Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer
Purpose To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine cont...
Saved in:
Published in | Magnetic resonance in medicine Vol. 71; no. 1; pp. 164 - 172 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.01.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.
Methods
Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2, magnetization transfer ratio and 31P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole‐body magnetic resonance scanner on healthy volunteers.
Results
Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with 31P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.
Conclusion
Demonstrated a CEST‐based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164–172, 2014. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.
Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.
Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.
Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Purpose To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T sub(2), magnetization transfer ratio and super(31)P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with super(31)P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164-172, 2014. copyright 2013 Wiley Periodicals, Inc. To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.PURPOSETo develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.METHODSPhantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.RESULTSPhantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle.CONCLUSIONDemonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Purpose To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2, magnetization transfer ratio and 31P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole‐body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with 31P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST‐based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164–172, 2014. © 2013 Wiley Periodicals, Inc. Purpose To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2, magnetization transfer ratio and 31P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with 31P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164-172, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] |
Author | Singh, Anup Kogan, Feliks Cai, Kejia Nanga, Ravi Prakash Reddy Reddy, Ravinder Haris, Mohammad Debrosse, Catherine Hariharan, Hari |
AuthorAffiliation | 2 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA 1 Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104 |
AuthorAffiliation_xml | – name: 2 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA – name: 1 Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 givenname: Feliks surname: Kogan fullname: Kogan, Feliks email: fkogan@seas.upenn.edu organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, Pennsylvania, USA – sequence: 2 givenname: Mohammad surname: Haris fullname: Haris, Mohammad organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA – sequence: 3 givenname: Anup surname: Singh fullname: Singh, Anup organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA – sequence: 4 givenname: Kejia surname: Cai fullname: Cai, Kejia organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA – sequence: 5 givenname: Catherine surname: Debrosse fullname: Debrosse, Catherine organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA – sequence: 6 givenname: Ravi Prakash Reddy surname: Nanga fullname: Nanga, Ravi Prakash Reddy organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA – sequence: 7 givenname: Hari surname: Hariharan fullname: Hariharan, Hari organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA – sequence: 8 givenname: Ravinder surname: Reddy fullname: Reddy, Ravinder organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23412909$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFBX8ARWIDi7R-JY43SFUFBdEpEuIhsbEc5yZxSexiJ0P77_HMtCOoBEiWvLjfObqPc4D2nHeA0FOCjwjG9HgM4xHlJScP0IIUlOa0kHwPLbDgOGdE8n10EOMlxlhKwR-hfco4oRLLBaqXMPW-yVofst52fR4g-mGerHeZHXVnXZf5NjMB9GQdZNZlK7vy2RzXFdPDaI0eMrg2vXYdZFFPc9Ab-RS0iy2Ex-hhq4cIT27_Q_T5zetPp2_z8w9n705PznNTVJjkrKwb2moMFdC2qKg0FW4qI1gBEqg2VQ2SN4Rg0XBZCDBQ1Kw2QGpINc7ZIXq19b2a6xEaAy51MKirkOYIN8prq_6sONurzq8UE7QgkiaDF7cGwf-YIU5qtNHAMGgHfo6KcElLgll6_0dLWXJBKpnQ5_fQSz8HlzaxpqqSVIKwRD37vfld13eXSsDLLWCCjzFAu0MIVusUqJQCtUlBYo_vscZOm6Okue3wL8VPO8DN363V8uPyTpFvFTZOcL1T6PBdlYKJQn29OFPfLpbyy3vJlWS_AFeK1AM |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_brainres_2019_04_010 crossref_primary_10_18632_oncotarget_25844 crossref_primary_10_1038_s41467_020_14874_0 crossref_primary_10_1002_mrm_28463 crossref_primary_10_1002_nbm_3367 crossref_primary_10_1021_ja5059313 crossref_primary_10_1002_nbm_4697 crossref_primary_10_1002_nbm_3001 crossref_primary_10_1172_jci_insight_88207 crossref_primary_10_1002_mrm_29030 crossref_primary_10_1002_nbm_3086 crossref_primary_10_1002_nbm_3362 crossref_primary_10_1002_nbm_4176 crossref_primary_10_1016_j_ahj_2023_02_006 crossref_primary_10_1002_mrm_26200 crossref_primary_10_1210_clinem_dgae545 crossref_primary_10_1021_acs_analchem_5b01296 crossref_primary_10_1002_nbm_5130 crossref_primary_10_1002_nbm_3192 crossref_primary_10_1002_nbm_5096 crossref_primary_10_1002_jmri_28314 crossref_primary_10_1002_jmri_28832 crossref_primary_10_1002_mrm_29662 crossref_primary_10_1002_nbm_3196 crossref_primary_10_1016_j_mri_2014_03_001 crossref_primary_10_1002_mrm_26314 crossref_primary_10_1038_s42255_024_01082_z crossref_primary_10_1002_nbm_3879 crossref_primary_10_1002_mrm_25987 crossref_primary_10_1002_mrm_28973 crossref_primary_10_1002_nbm_3237 crossref_primary_10_1002_nbm_4602 crossref_primary_10_1002_jmri_26844 crossref_primary_10_1002_mrm_30164 crossref_primary_10_1021_acs_molpharmaceut_5b00430 crossref_primary_10_1021_acs_nanolett_5b04517 crossref_primary_10_1021_acs_analchem_6b03137 crossref_primary_10_1002_mrm_26100 crossref_primary_10_3390_ijms25189915 crossref_primary_10_1002_chem_201503942 crossref_primary_10_1002_ijch_201700025 crossref_primary_10_1007_s11307_018_1243_6 crossref_primary_10_1002_nbm_4671 crossref_primary_10_1002_mrm_26744 crossref_primary_10_1002_mrm_26900 crossref_primary_10_14316_pmp_2017_28_4_135 crossref_primary_10_1186_s41747_020_00174_1 crossref_primary_10_1088_0031_9155_59_16_4493 crossref_primary_10_1021_jacs_6b06421 crossref_primary_10_14814_phy2_16171 crossref_primary_10_1002_nbm_5238 crossref_primary_10_1002_nbm_5237 crossref_primary_10_1002_cmmi_1693 crossref_primary_10_1002_mrm_27380 crossref_primary_10_1002_nbm_3296 crossref_primary_10_1053_j_semnuclmed_2018_02_003 crossref_primary_10_1002_nbm_4704 crossref_primary_10_1002_mrm_28516 crossref_primary_10_1002_mrm_28117 crossref_primary_10_1097_RLI_0000000000000909 crossref_primary_10_1002_nbm_4789 crossref_primary_10_1016_j_mri_2023_10_009 crossref_primary_10_1016_j_neuroimage_2018_06_026 crossref_primary_10_1146_annurev_anchem_071015_041514 crossref_primary_10_1016_j_neuroimage_2021_118071 crossref_primary_10_1002_anie_201611733 crossref_primary_10_1039_C7CP07046B crossref_primary_10_1002_cmmi_1629 crossref_primary_10_1002_cmmi_1628 crossref_primary_10_1002_jmri_29578 crossref_primary_10_1002_nbm_5104 crossref_primary_10_3389_fspor_2024_1481731 crossref_primary_10_1002_nbm_4133 crossref_primary_10_1002_nbm_3284 crossref_primary_10_1002_mrm_27690 crossref_primary_10_1038_srep19517 crossref_primary_10_1002_mrm_29876 crossref_primary_10_1038_s41467_024_55132_x crossref_primary_10_1002_nbm_4139 crossref_primary_10_1002_mrm_26802 crossref_primary_10_1002_jmri_26183 crossref_primary_10_1002_mrm_30060 crossref_primary_10_1186_s12968_017_0411_1 crossref_primary_10_1016_j_jmr_2017_12_007 crossref_primary_10_1002_jmri_29445 crossref_primary_10_1002_jmri_29566 crossref_primary_10_1002_mrm_29223 crossref_primary_10_1161_CIRCULATIONAHA_118_036259 crossref_primary_10_1002_nbm_3673 crossref_primary_10_1038_s41467_024_49253_6 crossref_primary_10_1002_mrm_27206 crossref_primary_10_1002_mrm_27569 crossref_primary_10_1002_nbm_3715 crossref_primary_10_5114_pjr_2019_84242 crossref_primary_10_1002_nbm_4403 crossref_primary_10_1007_s13539_014_0130_5 crossref_primary_10_1016_j_mri_2016_02_001 crossref_primary_10_1002_mrm_29907 crossref_primary_10_1002_advs_202207090 crossref_primary_10_1002_jmri_27734 crossref_primary_10_1002_nbm_5160 crossref_primary_10_1002_jmri_27456 crossref_primary_10_1002_wnan_1246 crossref_primary_10_1002_nbm_4113 crossref_primary_10_1161_CIRCIMAGING_121_013869 crossref_primary_10_1002_jmri_25838 crossref_primary_10_1002_jmri_27859 crossref_primary_10_1016_j_neuroimage_2014_03_040 crossref_primary_10_1007_s10334_017_0642_z crossref_primary_10_1007_s11307_016_0995_0 crossref_primary_10_1016_j_neuroimage_2017_04_045 crossref_primary_10_1002_mrm_28961 crossref_primary_10_1007_s10334_020_00902_z crossref_primary_10_1097_RMR_0000000000000105 crossref_primary_10_1007_s00415_021_10821_1 crossref_primary_10_1371_journal_pone_0163765 crossref_primary_10_1002_ange_201611733 crossref_primary_10_1002_mrm_30354 crossref_primary_10_1002_nbm_4104 crossref_primary_10_1002_nbm_4468 crossref_primary_10_1016_j_pnmrs_2018_06_001 crossref_primary_10_1038_s41598_021_97991_0 crossref_primary_10_1002_mrm_27221 crossref_primary_10_3389_fpsyt_2020_532606 crossref_primary_10_1002_cmmi_1652 crossref_primary_10_3390_diagnostics10080571 crossref_primary_10_1002_mrm_27866 crossref_primary_10_1021_jp410172k crossref_primary_10_1002_cmdc_202300521 crossref_primary_10_1002_mrm_25562 crossref_primary_10_1002_mrm_27864 crossref_primary_10_1002_mrm_28436 crossref_primary_10_1038_jcbfm_2014_16 crossref_primary_10_1002_chem_201403943 |
Cites_doi | 10.1152/ajpregu.00114.2004 10.1002/mrm.21873 10.1161/01.CIR.86.6.1810 10.1152/jappl.1992.73.4.1578 10.1002/nbm.2792 10.1002/nbm.1192 10.1016/S0021-9258(17)33527-5 10.1073/pnas.0700281104 10.1002/mrm.20989 10.1111/j.1749-6632.1987.tb32915.x 10.1002/mrm.21714 10.1002/mrm.10651 10.1002/mrm.24290 10.1172/JCI113508 10.1038/nm.2615 10.1152/japplphysiol.00446.2002 10.1016/0006-291X(62)90008-6 10.1006/jmre.1999.1956 10.1161/01.CIR.92.1.15 10.1016/S0021-9258(19)57191-5 10.1038/1991068a0 10.1002/ana.410300116 10.1161/01.CIR.78.2.320 10.1006/jmre.1998.1440 10.1002/mrm.1910010303 10.1038/252285a0 10.1042/cs0890581 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S 10.1002/nbm.1940060404 10.1097/00004424-199104000-00005 10.1002/1097-4598(200009)23:9<1316::AID-MUS2>3.0.CO;2-I 10.1152/jappl.1999.87.6.2068 10.1007/BF00585150 10.1148/radiology.204.2.9240527 10.1016/j.pnmrs.2006.01.001 10.1002/cmmi.383 10.1038/274861a0 10.1097/00004424-199005000-00003 10.1002/(SICI)1097-4598(199909)22:9<1228::AID-MUS9>3.0.CO;2-6 10.1016/0022-2364(90)90220-4 10.1161/01.CIR.80.5.1338 10.1007/s00018-004-3345-3 10.1002/mrm.20048 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM |
DOI | 10.1002/mrm.24641 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 172 |
ExternalDocumentID | PMC3725192 3158308491 23412909 10_1002_mrm_24641 MRM24641 ark_67375_WNG_ZNM9VK94_9 |
Genre | article Validation Studies Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB funderid: P41EB015893; P41EB015893S1; T32EB009384; UPENN TAPITMAT‐TBIC – fundername: NIBIB NIH HHS grantid: T32EB009384 – fundername: NIBIB NIH HHS grantid: P41EB015893S1 – fundername: NIBIB NIH HHS grantid: P41 EB015893 – fundername: NIBIB NIH HHS grantid: T32 EB009384 – fundername: NIBIB NIH HHS grantid: P41EB015893 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: P41 EB015893 || EB – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: T32 EB009384 || EB |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c5801-36bd2fa0e8e2f5829c80d8c735e9e2ac8be94d1107d4957ece5b3bce1bec8b443 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 14:36:43 EDT 2025 Thu Jul 10 18:48:03 EDT 2025 Thu Jul 10 23:49:47 EDT 2025 Fri Jul 25 12:15:40 EDT 2025 Mon Jul 21 05:48:42 EDT 2025 Tue Jul 01 01:20:52 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Wed Jan 22 16:33:44 EST 2025 Wed Oct 30 09:51:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | endogenous contrast CEST creatine muscle chemical exchange |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5801-36bd2fa0e8e2f5829c80d8c735e9e2ac8be94d1107d4957ece5b3bce1bec8b443 |
Notes | ArticleID:MRM24641 ark:/67375/WNG-ZNM9VK94-9 NIBIB - No. P41EB015893; No. P41EB015893S1; No. T32EB009384; No. UPENN TAPITMAT-TBIC istex:7B84AB171FFB64EB4122D3076E2D76927947DBC8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://doi.org/10.1002/mrm.24641 |
PMID | 23412909 |
PQID | 1468618713 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3725192 proquest_miscellaneous_1492610310 proquest_miscellaneous_1469647189 proquest_journals_1468618713 pubmed_primary_23412909 crossref_primary_10_1002_mrm_24641 crossref_citationtrail_10_1002_mrm_24641 wiley_primary_10_1002_mrm_24641_MRM24641 istex_primary_ark_67375_WNG_ZNM9VK94_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Bottomley PA, Lee YH, Weiss RG. Total creatine in muscle: imaging and quantification with proton MR spectroscopy. Radiology 1997;204:403-410. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. 3. The steady state. J Biol Chem 1955;217:409-427. Weidman ER, Charles HC, Negrovilar R, Sullivan MJ, Macfall JR. Muscle-activity localization with P-31 spectroscopy and calculated T2-weighted h-1 images. Invest Radiol 1991;26:309-316. Zhou J, van Zijl P. Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectrosc 2006;48:109-136. Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal-muscle Mr images. Invest Radiol 1990;25:480-485. Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GAJ, Lackner K, Ertl G. P-31 magnetic-resonance spectroscopy in dilated cardiomyopathy and coronary-artery disease-altered cardiac high-energy phosphate-metabolism in heart-failure. Circulation 1992;86:1810-1818. Bendahan D, Giannesini B, Cozzone PJ. Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell Mol Life Sci 2004;61:1001-1015. Singh A, Haris M, Cai K, Hariharan H, Reddy R. Chemical exchange transfer imaging of creatine. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada, 2011. p. 2767. Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic-resonance. Nature 1978;274:861-866. Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 1999;22:1228-1233. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:502-516. van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MR1 detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci USA 2007;104:4359-4364. Arnold DL, Matthews PM, Radda GK. Metabolic recovery after exercise and the assessment of mitochondrial-function invivo in human skeletal-muscle by means of P-31 NMR. Magn Reson Med 1984;1:307-315. Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflugers Arch 1976;367. Burt CT, Glonek T, Barany M. Analysis of phosphate metabolites, intracellular ph, and state of adenosine-triphosphate in intact muscle by phosphorus nuclear magnetic-resonance. J Biol Chem 1976;251:2584-2591. Zhou J, Wilson D, Sun P, Klaus J, van Zijl P. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004;51:945-952. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR. Contribution of intrinsic skeletal-muscle changes to P-31 NMR skeletal-muscle metabolic abnormalities in patients with chronic heart-failure. Circulation 1989;80:1338-1346. Rico-Sanz J, Thomas EL, Jenkinson G, Mierisova S, Iles R, Bell JD. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by H-1-MRS. J Appl Physiol 1999;87:2068-2072. Argov Z, Renshaw PF, Boden B, Winokur A, Bank WJ. Effects of thyroid-hormones on skeletal-muscle bioenergetics - in vivo P-31 magnetic-resonance spectroscopy study of humans and rats. J Clin Invest 1988;81:1695-1701. Adams GR, Duvoisin MR, Dudley GA. Magnetic-resonance-imaging and electromyography as indexes of muscle function. J Appl Physiol 1992;73:1578-1589. Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary-artery disease by P-31 magnetic-resonance spectroscopy. Circulation 1995;92:15-23. Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular P-31-MRS P-i peak splitting and the slow components of PCr and O-2 uptake during exercise. J Appl Physiol 2002;93:2059-2069. Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000;44:799-802. Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B. In-vivo assessment of mitochondrial functionality in human gastrocnemius-muscle by P-31 MRS-the role of pH in the evaluation of phosphocreatine and inorganic-phosphate recoveries from exercise. NMR Biomed 1993;6:248-253. Sun P, Benner T, Kumar A, Sorensen A. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 2008;60:834-841. Guivel-Scharen V, Sinnwell T, Wolff S, Balaban R. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998;133:36-45. Singh A, Cai K, Haris M, Hariharan H, Reddy R. On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 2013;69:818-824. Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P-31 MRS: a quantitative review. NMR Biomed 2007;20:555-565. Argov Z, Lofberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 2000;23:1316-1334. Liu G, Gilad AA, Bulte JWM, van Zijl PCM, McMahon MT. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol Imaging 2010;5:162-170. Davies RE. A molecular theory of muscle contraction-calcium-dependent contractions with hydrogen bond formation plus atp-dependent extensions of part of myosin-actin cross-bridges. Nature 1963;199:1068-1074. Ingwall JS. Phosphorus nuclear magnetic-resonance spectroscopy of cardiac and skeletal-muscles. Am J Phys 1982;242:H729-H744. Ward K, Aletras A, Balaban R. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79-87. Jones C, Schlosser M, van Zijl P, Pomper M, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 2006;56:585-592. Cain DF, Davies RE. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 1962;8:361-366. Wolff S, Balaban R. NMR imaging of labile proton-exchange. J Magn Reson 1990;86:164-169. Kim M, Gillen J, Landman B, Zhou J, van Zijl P. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 2009;61:1441-1450. Bottomley PA. Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333-348. Cai K, Haris M, Singh A, Kogan F, Greenberg J, Hariharan H, Detre J, Reddy R. Magnetic resonance imaging of glutamate. Nat Med 2012;18:302-306. Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G. Skeletal-muscle metabolism during exercise under ischemic conditions in congestive heart-failure-evidence for abnormalities unrelated to blood-flow. Circulation 1988;78:320-326. Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using P-31 nuclear magnetic-resonance. Nature 1974;252:285-287. Argov Z, Bank WJ. Phosphorus magnetic-resonance spectroscopy (P-31 MRS) in neuromuscular disorders. Ann Neurol 1991;30:90-97. Zhou J, Lal B, Wilson D, Laterra J, van Zijl P. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003;50:1120-1126. Kemp GJ, Hands LJ, Ramaswami G, Taylor DJ, Nicolaides A, Amato A, Radda GK. Calf muscle mitochondrial and glycogenolytic atp synthesis in patients with claudication due to peripheral vascular-disease analyzed using P-31 magnetic-resonance spectroscopy. Clin Sci 1995;89:581-590. Haris M, Nanga RPR, Singh A, Cai K, Kogan F, Hariharan H, Reddy R. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 2012;25:1305-1309. 2004; 287 2007; 104 2004; 61 1963; 199 1995; 92 2013; 69 2006; 56 1962; 8 2011 2000; 23 2009; 61 1991; 30 1989; 80 1955; 217 2000; 44 1976; 367 1978; 274 1999; 22 1988; 78 1982; 242 1999; 87 1987; 508 2012; 18 1998; 133 2003; 50 1992; 73 1993; 6 1990; 86 1997; 204 1976; 251 2004; 51 1990; 25 1991; 26 1984; 1 1995; 89 2006; 48 2000; 143 2002; 93 1974; 252 2007; 20 1992; 86 2012; 25 1988; 81 2010; 5 2008; 60 e_1_2_6_32_1 Singh A (e_1_2_6_34_1) 2011 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Chance B (e_1_2_6_2_1) 1955; 217 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_5_1 Ingwall JS (e_1_2_6_8_1) 1982; 242 e_1_2_6_4_1 e_1_2_6_7_1 Burt CT (e_1_2_6_10_1) 1976; 251 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 10698648 - J Magn Reson. 2000 Mar;143(1):79-87 10951434 - Muscle Nerve. 2000 Sep;23(9):1316-34 13343 - Pflugers Arch. 1976 Dec 28;367(2):143-9 8217526 - NMR Biomed. 1993 Jul-Aug;6(4):248-53 19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50 14066941 - Nature. 1963 Sep 14;199:1068-74 3396168 - Circulation. 1988 Aug;78(2):320-6 22431193 - NMR Biomed. 2012 Nov;25(11):1305-9 308189 - Nature. 1978 Aug 31;274(5674):861-6 12391122 - J Appl Physiol (1985). 2002 Dec;93(6):2059-69 11064415 - Magn Reson Med. 2000 Nov;44(5):799-802 4431445 - Nature. 1974 Nov 22;252(5481):285-7 15112049 - Cell Mol Life Sci. 2004 May;61(9):1001-15 2032818 - Invest Radiol. 1991 Apr;26(4):309-16 6571561 - Magn Reson Med. 1984 Sep;1(3):307-15 20586030 - Contrast Media Mol Imaging. 2010 May-Jun;5(3):162-70 10454718 - Muscle Nerve. 1999 Sep;22(9):1228-33 2805270 - Circulation. 1989 Nov;80(5):1338-46 2345077 - Invest Radiol. 1990 May;25(5):480-5 7044148 - Am J Physiol. 1982 May;242(5):H729-44 10601151 - J Appl Physiol (1985). 1999 Dec;87(6):2068-72 9654466 - J Magn Reson. 1998 Jul;133(1):36-45 22270722 - Nat Med. 2012 Feb;18(2):302-6 1834009 - Ann Neurol. 1991 Jul;30(1):90-7 9240527 - Radiology. 1997 Aug;204(2):403-10 13875588 - Biochem Biophys Res Commun. 1962 Aug 7;8:361-6 22511396 - Magn Reson Med. 2013 Mar 1;69(3):818-24 3326459 - Ann N Y Acad Sci. 1987;508:333-48 7788910 - Circulation. 1995 Jul 1;92(1):15-23 4452 - J Biol Chem. 1976 May 10;251(9):2584-91 17360529 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64 18816867 - Magn Reson Med. 2008 Oct;60(4):834-41 17628042 - NMR Biomed. 2007 Oct;20(6):555-65 15122676 - Magn Reson Med. 2004 May;51(5):945-52 1451253 - Circulation. 1992 Dec;86(6):1810-8 16892186 - Magn Reson Med. 2006 Sep;56(3):585-92 14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6 3384946 - J Clin Invest. 1988 Jun;81(6):1695-701 13271404 - J Biol Chem. 1955 Nov;217(1):409-27 1447107 - J Appl Physiol (1985). 1992 Oct;73(4):1578-83 8549076 - Clin Sci (Lond). 1995 Dec;89(6):581-90 15308499 - Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R502-16 |
References_xml | – reference: Davies RE. A molecular theory of muscle contraction-calcium-dependent contractions with hydrogen bond formation plus atp-dependent extensions of part of myosin-actin cross-bridges. Nature 1963;199:1068-1074. – reference: Ward K, Aletras A, Balaban R. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79-87. – reference: Zhou J, van Zijl P. Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectrosc 2006;48:109-136. – reference: Argov Z, Renshaw PF, Boden B, Winokur A, Bank WJ. Effects of thyroid-hormones on skeletal-muscle bioenergetics - in vivo P-31 magnetic-resonance spectroscopy study of humans and rats. J Clin Invest 1988;81:1695-1701. – reference: Cain DF, Davies RE. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 1962;8:361-366. – reference: Bendahan D, Giannesini B, Cozzone PJ. Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell Mol Life Sci 2004;61:1001-1015. – reference: Haris M, Nanga RPR, Singh A, Cai K, Kogan F, Hariharan H, Reddy R. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 2012;25:1305-1309. – reference: Argov Z, Lofberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 2000;23:1316-1334. – reference: Burt CT, Glonek T, Barany M. Analysis of phosphate metabolites, intracellular ph, and state of adenosine-triphosphate in intact muscle by phosphorus nuclear magnetic-resonance. J Biol Chem 1976;251:2584-2591. – reference: Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflugers Arch 1976;367. – reference: Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using P-31 nuclear magnetic-resonance. Nature 1974;252:285-287. – reference: Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR. Contribution of intrinsic skeletal-muscle changes to P-31 NMR skeletal-muscle metabolic abnormalities in patients with chronic heart-failure. Circulation 1989;80:1338-1346. – reference: Jones C, Schlosser M, van Zijl P, Pomper M, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 2006;56:585-592. – reference: Singh A, Cai K, Haris M, Hariharan H, Reddy R. On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 2013;69:818-824. – reference: Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B. In-vivo assessment of mitochondrial functionality in human gastrocnemius-muscle by P-31 MRS-the role of pH in the evaluation of phosphocreatine and inorganic-phosphate recoveries from exercise. NMR Biomed 1993;6:248-253. – reference: Arnold DL, Matthews PM, Radda GK. Metabolic recovery after exercise and the assessment of mitochondrial-function invivo in human skeletal-muscle by means of P-31 NMR. Magn Reson Med 1984;1:307-315. – reference: Bottomley PA, Lee YH, Weiss RG. Total creatine in muscle: imaging and quantification with proton MR spectroscopy. Radiology 1997;204:403-410. – reference: Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000;44:799-802. – reference: Singh A, Haris M, Cai K, Hariharan H, Reddy R. Chemical exchange transfer imaging of creatine. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada, 2011. p. 2767. – reference: Weidman ER, Charles HC, Negrovilar R, Sullivan MJ, Macfall JR. Muscle-activity localization with P-31 spectroscopy and calculated T2-weighted h-1 images. Invest Radiol 1991;26:309-316. – reference: Kemp GJ, Hands LJ, Ramaswami G, Taylor DJ, Nicolaides A, Amato A, Radda GK. Calf muscle mitochondrial and glycogenolytic atp synthesis in patients with claudication due to peripheral vascular-disease analyzed using P-31 magnetic-resonance spectroscopy. Clin Sci 1995;89:581-590. – reference: Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:502-516. – reference: Zhou J, Wilson D, Sun P, Klaus J, van Zijl P. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004;51:945-952. – reference: Ingwall JS. Phosphorus nuclear magnetic-resonance spectroscopy of cardiac and skeletal-muscles. Am J Phys 1982;242:H729-H744. – reference: Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G. Skeletal-muscle metabolism during exercise under ischemic conditions in congestive heart-failure-evidence for abnormalities unrelated to blood-flow. Circulation 1988;78:320-326. – reference: Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary-artery disease by P-31 magnetic-resonance spectroscopy. Circulation 1995;92:15-23. – reference: van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MR1 detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci USA 2007;104:4359-4364. – reference: Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal-muscle Mr images. Invest Radiol 1990;25:480-485. – reference: Guivel-Scharen V, Sinnwell T, Wolff S, Balaban R. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998;133:36-45. – reference: Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GAJ, Lackner K, Ertl G. P-31 magnetic-resonance spectroscopy in dilated cardiomyopathy and coronary-artery disease-altered cardiac high-energy phosphate-metabolism in heart-failure. Circulation 1992;86:1810-1818. – reference: Kim M, Gillen J, Landman B, Zhou J, van Zijl P. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 2009;61:1441-1450. – reference: Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. 3. The steady state. J Biol Chem 1955;217:409-427. – reference: Rico-Sanz J, Thomas EL, Jenkinson G, Mierisova S, Iles R, Bell JD. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by H-1-MRS. J Appl Physiol 1999;87:2068-2072. – reference: Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 1999;22:1228-1233. – reference: Argov Z, Bank WJ. Phosphorus magnetic-resonance spectroscopy (P-31 MRS) in neuromuscular disorders. Ann Neurol 1991;30:90-97. – reference: Sun P, Benner T, Kumar A, Sorensen A. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 2008;60:834-841. – reference: Bottomley PA. Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333-348. – reference: Cai K, Haris M, Singh A, Kogan F, Greenberg J, Hariharan H, Detre J, Reddy R. Magnetic resonance imaging of glutamate. Nat Med 2012;18:302-306. – reference: Wolff S, Balaban R. NMR imaging of labile proton-exchange. J Magn Reson 1990;86:164-169. – reference: Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P-31 MRS: a quantitative review. NMR Biomed 2007;20:555-565. – reference: Adams GR, Duvoisin MR, Dudley GA. Magnetic-resonance-imaging and electromyography as indexes of muscle function. J Appl Physiol 1992;73:1578-1589. – reference: Liu G, Gilad AA, Bulte JWM, van Zijl PCM, McMahon MT. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol Imaging 2010;5:162-170. – reference: Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular P-31-MRS P-i peak splitting and the slow components of PCr and O-2 uptake during exercise. J Appl Physiol 2002;93:2059-2069. – reference: Zhou J, Lal B, Wilson D, Laterra J, van Zijl P. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003;50:1120-1126. – reference: Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic-resonance. Nature 1978;274:861-866. – volume: 56 start-page: 585 year: 2006 end-page: 592 article-title: Amide proton transfer imaging of human brain tumors at 3T publication-title: Magn Reson Med – volume: 104 start-page: 4359 year: 2007 end-page: 4364 article-title: MR1 detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST) publication-title: Proc Natl Acad Sci USA – volume: 81 start-page: 1695 year: 1988 end-page: 1701 article-title: Effects of thyroid‐hormones on skeletal‐muscle bioenergetics – in vivo P‐31 magnetic‐resonance spectroscopy study of humans and rats publication-title: J Clin Invest – volume: 242 start-page: H729 year: 1982 end-page: H744 article-title: Phosphorus nuclear magnetic‐resonance spectroscopy of cardiac and skeletal‐muscles publication-title: Am J Phys – volume: 86 start-page: 164 year: 1990 end-page: 169 article-title: NMR imaging of labile proton‐exchange publication-title: J Magn Reson – volume: 25 start-page: 1305 year: 2012 end-page: 1309 article-title: Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI publication-title: NMR Biomed – volume: 199 start-page: 1068 year: 1963 end-page: 1074 article-title: A molecular theory of muscle contraction—calcium‐dependent contractions with hydrogen bond formation plus atp‐dependent extensions of part of myosin‐actin cross‐bridges publication-title: Nature – volume: 92 start-page: 15 year: 1995 end-page: 23 article-title: Quantitative measurements of cardiac phosphorus metabolites in coronary‐artery disease by P‐31 magnetic‐resonance spectroscopy publication-title: Circulation – volume: 20 start-page: 555 year: 2007 end-page: 565 article-title: Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P‐31 MRS: a quantitative review publication-title: NMR Biomed – volume: 78 start-page: 320 year: 1988 end-page: 326 article-title: Skeletal‐muscle metabolism during exercise under ischemic conditions in congestive heart‐failure—evidence for abnormalities unrelated to blood‐flow publication-title: Circulation – volume: 30 start-page: 90 year: 1991 end-page: 97 article-title: Phosphorus magnetic‐resonance spectroscopy (P‐31 MRS) in neuromuscular disorders publication-title: Ann Neurol – volume: 86 start-page: 1810 year: 1992 end-page: 1818 article-title: P‐31 magnetic‐resonance spectroscopy in dilated cardiomyopathy and coronary‐artery disease—altered cardiac high‐energy phosphate‐metabolism in heart‐failure publication-title: Circulation – volume: 87 start-page: 2068 year: 1999 end-page: 2072 article-title: Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by H‐1‐MRS publication-title: J Appl Physiol – volume: 60 start-page: 834 year: 2008 end-page: 841 article-title: Investigation of optimizing and translating pH‐sensitive pulsed‐chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner publication-title: Magn Reson Med – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – volume: 25 start-page: 480 year: 1990 end-page: 485 article-title: Direct relationship between proton T2 and exercise intensity in skeletal‐muscle Mr images publication-title: Invest Radiol – start-page: 2767 year: 2011 publication-title: Chemical exchange transfer imaging of creatine – volume: 5 start-page: 162 year: 2010 end-page: 170 article-title: High‐throughput screening of chemical exchange saturation transfer MR contrast agents publication-title: Contrast Media Mol Imaging – volume: 26 start-page: 309 year: 1991 end-page: 316 article-title: Muscle‐activity localization with P‐31 spectroscopy and calculated T2‐weighted h‐1 images publication-title: Invest Radiol – volume: 93 start-page: 2059 year: 2002 end-page: 2069 article-title: Dynamics of intramuscular P‐31‐MRS P‐i peak splitting and the slow components of PCr and O‐2 uptake during exercise publication-title: J Appl Physiol – volume: 217 start-page: 409 year: 1955 end-page: 427 article-title: Respiratory enzymes in oxidative phosphorylation. 3. The steady state publication-title: J Biol Chem – volume: 69 start-page: 818 year: 2013 end-page: 824 article-title: On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T publication-title: Magn Reson Med – volume: 287 start-page: 502 year: 2004 end-page: 516 article-title: Biochemistry of exercise‐induced metabolic acidosis publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 50 start-page: 1120 year: 2003 end-page: 1126 article-title: Amide proton transfer (APT) contrast for imaging of brain tumors publication-title: Magn Reson Med – volume: 252 start-page: 285 year: 1974 end-page: 287 article-title: Observation of tissue metabolites using P‐31 nuclear magnetic‐resonance publication-title: Nature – volume: 204 start-page: 403 year: 1997 end-page: 410 article-title: Total creatine in muscle: imaging and quantification with proton MR spectroscopy publication-title: Radiology – volume: 508 start-page: 333 year: 1987 end-page: 348 article-title: Spatial localization in NMR‐spectroscopy in vivo publication-title: Ann N Y Acad Sci – volume: 6 start-page: 248 year: 1993 end-page: 253 article-title: In‐vivo assessment of mitochondrial functionality in human gastrocnemius‐muscle by P‐31 MRS—the role of pH in the evaluation of phosphocreatine and inorganic‐phosphate recoveries from exercise publication-title: NMR Biomed – volume: 44 start-page: 799 year: 2000 end-page: 802 article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST) publication-title: Magn Reson Med – volume: 61 start-page: 1001 year: 2004 end-page: 1015 article-title: Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy‐magnetic resonance imaging approach publication-title: Cell Mol Life Sci – volume: 8 start-page: 361 year: 1962 end-page: 366 article-title: Breakdown of adenosine triphosphate during a single contraction of working muscle publication-title: Biochem Biophys Res Commun – volume: 89 start-page: 581 year: 1995 end-page: 590 article-title: Calf muscle mitochondrial and glycogenolytic atp synthesis in patients with claudication due to peripheral vascular‐disease analyzed using P‐31 magnetic‐resonance spectroscopy publication-title: Clin Sci – volume: 251 start-page: 2584 year: 1976 end-page: 2591 article-title: Analysis of phosphate metabolites, intracellular ph, and state of adenosine‐triphosphate in intact muscle by phosphorus nuclear magnetic‐resonance publication-title: J Biol Chem – volume: 73 start-page: 1578 year: 1992 end-page: 1589 article-title: Magnetic‐resonance‐imaging and electromyography as indexes of muscle function publication-title: J Appl Physiol – volume: 274 start-page: 861 year: 1978 end-page: 866 article-title: Muscular fatigue investigated by phosphorus nuclear magnetic‐resonance publication-title: Nature – volume: 23 start-page: 1316 year: 2000 end-page: 1334 article-title: Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy publication-title: Muscle Nerve – volume: 367 year: 1976 article-title: Lactate content and pH in muscle samples obtained after dynamic exercise publication-title: Pflugers Arch – volume: 133 start-page: 36 year: 1998 end-page: 45 article-title: Detection of proton chemical exchange between metabolites and water in biological tissues publication-title: J Magn Reson – volume: 80 start-page: 1338 year: 1989 end-page: 1346 article-title: Contribution of intrinsic skeletal‐muscle changes to P‐31 NMR skeletal‐muscle metabolic abnormalities in patients with chronic heart‐failure publication-title: Circulation – volume: 18 start-page: 302 year: 2012 end-page: 306 article-title: Magnetic resonance imaging of glutamate publication-title: Nat Med – volume: 48 start-page: 109 year: 2006 end-page: 136 article-title: Chemical exchange saturation transfer imaging and spectroscopy publication-title: Progr NMR Spectrosc – volume: 1 start-page: 307 year: 1984 end-page: 315 article-title: Metabolic recovery after exercise and the assessment of mitochondrial‐function invivo in human skeletal‐muscle by means of P‐31 NMR publication-title: Magn Reson Med – volume: 22 start-page: 1228 year: 1999 end-page: 1233 article-title: Direct measurement of high‐energy phosphate compounds in patients with neuromuscular disease publication-title: Muscle Nerve – volume: 61 start-page: 1441 year: 2009 end-page: 1450 article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments publication-title: Magn Reson Med – volume: 51 start-page: 945 year: 2004 end-page: 952 article-title: Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments publication-title: Magn Reson Med – ident: e_1_2_6_41_1 doi: 10.1152/ajpregu.00114.2004 – ident: e_1_2_6_36_1 doi: 10.1002/mrm.21873 – ident: e_1_2_6_14_1 doi: 10.1161/01.CIR.86.6.1810 – ident: e_1_2_6_24_1 doi: 10.1152/jappl.1992.73.4.1578 – ident: e_1_2_6_35_1 doi: 10.1002/nbm.2792 – start-page: 2767 year: 2011 ident: e_1_2_6_34_1 publication-title: Chemical exchange transfer imaging of creatine – ident: e_1_2_6_9_1 doi: 10.1002/nbm.1192 – volume: 251 start-page: 2584 year: 1976 ident: e_1_2_6_10_1 article-title: Analysis of phosphate metabolites, intracellular ph, and state of adenosine‐triphosphate in intact muscle by phosphorus nuclear magnetic‐resonance publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)33527-5 – ident: e_1_2_6_43_1 doi: 10.1073/pnas.0700281104 – ident: e_1_2_6_30_1 doi: 10.1002/mrm.20989 – ident: e_1_2_6_38_1 doi: 10.1111/j.1749-6632.1987.tb32915.x – ident: e_1_2_6_33_1 doi: 10.1002/mrm.21714 – ident: e_1_2_6_46_1 doi: 10.1002/mrm.10651 – ident: e_1_2_6_37_1 doi: 10.1002/mrm.24290 – ident: e_1_2_6_19_1 doi: 10.1172/JCI113508 – ident: e_1_2_6_32_1 doi: 10.1038/nm.2615 – ident: e_1_2_6_42_1 doi: 10.1152/japplphysiol.00446.2002 – ident: e_1_2_6_3_1 doi: 10.1016/0006-291X(62)90008-6 – ident: e_1_2_6_27_1 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_6_15_1 doi: 10.1161/01.CIR.92.1.15 – volume: 217 start-page: 409 year: 1955 ident: e_1_2_6_2_1 article-title: Respiratory enzymes in oxidative phosphorylation. 3. The steady state publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)57191-5 – ident: e_1_2_6_4_1 doi: 10.1038/1991068a0 – ident: e_1_2_6_11_1 doi: 10.1002/ana.410300116 – ident: e_1_2_6_16_1 doi: 10.1161/01.CIR.78.2.320 – ident: e_1_2_6_26_1 doi: 10.1006/jmre.1998.1440 – ident: e_1_2_6_44_1 doi: 10.1002/mrm.1910010303 – ident: e_1_2_6_6_1 doi: 10.1038/252285a0 – ident: e_1_2_6_18_1 doi: 10.1042/cs0890581 – ident: e_1_2_6_28_1 doi: 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S – ident: e_1_2_6_40_1 doi: 10.1002/nbm.1940060404 – ident: e_1_2_6_23_1 doi: 10.1097/00004424-199104000-00005 – ident: e_1_2_6_12_1 doi: 10.1002/1097-4598(200009)23:9<1316::AID-MUS2>3.0.CO;2-I – ident: e_1_2_6_21_1 doi: 10.1152/jappl.1999.87.6.2068 – ident: e_1_2_6_45_1 doi: 10.1007/BF00585150 – ident: e_1_2_6_20_1 doi: 10.1148/radiology.204.2.9240527 – ident: e_1_2_6_31_1 doi: 10.1016/j.pnmrs.2006.01.001 – ident: e_1_2_6_39_1 doi: 10.1002/cmmi.383 – volume: 242 start-page: H729 year: 1982 ident: e_1_2_6_8_1 article-title: Phosphorus nuclear magnetic‐resonance spectroscopy of cardiac and skeletal‐muscles publication-title: Am J Phys – ident: e_1_2_6_7_1 doi: 10.1038/274861a0 – ident: e_1_2_6_22_1 doi: 10.1097/00004424-199005000-00003 – ident: e_1_2_6_13_1 doi: 10.1002/(SICI)1097-4598(199909)22:9<1228::AID-MUS9>3.0.CO;2-6 – ident: e_1_2_6_25_1 doi: 10.1016/0022-2364(90)90220-4 – ident: e_1_2_6_17_1 doi: 10.1161/01.CIR.80.5.1338 – ident: e_1_2_6_5_1 doi: 10.1007/s00018-004-3345-3 – ident: e_1_2_6_29_1 doi: 10.1002/mrm.20048 – reference: 4452 - J Biol Chem. 1976 May 10;251(9):2584-91 – reference: 2805270 - Circulation. 1989 Nov;80(5):1338-46 – reference: 11064415 - Magn Reson Med. 2000 Nov;44(5):799-802 – reference: 3384946 - J Clin Invest. 1988 Jun;81(6):1695-701 – reference: 17360529 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64 – reference: 3326459 - Ann N Y Acad Sci. 1987;508:333-48 – reference: 22431193 - NMR Biomed. 2012 Nov;25(11):1305-9 – reference: 1834009 - Ann Neurol. 1991 Jul;30(1):90-7 – reference: 8217526 - NMR Biomed. 1993 Jul-Aug;6(4):248-53 – reference: 22511396 - Magn Reson Med. 2013 Mar 1;69(3):818-24 – reference: 14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6 – reference: 13343 - Pflugers Arch. 1976 Dec 28;367(2):143-9 – reference: 6571561 - Magn Reson Med. 1984 Sep;1(3):307-15 – reference: 10601151 - J Appl Physiol (1985). 1999 Dec;87(6):2068-72 – reference: 3396168 - Circulation. 1988 Aug;78(2):320-6 – reference: 12391122 - J Appl Physiol (1985). 2002 Dec;93(6):2059-69 – reference: 22270722 - Nat Med. 2012 Feb;18(2):302-6 – reference: 14066941 - Nature. 1963 Sep 14;199:1068-74 – reference: 13875588 - Biochem Biophys Res Commun. 1962 Aug 7;8:361-6 – reference: 15308499 - Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R502-16 – reference: 308189 - Nature. 1978 Aug 31;274(5674):861-6 – reference: 7044148 - Am J Physiol. 1982 May;242(5):H729-44 – reference: 10951434 - Muscle Nerve. 2000 Sep;23(9):1316-34 – reference: 10454718 - Muscle Nerve. 1999 Sep;22(9):1228-33 – reference: 16892186 - Magn Reson Med. 2006 Sep;56(3):585-92 – reference: 18816867 - Magn Reson Med. 2008 Oct;60(4):834-41 – reference: 4431445 - Nature. 1974 Nov 22;252(5481):285-7 – reference: 1447107 - J Appl Physiol (1985). 1992 Oct;73(4):1578-83 – reference: 15112049 - Cell Mol Life Sci. 2004 May;61(9):1001-15 – reference: 1451253 - Circulation. 1992 Dec;86(6):1810-8 – reference: 7788910 - Circulation. 1995 Jul 1;92(1):15-23 – reference: 10698648 - J Magn Reson. 2000 Mar;143(1):79-87 – reference: 15122676 - Magn Reson Med. 2004 May;51(5):945-52 – reference: 9654466 - J Magn Reson. 1998 Jul;133(1):36-45 – reference: 2345077 - Invest Radiol. 1990 May;25(5):480-5 – reference: 8549076 - Clin Sci (Lond). 1995 Dec;89(6):581-90 – reference: 9240527 - Radiology. 1997 Aug;204(2):403-10 – reference: 13271404 - J Biol Chem. 1955 Nov;217(1):409-27 – reference: 20586030 - Contrast Media Mol Imaging. 2010 May-Jun;5(3):162-70 – reference: 17628042 - NMR Biomed. 2007 Oct;20(6):555-65 – reference: 19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50 – reference: 2032818 - Invest Radiol. 1991 Apr;26(4):309-16 |
SSID | ssj0009974 |
Score | 2.4900448 |
Snippet | Purpose
To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the... To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the... Purpose To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 164 |
SubjectTerms | Adult Algorithms CEST chemical exchange Creatine Creatine - metabolism endogenous contrast Female Humans Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Male muscle Muscle Contraction - physiology Muscle, Skeletal - anatomy & histology Muscle, Skeletal - physiology Physical Exertion - physiology Reproducibility of Results Sensitivity and Specificity Tissue Distribution Young Adult |
Title | Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer |
URI | https://api.istex.fr/ark:/67375/WNG-ZNM9VK94-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24641 https://www.ncbi.nlm.nih.gov/pubmed/23412909 https://www.proquest.com/docview/1468618713 https://www.proquest.com/docview/1469647189 https://www.proquest.com/docview/1492610310 https://pubmed.ncbi.nlm.nih.gov/PMC3725192 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KRfHFS71Fq6wi4ktOk80m2cUnEWtRch6K1SLCkr1ED_XkyLmU4pM_wd_oL3FnN0k9WkV8C2QC2ck32W-SmW8AHvLUFqZsTFxoXscu_xKxwgafJs9yYQpqlG-krcbF3gF7eZgfbsCTvhcm6EMMH9wwMvz7GgO8VoudU9HQ6Xw6oqzwTetYq4WEaP9UOkqIoMBcMnzPCNarCiV0Z7hybS86h249OYto_l4v-TOP9RvR7mV43y8h1J8cjVZLNdJfflF3_M81XoFLHUElTwOirsKGbbfgQtX9gt-C875mVC-ugan89GniaC9B1ePvX7-53L2DMplM_fwjMmtIIKatJZOWHE-OZwSL7T8Q3WkVEHsS2o_JAlVGPVTI0hNqO78OB7vPXz_bi7uhDbHO3W4XZ4UytKkTyy1tck6F5onhusxyKyytNVdWMINZp3G5WWm1zVWmtE0dmLhiLLsBm-2stbeAiNygnKESKa0Zdce6sYllmlJRcFOnETzuH5_UnaI5Dtb4JIMWM5XOf9L7L4IHg-nnIONxltEjj4HBop4fYd1bmcu34xfy3bgSb14JJkUE2z1IZBfyC8yheJG6_DOL4P5w2gUr_oGpWztbeRvs_E25-JuNWzMO30giuBlwN9wQdZyDisRdXa4hcjBAsfD1M-3koxcNz0rsUabOZx5wf_aCrPYrf3D7303vwEVHJFn4NLUNm8v5yt51ZG2p7vmo_AGKTD23 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1Vrbi8cCmXBgoYhBAv2SaOk9gSLwhRFtrsQ9VChYSs-BK6KptFe6kqnvgEvpEvweNkUxYKQrxFykRaz56JzzgzZwAe89hmJq9MmGlehi7_EqHCBp8qTVJhMmqUb6QtBln_gL05TA9X4NmiF6bRh-gO3DAy_PsaAxwPpLfOVENHk1GPsgy71tdwordPqPbOxKOEaDSYc4ZvGsEWukIR3eoeXdqN1tCxp-dRzd8rJn9msn4r2r4KHxaLaCpQjnvzmerpL7_oO_7vKq_BlZajkucNqK7Diq3X4WLRfoVfhwu-bFRPb4Ap_ABq4pgvQeHj71-_ufS9RTMZjvwIJDKuSMNNa0uGNTkZnowJ1tt_JLqVKyD2tOlAJlMUGvVoITPPqe3kJhxsv9x_0Q_buQ2hTt2GFyaZMrQqI8strVJOheaR4TpPUissLTVXVjCDiadx6VlutU1VorSNHZ64Yiy5Bav1uLYbQERqUNFQiZiWjLprXdnIMk2pyLgp4wCeLv4_qVtRc5yt8Uk2csxUOv9J778AHnWmnxslj_OMnngQdBbl5BhL3_JUvhu8ku8HhXi7I5gUAWwuUCLbqJ9iGsWz2KWgSQAPu9suXvEjTFnb8dzbYPNvzMXfbNyacf5GFMDtBnjdD6KOdlARuafzJUh2BqgXvnynHh553fAkxzZl6nzmEfdnL8hir_AXd_7d9AFc6u8Xu3L39WDnLlx2vJI1J1WbsDqbzO09x91m6r4P0R8w9kHS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UFosvXuotWnUUEV-yTSaTZAafxLpWaxYpVosIQ-YSXepmy15K8cmf4G_0lzhnkk1drSK-BXICmZPvZL6TnPMdgAc8tpnJKxNmmpehy79EqLDBp0qTVJiMGuUbaYtBtrPPXh6kByvweNEL0-hDdB_cMDL8-xoD_MhUW6eioaPJqEdZhk3rayyLOEJ6e-9UO0qIRoI5Z_iiEWwhKxTRre7Spc1oDf16chbT_L1g8mci63ei_kX4sFhDU4By2JvPVE9_-UXe8T8XeQkutAyVPGkgdRlWbL0B60X7D34DzvmiUT29Aqbw46eJ470EZY-_f_3mkvcWy2Q48gOQyLgiDTOtLRnW5Hh4PCZYbf-R6FasgNiTpv-YTFFm1GOFzDyjtpOrsN9_9ubpTthObQh16ra7MMmUoVUZWW5plXIqNI8M13mSWmFpqbmyghlMO41LznKrbaoSpW3s0MQVY8k1WK3Htb0BRKQG9QyViGnJqDvWlY0s05SKjJsyDuDR4vFJ3Uqa42SNz7IRY6bS-U96_wVwvzM9anQ8zjJ66DHQWZSTQyx8y1P5bvBcvh8U4u2uYFIEsLkAiWxjfopJFM9il4AmAdzrTrtoxV8wZW3Hc2-Drb8xF3-zcWvG6RtRANcb3HU3RB3poCJyV-dLiOwMUC18-Uw9_ORVw5Mcm5Sp85kH3J-9IIu9wh_c_HfTu7D-ersvX70Y7N6C845UsuYz1SasziZze9sRt5m64wP0B2XJQIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+high-resolution+imaging+of+creatine+in+vivo+using+chemical+exchange+saturation+transfer&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kogan%2C+Feliks&rft.au=Haris%2C+Mohammad&rft.au=Singh%2C+Anup&rft.au=Cai%2C+Kejia&rft.date=2014-01-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=71&rft.issue=1&rft.spage=164&rft_id=info:doi/10.1002%2Fmrm.24641&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |