Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host-Guest Interaction
Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular p...
Saved in:
Published in | Macromolecular rapid communications. Vol. 37; no. 1; pp. 86 - 92 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.01.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host–guest gel) is formed by a simple preparation procedure. The host–guest gel shows self‐healing property in both wet state and dry state due to reversible nature of host–guest interaction. The practical utility of the host–guest gel as a scratch curable coating is demonstrated.
Flexible, tough, and self‐healable polymeric materials are promising to be a substitute for conventional heavy materials. Here, a supramolecular polymeric material using multipoint host–guest interaction between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. The obtained host–guest gel shows a self‐healing property in both wet and dry states due to the reversible nature of the host–guest interaction. |
---|---|
AbstractList | Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host–guest gel) is formed by a simple preparation procedure. The host–guest gel shows self‐healing property in both wet state and dry state due to reversible nature of host–guest interaction. The practical utility of the host–guest gel as a scratch curable coating is demonstrated.
Flexible, tough, and self‐healable polymeric materials are promising to be a substitute for conventional heavy materials. Here, a supramolecular polymeric material using multipoint host–guest interaction between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. The obtained host–guest gel shows a self‐healing property in both wet and dry states due to the reversible nature of the host–guest interaction. Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated. Flexible, tough, and self-healable polymeric materials are promising to be a substitute for conventional heavy materials. Here, a supramolecular polymeric material using multipoint host-guest interaction between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. The obtained host-guest gel shows a self-healing property in both wet and dry states due to the reversible nature of the host-guest interaction. Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated.Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated. Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated. Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host–guest gel) is formed by a simple preparation procedure. The host–guest gel shows self‐healing property in both wet state and dry state due to reversible nature of host–guest interaction. The practical utility of the host–guest gel as a scratch curable coating is demonstrated. image |
Author | Harada, Akira Nakahata, Masaki Takashima, Yoshinori |
Author_xml | – sequence: 1 givenname: Masaki surname: Nakahata fullname: Nakahata, Masaki organization: Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-0043, Toyonaka, Osaka, Japan – sequence: 2 givenname: Yoshinori surname: Takashima fullname: Takashima, Yoshinori organization: Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-0043, Toyonaka, Osaka, Japan – sequence: 3 givenname: Akira surname: Harada fullname: Harada, Akira email: harada@chem.sci.osaka-u.ac.jp organization: Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-0043, Toyonaka, Osaka, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26398922$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctr3DAQh0VJaR7ttcdi6KWHeKuH9TqGpdkNJOkjCe1NyLK8q1S2NpJNs_99ZTYJJVDa0wj0fcPM_A7BXh96C8BbBGcIQvyx09HMMEQUwoqTF-AAUYxKIjHfy2-IcYkIYfvgMKVbCKGoIH4F9jEjUkiMD8B66VZrvy1Ovb13tbfHxXUYV-vjQvdNcWV9Wy6t9q5fFVfjJuoueGtGr2PxJfhtZ6MzxYUectU-FTdpApchDeVitGkozvr8pc3gQv8avGwzY9881CNwc_rper4szz8vzuYn56WhApKSS2J5hZCGuGloZaQgLeKIVaTmmjamEdLUdSOZphZxSluOkYFtrQkmVkhJjsCHXd9NDHfTEKpzyVjvdW_DmBQSmDHMKEX_geajCiZlldH3z9DbMMY-L6LyFFhyCbnI1LsHaqw726hNdDmfrXo8dwaqHWBiSCnaVhk36Ok8Q9TOKwTVlKqaUlVPqWZt9kx77PxXQe6EX87b7T9odXHybf6nW-5clwZ7_-Tq-FMxTjhV3y8X6qusLpn4gdSC_Ab35cIp |
CitedBy_id | crossref_primary_10_1002_adma_202305537 crossref_primary_10_1016_j_supmat_2021_100001 crossref_primary_10_1039_D1SM00110H crossref_primary_10_1021_acs_langmuir_8b02375 crossref_primary_10_1021_acsami_4c19831 crossref_primary_10_1016_j_cclet_2017_05_007 crossref_primary_10_1021_acsami_2c01446 crossref_primary_10_1039_D1NJ02260A crossref_primary_10_1002_adfm_201602546 crossref_primary_10_1039_D2SM00285J crossref_primary_10_1007_s42114_017_0009_y crossref_primary_10_1248_cpb_c17_00765 crossref_primary_10_1002_cjoc_202300603 crossref_primary_10_1016_j_reactfunctpolym_2024_105994 crossref_primary_10_1002_cplu_202000077 crossref_primary_10_1021_acsapm_4c03971 crossref_primary_10_1039_C9NR09283H crossref_primary_10_1016_j_supmat_2021_100006 crossref_primary_10_1021_acs_chemmater_7b02895 crossref_primary_10_3390_polym15193894 crossref_primary_10_1039_C8RA08861F crossref_primary_10_1039_D3SM01215H crossref_primary_10_1021_acsabm_9b00157 crossref_primary_10_1002_pi_6321 crossref_primary_10_1002_smll_202305067 crossref_primary_10_1021_acs_biomac_0c01095 crossref_primary_10_1002_chem_202300622 crossref_primary_10_1016_j_cej_2019_04_053 crossref_primary_10_1678_rheology_50_51 crossref_primary_10_1016_j_colsurfa_2019_123670 crossref_primary_10_1002_mame_201600352 crossref_primary_10_1039_C6CP04028D crossref_primary_10_1021_acs_chemrev_2c00231 crossref_primary_10_1021_acs_jpcb_8b02579 crossref_primary_10_1021_acs_langmuir_4c00330 crossref_primary_10_1039_C9MH01401B crossref_primary_10_3390_gels2020016 crossref_primary_10_1039_C6CC03966A crossref_primary_10_1002_mame_202100287 crossref_primary_10_1038_s41428_021_00505_y crossref_primary_10_1002_mame_201700085 crossref_primary_10_1039_C9TC05612B crossref_primary_10_1021_acs_macromol_7b00797 crossref_primary_10_1002_marc_201700739 crossref_primary_10_1002_smm2_1012 crossref_primary_10_1002_adfm_202212402 crossref_primary_10_1016_j_polymer_2017_05_031 crossref_primary_10_1007_s10118_020_2484_9 crossref_primary_10_1039_D0RA01607A crossref_primary_10_1016_j_eurpolymj_2021_110972 crossref_primary_10_1246_cl_180646 crossref_primary_10_1016_j_ijbiomac_2018_10_196 crossref_primary_10_1246_cl_220535 crossref_primary_10_1002_chem_202404267 crossref_primary_10_3390_polym15040983 crossref_primary_10_1021_acsnano_3c09140 crossref_primary_10_1016_j_polymer_2018_11_051 crossref_primary_10_1021_acsanm_2c04370 crossref_primary_10_1021_acs_macromol_8b01124 crossref_primary_10_1016_j_progpolymsci_2019_03_004 crossref_primary_10_1002_macp_201600593 crossref_primary_10_1007_s42452_024_06058_y crossref_primary_10_1007_s10847_017_0702_z crossref_primary_10_1021_acsapm_3c02117 crossref_primary_10_1016_j_compscitech_2017_03_038 crossref_primary_10_1002_mame_201900621 crossref_primary_10_1016_j_electacta_2021_139730 crossref_primary_10_3390_gels8060356 crossref_primary_10_1016_j_matlet_2019_07_114 crossref_primary_10_1039_D0PY00434K crossref_primary_10_1002_macp_202100002 crossref_primary_10_1038_s41598_017_07934_x crossref_primary_10_1038_s41598_021_85816_z crossref_primary_10_1038_s41598_020_74355_8 crossref_primary_10_1016_j_cej_2023_142868 crossref_primary_10_1678_rheology_47_99 crossref_primary_10_1002_pol_20240489 crossref_primary_10_1002_adhm_201900670 crossref_primary_10_1016_j_polymer_2017_09_001 crossref_primary_10_1002_admt_201900081 crossref_primary_10_1038_s41428_023_00823_3 crossref_primary_10_1021_acs_macromol_9b00483 crossref_primary_10_1002_app_53853 crossref_primary_10_1002_marc_201700406 crossref_primary_10_1016_j_mattod_2024_05_009 crossref_primary_10_1248_cpb_c16_00778 crossref_primary_10_1016_j_carbpol_2018_03_039 crossref_primary_10_1039_C8TB02021C crossref_primary_10_1002_slct_201701081 crossref_primary_10_1038_s41428_020_0352_7 crossref_primary_10_1016_j_colsurfb_2018_02_032 crossref_primary_10_1021_acs_macromol_9b00471 crossref_primary_10_1038_s41428_022_00666_4 crossref_primary_10_1002_adhm_202302607 crossref_primary_10_1021_acsapm_0c01179 crossref_primary_10_1039_C8TB02862A crossref_primary_10_1063_5_0243464 crossref_primary_10_3390_gels5020024 crossref_primary_10_1038_s41427_021_00302_2 crossref_primary_10_1002_adma_201602268 crossref_primary_10_1016_j_ijbiomac_2021_05_106 crossref_primary_10_1021_acsami_3c04395 crossref_primary_10_1007_s13233_021_9090_8 crossref_primary_10_1002_aenm_202002815 crossref_primary_10_1002_marc_202300286 crossref_primary_10_11618_adhesion_54_201 crossref_primary_10_1021_acs_macromol_1c00970 crossref_primary_10_1016_j_mser_2019_100523 crossref_primary_10_1002_polb_24899 crossref_primary_10_1021_acsapm_3c02107 crossref_primary_10_1016_j_tet_2017_08_002 crossref_primary_10_1002_app_55264 crossref_primary_10_1021_acsapm_0c00250 crossref_primary_10_1021_acs_macromol_7b00266 crossref_primary_10_3762_bjoc_12_7 crossref_primary_10_1021_acs_chemrev_0c01088 crossref_primary_10_1002_adma_202002800 crossref_primary_10_1002_adma_202002008 crossref_primary_10_1039_C6RA25355E crossref_primary_10_1016_j_carbpol_2020_116277 crossref_primary_10_1039_C9CC01472A crossref_primary_10_3390_ijms23020622 crossref_primary_10_1021_acsami_8b11108 crossref_primary_10_1016_j_coco_2019_07_011 crossref_primary_10_1021_acs_macromol_4c01012 crossref_primary_10_1021_acs_macromol_7b02698 crossref_primary_10_1002_inf2_12628 crossref_primary_10_1021_acsami_9b03029 crossref_primary_10_1002_polb_24630 crossref_primary_10_1007_s10847_017_0714_8 crossref_primary_10_1002_mame_202400395 crossref_primary_10_1016_j_bprint_2024_e00353 crossref_primary_10_1039_D0TC00453G crossref_primary_10_1016_j_polymertesting_2018_12_021 crossref_primary_10_1002_macp_201600319 crossref_primary_10_1039_D0PY01458C crossref_primary_10_1002_adma_201605325 crossref_primary_10_1039_D2PY00390B crossref_primary_10_1016_j_polymer_2020_122465 crossref_primary_10_1016_j_msec_2019_110553 crossref_primary_10_1021_acs_chemmater_8b03579 crossref_primary_10_1002_marc_201600810 crossref_primary_10_1002_pi_6030 crossref_primary_10_1016_j_cej_2024_156144 crossref_primary_10_1016_j_memsci_2018_01_039 crossref_primary_10_1039_D4TC03214D crossref_primary_10_1088_1742_6596_2324_1_012007 crossref_primary_10_1038_s41428_020_00432_4 crossref_primary_10_1021_acs_macromol_8b01410 crossref_primary_10_1039_C9CC05023J crossref_primary_10_1002_marc_201700110 crossref_primary_10_1007_s00240_023_01509_4 crossref_primary_10_1002_macp_202000157 crossref_primary_10_1088_1674_4926_41_4_041601 crossref_primary_10_1002_chem_202001696 crossref_primary_10_1016_j_carres_2019_05_006 crossref_primary_10_1039_D3SC01975F crossref_primary_10_1002_cjoc_202300239 crossref_primary_10_1039_D0PY01347A crossref_primary_10_1039_C9NJ05844C crossref_primary_10_1021_acs_macromol_9b01198 crossref_primary_10_1016_j_mtchem_2022_100893 crossref_primary_10_1016_j_polymer_2018_12_008 crossref_primary_10_1021_acs_macromol_0c02568 crossref_primary_10_1002_ejoc_201900090 crossref_primary_10_1039_C7CS00276A crossref_primary_10_1039_C7TA04141A crossref_primary_10_1002_advs_201801664 crossref_primary_10_3762_bjoc_13_95 crossref_primary_10_1021_acsmaterialslett_9b00371 crossref_primary_10_1016_j_porgcoat_2017_09_011 crossref_primary_10_1016_j_ijsolstr_2017_06_013 crossref_primary_10_1248_yakushi_18_00168_3 crossref_primary_10_1016_j_ccr_2020_213711 crossref_primary_10_1039_C9SC05589D crossref_primary_10_1039_D0CC00672F crossref_primary_10_3390_polym11060952 crossref_primary_10_1039_C9RA04623B crossref_primary_10_1021_acsapm_1c01902 crossref_primary_10_1016_j_mtnano_2022_100228 crossref_primary_10_1021_acs_chemrev_9b00839 crossref_primary_10_1002_asia_201601163 crossref_primary_10_1021_acsapm_0c00468 crossref_primary_10_1039_C9PY00450E crossref_primary_10_1126_sciadv_adj6856 crossref_primary_10_1016_j_colsurfb_2022_112747 crossref_primary_10_1038_s41428_024_00932_7 crossref_primary_10_3390_polym12061393 crossref_primary_10_1039_D2RA04885J crossref_primary_10_1021_acs_macromol_8b02395 crossref_primary_10_1021_acsapm_1c01332 crossref_primary_10_1002_marc_201800117 crossref_primary_10_1002_marc_201700018 crossref_primary_10_1021_acs_chemmater_8b02320 crossref_primary_10_1007_s10118_021_2612_1 crossref_primary_10_1021_acsapm_1c00236 crossref_primary_10_1007_s10118_019_2325_x crossref_primary_10_1016_j_eurpolymj_2022_111004 crossref_primary_10_1021_acs_macromol_0c02080 crossref_primary_10_1016_j_msec_2019_02_074 crossref_primary_10_1002_admi_201800384 crossref_primary_10_1002_smtd_202400812 crossref_primary_10_1016_j_carbpol_2020_117595 crossref_primary_10_1038_s41578_020_0202_4 crossref_primary_10_1088_2053_1591_ab29df crossref_primary_10_1016_j_eurpolymj_2020_109807 |
Cites_doi | 10.1038/35057232 10.1021/cr970015o 10.1021/ma60075a033 10.1021/ma800476x 10.1002/anie.201104069 10.1126/science.1167391 10.1007/978-3-662-04556-5 10.1126/science.1251135 10.1021/ar500109h 10.1039/c2sm25325a 10.1071/CH11156 10.1038/nchem.893 10.1038/ncomms2280 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 10.1201/9781315815015 10.1038/nature08693 10.1038/ncomms1521 10.1039/b904502n 10.1038/nature06669 10.1002/anie.201003888 10.1038/nmat3713 10.1021/ma8020147 10.1002/9783527633739 10.1126/science.1215416 10.1002/anie.201502957 10.1039/c2cs35091b 10.1039/c3cs60109a 10.1002/adma.200304907 10.1002/adma.201205321 10.1038/nmat1428 10.1021/ma801202f 10.1002/anie.201300862 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T 10.1002/9783527670185 10.1039/C3SM52272E 10.1002/9783527634408 10.1038/nature09963 10.1039/c2cs35264h 10.1038/nature11409 10.1126/science.1205962 10.1021/cr9000622 10.1126/science.1065879 10.1126/science.1248494 10.1039/C1CS15262A |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.201500473 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | 92 |
ExternalDocumentID | 3910456031 26398922 10_1002_marc_201500473 MARC201500473 ark_67375_WNG_Q94N68X1_G |
Genre | article Journal Article |
GrantInformation_xml | – fundername: ImPACT Program of Council for Science, Technology and Innovation – fundername: MEXT of Japan – fundername: Research Grant Program of the Asahi Glass Foundation |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c5803-793e7411a02dd54c983f171643b7a5dcd89cbbd96a5e1755f721c0fba323e8993 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Thu Jul 10 18:06:13 EDT 2025 Thu Jul 10 21:59:33 EDT 2025 Fri Jul 25 10:32:36 EDT 2025 Thu Apr 03 07:06:43 EDT 2025 Tue Jul 01 01:50:15 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Wed Jan 22 16:26:37 EST 2025 Wed Oct 30 09:55:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | tough polymers scratch-curable coatings self-healing reversible bond formation host-guest interactions |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5803-793e7411a02dd54c983f171643b7a5dcd89cbbd96a5e1755f721c0fba323e8993 |
Notes | ImPACT Program of Council for Science, Technology and Innovation istex:29D431B9B9D07F5EA9955AA841A81635C9EF2B0B MEXT of Japan Research Grant Program of the Asahi Glass Foundation ArticleID:MARC201500473 ark:/67375/WNG-Q94N68X1-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26398922 |
PQID | 1752979078 |
PQPubID | 1016394 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1826626551 proquest_miscellaneous_1800486994 proquest_journals_1752979078 pubmed_primary_26398922 crossref_citationtrail_10_1002_marc_201500473 crossref_primary_10_1002_marc_201500473 wiley_primary_10_1002_marc_201500473_MARC201500473 istex_primary_ark_67375_WNG_Q94N68X1_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol. Rapid Commun |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977. J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed. Wiley, Hoboken, USA 2004. A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19. A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 2009, 109, 5974. C. Koopmans, H. Ritter, Macromolecules 2008, 41, 7418. K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Angew. Chem. Int. Ed. 2012, 51, 1138. T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. A. Harada, Supramolecular Polymer Chemistry, Wiley-VCH, Weinheim, Germany 2012. B. Ghosh, M. W. Urban, Science 2009, 323, 1458. B. L. Feringa, W. R. Browne, Molecular Switches, Wiley-VCH, Weinheim, Germany 2011. E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, C. Creton, Science 2014, 344, 186. K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120. J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133. M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875. M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731. S. R. White, J. S. Moore, N. R. Sottos, B. P. Krull, W. A. Santa Cruz, R. C. R. Gergely, Science 2014, 344, 620. Y. Yang, M. W. Urban, Chem. Soc. Rev. 2013, 42, 7446. M. W. Urban, Handbook of Stimuli-Responsive Materials, Wiley-VCH, Weinheim, Germany 2011. W. H. Binder, Self-Healing Polymers: From Principles to Applications, Wiley-VCH, Weinheim, Germany 2013. T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849. G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse, P. K. Hansma, Nat. Mater. 2005, 4, 612. L. Li, X. Guo, J. Wang, P. Liu, R. K. Prud'homme, B. L. May, S. F. Lincoln, Macromolecules 2008, 41, 8677. S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, P. G. Whitten, Aust. J. Chem. 2011, 64, 1007. M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334. M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511. Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485. Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339. J. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman, C. Abell, Science 2012, 335, 690. K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Angew. Chem. Int. Ed. 2015, 54, 8984. Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matyjaszewski, Angew. Chem. Int. Ed. 2011, 50, 1660. Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, Garland Science, New York, USA 2013. P-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, New York, USA 1979. S. Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun, W. Hayes, Chem. Soc. Rev. 2010, 39, 1973. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155. M. Shibayama, Soft Matter 2012, 8, 8030. A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128. T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-I. Chung, Macromolecules 2008, 41, 5379. X. Zhao, Soft Matter 2014, 10, 672. T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932. A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698. X. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042. E. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195. W. Grellmann, S. Seidler, Deformation and Fracture Behaviour of Polymers, Springer, Berlin, Germany 2001. 2002; 14 2013; 25 2011; 2 2012 2011 2010; 39 2002; 295 2013; 42 2015; 54 2010; 463 2003; 15 2014; 47 2001; 409 2004 2012; 489 2011; 3 1979 2012; 51 2011; 472 2012; 3 2001 2013; 12 2011; 50 2013; 52 2011; 64 2005; 4 2008; 41 2013 2012; 335 2001; 13 2008; 451 2009; 109 1998; 98 2009; 323 2012; 8 2014; 10 2012; 41 2014; 344 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 Harada A. (e_1_2_6_29_1) 2012 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 Brandrup J. (e_1_2_6_46_1) 2004 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: B. L. Feringa, W. R. Browne, Molecular Switches, Wiley-VCH, Weinheim, Germany 2011. – reference: E. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195. – reference: Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339. – reference: M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875. – reference: Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matyjaszewski, Angew. Chem. Int. Ed. 2011, 50, 1660. – reference: P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977. – reference: X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698. – reference: T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. – reference: B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, Garland Science, New York, USA 2013. – reference: E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, C. Creton, Science 2014, 344, 186. – reference: S. R. White, J. S. Moore, N. R. Sottos, B. P. Krull, W. A. Santa Cruz, R. C. R. Gergely, Science 2014, 344, 620. – reference: J. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman, C. Abell, Science 2012, 335, 690. – reference: X. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042. – reference: T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849. – reference: K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Angew. Chem. Int. Ed. 2012, 51, 1138. – reference: A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 2009, 109, 5974. – reference: A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34. – reference: W. H. Binder, Self-Healing Polymers: From Principles to Applications, Wiley-VCH, Weinheim, Germany 2013. – reference: M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334. – reference: A. Harada, Supramolecular Polymer Chemistry, Wiley-VCH, Weinheim, Germany 2012. – reference: A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19. – reference: M. W. Urban, Handbook of Stimuli-Responsive Materials, Wiley-VCH, Weinheim, Germany 2011. – reference: K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120. – reference: A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128. – reference: W. Grellmann, S. Seidler, Deformation and Fracture Behaviour of Polymers, Springer, Berlin, Germany 2001. – reference: S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794. – reference: B. Ghosh, M. W. Urban, Science 2009, 323, 1458. – reference: C. Koopmans, H. Ritter, Macromolecules 2008, 41, 7418. – reference: L. Li, X. Guo, J. Wang, P. Liu, R. K. Prud'homme, B. L. May, S. F. Lincoln, Macromolecules 2008, 41, 8677. – reference: S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, P. G. Whitten, Aust. J. Chem. 2011, 64, 1007. – reference: G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse, P. K. Hansma, Nat. Mater. 2005, 4, 612. – reference: J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed. Wiley, Hoboken, USA 2004. – reference: M. Shibayama, Soft Matter 2012, 8, 8030. – reference: J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133. – reference: M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511. – reference: K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Angew. Chem. Int. Ed. 2015, 54, 8984. – reference: S. Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun, W. Hayes, Chem. Soc. Rev. 2010, 39, 1973. – reference: T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932. – reference: M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731. – reference: P-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, New York, USA 1979. – reference: Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270. – reference: Y. Yang, M. W. Urban, Chem. Soc. Rev. 2013, 42, 7446. – reference: J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155. – reference: T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-I. Chung, Macromolecules 2008, 41, 5379. – reference: Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485. – reference: X. Zhao, Soft Matter 2014, 10, 672. – volume: 14 start-page: 1120 year: 2002 publication-title: Adv. Mater. – year: 2011 – volume: 54 start-page: 8984 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 409 start-page: 794 year: 2001 publication-title: Nature – volume: 98 start-page: 1875 year: 1998 publication-title: Chem. Rev. – volume: 41 start-page: 8677 year: 2008 publication-title: Macromolecules – volume: 109 start-page: 5974 year: 2009 publication-title: Chem. Rev. – volume: 41 start-page: 7418 year: 2008 publication-title: Macromolecules – year: 2001 – volume: 295 start-page: 1698 year: 2002 publication-title: Science – volume: 50 start-page: 1660 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 335 start-page: 690 year: 2012 publication-title: Science – volume: 41 start-page: 6042 year: 2012 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 511 year: 2011 publication-title: Nat. Commun. – volume: 47 start-page: 2128 year: 2014 publication-title: Acc. Chem. Res. – volume: 41 start-page: 5379 year: 2008 publication-title: Macromolecules – volume: 12 start-page: 932 year: 2013 publication-title: Nat. Mater. – year: 1979 – volume: 489 start-page: 133 year: 2012 publication-title: Nature – volume: 41 start-page: 6195 year: 2012 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 34 year: 2011 publication-title: Nat. Chem. – volume: 10 start-page: 672 year: 2014 publication-title: Soft Matter – year: 2012 – volume: 344 start-page: 186 year: 2014 publication-title: Science – volume: 42 start-page: 7446 year: 2013 publication-title: Chem. Soc. Rev. – volume: 64 start-page: 1007 year: 2011 publication-title: Aust. J. Chem. – volume: 15 start-page: 1155 year: 2003 publication-title: Adv. Mater. – volume: 39 start-page: 1973 year: 2010 publication-title: Chem. Soc. Rev. – volume: 463 start-page: 339 year: 2010 publication-title: Nature – volume: 323 start-page: 1458 year: 2009 publication-title: Science – volume: 51 start-page: 1138 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1270 year: 2012 publication-title: Nat. Commun. – volume: 8 start-page: 8030 year: 2012 publication-title: Soft Matter – year: 2004 – volume: 344 start-page: 620 year: 2014 publication-title: Science – volume: 451 start-page: 977 year: 2008 publication-title: Nature – volume: 335 start-page: 813 year: 2012 publication-title: Science – volume: 13 start-page: 485 year: 2001 publication-title: Adv. Mater. – volume: 4 start-page: 612 year: 2005 publication-title: Nat. Mater. – volume: 25 start-page: 2849 year: 2013 publication-title: Adv. Mater. – volume: 472 start-page: 334 year: 2011 publication-title: Nature – volume: 41 start-page: 19 year: 2012 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 5731 year: 2013 publication-title: Angew. Chem. Int. Ed. – year: 2013 – ident: e_1_2_6_15_1 doi: 10.1038/35057232 – ident: e_1_2_6_44_1 doi: 10.1021/cr970015o – ident: e_1_2_6_2_1 doi: 10.1021/ma60075a033 – ident: e_1_2_6_10_1 doi: 10.1021/ma800476x – ident: e_1_2_6_20_1 doi: 10.1002/anie.201104069 – ident: e_1_2_6_18_1 doi: 10.1126/science.1167391 – ident: e_1_2_6_1_1 doi: 10.1007/978-3-662-04556-5 – ident: e_1_2_6_16_1 doi: 10.1126/science.1251135 – ident: e_1_2_6_37_1 doi: 10.1021/ar500109h – ident: e_1_2_6_4_1 doi: 10.1039/c2sm25325a – ident: e_1_2_6_3_1 doi: 10.1071/CH11156 – ident: e_1_2_6_38_1 doi: 10.1038/nchem.893 – ident: e_1_2_6_41_1 doi: 10.1038/ncomms2280 – ident: e_1_2_6_8_1 doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 – ident: e_1_2_6_31_1 doi: 10.1201/9781315815015 – ident: e_1_2_6_22_1 doi: 10.1038/nature08693 – ident: e_1_2_6_39_1 doi: 10.1038/ncomms1521 – ident: e_1_2_6_13_1 doi: 10.1039/b904502n – ident: e_1_2_6_21_1 doi: 10.1038/nature06669 – ident: e_1_2_6_19_1 doi: 10.1002/anie.201003888 – ident: e_1_2_6_23_1 doi: 10.1038/nmat3713 – ident: e_1_2_6_36_1 doi: 10.1021/ma8020147 – ident: e_1_2_6_26_1 doi: 10.1002/9783527633739 – ident: e_1_2_6_33_1 doi: 10.1126/science.1215416 – ident: e_1_2_6_43_1 doi: 10.1002/anie.201502957 – ident: e_1_2_6_34_1 doi: 10.1039/c2cs35091b – ident: e_1_2_6_14_1 doi: 10.1039/c3cs60109a – ident: e_1_2_6_6_1 doi: 10.1002/adma.200304907 – ident: e_1_2_6_40_1 doi: 10.1002/adma.201205321 – ident: e_1_2_6_45_1 doi: 10.1038/nmat1428 – ident: e_1_2_6_35_1 doi: 10.1021/ma801202f – ident: e_1_2_6_42_1 doi: 10.1002/anie.201300862 – ident: e_1_2_6_9_1 doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T – ident: e_1_2_6_12_1 doi: 10.1002/9783527670185 – ident: e_1_2_6_5_1 doi: 10.1039/C3SM52272E – volume-title: Polymer Handbook year: 2004 ident: e_1_2_6_46_1 – ident: e_1_2_6_25_1 doi: 10.1002/9783527634408 – ident: e_1_2_6_24_1 doi: 10.1038/nature09963 – volume-title: Supramolecular Polymer Chemistry year: 2012 ident: e_1_2_6_29_1 – ident: e_1_2_6_32_1 doi: 10.1039/c2cs35264h – ident: e_1_2_6_11_1 doi: 10.1038/nature11409 – ident: e_1_2_6_28_1 doi: 10.1126/science.1205962 – ident: e_1_2_6_30_1 doi: 10.1021/cr9000622 – ident: e_1_2_6_17_1 doi: 10.1126/science.1065879 – ident: e_1_2_6_7_1 doi: 10.1126/science.1248494 – ident: e_1_2_6_27_1 doi: 10.1039/C1CS15262A |
SSID | ssj0008402 |
Score | 2.5662458 |
Snippet | Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A... Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | Chains (polymeric) Cyclodextrins Drying host-guest interactions Hydrogels Polymer chemistry Polymers Recognition reversible bond formation scratch-curable coatings self-healing Smart materials tough polymers Utilities |
Title | Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host-Guest Interaction |
URI | https://api.istex.fr/ark:/67375/WNG-Q94N68X1-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201500473 https://www.ncbi.nlm.nih.gov/pubmed/26398922 https://www.proquest.com/docview/1752979078 https://www.proquest.com/docview/1800486994 https://www.proquest.com/docview/1826626551 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKK8GCjISgkvTZu04iY_VqrsrpF1BH2Jvll-5NGSr3axEOfUnIPEP-0uYyass4iHBLVHGUjyesb-xx98Q8hrWVJca6UKeWxvGPspDwwdxyLmFCDtJnOd4wXk6SyZn8bu5mP9wi7_hh-g33NAz6vkaHVyb1cENaShSPWBqlkDCQ6T7xIQtREXHN_xREL00x50QcUEwlnSsjRE72Gy-sSrdRgV__hXk3ESw9RI0uk909_NN5sn5_roy-_bLT7yO_9O7B-Rei0_pYWNQ2-SWLx-SO8OuLNwjUmBmSHFJR8ikaQq_R0-x0M8e1aWjJ77Ir6--4t0mWBLpyfpiqT91BXjp-0VxWR8Q0amuGsundcoCnSxW1fXVtzGqgdablM19i8fkbHR0OpyEbcmG0Ios4iF4uweMMtARc07EVmY8R0KemJtUC2ddJq0xTiZaeAAuIocA1Ea50ZxxD6Eff0K2ykXpdwh1ItVgRyJNvYxx3siTOE2cgYBTAypxAQm7IVO25TPHshqFapiYmUIdql6HAXnby180TB6_lXxTW0AvppfnmP-WCvVxNlYfZDxLsvlAjQOy25mIal1_paBbTKYSoFdAXvWfYZDwJEaXfrEGmaymOpQy_pMMYCeWAKINyNPG_PofYoArM8lYQFhtRH_pkJoeHg_7t2f_0ug5uQvP7ebTLtmqlmv_AuBYZV7WLvcdgNUr1g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL5U1KASMhuDRtNo6T-Fit2F2gu4J2K3qz_MqlIVttsxLl1J-AxD_sL2HG2aRaxEOCY5KxFNsz9jfj8TeEvIQ91WZa2JAVxoSJi4pQs14SMmbAw05T6xhecB5P0tFx8u6Et9mEeBem4YfoAm5oGX69RgPHgPTeNWsocj1gbhZHxkN2k6xjWW_vVR1eM0iB_9IceILPBe5Y2vI2RvHeavuVfWkdh_jLr0DnKob1m9Bgk-j295vck9PdRa13zdefmB3_q393yO0lRKX7jU7dJTdcdY9s9NvKcPdJickh5QUdIJmmLt0OnWKtnx2qKkuPXFlcXX7D602wK9KjxdlcfW5r8NIPs_LCnxHRsaob5ac-a4GOZuf11eX3IY4D9XHK5srFA3I8eDPtj8Jl1YbQ8DxiIRi8A5jSU1FsLU-MyFmBnDwJ05ni1thcGK2tSBV3gF14AT6oiQqtWMwceH_sIVmrZpV7TKjlmQJV4lnmRIJLR5EmWWo1-JwKgIkNSNjOmTRLSnOsrFHKhow5ljiGshvDgLzu5M8aMo_fSr7yKtCJqfkppsBlXH6aDOVHkUzS_KQnhwHZbnVELq3_XEK3YpEJQF8BedF9hknCwxhVudkCZHLPdihE8icZgE9xCqA2II8a_et-KAZomYs4DkjstegvHZLj_cN-97T1L42ek43RdHwgD95O3j8ht-D9Mha1Tdbq-cI9BXRW62fe_n4ALZUv8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaglYAX7iNQwEgIXpo26yOJH6stu8uxq9JD3TfLV14asqttVqI89Scg8Q_7SxjnKos4JHhMMpbi8Yz9jT3-BqGXsKbaRAsb0syYkLkoCzXtsZBSAxF2HFtH_QXn8SQeHbF3Uz794RZ_zQ_Rbbh5z6jma-_gc5ttX5KGeqoHn5rFPeEhvYrWWRyl3q539y8JpCB8qc87IeSCaCxuaRsjsr3afmVZWvca_vwrzLkKYas1aHALqfbv69STk61lqbfMl5-IHf-ne7fRzQag4p3aou6gK664i67327pw91DuU0PyMzzwVJo6d5v40Ff62cSqsPjA5dnF-Vd_uQnWRHywnC_Up7YCL96b5WfVCREeq7I2fVzlLODR7LS8OP829GrA1S5lfeHiPjoavDnsj8KmZkNoeBrRENzdAUjpqYhYy5kRKc08Iw-jOlHcGpsKo7UVseIOkAvPIAI1UaYVJdRB7EcfoLViVrhHCFueKDAkniROMD9xZDFLYqsh4lQAS2yAwnbIpGkIzX1djVzWVMxEeh3KTocBet3Jz2sqj99KvqosoBNTixOfAJdweTwZyo-CTeJ02pPDAG20JiIb3z-V0C0iEgHYK0Avus8wSP4oRhVutgSZtOI6FIL9SQbAE4kB0gboYW1-3Q8RAJapICRApDKiv3RIjnf2-93T439p9Bxd29sdyA9vJ--foBvwutmI2kBr5WLpngI0K_Wzyvu-A4-2Lqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Flexible%2C+Tough%2C+and+Self-Healing+Supramolecular+Polymeric+Materials+Using+Host-Guest+Interaction&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Nakahata%2C+Masaki&rft.au=Takashima%2C+Yoshinori&rft.au=Harada%2C+Akira&rft.date=2016-01-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=37&rft.issue=1&rft.spage=86&rft.epage=92&rft_id=info:doi/10.1002%2Fmarc.201500473&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |