Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host-Guest Interaction

Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular p...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 37; no. 1; pp. 86 - 92
Main Authors Nakahata, Masaki, Takashima, Yoshinori, Harada, Akira
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.01.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host–guest gel) is formed by a simple preparation procedure. The host–guest gel shows self‐healing property in both wet state and dry state due to reversible nature of host–guest interaction. The practical utility of the host–guest gel as a scratch curable coating is demonstrated. Flexible, tough, and self‐healable polymeric materials are promising to be a substitute for conventional heavy materials. Here, a supramolecular polymeric material using multipoint host–guest interaction between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. The obtained host–guest gel shows a self‐healing property in both wet and dry states due to the reversible nature of the host–guest interaction.
AbstractList Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host–guest gel) is formed by a simple preparation procedure. The host–guest gel shows self‐healing property in both wet state and dry state due to reversible nature of host–guest interaction. The practical utility of the host–guest gel as a scratch curable coating is demonstrated. Flexible, tough, and self‐healable polymeric materials are promising to be a substitute for conventional heavy materials. Here, a supramolecular polymeric material using multipoint host–guest interaction between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. The obtained host–guest gel shows a self‐healing property in both wet and dry states due to the reversible nature of the host–guest interaction.
Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated. Flexible, tough, and self-healable polymeric materials are promising to be a substitute for conventional heavy materials. Here, a supramolecular polymeric material using multipoint host-guest interaction between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. The obtained host-guest gel shows a self-healing property in both wet and dry states due to the reversible nature of the host-guest interaction.
Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated.Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated.
Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated.
Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host–guest gel) is formed by a simple preparation procedure. The host–guest gel shows self‐healing property in both wet state and dry state due to reversible nature of host–guest interaction. The practical utility of the host–guest gel as a scratch curable coating is demonstrated. image
Author Harada, Akira
Nakahata, Masaki
Takashima, Yoshinori
Author_xml – sequence: 1
  givenname: Masaki
  surname: Nakahata
  fullname: Nakahata, Masaki
  organization: Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-0043, Toyonaka, Osaka, Japan
– sequence: 2
  givenname: Yoshinori
  surname: Takashima
  fullname: Takashima, Yoshinori
  organization: Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-0043, Toyonaka, Osaka, Japan
– sequence: 3
  givenname: Akira
  surname: Harada
  fullname: Harada, Akira
  email: harada@chem.sci.osaka-u.ac.jp
  organization: Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-0043, Toyonaka, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26398922$$D View this record in MEDLINE/PubMed
BookMark eNqNkctr3DAQh0VJaR7ttcdi6KWHeKuH9TqGpdkNJOkjCe1NyLK8q1S2NpJNs_99ZTYJJVDa0wj0fcPM_A7BXh96C8BbBGcIQvyx09HMMEQUwoqTF-AAUYxKIjHfy2-IcYkIYfvgMKVbCKGoIH4F9jEjUkiMD8B66VZrvy1Ovb13tbfHxXUYV-vjQvdNcWV9Wy6t9q5fFVfjJuoueGtGr2PxJfhtZ6MzxYUectU-FTdpApchDeVitGkozvr8pc3gQv8avGwzY9881CNwc_rper4szz8vzuYn56WhApKSS2J5hZCGuGloZaQgLeKIVaTmmjamEdLUdSOZphZxSluOkYFtrQkmVkhJjsCHXd9NDHfTEKpzyVjvdW_DmBQSmDHMKEX_geajCiZlldH3z9DbMMY-L6LyFFhyCbnI1LsHaqw726hNdDmfrXo8dwaqHWBiSCnaVhk36Ok8Q9TOKwTVlKqaUlVPqWZt9kx77PxXQe6EX87b7T9odXHybf6nW-5clwZ7_-Tq-FMxTjhV3y8X6qusLpn4gdSC_Ab35cIp
CitedBy_id crossref_primary_10_1002_adma_202305537
crossref_primary_10_1016_j_supmat_2021_100001
crossref_primary_10_1039_D1SM00110H
crossref_primary_10_1021_acs_langmuir_8b02375
crossref_primary_10_1021_acsami_4c19831
crossref_primary_10_1016_j_cclet_2017_05_007
crossref_primary_10_1021_acsami_2c01446
crossref_primary_10_1039_D1NJ02260A
crossref_primary_10_1002_adfm_201602546
crossref_primary_10_1039_D2SM00285J
crossref_primary_10_1007_s42114_017_0009_y
crossref_primary_10_1248_cpb_c17_00765
crossref_primary_10_1002_cjoc_202300603
crossref_primary_10_1016_j_reactfunctpolym_2024_105994
crossref_primary_10_1002_cplu_202000077
crossref_primary_10_1021_acsapm_4c03971
crossref_primary_10_1039_C9NR09283H
crossref_primary_10_1016_j_supmat_2021_100006
crossref_primary_10_1021_acs_chemmater_7b02895
crossref_primary_10_3390_polym15193894
crossref_primary_10_1039_C8RA08861F
crossref_primary_10_1039_D3SM01215H
crossref_primary_10_1021_acsabm_9b00157
crossref_primary_10_1002_pi_6321
crossref_primary_10_1002_smll_202305067
crossref_primary_10_1021_acs_biomac_0c01095
crossref_primary_10_1002_chem_202300622
crossref_primary_10_1016_j_cej_2019_04_053
crossref_primary_10_1678_rheology_50_51
crossref_primary_10_1016_j_colsurfa_2019_123670
crossref_primary_10_1002_mame_201600352
crossref_primary_10_1039_C6CP04028D
crossref_primary_10_1021_acs_chemrev_2c00231
crossref_primary_10_1021_acs_jpcb_8b02579
crossref_primary_10_1021_acs_langmuir_4c00330
crossref_primary_10_1039_C9MH01401B
crossref_primary_10_3390_gels2020016
crossref_primary_10_1039_C6CC03966A
crossref_primary_10_1002_mame_202100287
crossref_primary_10_1038_s41428_021_00505_y
crossref_primary_10_1002_mame_201700085
crossref_primary_10_1039_C9TC05612B
crossref_primary_10_1021_acs_macromol_7b00797
crossref_primary_10_1002_marc_201700739
crossref_primary_10_1002_smm2_1012
crossref_primary_10_1002_adfm_202212402
crossref_primary_10_1016_j_polymer_2017_05_031
crossref_primary_10_1007_s10118_020_2484_9
crossref_primary_10_1039_D0RA01607A
crossref_primary_10_1016_j_eurpolymj_2021_110972
crossref_primary_10_1246_cl_180646
crossref_primary_10_1016_j_ijbiomac_2018_10_196
crossref_primary_10_1246_cl_220535
crossref_primary_10_1002_chem_202404267
crossref_primary_10_3390_polym15040983
crossref_primary_10_1021_acsnano_3c09140
crossref_primary_10_1016_j_polymer_2018_11_051
crossref_primary_10_1021_acsanm_2c04370
crossref_primary_10_1021_acs_macromol_8b01124
crossref_primary_10_1016_j_progpolymsci_2019_03_004
crossref_primary_10_1002_macp_201600593
crossref_primary_10_1007_s42452_024_06058_y
crossref_primary_10_1007_s10847_017_0702_z
crossref_primary_10_1021_acsapm_3c02117
crossref_primary_10_1016_j_compscitech_2017_03_038
crossref_primary_10_1002_mame_201900621
crossref_primary_10_1016_j_electacta_2021_139730
crossref_primary_10_3390_gels8060356
crossref_primary_10_1016_j_matlet_2019_07_114
crossref_primary_10_1039_D0PY00434K
crossref_primary_10_1002_macp_202100002
crossref_primary_10_1038_s41598_017_07934_x
crossref_primary_10_1038_s41598_021_85816_z
crossref_primary_10_1038_s41598_020_74355_8
crossref_primary_10_1016_j_cej_2023_142868
crossref_primary_10_1678_rheology_47_99
crossref_primary_10_1002_pol_20240489
crossref_primary_10_1002_adhm_201900670
crossref_primary_10_1016_j_polymer_2017_09_001
crossref_primary_10_1002_admt_201900081
crossref_primary_10_1038_s41428_023_00823_3
crossref_primary_10_1021_acs_macromol_9b00483
crossref_primary_10_1002_app_53853
crossref_primary_10_1002_marc_201700406
crossref_primary_10_1016_j_mattod_2024_05_009
crossref_primary_10_1248_cpb_c16_00778
crossref_primary_10_1016_j_carbpol_2018_03_039
crossref_primary_10_1039_C8TB02021C
crossref_primary_10_1002_slct_201701081
crossref_primary_10_1038_s41428_020_0352_7
crossref_primary_10_1016_j_colsurfb_2018_02_032
crossref_primary_10_1021_acs_macromol_9b00471
crossref_primary_10_1038_s41428_022_00666_4
crossref_primary_10_1002_adhm_202302607
crossref_primary_10_1021_acsapm_0c01179
crossref_primary_10_1039_C8TB02862A
crossref_primary_10_1063_5_0243464
crossref_primary_10_3390_gels5020024
crossref_primary_10_1038_s41427_021_00302_2
crossref_primary_10_1002_adma_201602268
crossref_primary_10_1016_j_ijbiomac_2021_05_106
crossref_primary_10_1021_acsami_3c04395
crossref_primary_10_1007_s13233_021_9090_8
crossref_primary_10_1002_aenm_202002815
crossref_primary_10_1002_marc_202300286
crossref_primary_10_11618_adhesion_54_201
crossref_primary_10_1021_acs_macromol_1c00970
crossref_primary_10_1016_j_mser_2019_100523
crossref_primary_10_1002_polb_24899
crossref_primary_10_1021_acsapm_3c02107
crossref_primary_10_1016_j_tet_2017_08_002
crossref_primary_10_1002_app_55264
crossref_primary_10_1021_acsapm_0c00250
crossref_primary_10_1021_acs_macromol_7b00266
crossref_primary_10_3762_bjoc_12_7
crossref_primary_10_1021_acs_chemrev_0c01088
crossref_primary_10_1002_adma_202002800
crossref_primary_10_1002_adma_202002008
crossref_primary_10_1039_C6RA25355E
crossref_primary_10_1016_j_carbpol_2020_116277
crossref_primary_10_1039_C9CC01472A
crossref_primary_10_3390_ijms23020622
crossref_primary_10_1021_acsami_8b11108
crossref_primary_10_1016_j_coco_2019_07_011
crossref_primary_10_1021_acs_macromol_4c01012
crossref_primary_10_1021_acs_macromol_7b02698
crossref_primary_10_1002_inf2_12628
crossref_primary_10_1021_acsami_9b03029
crossref_primary_10_1002_polb_24630
crossref_primary_10_1007_s10847_017_0714_8
crossref_primary_10_1002_mame_202400395
crossref_primary_10_1016_j_bprint_2024_e00353
crossref_primary_10_1039_D0TC00453G
crossref_primary_10_1016_j_polymertesting_2018_12_021
crossref_primary_10_1002_macp_201600319
crossref_primary_10_1039_D0PY01458C
crossref_primary_10_1002_adma_201605325
crossref_primary_10_1039_D2PY00390B
crossref_primary_10_1016_j_polymer_2020_122465
crossref_primary_10_1016_j_msec_2019_110553
crossref_primary_10_1021_acs_chemmater_8b03579
crossref_primary_10_1002_marc_201600810
crossref_primary_10_1002_pi_6030
crossref_primary_10_1016_j_cej_2024_156144
crossref_primary_10_1016_j_memsci_2018_01_039
crossref_primary_10_1039_D4TC03214D
crossref_primary_10_1088_1742_6596_2324_1_012007
crossref_primary_10_1038_s41428_020_00432_4
crossref_primary_10_1021_acs_macromol_8b01410
crossref_primary_10_1039_C9CC05023J
crossref_primary_10_1002_marc_201700110
crossref_primary_10_1007_s00240_023_01509_4
crossref_primary_10_1002_macp_202000157
crossref_primary_10_1088_1674_4926_41_4_041601
crossref_primary_10_1002_chem_202001696
crossref_primary_10_1016_j_carres_2019_05_006
crossref_primary_10_1039_D3SC01975F
crossref_primary_10_1002_cjoc_202300239
crossref_primary_10_1039_D0PY01347A
crossref_primary_10_1039_C9NJ05844C
crossref_primary_10_1021_acs_macromol_9b01198
crossref_primary_10_1016_j_mtchem_2022_100893
crossref_primary_10_1016_j_polymer_2018_12_008
crossref_primary_10_1021_acs_macromol_0c02568
crossref_primary_10_1002_ejoc_201900090
crossref_primary_10_1039_C7CS00276A
crossref_primary_10_1039_C7TA04141A
crossref_primary_10_1002_advs_201801664
crossref_primary_10_3762_bjoc_13_95
crossref_primary_10_1021_acsmaterialslett_9b00371
crossref_primary_10_1016_j_porgcoat_2017_09_011
crossref_primary_10_1016_j_ijsolstr_2017_06_013
crossref_primary_10_1248_yakushi_18_00168_3
crossref_primary_10_1016_j_ccr_2020_213711
crossref_primary_10_1039_C9SC05589D
crossref_primary_10_1039_D0CC00672F
crossref_primary_10_3390_polym11060952
crossref_primary_10_1039_C9RA04623B
crossref_primary_10_1021_acsapm_1c01902
crossref_primary_10_1016_j_mtnano_2022_100228
crossref_primary_10_1021_acs_chemrev_9b00839
crossref_primary_10_1002_asia_201601163
crossref_primary_10_1021_acsapm_0c00468
crossref_primary_10_1039_C9PY00450E
crossref_primary_10_1126_sciadv_adj6856
crossref_primary_10_1016_j_colsurfb_2022_112747
crossref_primary_10_1038_s41428_024_00932_7
crossref_primary_10_3390_polym12061393
crossref_primary_10_1039_D2RA04885J
crossref_primary_10_1021_acs_macromol_8b02395
crossref_primary_10_1021_acsapm_1c01332
crossref_primary_10_1002_marc_201800117
crossref_primary_10_1002_marc_201700018
crossref_primary_10_1021_acs_chemmater_8b02320
crossref_primary_10_1007_s10118_021_2612_1
crossref_primary_10_1021_acsapm_1c00236
crossref_primary_10_1007_s10118_019_2325_x
crossref_primary_10_1016_j_eurpolymj_2022_111004
crossref_primary_10_1021_acs_macromol_0c02080
crossref_primary_10_1016_j_msec_2019_02_074
crossref_primary_10_1002_admi_201800384
crossref_primary_10_1002_smtd_202400812
crossref_primary_10_1016_j_carbpol_2020_117595
crossref_primary_10_1038_s41578_020_0202_4
crossref_primary_10_1088_2053_1591_ab29df
crossref_primary_10_1016_j_eurpolymj_2020_109807
Cites_doi 10.1038/35057232
10.1021/cr970015o
10.1021/ma60075a033
10.1021/ma800476x
10.1002/anie.201104069
10.1126/science.1167391
10.1007/978-3-662-04556-5
10.1126/science.1251135
10.1021/ar500109h
10.1039/c2sm25325a
10.1071/CH11156
10.1038/nchem.893
10.1038/ncomms2280
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
10.1201/9781315815015
10.1038/nature08693
10.1038/ncomms1521
10.1039/b904502n
10.1038/nature06669
10.1002/anie.201003888
10.1038/nmat3713
10.1021/ma8020147
10.1002/9783527633739
10.1126/science.1215416
10.1002/anie.201502957
10.1039/c2cs35091b
10.1039/c3cs60109a
10.1002/adma.200304907
10.1002/adma.201205321
10.1038/nmat1428
10.1021/ma801202f
10.1002/anie.201300862
10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
10.1002/9783527670185
10.1039/C3SM52272E
10.1002/9783527634408
10.1038/nature09963
10.1039/c2cs35264h
10.1038/nature11409
10.1126/science.1205962
10.1021/cr9000622
10.1126/science.1065879
10.1126/science.1248494
10.1039/C1CS15262A
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201500473
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage 92
ExternalDocumentID 3910456031
26398922
10_1002_marc_201500473
MARC201500473
ark_67375_WNG_Q94N68X1_G
Genre article
Journal Article
GrantInformation_xml – fundername: ImPACT Program of Council for Science, Technology and Innovation
– fundername: MEXT of Japan
– fundername: Research Grant Program of the Asahi Glass Foundation
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c5803-793e7411a02dd54c983f171643b7a5dcd89cbbd96a5e1755f721c0fba323e8993
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Thu Jul 10 18:06:13 EDT 2025
Thu Jul 10 21:59:33 EDT 2025
Fri Jul 25 10:32:36 EDT 2025
Thu Apr 03 07:06:43 EDT 2025
Tue Jul 01 01:50:15 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Wed Jan 22 16:26:37 EST 2025
Wed Oct 30 09:55:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords tough polymers
scratch-curable coatings
self-healing
reversible bond formation
host-guest interactions
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5803-793e7411a02dd54c983f171643b7a5dcd89cbbd96a5e1755f721c0fba323e8993
Notes ImPACT Program of Council for Science, Technology and Innovation
istex:29D431B9B9D07F5EA9955AA841A81635C9EF2B0B
MEXT of Japan
Research Grant Program of the Asahi Glass Foundation
ArticleID:MARC201500473
ark:/67375/WNG-Q94N68X1-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26398922
PQID 1752979078
PQPubID 1016394
PageCount 7
ParticipantIDs proquest_miscellaneous_1826626551
proquest_miscellaneous_1800486994
proquest_journals_1752979078
pubmed_primary_26398922
crossref_citationtrail_10_1002_marc_201500473
crossref_primary_10_1002_marc_201500473
wiley_primary_10_1002_marc_201500473_MARC201500473
istex_primary_ark_67375_WNG_Q94N68X1_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977.
J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed. Wiley, Hoboken, USA 2004.
A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19.
A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 2009, 109, 5974.
C. Koopmans, H. Ritter, Macromolecules 2008, 41, 7418.
K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Angew. Chem. Int. Ed. 2012, 51, 1138.
T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813.
A. Harada, Supramolecular Polymer Chemistry, Wiley-VCH, Weinheim, Germany 2012.
B. Ghosh, M. W. Urban, Science 2009, 323, 1458.
B. L. Feringa, W. R. Browne, Molecular Switches, Wiley-VCH, Weinheim, Germany 2011.
E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, C. Creton, Science 2014, 344, 186.
K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120.
J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875.
M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731.
S. R. White, J. S. Moore, N. R. Sottos, B. P. Krull, W. A. Santa Cruz, R. C. R. Gergely, Science 2014, 344, 620.
Y. Yang, M. W. Urban, Chem. Soc. Rev. 2013, 42, 7446.
M. W. Urban, Handbook of Stimuli-Responsive Materials, Wiley-VCH, Weinheim, Germany 2011.
W. H. Binder, Self-Healing Polymers: From Principles to Applications, Wiley-VCH, Weinheim, Germany 2013.
T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849.
G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse, P. K. Hansma, Nat. Mater. 2005, 4, 612.
L. Li, X. Guo, J. Wang, P. Liu, R. K. Prud'homme, B. L. May, S. F. Lincoln, Macromolecules 2008, 41, 8677.
S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, P. G. Whitten, Aust. J. Chem. 2011, 64, 1007.
M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334.
M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485.
Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
J. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman, C. Abell, Science 2012, 335, 690.
K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Angew. Chem. Int. Ed. 2015, 54, 8984.
Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matyjaszewski, Angew. Chem. Int. Ed. 2011, 50, 1660.
Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794.
B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, Garland Science, New York, USA 2013.
P-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, New York, USA 1979.
S. Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun, W. Hayes, Chem. Soc. Rev. 2010, 39, 1973.
J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
M. Shibayama, Soft Matter 2012, 8, 8030.
A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128.
T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-I. Chung, Macromolecules 2008, 41, 5379.
X. Zhao, Soft Matter 2014, 10, 672.
T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932.
A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34.
X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698.
X. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042.
E. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195.
W. Grellmann, S. Seidler, Deformation and Fracture Behaviour of Polymers, Springer, Berlin, Germany 2001.
2002; 14
2013; 25
2011; 2
2012
2011
2010; 39
2002; 295
2013; 42
2015; 54
2010; 463
2003; 15
2014; 47
2001; 409
2004
2012; 489
2011; 3
1979
2012; 51
2011; 472
2012; 3
2001
2013; 12
2011; 50
2013; 52
2011; 64
2005; 4
2008; 41
2013
2012; 335
2001; 13
2008; 451
2009; 109
1998; 98
2009; 323
2012; 8
2014; 10
2012; 41
2014; 344
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
Harada A. (e_1_2_6_29_1) 2012
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
Brandrup J. (e_1_2_6_46_1) 2004
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: B. L. Feringa, W. R. Browne, Molecular Switches, Wiley-VCH, Weinheim, Germany 2011.
– reference: E. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195.
– reference: Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
– reference: M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875.
– reference: Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matyjaszewski, Angew. Chem. Int. Ed. 2011, 50, 1660.
– reference: P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977.
– reference: X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698.
– reference: T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813.
– reference: B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, Garland Science, New York, USA 2013.
– reference: E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, C. Creton, Science 2014, 344, 186.
– reference: S. R. White, J. S. Moore, N. R. Sottos, B. P. Krull, W. A. Santa Cruz, R. C. R. Gergely, Science 2014, 344, 620.
– reference: J. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman, C. Abell, Science 2012, 335, 690.
– reference: X. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042.
– reference: T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849.
– reference: K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Angew. Chem. Int. Ed. 2012, 51, 1138.
– reference: A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 2009, 109, 5974.
– reference: A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34.
– reference: W. H. Binder, Self-Healing Polymers: From Principles to Applications, Wiley-VCH, Weinheim, Germany 2013.
– reference: M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334.
– reference: A. Harada, Supramolecular Polymer Chemistry, Wiley-VCH, Weinheim, Germany 2012.
– reference: A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19.
– reference: M. W. Urban, Handbook of Stimuli-Responsive Materials, Wiley-VCH, Weinheim, Germany 2011.
– reference: K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120.
– reference: A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128.
– reference: W. Grellmann, S. Seidler, Deformation and Fracture Behaviour of Polymers, Springer, Berlin, Germany 2001.
– reference: S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Nature 2001, 409, 794.
– reference: B. Ghosh, M. W. Urban, Science 2009, 323, 1458.
– reference: C. Koopmans, H. Ritter, Macromolecules 2008, 41, 7418.
– reference: L. Li, X. Guo, J. Wang, P. Liu, R. K. Prud'homme, B. L. May, S. F. Lincoln, Macromolecules 2008, 41, 8677.
– reference: S. Naficy, H. R. Brown, J. M. Razal, G. M. Spinks, P. G. Whitten, Aust. J. Chem. 2011, 64, 1007.
– reference: G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse, P. K. Hansma, Nat. Mater. 2005, 4, 612.
– reference: J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed. Wiley, Hoboken, USA 2004.
– reference: M. Shibayama, Soft Matter 2012, 8, 8030.
– reference: J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
– reference: M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
– reference: K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Angew. Chem. Int. Ed. 2015, 54, 8984.
– reference: S. Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun, W. Hayes, Chem. Soc. Rev. 2010, 39, 1973.
– reference: T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932.
– reference: M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731.
– reference: P-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, New York, USA 1979.
– reference: Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
– reference: Y. Yang, M. W. Urban, Chem. Soc. Rev. 2013, 42, 7446.
– reference: J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
– reference: T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-I. Chung, Macromolecules 2008, 41, 5379.
– reference: Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485.
– reference: X. Zhao, Soft Matter 2014, 10, 672.
– volume: 14
  start-page: 1120
  year: 2002
  publication-title: Adv. Mater.
– year: 2011
– volume: 54
  start-page: 8984
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 409
  start-page: 794
  year: 2001
  publication-title: Nature
– volume: 98
  start-page: 1875
  year: 1998
  publication-title: Chem. Rev.
– volume: 41
  start-page: 8677
  year: 2008
  publication-title: Macromolecules
– volume: 109
  start-page: 5974
  year: 2009
  publication-title: Chem. Rev.
– volume: 41
  start-page: 7418
  year: 2008
  publication-title: Macromolecules
– year: 2001
– volume: 295
  start-page: 1698
  year: 2002
  publication-title: Science
– volume: 50
  start-page: 1660
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 335
  start-page: 690
  year: 2012
  publication-title: Science
– volume: 41
  start-page: 6042
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 511
  year: 2011
  publication-title: Nat. Commun.
– volume: 47
  start-page: 2128
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 5379
  year: 2008
  publication-title: Macromolecules
– volume: 12
  start-page: 932
  year: 2013
  publication-title: Nat. Mater.
– year: 1979
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 41
  start-page: 6195
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 34
  year: 2011
  publication-title: Nat. Chem.
– volume: 10
  start-page: 672
  year: 2014
  publication-title: Soft Matter
– year: 2012
– volume: 344
  start-page: 186
  year: 2014
  publication-title: Science
– volume: 42
  start-page: 7446
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 64
  start-page: 1007
  year: 2011
  publication-title: Aust. J. Chem.
– volume: 15
  start-page: 1155
  year: 2003
  publication-title: Adv. Mater.
– volume: 39
  start-page: 1973
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 463
  start-page: 339
  year: 2010
  publication-title: Nature
– volume: 323
  start-page: 1458
  year: 2009
  publication-title: Science
– volume: 51
  start-page: 1138
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1270
  year: 2012
  publication-title: Nat. Commun.
– volume: 8
  start-page: 8030
  year: 2012
  publication-title: Soft Matter
– year: 2004
– volume: 344
  start-page: 620
  year: 2014
  publication-title: Science
– volume: 451
  start-page: 977
  year: 2008
  publication-title: Nature
– volume: 335
  start-page: 813
  year: 2012
  publication-title: Science
– volume: 13
  start-page: 485
  year: 2001
  publication-title: Adv. Mater.
– volume: 4
  start-page: 612
  year: 2005
  publication-title: Nat. Mater.
– volume: 25
  start-page: 2849
  year: 2013
  publication-title: Adv. Mater.
– volume: 472
  start-page: 334
  year: 2011
  publication-title: Nature
– volume: 41
  start-page: 19
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 5731
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– year: 2013
– ident: e_1_2_6_15_1
  doi: 10.1038/35057232
– ident: e_1_2_6_44_1
  doi: 10.1021/cr970015o
– ident: e_1_2_6_2_1
  doi: 10.1021/ma60075a033
– ident: e_1_2_6_10_1
  doi: 10.1021/ma800476x
– ident: e_1_2_6_20_1
  doi: 10.1002/anie.201104069
– ident: e_1_2_6_18_1
  doi: 10.1126/science.1167391
– ident: e_1_2_6_1_1
  doi: 10.1007/978-3-662-04556-5
– ident: e_1_2_6_16_1
  doi: 10.1126/science.1251135
– ident: e_1_2_6_37_1
  doi: 10.1021/ar500109h
– ident: e_1_2_6_4_1
  doi: 10.1039/c2sm25325a
– ident: e_1_2_6_3_1
  doi: 10.1071/CH11156
– ident: e_1_2_6_38_1
  doi: 10.1038/nchem.893
– ident: e_1_2_6_41_1
  doi: 10.1038/ncomms2280
– ident: e_1_2_6_8_1
  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
– ident: e_1_2_6_31_1
  doi: 10.1201/9781315815015
– ident: e_1_2_6_22_1
  doi: 10.1038/nature08693
– ident: e_1_2_6_39_1
  doi: 10.1038/ncomms1521
– ident: e_1_2_6_13_1
  doi: 10.1039/b904502n
– ident: e_1_2_6_21_1
  doi: 10.1038/nature06669
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.201003888
– ident: e_1_2_6_23_1
  doi: 10.1038/nmat3713
– ident: e_1_2_6_36_1
  doi: 10.1021/ma8020147
– ident: e_1_2_6_26_1
  doi: 10.1002/9783527633739
– ident: e_1_2_6_33_1
  doi: 10.1126/science.1215416
– ident: e_1_2_6_43_1
  doi: 10.1002/anie.201502957
– ident: e_1_2_6_34_1
  doi: 10.1039/c2cs35091b
– ident: e_1_2_6_14_1
  doi: 10.1039/c3cs60109a
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.200304907
– ident: e_1_2_6_40_1
  doi: 10.1002/adma.201205321
– ident: e_1_2_6_45_1
  doi: 10.1038/nmat1428
– ident: e_1_2_6_35_1
  doi: 10.1021/ma801202f
– ident: e_1_2_6_42_1
  doi: 10.1002/anie.201300862
– ident: e_1_2_6_9_1
  doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
– ident: e_1_2_6_12_1
  doi: 10.1002/9783527670185
– ident: e_1_2_6_5_1
  doi: 10.1039/C3SM52272E
– volume-title: Polymer Handbook
  year: 2004
  ident: e_1_2_6_46_1
– ident: e_1_2_6_25_1
  doi: 10.1002/9783527634408
– ident: e_1_2_6_24_1
  doi: 10.1038/nature09963
– volume-title: Supramolecular Polymer Chemistry
  year: 2012
  ident: e_1_2_6_29_1
– ident: e_1_2_6_32_1
  doi: 10.1039/c2cs35264h
– ident: e_1_2_6_11_1
  doi: 10.1038/nature11409
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1205962
– ident: e_1_2_6_30_1
  doi: 10.1021/cr9000622
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1065879
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1248494
– ident: e_1_2_6_27_1
  doi: 10.1039/C1CS15262A
SSID ssj0008402
Score 2.5662458
Snippet Flexible, tough, and self‐healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A...
Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms Chains (polymeric)
Cyclodextrins
Drying
host-guest interactions
Hydrogels
Polymer chemistry
Polymers
Recognition
reversible bond formation
scratch-curable coatings
self-healing
Smart materials
tough polymers
Utilities
Title Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host-Guest Interaction
URI https://api.istex.fr/ark:/67375/WNG-Q94N68X1-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201500473
https://www.ncbi.nlm.nih.gov/pubmed/26398922
https://www.proquest.com/docview/1752979078
https://www.proquest.com/docview/1800486994
https://www.proquest.com/docview/1826626551
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKK8GCjISgkvTZu04iY_VqrsrpF1BH2Jvll-5NGSr3axEOfUnIPEP-0uYyass4iHBLVHGUjyesb-xx98Q8hrWVJca6UKeWxvGPspDwwdxyLmFCDtJnOd4wXk6SyZn8bu5mP9wi7_hh-g33NAz6vkaHVyb1cENaShSPWBqlkDCQ6T7xIQtREXHN_xREL00x50QcUEwlnSsjRE72Gy-sSrdRgV__hXk3ESw9RI0uk909_NN5sn5_roy-_bLT7yO_9O7B-Rei0_pYWNQ2-SWLx-SO8OuLNwjUmBmSHFJR8ikaQq_R0-x0M8e1aWjJ77Ir6--4t0mWBLpyfpiqT91BXjp-0VxWR8Q0amuGsundcoCnSxW1fXVtzGqgdablM19i8fkbHR0OpyEbcmG0Ios4iF4uweMMtARc07EVmY8R0KemJtUC2ddJq0xTiZaeAAuIocA1Ea50ZxxD6Eff0K2ykXpdwh1ItVgRyJNvYxx3siTOE2cgYBTAypxAQm7IVO25TPHshqFapiYmUIdql6HAXnby180TB6_lXxTW0AvppfnmP-WCvVxNlYfZDxLsvlAjQOy25mIal1_paBbTKYSoFdAXvWfYZDwJEaXfrEGmaymOpQy_pMMYCeWAKINyNPG_PofYoArM8lYQFhtRH_pkJoeHg_7t2f_0ug5uQvP7ebTLtmqlmv_AuBYZV7WLvcdgNUr1g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL5U1KASMhuDRtNo6T-Fit2F2gu4J2K3qz_MqlIVttsxLl1J-AxD_sL2HG2aRaxEOCY5KxFNsz9jfj8TeEvIQ91WZa2JAVxoSJi4pQs14SMmbAw05T6xhecB5P0tFx8u6Et9mEeBem4YfoAm5oGX69RgPHgPTeNWsocj1gbhZHxkN2k6xjWW_vVR1eM0iB_9IceILPBe5Y2vI2RvHeavuVfWkdh_jLr0DnKob1m9Bgk-j295vck9PdRa13zdefmB3_q393yO0lRKX7jU7dJTdcdY9s9NvKcPdJickh5QUdIJmmLt0OnWKtnx2qKkuPXFlcXX7D602wK9KjxdlcfW5r8NIPs_LCnxHRsaob5ac-a4GOZuf11eX3IY4D9XHK5srFA3I8eDPtj8Jl1YbQ8DxiIRi8A5jSU1FsLU-MyFmBnDwJ05ni1thcGK2tSBV3gF14AT6oiQqtWMwceH_sIVmrZpV7TKjlmQJV4lnmRIJLR5EmWWo1-JwKgIkNSNjOmTRLSnOsrFHKhow5ljiGshvDgLzu5M8aMo_fSr7yKtCJqfkppsBlXH6aDOVHkUzS_KQnhwHZbnVELq3_XEK3YpEJQF8BedF9hknCwxhVudkCZHLPdihE8icZgE9xCqA2II8a_et-KAZomYs4DkjstegvHZLj_cN-97T1L42ek43RdHwgD95O3j8ht-D9Mha1Tdbq-cI9BXRW62fe_n4ALZUv8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaglYAX7iNQwEgIXpo26yOJH6stu8uxq9JD3TfLV14asqttVqI89Scg8Q_7SxjnKos4JHhMMpbi8Yz9jT3-BqGXsKbaRAsb0syYkLkoCzXtsZBSAxF2HFtH_QXn8SQeHbF3Uz794RZ_zQ_Rbbh5z6jma-_gc5ttX5KGeqoHn5rFPeEhvYrWWRyl3q539y8JpCB8qc87IeSCaCxuaRsjsr3afmVZWvca_vwrzLkKYas1aHALqfbv69STk61lqbfMl5-IHf-ne7fRzQag4p3aou6gK664i67327pw91DuU0PyMzzwVJo6d5v40Ff62cSqsPjA5dnF-Vd_uQnWRHywnC_Up7YCL96b5WfVCREeq7I2fVzlLODR7LS8OP829GrA1S5lfeHiPjoavDnsj8KmZkNoeBrRENzdAUjpqYhYy5kRKc08Iw-jOlHcGpsKo7UVseIOkAvPIAI1UaYVJdRB7EcfoLViVrhHCFueKDAkniROMD9xZDFLYqsh4lQAS2yAwnbIpGkIzX1djVzWVMxEeh3KTocBet3Jz2sqj99KvqosoBNTixOfAJdweTwZyo-CTeJ02pPDAG20JiIb3z-V0C0iEgHYK0Avus8wSP4oRhVutgSZtOI6FIL9SQbAE4kB0gboYW1-3Q8RAJapICRApDKiv3RIjnf2-93T439p9Bxd29sdyA9vJ--foBvwutmI2kBr5WLpngI0K_Wzyvu-A4-2Lqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Flexible%2C+Tough%2C+and+Self-Healing+Supramolecular+Polymeric+Materials+Using+Host-Guest+Interaction&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Nakahata%2C+Masaki&rft.au=Takashima%2C+Yoshinori&rft.au=Harada%2C+Akira&rft.date=2016-01-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=37&rft.issue=1&rft.spage=86&rft.epage=92&rft_id=info:doi/10.1002%2Fmarc.201500473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon