASEB J – volume: 83 start-page: 1268 year: 2013 end-page: 1275 article-title: Therapeutic cleavage of anti‐aquaporin‐4 autoantibodies in neuromyelitis optica by an IgG‐selective proteinase publication-title: Mol Pharmacol – volume: 123 start-page: 2306 year: 2013 end-page: 2316 article-title: Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica publication-title: J Clin Invest – volume: 286 start-page: 9216 year: 2011 end-page: 9224 article-title: Identification of two major conformational aquaporin‐4 epitopes for neuromyelitis optica autoantibody binding publication-title: J Biol Chem – volume: 11 start-page: 535 year: 2012 end-page: 544 article-title: Aquaporin 4 and neuromyelitis optica publication-title: Lancet Neurol – volume: 53 start-page: 631 year: 2006 end-page: 636 article-title: Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin‐4 water channels publication-title: Glia – volume: 21 start-page: 108 year: 2007 end-page: 116 article-title: Greatly impaired migration of implanted aquaporin‐4‐deficient astroglial cells in mouse brain toward a site of injury publication-title: FASEB J – volume: 109 start-page: 1245 year: 2012 end-page: 1250 article-title: Molecular outcomes of neuromyelitis optica (NMO)‐IgG binding to aquaporin‐4 in astrocytes publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 115 year: 2011 end-page: 127 article-title: New insights into neuromyelitis optica publication-title: J Clin Neurol – volume: 394 start-page: 205 year: 2010 end-page: 210 article-title: Anti‐aquaporin‐4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen‐specific T cells publication-title: Biochem Biophys Res Commun – volume: 13 start-page: 43 year: 2012 end-page: 53 article-title: Post‐Golgi supramolecular assembly of aquaporin‐4 in orthogonal arrays publication-title: Traffic – volume: 59 start-page: 1056 year: 2011 end-page: 1063 article-title: Aquaporin‐4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding publication-title: Glia – volume: 284 start-page: 35850 year: 2009 end-page: 35860 article-title: Live cell analysis of aquaporin‐4 M1/M23 interactions and regulated orthogonal array assembly in glial cells publication-title: J Biol Chem – volume: 133 start-page: 349 year: 2010 end-page: 361 article-title: Intra‐cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice publication-title: Brain – volume: 272 start-page: 16140 year: 1997 end-page: 16146 article-title: Water and glycerol permeability of aquaporins 1‐5 and MIP determined quantitatively by expression of epitope‐tagged constructs in Xenopus oocytes publication-title: J Biol Chem – volume: 337 start-page: 185 year: 2009 end-page: 195 article-title: Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes publication-title: Cell Tissue Res – volume: 63 start-page: 303 year: 2012 end-page: 316 article-title: Aquaporins in clinical medicine publication-title: Annu Rev Med – volume: 26 start-page: 1527 year: 2006 end-page: 1537 article-title: Accelerated progression of kaolin‐induced hydrocephalus in aquaporin‐4‐deficient mice publication-title: J Cereb Blood Flow Metab – volume: 6 start-page: e27412 year: 2011 article-title: Intravenous neuromyelitis optica autoantibody in mice targets aquaporin‐4 in peripheral organs and area postrema publication-title: PLoS One – volume: 118 start-page: 5691 year: 2005 end-page: 5698 article-title: Involvement of aquaporin‐4 in astroglial cell migration and glial scar formation publication-title: J Cell Sci – volume: 86 start-page: 523 year: 2008 end-page: 529 article-title: Aquaporins—new players in cancer biology publication-title: J Mol Med (Berl) – volume: 181 start-page: 5730 year: 2008 end-page: 5737 article-title: Functional consequences of neuromyelitis optica‐IgG astrocyte interactions on blood‐brain barrier permeability and granulocyte recruitment publication-title: J Immunol – volume: 287 start-page: 1 year: 2011 end-page: 41 article-title: Structure and functions of aquaporin‐4‐based orthogonal arrays of particles publication-title: Int Rev Cell Mol Biol – volume: 283 start-page: 15280 year: 2008 end-page: 15286 article-title: Glial cell aquaporin‐4 overexpression in transgenic mice accelerates cytotoxic brain swelling publication-title: J Biol Chem – volume: 71 start-page: 314 year: 2012 end-page: 322 article-title: Anti‐aquaporin‐4 monoclonal antibody blocker therapy for neuromyelitis optica publication-title: Ann Neurol – volume: 287 start-page: 36837 year: 2012 end-page: 36844 article-title: A small molecule screen yields idiotype‐specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin‐4 publication-title: J Biol Chem – volume: 18 start-page: 1291 year: 2004 end-page: 1293 article-title: Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema publication-title: FASEB J – volume: 236 start-page: 65 year: 2011 end-page: 71 article-title: Identification of peptide targets in neuromyelitis optica publication-title: J Neuroimmunol – volume: 66 start-page: 630 year: 2009 end-page: 643 article-title: Neuromyelitis optica: pathogenicity of patient immunoglobulin publication-title: Ann Neurol – volume: 382 start-page: 1136 year: 2008 end-page: 1143 article-title: Evidence against involvement of aquaporin‐4 in cell‐cell adhesion publication-title: J Mol Biol – volume: 355 start-page: 628 year: 2006 end-page: 639 article-title: Implications of the aquaporin‐4 structure on array formation and cell adhesion publication-title: J Mol Biol – volume: 90 start-page: 1240 year: 2012 end-page: 1248 article-title: Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin‐4 expression and water permeability of the astrocyte plasma membrane publication-title: J Neurosci Res – volume: 110 start-page: 2855 year: 1997 end-page: 3860 article-title: Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin‐4 publication-title: J Cell Sci – volume: 100 start-page: 13609 year: 2003 end-page: 13614 article-title: Aquaporin‐4 square array assembly: opposing actions of M1 and M23 isoforms publication-title: Proc Natl Acad Sci U S A – volume: 23 start-page: 1044 year: 2012 end-page: 1047 article-title: Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions publication-title: Neuroreport – volume: 287 start-page: F501 year: 2004 end-page: F511 article-title: Membrane organization and function of M1 and M23 isoforms of aquaporin‐4 in epithelial cells publication-title: Am J Physiol – volume: 20 start-page: 1892 year: 2006 end-page: 1894 article-title: Increased migration and metastatic potential of tumor cells expressing aquaporin water channels publication-title: FASEB J – volume: 71 start-page: 323 year: 2012 end-page: 333 article-title: Neutrophil protease inhibition reduces neuromyelitis optica‐immunoglobulin G‐induced damage in mouse brain publication-title: Ann Neurol – volume: 25 start-page: 1556 year: 2011 end-page: 1566 article-title: Proinflammatory role of aquaporin‐4 in autoimmune neuroinflammation publication-title: FASEB J – volume: 59 start-page: 973 year: 2011 end-page: 980 article-title: Impact of aquaporin‐4 channels on K buffering and gap junction coupling in the hippocampus publication-title: Glia – volume: 190 start-page: 31 year: 2009 end-page: 56 article-title: The AQP structure and functional implications publication-title: Handb Exp Pharmacol – volume: 270 start-page: 22907 year: 1995 end-page: 22913 article-title: cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units publication-title: J Biol Chem – volume: 69 start-page: 2221 year: 2007 end-page: 2231 article-title: Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica publication-title: Neurology – volume: 190 start-page: 3 year: 2009 end-page: 28 article-title: Discovery of the aquaporins and development of the field publication-title: Handb Exp Pharmacol – ident: e_1_2_10_90_1 doi: 10.1172/JCI67554 – ident: e_1_2_10_37_1 doi: 10.1073/pnas.93.20.10908 – ident: e_1_2_10_13_1 doi: 10.1091/mbc.E08-03-0322 – ident: e_1_2_10_66_1 doi: 10.1093/brain/awp309 – ident: e_1_2_10_77_1 doi: 10.1242/jcs.110.22.2855 – ident: e_1_2_10_21_1 doi: 10.1084/jem.20081241 – ident: e_1_2_10_8_1 doi: 10.1007/978-3-540-79885-9_1 – ident: e_1_2_10_45_1 doi: 10.1007/s00441-009-0812-z – ident: e_1_2_10_53_1 doi: 10.1074/jbc.M110.123000 – ident: e_1_2_10_65_1 doi: 10.1242/jcs.02680 – ident: e_1_2_10_75_1 doi: 10.1124/mol.113.086470 – ident: e_1_2_10_42_1 doi: 10.1021/bi990941s – ident: e_1_2_10_51_1 doi: 10.1074/jbc.M112.408716 – ident: e_1_2_10_18_1 doi: 10.1073/pnas.2235843100 – ident: e_1_2_10_40_1 doi: 10.1093/brain/awq177 – ident: e_1_2_10_27_1 doi: 10.1016/j.bpj.2011.05.012 – ident: e_1_2_10_35_1 doi: 10.1096/fj.10-177279 – ident: e_1_2_10_55_1 doi: 10.1074/jbc.M111.297275 – ident: e_1_2_10_64_1 doi: 10.1038/nature03460 – ident: e_1_2_10_71_1 doi: 10.1002/glia.21169 – ident: e_1_2_10_61_1 doi: 10.1242/jcs.109603 – ident: e_1_2_10_91_1 doi: 10.1002/ana.22551 – ident: e_1_2_10_47_1 doi: 10.1016/S1474-4422(12)70133-3 – ident: e_1_2_10_30_1 doi: 10.1016/j.bbrc.2009.06.085 – ident: e_1_2_10_62_1 doi: 10.1002/glia.22417 – ident: e_1_2_10_86_1 doi: 10.1074/jbc.271.9.4577 – ident: e_1_2_10_25_1 doi: 10.1096/fj.06-5930fje – ident: e_1_2_10_79_1 doi: 10.1242/jcs.02519 – ident: e_1_2_10_17_1 doi: 10.1242/jcs.108.9.2993 – ident: e_1_2_10_73_1 doi: 10.1096/fj.11-201608 – ident: e_1_2_10_31_1 doi: 10.1016/j.bbrc.2010.02.157 – ident: e_1_2_10_24_1 doi: 10.1073/pnas.0902725106 – volume: 43 start-page: 573 year: 2002 ident: e_1_2_10_34_1 article-title: Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin‐4 water channels publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_10_7_1 doi: 10.1002/ana.21837 – ident: e_1_2_10_39_1 doi: 10.1038/72256 – ident: e_1_2_10_19_1 doi: 10.1016/S0021-9258(17)37486-0 – ident: e_1_2_10_58_1 doi: 10.1146/annurev.physiol.70.113006.100452 – ident: e_1_2_10_60_1 doi: 10.1111/j.1600-0854.2011.01299.x – ident: e_1_2_10_67_1 doi: 10.1097/WNR.0b013e32835ab480 – ident: e_1_2_10_72_1 doi: 10.1074/jbc.M109.093948 – ident: e_1_2_10_5_1 doi: 10.1111/j.1471-4159.2005.03362.x – ident: e_1_2_10_15_1 doi: 10.1007/s00018-009-0218-9 – ident: e_1_2_10_63_1 doi: 10.1136/jnnp.72.2.262 – ident: e_1_2_10_70_1 doi: 10.1152/ajpcell.00298.2003 – ident: e_1_2_10_2_1 doi: 10.1096/fj.06-6848com – ident: e_1_2_10_11_1 doi: 10.1242/jcs.042341 – ident: e_1_2_10_41_1 doi: 10.1002/jnr.22822 – ident: e_1_2_10_4_1 doi: 10.1002/glia.20318 – ident: e_1_2_10_85_1 doi: 10.1074/jbc.270.39.22907 – ident: e_1_2_10_76_1 doi: 10.1002/ana.23741 – ident: e_1_2_10_16_1 doi: 10.1073/pnas.0605796103 – ident: e_1_2_10_28_1 doi: 10.1085/jgp.201210883 – ident: e_1_2_10_80_1 doi: 10.1007/s00109-008-0303-9 – ident: e_1_2_10_14_1 doi: 10.1016/j.bbrc.2011.08.019 – ident: e_1_2_10_82_1 doi: 10.1007/978-3-540-79885-9_2 – ident: e_1_2_10_22_1 doi: 10.1073/pnas.1109980108 – ident: e_1_2_10_68_1 doi: 10.1002/ana.22686 – ident: e_1_2_10_59_1 doi: 10.1002/glia.21177 – ident: e_1_2_10_50_1 doi: 10.1007/s00424-007-0357-5 – ident: e_1_2_10_87_1 doi: 10.1074/jbc.M801425200 – ident: e_1_2_10_12_1 doi: 10.1016/j.bpj.2009.09.017 – ident: e_1_2_10_32_1 doi: 10.1083/jcb.60.1.316 – ident: e_1_2_10_23_1 doi: 10.1016/j.jmb.2005.10.081 – ident: e_1_2_10_9_1 doi: 10.1074/jbc.M109.071670 – ident: e_1_2_10_36_1 doi: 10.1096/fj.07-104836 – ident: e_1_2_10_6_1 doi: 10.1038/sj.jcbfm.9600306 – ident: e_1_2_10_56_1 doi: 10.1371/journal.pone.0027412 – ident: e_1_2_10_84_1 doi: 10.1074/jbc.272.26.16140 – ident: e_1_2_10_43_1 doi: 10.1002/glia.20855 – ident: e_1_2_10_38_1 doi: 10.1093/brain/awf151 – ident: e_1_2_10_33_1 doi: 10.1074/jbc.M104368200 – ident: e_1_2_10_48_1 doi: 10.1038/nrn3468 – ident: e_1_2_10_20_1 doi: 10.1212/01.WNL.0000289761.64862.ce – ident: e_1_2_10_10_1 doi: 10.1074/jbc.M111.227298 – ident: e_1_2_10_57_1 doi: 10.1007/s00401-012-0986-4 – ident: e_1_2_10_83_1 doi: 10.1016/B978-0-12-386043-9.00001-3 – ident: e_1_2_10_3_1 doi: 10.1002/ana.21802 – ident: e_1_2_10_29_1 doi: 10.3988/jcn.2011.7.3.115 – ident: e_1_2_10_49_1 doi: 10.1096/fj.04-1723fje – ident: e_1_2_10_54_1 doi: 10.1073/pnas.95.20.11981 – ident: e_1_2_10_89_1 doi: 10.1016/j.jmb.2008.07.089 – ident: e_1_2_10_81_1 doi: 10.4049/jimmunol.181.8.5730 – ident: e_1_2_10_78_1 doi: 10.1146/annurev-med-043010-193843 – ident: e_1_2_10_52_1 doi: 10.1074/jbc.M112.344325 – ident: e_1_2_10_88_1 doi: 10.1016/j.jneuroim.2011.04.007 – ident: e_1_2_10_26_1 doi: 10.1126/scitranslmed.3003748 – ident: e_1_2_10_44_1 doi: 10.1523/JNEUROSCI.17-01-00171.1997 – ident: e_1_2_10_46_1 doi: 10.1038/nmeth801 – ident: e_1_2_10_74_1 doi: 10.1002/ana.22657 – ident: e_1_2_10_69_1 doi: 10.1152/ajprenal.00439.2003 – reference: 17928579 - Neurology. 2007 Dec 11;69(24):2221-31 – reference: 14576087 - Am J Physiol Cell Physiol. 2004 Feb;286(2):C426-32 – reference: 20071343 - J Biol Chem. 2010 Mar 12;285(11):8163-70 – reference: 21689527 - Biophys J. 2011 Jun 22;100(12):2936-45 – reference: 20013023 - Cell Mol Life Sci. 2010 Mar;67(5):829-40 – reference: 23277478 - J Gen Physiol. 2013 Jan;141(1):119-32 – reference: 15815633 - Nature. 2005 Apr 7;434(7034):786-92 – reference: 19545538 - Biochem Biophys Res Commun. 2009 Sep 4;386(4):623-7 – reference: 18832732 - J Immunol. 2008 Oct 15;181(8):5730-7 – reference: 19948131 - Biophys J. 2009 Dec 2;97(11):3010-8 – reference: 22128336 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1245-50 – reference: 22069320 - J Biol Chem. 2011 Dec 30;286(52):45156-64 – reference: 15149973 - Am J Physiol Renal Physiol. 2004 Sep;287(3):F501-11 – reference: 21414585 - Int Rev Cell Mol Biol. 2011;287:1-41 – reference: 23571414 - Mol Pharmacol. 2013 Jun;83(6):1268-75 – reference: 23055279 - Ann Neurol. 2013 Jan;73(1):77-85 – reference: 10460172 - Biochemistry. 1999 Aug 24;38(34):11156-63 – reference: 22987455 - Glia. 2012 Dec;60(12):2027-39 – reference: 18375385 - J Biol Chem. 2008 May 30;283(22):15280-6 – reference: 14597700 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13609-14 – reference: 22526022 - Acta Neuropathol. 2012 Jun;123(6):861-72 – reference: 21621279 - J Neuroimmunol. 2011 Jul;236(1-2):65-71 – reference: 19096771 - Handb Exp Pharmacol. 2009;(190):31-56 – reference: 23563310 - J Clin Invest. 2013 May;123(5):2306-16 – reference: 9427293 - J Cell Sci. 1997 Nov;110 ( Pt 22):2855-60 – reference: 22271321 - Ann Neurol. 2012 Mar;71(3):314-22 – reference: 22393049 - J Biol Chem. 2012 Apr 20;287(17):13829-39 – reference: 19240114 - J Cell Sci. 2009 Mar 15;122(Pt 6):813-21 – reference: 17135365 - FASEB J. 2007 Jan;21(1):108-16 – reference: 22248325 - Annu Rev Med. 2012;63:303-16 – reference: 22069219 - Ann Neurol. 2011 Dec;70(6):943-54 – reference: 11818406 - Invest Ophthalmol Vis Sci. 2002 Feb;43(2):573-9 – reference: 12076996 - Brain. 2002 Jul;125(Pt 7):1450-61 – reference: 21454592 - J Biol Chem. 2011 May 6;286(18):16516-24 – reference: 17961083 - Annu Rev Physiol. 2008;70:301-27 – reference: 21981006 - Traffic. 2012 Jan;13(1):43-53 – reference: 21257712 - FASEB J. 2011 May;25(5):1556-66 – reference: 11796780 - J Neurol Neurosurg Psychiatry. 2002 Feb;72(2):262-5 – reference: 22374891 - Ann Neurol. 2012 Mar;71(3):323-33 – reference: 8617713 - J Biol Chem. 1996 Mar 1;271(9):4577-80 – reference: 16303850 - J Cell Sci. 2005 Dec 15;118(Pt 24):5691-8 – reference: 7559426 - J Biol Chem. 1995 Sep 29;270(39):22907-13 – reference: 17968585 - Pflugers Arch. 2008 Jul;456(4):693-700 – reference: 16818469 - FASEB J. 2006 Sep;20(11):1892-4 – reference: 19096770 - Handb Exp Pharmacol. 2009;(190):3-28 – reference: 18708067 - J Mol Biol. 2008 Oct 24;382(5):1136-43 – reference: 21491501 - Glia. 2011 Jul;59(7):1056-63 – reference: 22354518 - J Neurosci Res. 2012 Jun;90(6):1240-8 – reference: 20688809 - Brain. 2010 Sep;133(9):2578-91 – reference: 23481483 - Nat Rev Neurosci. 2013 Apr;14(4):265-77 – reference: 16470808 - Glia. 2006 Apr 15;53(6):631-6 – reference: 20188706 - Biochem Biophys Res Commun. 2010 Mar 26;394(1):205-10 – reference: 16552421 - J Cereb Blood Flow Metab. 2006 Dec;26(12):1527-37 – reference: 11406631 - J Biol Chem. 2001 Aug 17;276(33):31233-7 – reference: 16181429 - J Neurochem. 2005 Oct;95(1):254-62 – reference: 22608667 - Lancet Neurol. 2012 Jun;11(6):535-44 – reference: 7509789 - J Biol Chem. 1994 Feb 25;269(8):5497-500 – reference: 8855281 - Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10908-12 – reference: 22087205 - J Clin Neurol. 2011 Sep;7(3):115-27 – reference: 16278651 - Nat Methods. 2005 Nov;2(11):825-7 – reference: 22319008 - FASEB J. 2012 May;26(5):2197-208 – reference: 19937948 - Ann Neurol. 2009 Nov;66(5):630-43 – reference: 18838545 - J Exp Med. 2008 Oct 27;205(11):2473-81 – reference: 21856282 - Biochem Biophys Res Commun. 2011 Sep 9;412(4):654-9 – reference: 15208268 - FASEB J. 2004 Aug;18(11):1291-3 – reference: 19938104 - Ann Neurol. 2009 Nov;66(5):617-29 – reference: 18311471 - J Mol Med (Berl). 2008 May;86(5):523-9 – reference: 9195910 - J Biol Chem. 1997 Jun 27;272(26):16140-6 – reference: 21212277 - J Biol Chem. 2011 Mar 18;286(11):9216-24 – reference: 19383790 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7437-42 – reference: 22718347 - J Cell Sci. 2012 Sep 15;125(Pt 18):4405-12 – reference: 22076159 - PLoS One. 2011;6(11):e27412 – reference: 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111 – reference: 9751776 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11981-6 – reference: 4809245 - J Cell Biol. 1974 Jan;60(1):316-20 – reference: 8987746 - J Neurosci. 1997 Jan 1;17(1):171-80 – reference: 18511552 - FASEB J. 2008 Sep;22(9):3216-23 – reference: 10655103 - Nat Med. 2000 Feb;6(2):159-63 – reference: 16938871 - Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13532-6 – reference: 22989877 - J Biol Chem. 2012 Oct 26;287(44):36837-44 – reference: 19229993 - Glia. 2009 Oct;57(13):1363-73 – reference: 21446052 - Glia. 2011 Jun;59(6):973-80 – reference: 23108041 - Neuroreport. 2012 Dec 19;23(18):1044-7 – reference: 16079275 - J Cell Sci. 2005 Aug 1;118(Pt 15):3225-32 – reference: 8537439 - J Cell Sci. 1995 Sep;108 ( Pt 9):2993-3002 – reference: 20047900 - Brain. 2010 Feb;133(Pt 2):349-61 – reference: 19843522 - J Biol Chem. 2009 Dec 18;284(51):35850-60 – reference: 18495865 - Mol Biol Cell. 2008 Aug;19(8):3369-78 – reference: 16325200 - J Mol Biol. 2006 Jan 27;355(4):628-39 – reference: 19449033 - Cell Tissue Res. 2009 Aug;337(2):185-95 |
SSID | ssj0019695 |
Score | 2.395409 |
SecondaryResourceType | review_article |
Snippet | The water channel aquaporin‐4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4‐IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot... The water channel aquaporin‐4 ( AQP 4) is the target of the immunoglobulin G autoantibody ( AQP 4‐ IgG ) in neuromyelitis optica ( NMO ). AQP 4 is expressed in... The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 684 |
SubjectTerms | Animals aquaporin Aquaporin 4 - immunology Aquaporin 4 - metabolism astrocyte Astrocytes - metabolism autoimmunity complement Cytotoxicity Humans Immunoglobulin G - immunology Immunoglobulin G - metabolism Medical research Mice Mini‐Symposium: Neuromyelitis Optica (NMO), Part 1 neuromyelitis optica Neuromyelitis Optica - immunology Neuromyelitis Optica - metabolism Neuromyelitis Optica - therapy orthogonal array Rodents |
Title | Biology of AQP4 and Anti-AQP4 Antibody: Therapeutic Implications for NMO |
URI | https://api.istex.fr/ark:/67375/WNG-QH0GPP1B-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbpa.12085 https://www.ncbi.nlm.nih.gov/pubmed/24118484 https://www.proquest.com/docview/1441625845 https://www.proquest.com/docview/1443428890 https://www.proquest.com/docview/1448225329 https://pubmed.ncbi.nlm.nih.gov/PMC3890327 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VrYR44X5JKZVBCPGSlZPYsQNPKaK7VNpli7pQIaTIztqiapWt2l2J8sQn8I18CWPnwi4UhHhL5EmUTGbGZ-LxGYAnIk6zyBgVxpaLkMUG42AZybC0mklrFcZH92tgOEoHE7Z3yA_X4EW7F6bmh-h-uDnP8PHaObjS50tOrk9VL3IdJjH-ulotB4jedtRRjvWF-5XOiIcpGnXDKuSqeLorV-aiDafWz5cBzd_rJZdxrJ-Idq_Dx_YV6vqT495irnvll1_YHf_zHW_AtQagkry2qJuwZqpbcGXYLMHfhr26e-UFmVmS748ZUdWU5NX86PvXb_7cHevZ9OI5Ofi5t4u8XqpcJwiUyWj45g5Mdl8dvByETUOGsOSSoh4jqrScImKimVXMaExGqCoRI6ZJLBW6voiYSeKMl1SorExSo1OVWseCj0CAJXdhvZpV5j4QgemwjlSWKm4ZFzSTNEtsKWMrMiWSKIBn7acpyoat3DXNOCnarAV1U3jdBPC4Ez2tKTouE3rqv28noc6OXU2b4MX7Ub_YH9D-eBztFP0AtloDKBp3Pi9c1omJomR4n0fdMDqiW11RlZktvEyCuZzM6F9lEJBx1FAA92qb6h4IoRRm25IFIFasrRNwROCrI9XRJ08IjqCTJrFAnXlj-rMWip1x7g82_130AVyNXQsQv_9yC9bnZwvzEIHYXG_DRv5u8mGy7T3vB-KtLLg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVgIu_P8YCiwIEBdH6_Wud43EIaU0SduEtEpFb2btrEVV5FRtIggnHoEH4VV4CZ6E2bVjEiiISw_cbHnkn9mZ2W_Ws98APJYsigNjtM9yIX3ODMbBLFB-lqdc5bnG-GiXBrq9qL3HN_fF_hJ8ne2FKfkh6gU36xkuXlsHtwvSc16eHulGYFtMViWVW2b6ARO2kxeddRzdJ4xtvBq8bPtVTwE_E4oKzJSoTtUQJ30a55qbFPE01RnCnChkSqP1yoCbkMUio1LHWRiZNNJRbonccS7jId73HKzYDuKWqX99tyarsjwzwv1bDfAx6EYVj5GtG6pfdWH2W7ED-fE0aPt7heY8cnZT38Zl-DZTWlnxctiYjNNG9ukXPsn_RatX4FKFwUmzdJqrsGSKa3C-W1UZXIfNskHnlIxy0tzpc6KLIWkW44Pvn7-4c3ucjobT52Twc_sa6cwV5xPMBUiv-_oG7J3Jl9yE5WJUmNtAJGb8aaDjSIucC0ljReMwzxTLZaxlGHjwbGYLSVYRstu-IO-TWWKGY5G4sfDgUS16VLKQnCb01BlULaGPD23ZnhTJm14r2WnTVr8frCUtD1ZnFpdUEesksYk15sKK430e1pcx1tgfSLowo4mTCTFdVTH9qwxiToEa8uBWacT1CyFaDBRX3AO5YN61gOU6X7xSHLxznOeIq2nIJOrMWe-ftZCs9Zvu4M6_iz6AC-1BdzvZ7vS27sJFZjueuO2mq7A8Pp6Ye4g7x-l95-4E3p61J_wAnueE0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VXanigvgnUMAgQFwWOYkdJ0gcUsr-tOySSl2ouBgna4sKlF21W8HeeATeg7fiSRg72bArCuLSWyKPnGh-PN_Y4xmARyKIEl9r1QkMFx0WaFwHCz_uFCZnsTEK10e7NTAcRf0x2z3khxvwY3kXpqoP0Wy4Wctw67U18NnErBh5PlPPfNthss6o3NOLLxivnbwY7KBwHwdB99XBy36nbinQKXhMOQZKVOXxBH0-TYxiOkc4TVWBKCcKg1ih8gqf6TBIeEGFSoow0nmkImPruKMrYyHOewHaHL0gbUE7fTt-P24OLZLINXlBJccPoR3VhYxs4lDzs2vur20l-fUsbPtniuYqdHa-r3sZLtWglaSVll2BDV1ehc1hfSx_DXarjpYLMjUk3c8YUeWEpOX86Oe37-7dPufTyeI5Ofh934sMVrLZCYJnMhq-uQ7jc-HoDWiV01LfAiIwRM59lUSKG8YFTWKahKaIAyMSJULfg6dL3smirmBuG2l8lstIBtksHZs9eNiQzqqyHWcRPXECaCjU8Seb5ya4fDfqyf0-7WWZvy17HmwtJSRrEz-RNhLF4DFmOM-DZhiN0564qFJPTx1NiPFdnNB_0iBI48ghD25WQm9-COEVRuAx80CsqUNDYIuDr4-URx9dkXAEojQMBPLMKc7fuSC3s9Q93P5_0vuwme105evBaO8OXAxshxB3PXMLWvPjU30Xcdo8v1fbB4EP522SvwCEQ0Zx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+of+AQP4+and+Anti%E2%80%90AQP4+Antibody%3A+Therapeutic+Implications+for+NMO&rft.jtitle=Brain+pathology+%28Zurich%2C+Switzerland%29&rft.au=Verkman%2C+A.+S.&rft.au=Phuan%2C+Puay%E2%80%90Wah&rft.au=Asavapanumas%2C+Nithi&rft.au=Tradtrantip%2C+Lukmanee&rft.date=2013-11-01&rft.issn=1015-6305&rft.eissn=1750-3639&rft.volume=23&rft.issue=6&rft.spage=684&rft.epage=695&rft_id=info:doi/10.1111%2Fbpa.12085&rft.externalDBID=10.1111%252Fbpa.12085&rft.externalDocID=BPA12085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-6305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-6305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-6305&client=summon |