Four-channel surface coil array for 300-MHz pulsed EPR imaging: Proof-of-concept experiments

Time‐domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and th...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 71; no. 2; pp. 853 - 858
Main Authors Enomoto, Ayano, Hirata, Hiroshi, Matsumoto, Shingo, Saito, Keita, Subramanian, Sankaran, Krishna, Murali C., Devasahayam, Nallathamby
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.24702

Cover

Loading…
Abstract Time‐domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor‐bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity. Magn Reson Med 71:853–858, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity.
Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity. Magn Reson Med 71:853-858, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Time‐domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times ( T 1 and T 2 ) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor‐bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity. Magn Reson Med 71:853–858, 2014. © 2013 Wiley Periodicals, Inc.
Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity.Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity.
Time‐domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor‐bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity. Magn Reson Med 71:853–858, 2014. © 2013 Wiley Periodicals, Inc.
Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times ( T 1 and T 2 ) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity.
Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T sub(1) and T sub(2)) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity. Magn Reson Med 71:853-858, 2014. copyright 2013 Wiley Periodicals, Inc.
Author Matsumoto, Shingo
Saito, Keita
Enomoto, Ayano
Subramanian, Sankaran
Devasahayam, Nallathamby
Hirata, Hiroshi
Krishna, Murali C.
AuthorAffiliation 2 Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
1 Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
AuthorAffiliation_xml – name: 1 Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
– name: 2 Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
Author_xml – sequence: 1
  givenname: Ayano
  surname: Enomoto
  fullname: Enomoto, Ayano
  organization: Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Sapporo, Japan
– sequence: 2
  givenname: Hiroshi
  surname: Hirata
  fullname: Hirata, Hiroshi
  organization: Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Sapporo, Japan
– sequence: 3
  givenname: Shingo
  surname: Matsumoto
  fullname: Matsumoto, Shingo
  organization: Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Maryland, Bethesda, USA
– sequence: 4
  givenname: Keita
  surname: Saito
  fullname: Saito, Keita
  organization: Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Maryland, Bethesda, USA
– sequence: 5
  givenname: Sankaran
  surname: Subramanian
  fullname: Subramanian, Sankaran
  organization: Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Maryland, Bethesda, USA
– sequence: 6
  givenname: Murali C.
  surname: Krishna
  fullname: Krishna, Murali C.
  email: murali@helix.nih.gov
  organization: Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Maryland, Bethesda, USA
– sequence: 7
  givenname: Nallathamby
  surname: Devasahayam
  fullname: Devasahayam, Nallathamby
  organization: Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Maryland, Bethesda, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23532721$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFDEUxYNU7Lb64BeQAV_0Ydr8m2TigyBruxW6tSxKfRBCJpPZps4kYzKjXT-9aXe31KJIAnnI75x7cnP3wI7zzgDwHMEDBCE-7EJ3gCmH-BGYoALjHBeC7oAJ5BTmBAm6C_ZivIIQCsHpE7CLSUEwx2gCvh77MeT6Ujln2iyOoVHaZNrbNlMhqFXW-JARCPP5ya-sH9to6uzofJHZTi2tW77JzoP3TZ629k6bfsjMdW-C7Ywb4lPwuFFJ8mxz7oPPx0efpif56cfZh-m701wXJcR5qRoKU11SlUwopg2vcVGWVS1UXRfUEMGoIBQqDJluKorKSpXEaFErVjQCkn3wdu3bj1Vnap1qB9XKPsVQYSW9svLPG2cv5dL_kJwxTm8NXm0Mgv8-mjjIzkZt2lY548coEeOcpEXR_1EqMEOkgCyhLx-gV6nZLnUiUZwJiDjHiXpxP_xd6u0fJeBwDejgYwymkdoOarD-5i22lQjKmymQaQrk7RQkxesHiq3p39iN-0_bmtW_QTlfzLeKfK2wcTDXdwoVvkmWelTIi7OZnE4Xs_df6IVk5Dfer894
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_jmr_2023_107510
crossref_primary_10_1007_s00723_015_0671_6
crossref_primary_10_1038_s41598_019_49064_6
crossref_primary_10_1007_s00723_020_01304_z
crossref_primary_10_1002_mrm_27185
crossref_primary_10_1002_mrm_25282
crossref_primary_10_1016_j_jmr_2020_106890
Cites_doi 10.1002/mrm.10199
10.1016/j.jmr.2011.01.021
10.1016/j.jmr.2009.03.009
10.1073/pnas.0908447106
10.1006/jmre.1998.1697
10.1016/0022-2364(85)90257-4
10.1016/S1090-7807(03)00050-8
10.1006/jmra.1993.1265
10.1002/mrm.10171
10.1093/jnci/82.5.338
10.1002/mrm.20872
10.1016/j.jmr.2007.01.023
10.1016/0022-2364(87)90348-9
10.1006/jmre.1999.1926
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1093/jnci/93.4.266
10.1016/j.jmr.2003.08.004
10.1002/mrm.1910160203
10.1136/jnnp.61.6.632
10.1002/nbm.897
10.1016/j.ijrobp.2008.02.022
10.1063/1.1148857
10.1002/mrm.20849
10.1002/mrm.20531
10.1002/mrm.21194
10.1002/mrm.10408
10.1016/0022-2364(70)90004-1
10.1002/mrm.10353
10.1016/j.jmr.2007.10.012
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7QO
7X8
5PM
DOI 10.1002/mrm.24702
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1
CrossRef
MEDLINE - Academic


Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 858
ExternalDocumentID PMC7667490
3179912971
23532721
10_1002_mrm_24702
MRM24702
ark_67375_WNG_CCRGDX4W_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Core‐to‐Core Program of JSPS (Center for Magnetic Resonance Molecular Imaging of In vivo Redox System at Kyushu University, Japan), Center for Cancer Research, NCI, NIH
– fundername: Research Fellowship for Young Scientists
  funderid: 24‐1486
– fundername: NEXT Program of Japan Society for the Promotion of Science
  funderid: LR002
– fundername: Intramural NIH HHS
  grantid: Z01 BC010476
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7QO
7X8
5PM
ID FETCH-LOGICAL-c5802-8af40fac3b869a6ce7d2588bd9add54e39649340a206cfb418ba83ec9da65f903
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 13:44:27 EDT 2025
Fri Jul 11 10:18:38 EDT 2025
Fri Jul 11 11:14:54 EDT 2025
Fri Jul 25 12:21:09 EDT 2025
Mon Jul 21 05:30:31 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Tue Jul 01 01:20:53 EDT 2025
Wed Jan 22 16:35:11 EST 2025
Wed Oct 30 09:50:25 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5802-8af40fac3b869a6ce7d2588bd9add54e39649340a206cfb418ba83ec9da65f903
Notes Research Fellowship for Young Scientists - No. 24-1486
ArticleID:MRM24702
NEXT Program of Japan Society for the Promotion of Science - No. LR002
Core-to-Core Program of JSPS (Center for Magnetic Resonance Molecular Imaging of In vivo Redox System at Kyushu University, Japan), Center for Cancer Research, NCI, NIH
istex:68562E62E9E3AD7C707081075CF837BCA9D84A39
ark:/67375/WNG-CCRGDX4W-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24702
PMID 23532721
PQID 1476901772
PQPubID 1016391
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7667490
proquest_miscellaneous_1677373741
proquest_miscellaneous_1492613506
proquest_journals_1476901772
pubmed_primary_23532721
crossref_citationtrail_10_1002_mrm_24702
crossref_primary_10_1002_mrm_24702
wiley_primary_10_1002_mrm_24702_MRM24702
istex_primary_ark_67375_WNG_CCRGDX4W_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Devasahayam N, Subramanian S, Murugesan R, Hyodo F, Matsumoto KI, Mitchell JB, Krishna MC. Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time-domain EPR. Magn Reson Med 2007;57:776-783.
Mailer C, Subramanian VS, Pelizzari CA, Halpern HJ. Spin echo spectroscopic electron paramagnetic resonance imaging. Magn Reson Med 2006;55:904-912.
Devasahayam N, Subramanian S, Murugesan R, Cook JA, Afeworki M, Tschudin RG, Mitchell JB, Krishna MC. Parallel coil resonators for time-domain radiofrequency electron paramagnetic resonance imaging of biological objects. J Magn Reson 2000;142:168-176.
Brown JM. Tumor hypoxia, drug-resistance, and metastases. J Natl Cancer Inst 1990;82:338-339.
Katscher U, Boernert P, Leussler C, van den Brink JS. Transmit sense. Magn Reson Med 2003;49:144-150.
Enomoto A, Hirata H. Sequential CW-EPR image acquisition with 760-MHz surface coil array. J Magn Reson 2011;209:244-249.
Filippi M, Yousry TA, Alkadhi H, Stehling M, Horsfield MA, Voltz R. Spinal cord MRI in multiple sclerosis with multicoil arrays: a comparison between fast spin echo and fast FLAIR. J Neurol Neurosurg Psych 1996;61:632-635.
Roeschmann P. High-frequency coil system for a magnetic resonance imaging apparatus. US Pat 4,746,866, 1988.
Matsumoto K, Subramanian S, Devasahayam N, Aravalluvan T, Murugesan R, Cook JA, Mitchell JB, Krishna MC. Electron paramagnetic resonance imaging of tumor hypoxia: enhanced spatial and temporal resolution for in vivo pO2 determination. Magn Reson Med 2006;55:1157-1163.
Rinard GA, Quine RW, Eaton SS, Eaton GR. Microwave coupling structures for spectroscopy. J Magn Reson Part A 1993;105:137-144.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225.
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
Elas M, Bell R, Hleihel D, et al. Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSA fibrosarcomas. Int J Rad Oncol Biol Phys 2008;71:542-549.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
Subramanian S, Matsumoto KI, Mitchell JB, Krishna MC. Radio frequency continuous-wave and time-domain EPR imaging and Overhauser-enhanced magnetic resonance imaging of small animals: instrumental developments and comparison of relative merits for functional imaging. NMR Biomed 2004;17:263-294.
Subramanian S, Koscielniak JW, Devasahayam N, Pursley RH, Pohida TJ, Krishna MC. A new strategy for fast radiofrequency CW EPR imaging: direct detection with rapid scan and rotating gradients. J Magn Reson 2007;186:212-219.
Pursley R, Kakareka J, Salem G, Devasahayam N, Subramanian S, Tschudin RG, Krishna MC, Pohida TJ. Stochastic excitation and Hadamard correlation spectroscopy with bandwidth extension in RF FT-EPR. J Magn Reson 2003;162:35-45.
Subramanian S, Murugesan R, Devasahayam N, Cook JA, Afeworki M, Pohida T, Tschudin RG, Mitchell JB, Krishna MC. High-speed data acquisition system and receiver configurations for time-domain radiofrequency electron paramagnetic resonance spectroscopy and imaging. J Magn Reson 1999;137:379-388.
Elas M, Williams BB, Parasca A, et al. Quantitaive tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med 2003;49:682-691.
Hayes CE, Edelstein W, Schenck J, Mueller OM, Eash M. A highly homogeneous radiofrequency coil for wholebody NMR imaging at 1.5 T. J Magn Reson 1985;63:622-628.
Matsumoto S, Yasui H, Batra S, et al. Simultaneous imaging of tumor oxygenation and microvascular permeability using Overhauser enhanced MRI. Proc Natl Acad Sci USA 2009;106:17898-17903.
Hirata H, He G, Deng Y, Salikov I, Petryakov S, Zweier JL. A loop resonator for slice-selective in vivo EPR imaging in rats. J Magn Reson 2008;190:124-134.
Halse M, Goodyear DJ, MacMillan B, Szomolanyi P, Matheson D, Balcom BJ. Centric scan SPRITE magnetic resonance imaging. J Magn Reson 2003;165:219-229.
Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266-276.
Bluemich B, Gong Q, Byrne E, Greferath M. NMR with excitation modulated by Frank sequences. J Magn Reson 2009;199:18-24.
Subramanian S, Devasahayam N, Murugesan R, Yamada K, Cook J, Taube A, Mitchell JB, Lohman JAB, Krishna MC. Single-point (constant-time) imaging in radiofrequency Fourier transform electron paramagnetic resonance. Magn Reson Med 2002;48:370-379.
Carlson JW. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils. J Magn Reson 1987;74:376-380.
Ernst RR. Magnetic resonance with stochastic excitation. J Magn Reson 1970;3:10-27.
SAR. ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys 1998;74:494-522.
Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509-4515.
Sutton BP, Ciobanu L, Zhang X, Webb A. Parallel imaging for NMR microscopy at 14.1 Tesla. Magn Reson Med 2005;54:9-13.
Murugesan R, Afeworki M, Cook JA, Devasahayam N, Tschudin R, Mitchell JB, Subramanian S, Krishna MC. A broadband pulsed radio frequency electron paramagnetic resonance spectrometer for biological applications. Rev Sci Instrum 1998;69:1869-1876.
2001; 93
2008; 190
1987; 74
1990; 16
2006; 55
2007; 186
2009; 199
1999; 42
1985; 63
2003
1993; 105
2008; 71
2007; 57
1990; 82
1996; 56
1998; 69
1970; 3
2002; 47
1988; 4
2002; 48
2004; 17
2011; 209
1996; 61
2003; 162
2003; 49
2005; 54
2000; 142
1998; 74
1999; 137
2003; 165
2009; 106
Hockel M (e_1_2_6_19_1) 1996; 56
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_20_1
e_1_2_6_8_1
Roeschmann P (e_1_2_6_9_1) 1988; 4
e_1_2_6_5_1
e_1_2_6_4_1
SAR (e_1_2_6_21_1) 1998; 74
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Subramanian S (e_1_2_6_12_1) 2003
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Filippi M, Yousry TA, Alkadhi H, Stehling M, Horsfield MA, Voltz R. Spinal cord MRI in multiple sclerosis with multicoil arrays: a comparison between fast spin echo and fast FLAIR. J Neurol Neurosurg Psych 1996;61:632-635.
– reference: Devasahayam N, Subramanian S, Murugesan R, Cook JA, Afeworki M, Tschudin RG, Mitchell JB, Krishna MC. Parallel coil resonators for time-domain radiofrequency electron paramagnetic resonance imaging of biological objects. J Magn Reson 2000;142:168-176.
– reference: Enomoto A, Hirata H. Sequential CW-EPR image acquisition with 760-MHz surface coil array. J Magn Reson 2011;209:244-249.
– reference: Elas M, Bell R, Hleihel D, et al. Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSA fibrosarcomas. Int J Rad Oncol Biol Phys 2008;71:542-549.
– reference: Devasahayam N, Subramanian S, Murugesan R, Hyodo F, Matsumoto KI, Mitchell JB, Krishna MC. Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time-domain EPR. Magn Reson Med 2007;57:776-783.
– reference: SAR. ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys 1998;74:494-522.
– reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225.
– reference: Rinard GA, Quine RW, Eaton SS, Eaton GR. Microwave coupling structures for spectroscopy. J Magn Reson Part A 1993;105:137-144.
– reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
– reference: Subramanian S, Murugesan R, Devasahayam N, Cook JA, Afeworki M, Pohida T, Tschudin RG, Mitchell JB, Krishna MC. High-speed data acquisition system and receiver configurations for time-domain radiofrequency electron paramagnetic resonance spectroscopy and imaging. J Magn Reson 1999;137:379-388.
– reference: Carlson JW. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils. J Magn Reson 1987;74:376-380.
– reference: Bluemich B, Gong Q, Byrne E, Greferath M. NMR with excitation modulated by Frank sequences. J Magn Reson 2009;199:18-24.
– reference: Subramanian S, Matsumoto KI, Mitchell JB, Krishna MC. Radio frequency continuous-wave and time-domain EPR imaging and Overhauser-enhanced magnetic resonance imaging of small animals: instrumental developments and comparison of relative merits for functional imaging. NMR Biomed 2004;17:263-294.
– reference: Brown JM. Tumor hypoxia, drug-resistance, and metastases. J Natl Cancer Inst 1990;82:338-339.
– reference: Subramanian S, Devasahayam N, Murugesan R, Yamada K, Cook J, Taube A, Mitchell JB, Lohman JAB, Krishna MC. Single-point (constant-time) imaging in radiofrequency Fourier transform electron paramagnetic resonance. Magn Reson Med 2002;48:370-379.
– reference: Murugesan R, Afeworki M, Cook JA, Devasahayam N, Tschudin R, Mitchell JB, Subramanian S, Krishna MC. A broadband pulsed radio frequency electron paramagnetic resonance spectrometer for biological applications. Rev Sci Instrum 1998;69:1869-1876.
– reference: Subramanian S, Koscielniak JW, Devasahayam N, Pursley RH, Pohida TJ, Krishna MC. A new strategy for fast radiofrequency CW EPR imaging: direct detection with rapid scan and rotating gradients. J Magn Reson 2007;186:212-219.
– reference: Halse M, Goodyear DJ, MacMillan B, Szomolanyi P, Matheson D, Balcom BJ. Centric scan SPRITE magnetic resonance imaging. J Magn Reson 2003;165:219-229.
– reference: Hayes CE, Edelstein W, Schenck J, Mueller OM, Eash M. A highly homogeneous radiofrequency coil for wholebody NMR imaging at 1.5 T. J Magn Reson 1985;63:622-628.
– reference: Katscher U, Boernert P, Leussler C, van den Brink JS. Transmit sense. Magn Reson Med 2003;49:144-150.
– reference: Roeschmann P. High-frequency coil system for a magnetic resonance imaging apparatus. US Pat 4,746,866, 1988.
– reference: Hirata H, He G, Deng Y, Salikov I, Petryakov S, Zweier JL. A loop resonator for slice-selective in vivo EPR imaging in rats. J Magn Reson 2008;190:124-134.
– reference: Ernst RR. Magnetic resonance with stochastic excitation. J Magn Reson 1970;3:10-27.
– reference: Sutton BP, Ciobanu L, Zhang X, Webb A. Parallel imaging for NMR microscopy at 14.1 Tesla. Magn Reson Med 2005;54:9-13.
– reference: Pursley R, Kakareka J, Salem G, Devasahayam N, Subramanian S, Tschudin RG, Krishna MC, Pohida TJ. Stochastic excitation and Hadamard correlation spectroscopy with bandwidth extension in RF FT-EPR. J Magn Reson 2003;162:35-45.
– reference: Mailer C, Subramanian VS, Pelizzari CA, Halpern HJ. Spin echo spectroscopic electron paramagnetic resonance imaging. Magn Reson Med 2006;55:904-912.
– reference: Elas M, Williams BB, Parasca A, et al. Quantitaive tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med 2003;49:682-691.
– reference: Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266-276.
– reference: Matsumoto S, Yasui H, Batra S, et al. Simultaneous imaging of tumor oxygenation and microvascular permeability using Overhauser enhanced MRI. Proc Natl Acad Sci USA 2009;106:17898-17903.
– reference: Matsumoto K, Subramanian S, Devasahayam N, Aravalluvan T, Murugesan R, Cook JA, Mitchell JB, Krishna MC. Electron paramagnetic resonance imaging of tumor hypoxia: enhanced spatial and temporal resolution for in vivo pO2 determination. Magn Reson Med 2006;55:1157-1163.
– reference: Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509-4515.
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 55
  start-page: 904
  year: 2006
  end-page: 912
  article-title: Spin echo spectroscopic electron paramagnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 4
  start-page: 866
  issue: 746
  year: 1988
  article-title: High‐frequency coil system for a magnetic resonance imaging apparatus
  publication-title: US Pat
– volume: 71
  start-page: 542
  year: 2008
  end-page: 549
  article-title: Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSA fibrosarcomas
  publication-title: Int J Rad Oncol Biol Phys
– volume: 209
  start-page: 244
  year: 2011
  end-page: 249
  article-title: Sequential CW‐EPR image acquisition with 760‐MHz surface coil array
  publication-title: J Magn Reson
– volume: 55
  start-page: 1157
  year: 2006
  end-page: 1163
  article-title: Electron paramagnetic resonance imaging of tumor hypoxia: enhanced spatial and temporal resolution for in vivo pO determination
  publication-title: Magn Reson Med
– volume: 105
  start-page: 137
  year: 1993
  end-page: 144
  article-title: Microwave coupling structures for spectroscopy
  publication-title: J Magn Reson Part A
– volume: 142
  start-page: 168
  year: 2000
  end-page: 176
  article-title: Parallel coil resonators for time‐domain radiofrequency electron paramagnetic resonance imaging of biological objects
  publication-title: J Magn Reson
– volume: 56
  start-page: 4509
  year: 1996
  end-page: 4515
  article-title: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix
  publication-title: Cancer Res
– start-page: 153
  year: 2003
  end-page: 197
– volume: 190
  start-page: 124
  year: 2008
  end-page: 134
  article-title: A loop resonator for slice‐selective in vivo EPR imaging in rats
  publication-title: J Magn Reson
– volume: 82
  start-page: 338
  year: 1990
  end-page: 339
  article-title: Tumor hypoxia, drug‐resistance, and metastases
  publication-title: J Natl Cancer Inst
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 63
  start-page: 622
  year: 1985
  end-page: 628
  article-title: A highly homogeneous radiofrequency coil for wholebody NMR imaging at 1.5 T
  publication-title: J Magn Reson
– volume: 199
  start-page: 18
  year: 2009
  end-page: 24
  article-title: NMR with excitation modulated by Frank sequences
  publication-title: J Magn Reson
– volume: 57
  start-page: 776
  year: 2007
  end-page: 783
  article-title: Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time‐domain EPR
  publication-title: Magn Reson Med
– volume: 165
  start-page: 219
  year: 2003
  end-page: 229
  article-title: Centric scan SPRITE magnetic resonance imaging
  publication-title: J Magn Reson
– volume: 74
  start-page: 376
  year: 1987
  end-page: 380
  article-title: An algorithm for NMR imaging reconstruction based on multiple RF receiver coils
  publication-title: J Magn Reson
– volume: 54
  start-page: 9
  year: 2005
  end-page: 13
  article-title: Parallel imaging for NMR microscopy at 14.1 Tesla
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 61
  start-page: 632
  year: 1996
  end-page: 635
  article-title: Spinal cord MRI in multiple sclerosis with multicoil arrays: a comparison between fast spin echo and fast FLAIR
  publication-title: J Neurol Neurosurg Psych
– volume: 186
  start-page: 212
  year: 2007
  end-page: 219
  article-title: A new strategy for fast radiofrequency CW EPR imaging: direct detection with rapid scan and rotating gradients
  publication-title: J Magn Reson
– volume: 3
  start-page: 10
  year: 1970
  end-page: 27
  article-title: Magnetic resonance with stochastic excitation
  publication-title: J Magn Reson
– volume: 106
  start-page: 17898
  year: 2009
  end-page: 17903
  article-title: Simultaneous imaging of tumor oxygenation and microvascular permeability using Overhauser enhanced MRI
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit sense
  publication-title: Magn Reson Med
– volume: 137
  start-page: 379
  year: 1999
  end-page: 388
  article-title: High‐speed data acquisition system and receiver configurations for time‐domain radiofrequency electron paramagnetic resonance spectroscopy and imaging
  publication-title: J Magn Reson
– volume: 74
  start-page: 494
  year: 1998
  end-page: 522
  article-title: ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic and electromagnetic fields (up to 300 GHz)
  publication-title: Health Phys
– volume: 17
  start-page: 263
  year: 2004
  end-page: 294
  article-title: Radio frequency continuous‐wave and time‐domain EPR imaging and Overhauser‐enhanced magnetic resonance imaging of small animals: instrumental developments and comparison of relative merits for functional imaging
  publication-title: NMR Biomed
– volume: 93
  start-page: 266
  year: 2001
  end-page: 276
  article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects
  publication-title: J Natl Cancer Inst
– volume: 48
  start-page: 370
  year: 2002
  end-page: 379
  article-title: Single‐point (constant‐time) imaging in radiofrequency Fourier transform electron paramagnetic resonance
  publication-title: Magn Reson Med
– volume: 49
  start-page: 682
  year: 2003
  end-page: 691
  article-title: Quantitaive tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level‐dependent (BOLD) MRI
  publication-title: Magn Reson Med
– volume: 162
  start-page: 35
  year: 2003
  end-page: 45
  article-title: Stochastic excitation and Hadamard correlation spectroscopy with bandwidth extension in RF FT‐EPR
  publication-title: J Magn Reson
– volume: 69
  start-page: 1869
  year: 1998
  end-page: 1876
  article-title: A broadband pulsed radio frequency electron paramagnetic resonance spectrometer for biological applications
  publication-title: Rev Sci Instrum
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.10199
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jmr.2011.01.021
– ident: e_1_2_6_34_1
  doi: 10.1016/j.jmr.2009.03.009
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.0908447106
– ident: e_1_2_6_13_1
  doi: 10.1006/jmre.1998.1697
– ident: e_1_2_6_8_1
  doi: 10.1016/0022-2364(85)90257-4
– ident: e_1_2_6_33_1
  doi: 10.1016/S1090-7807(03)00050-8
– ident: e_1_2_6_31_1
  doi: 10.1006/jmra.1993.1265
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_6_18_1
  doi: 10.1093/jnci/82.5.338
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.20872
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jmr.2007.01.023
– ident: e_1_2_6_3_1
  doi: 10.1016/0022-2364(87)90348-9
– ident: e_1_2_6_24_1
  doi: 10.1006/jmre.1999.1926
– ident: e_1_2_6_4_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_6_20_1
  doi: 10.1093/jnci/93.4.266
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jmr.2003.08.004
– ident: e_1_2_6_2_1
  doi: 10.1002/mrm.1910160203
– volume: 56
  start-page: 4509
  year: 1996
  ident: e_1_2_6_19_1
  article-title: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix
  publication-title: Cancer Res
– ident: e_1_2_6_22_1
  doi: 10.1136/jnnp.61.6.632
– volume: 74
  start-page: 494
  year: 1998
  ident: e_1_2_6_21_1
  article-title: ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic and electromagnetic fields (up to 300 GHz)
  publication-title: Health Phys
– ident: e_1_2_6_17_1
  doi: 10.1002/nbm.897
– ident: e_1_2_6_14_1
  doi: 10.1016/j.ijrobp.2008.02.022
– ident: e_1_2_6_25_1
  doi: 10.1063/1.1148857
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.20849
– ident: e_1_2_6_7_1
  doi: 10.1002/mrm.20531
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.21194
– volume: 4
  start-page: 866
  issue: 746
  year: 1988
  ident: e_1_2_6_9_1
  article-title: High‐frequency coil system for a magnetic resonance imaging apparatus
  publication-title: US Pat
– ident: e_1_2_6_15_1
  doi: 10.1002/mrm.10408
– ident: e_1_2_6_32_1
  doi: 10.1016/0022-2364(70)90004-1
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jmr.2007.10.012
– start-page: 153
  volume-title: Biological magnetic resonance, Vol. 18
  year: 2003
  ident: e_1_2_6_12_1
SSID ssj0009974
Score 2.1478803
Snippet Time‐domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is...
Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 853
SubjectTerms Animals
Carcinoma, Squamous Cell - pathology
Cell Line, Tumor
E.S.R
Electron Spin Resonance Spectroscopy - instrumentation
Equipment Design
Equipment Failure Analysis
Feasibility Studies
Female
FT-EPR imaging
Image Enhancement - instrumentation
Image Interpretation, Computer-Assisted - instrumentation
in vivo imaging
Magnetics - instrumentation
Mice
Mice, Inbred C3H
Oxo63
Phantoms, Imaging
Pilot Projects
Reproducibility of Results
Sensitivity and Specificity
single point imaging
surface coil array
Transducers
Title Four-channel surface coil array for 300-MHz pulsed EPR imaging: Proof-of-concept experiments
URI https://api.istex.fr/ark:/67375/WNG-CCRGDX4W-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24702
https://www.ncbi.nlm.nih.gov/pubmed/23532721
https://www.proquest.com/docview/1476901772
https://www.proquest.com/docview/1492613506
https://www.proquest.com/docview/1677373741
https://pubmed.ncbi.nlm.nih.gov/PMC7667490
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemIRAv_Bn_AgMZhBAv7dLYsWN4Qt26CinTVDGtD0iR7Tii2ppOSSvBnvgIfEY-CWc7SSkMhHiJEvkXObnc2XfO-XcIvTQsIQOtVU_HurBLN7InDVwSTw6uaOHKAaVHbHxC30_j6RZ62-6F8fwQ3YKbtQw3XlsDl6reW5OGzqt5P6LcEUkOCLO8-fuTNXWUEJ6BmVM7zgjasgqF0V5358ZcdM2K9fNVjubv-ZI_-7FuIhrdRh_bV_D5J2f91VL19eUv7I7_-Y530K3GQcXvvEbdRVum3EE30uYX_A667nJGdX0P5SPAfv_6ze4dho5wvaoKqQ3Wi9k5llUlv2DwiDEJQwCl40t8sYJ5OMcHxxM8m7vqSG_wMXjuBbS7g_Z7KPG67EB9H52MDj4Mx72maAN87cSOrrKgIfRGVMKEZNrwPIqTROUCRtKYGiIYFYSGMgqZLhQdJEomxGiRSxYXIiQP0Ha5KM0jhIskV5TYLZ4DqzN5UhBKuOa5FjqHoCBAr9vPl-mG0dwW1jjPPBdzlIH8Mie_AL3ooBeexuMq0CunAx1CVmc2743H2enRYTYcTg73p_Q0YwHabZUka0y-hhiK2-JeEK0E6HnXDMZq_8DI0ixWFiMgYiVxyP6CYRy6JODpBeih17vugSISkwhi9gDxDY3sAJYsfLOlnH1ypOGcMU5FCDJzCvdnKWTpJHUnj_8d-gTdBEeS-mz2XbS9rFbmKThrS_XMWeUPpr4_MQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNnF54TIuCwwwCCFe2qWxY8eIF9StK7BUU7VpfUGR4yRatTWd0laCPfET-I38Eo6dSykMhHiJEvlETk7Osb_jHH8H4GXKA9rROm5pX2dm6Ua1VIqXtCQHj1lmywGFA94_Zh9G_mgN3tZ7YUp-iGbBzXiGHa-Ng5sF6Z0la-ikmLQ9JgyT5AZDoGFCr93hkjxKypKDWTAz0khW8wq53k5z68pstGEU-_kqqPl7xuTPSNZORb3b8Kl-iTID5ay9mMdtffkLv-P_vuUduFVhVPKuNKq7sJbmm3A9rP7Cb8I1mzaqZ_cg6aHs96_fzPZh7InMFkWmdEr0dHxOVFGoLwRBMaGui0Jh_5JcLHAqTsje4ZCMJ7ZA0htyiOA9w3Z70OU2SrKsPDC7D8e9vaNuv1XVbcAPHpgBVmXMxd5oHHCpuE5F4vlBECcSB1OfpVRyJilzledyncWsE8QqoKmWieJ-Jl36ANbzaZ5uAcmCJGbU7PLsGLNJgowyKrRItNQJxgUOvK6_X6QrUnNTW-M8KumYvQj1F1n9OfCiEb0omTyuEnpljaCRUMWZSX0TfnQy2I-63eH-7oidRNyB7dpKosrrZxhGCVPfCwMWB543zeiv5ieMytPpwshIDFqp7_K_yHCBXVIEew48LA2veSCP-tTDsN0BsWKSjYDhC19tycenljdccC6YdFFn1uL-rIUoHIb25NG_iz6DG_2j8CA6eD_4-BhuIq5kZXL7NqzPi0X6BLHbPH5qXfQHbw1DUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm5h44WN8BQYYhBAv7dLYsWN4Qt268pGqqpjWB6TIcRJRbU2rtJFgT_wJ_I38JZydJqUwEOIlSuSLnFzu7N85598BPEt5QDtaxy3t68ws3aiWSvGSVuTgMctsOaBwwPsn7O3YH2_Bq3ovTMUP0Sy4Gc-w47Vx8HmSHaxJQ6fFtO0xYYgkdxhHJGEQ0WjNHSVlRcEsmBloJKtphVzvoLl1YzLaMXr9fBnS_D1h8mcga2ei3nX4WL9DlYBy1i6XcVtf_ELv-J8veQOurRAqeV2Z1E3YSvM92A1X_-D34IpNGtWLW5D0UPb7129m8zB2RBZlkSmdEj2bnBNVFOoLQUhMqOuiUNi_IPMSJ-KEHA1HZDK15ZFekiFC9wzb7UFXmyjJuu7A4jac9I4-dPutVdUG_NyBGV5VxlzsjcYBl4rrVCSeHwRxInEo9VlKJWeSMld5LtdZzDpBrAKaapko7mfSpXdgO5_l6T0gWZDEjJo9nh1jNEmQUUaFFomWOsGowIEX9eeL9IrS3FTWOI8qMmYvQv1FVn8OPG1E5xWPx2VCz60NNBKqODOJb8KPTgfHUbc7Oj4cs9OIO7BfG0m08vkFBlHCVPfCcMWBJ00zeqv5BaPydFYaGYkhK_Vd_hcZLrBLilDPgbuV3TUP5FGfehi0OyA2LLIRMGzhmy355JNlDRecCyZd1Jk1uD9rIQpHoT25_--ij2F3eNiL3r8ZvHsAVxFUsiqzfR-2l0WZPkTgtowfWQf9AYCXQf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four%E2%80%90channel+surface+coil+array+for+300%E2%80%90MHz+pulsed+EPR+imaging%3A+Proof%E2%80%90of%E2%80%90concept+experiments&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Enomoto%2C+Ayano&rft.au=Hirata%2C+Hiroshi&rft.au=Matsumoto%2C+Shingo&rft.au=Saito%2C+Keita&rft.date=2014-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=71&rft.issue=2&rft.spage=853&rft.epage=858&rft_id=info:doi/10.1002%2Fmrm.24702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_24702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon