Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer

Purpose To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine cont...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 71; no. 1; pp. 164 - 172
Main Authors Kogan, Feliks, Haris, Mohammad, Singh, Anup, Cai, Kejia, Debrosse, Catherine, Nanga, Ravi Prakash Reddy, Hariharan, Hari, Reddy, Ravinder
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.01.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2, magnetization transfer ratio and 31P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole‐body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with 31P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST‐based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164–172, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle.
Purpose To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T sub(2), magnetization transfer ratio and super(31)P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with super(31)P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164-172, 2014. copyright 2013 Wiley Periodicals, Inc.
To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.PURPOSETo develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.METHODSPhantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.RESULTSPhantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle.CONCLUSIONDemonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle.
Purpose To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2, magnetization transfer ratio and 31P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole‐body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with 31P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST‐based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164–172, 2014. © 2013 Wiley Periodicals, Inc.
Purpose To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. Methods Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2, magnetization transfer ratio and 31P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. Results Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with 31P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. Conclusion Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164-172, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Singh, Anup
Kogan, Feliks
Cai, Kejia
Nanga, Ravi Prakash Reddy
Reddy, Ravinder
Haris, Mohammad
Debrosse, Catherine
Hariharan, Hari
AuthorAffiliation 2 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
1 Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
AuthorAffiliation_xml – name: 2 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
– name: 1 Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
Author_xml – sequence: 1
  givenname: Feliks
  surname: Kogan
  fullname: Kogan, Feliks
  email: fkogan@seas.upenn.edu
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, Pennsylvania, USA
– sequence: 2
  givenname: Mohammad
  surname: Haris
  fullname: Haris, Mohammad
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
– sequence: 3
  givenname: Anup
  surname: Singh
  fullname: Singh, Anup
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
– sequence: 4
  givenname: Kejia
  surname: Cai
  fullname: Cai, Kejia
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
– sequence: 5
  givenname: Catherine
  surname: Debrosse
  fullname: Debrosse, Catherine
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
– sequence: 6
  givenname: Ravi Prakash Reddy
  surname: Nanga
  fullname: Nanga, Ravi Prakash Reddy
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
– sequence: 7
  givenname: Hari
  surname: Hariharan
  fullname: Hariharan, Hari
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
– sequence: 8
  givenname: Ravinder
  surname: Reddy
  fullname: Reddy, Ravinder
  organization: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Pennsylvania, Philadelphia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23412909$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFBX8ARWIDi7R-JY43SFUFBdEpEuIhsbEc5yZxSexiJ0P77_HMtCOoBEiWvLjfObqPc4D2nHeA0FOCjwjG9HgM4xHlJScP0IIUlOa0kHwPLbDgOGdE8n10EOMlxlhKwR-hfco4oRLLBaqXMPW-yVofst52fR4g-mGerHeZHXVnXZf5NjMB9GQdZNZlK7vy2RzXFdPDaI0eMrg2vXYdZFFPc9Ab-RS0iy2Ex-hhq4cIT27_Q_T5zetPp2_z8w9n705PznNTVJjkrKwb2moMFdC2qKg0FW4qI1gBEqg2VQ2SN4Rg0XBZCDBQ1Kw2QGpINc7ZIXq19b2a6xEaAy51MKirkOYIN8prq_6sONurzq8UE7QgkiaDF7cGwf-YIU5qtNHAMGgHfo6KcElLgll6_0dLWXJBKpnQ5_fQSz8HlzaxpqqSVIKwRD37vfld13eXSsDLLWCCjzFAu0MIVusUqJQCtUlBYo_vscZOm6Okue3wL8VPO8DN363V8uPyTpFvFTZOcL1T6PBdlYKJQn29OFPfLpbyy3vJlWS_AFeK1AM
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_brainres_2019_04_010
crossref_primary_10_18632_oncotarget_25844
crossref_primary_10_1038_s41467_020_14874_0
crossref_primary_10_1002_mrm_28463
crossref_primary_10_1002_nbm_3367
crossref_primary_10_1021_ja5059313
crossref_primary_10_1002_nbm_4697
crossref_primary_10_1002_nbm_3001
crossref_primary_10_1172_jci_insight_88207
crossref_primary_10_1002_mrm_29030
crossref_primary_10_1002_nbm_3086
crossref_primary_10_1002_nbm_3362
crossref_primary_10_1002_nbm_4176
crossref_primary_10_1016_j_ahj_2023_02_006
crossref_primary_10_1002_mrm_26200
crossref_primary_10_1210_clinem_dgae545
crossref_primary_10_1021_acs_analchem_5b01296
crossref_primary_10_1002_nbm_5130
crossref_primary_10_1002_nbm_3192
crossref_primary_10_1002_nbm_5096
crossref_primary_10_1002_jmri_28314
crossref_primary_10_1002_jmri_28832
crossref_primary_10_1002_mrm_29662
crossref_primary_10_1002_nbm_3196
crossref_primary_10_1016_j_mri_2014_03_001
crossref_primary_10_1002_mrm_26314
crossref_primary_10_1038_s42255_024_01082_z
crossref_primary_10_1002_nbm_3879
crossref_primary_10_1002_mrm_25987
crossref_primary_10_1002_mrm_28973
crossref_primary_10_1002_nbm_3237
crossref_primary_10_1002_nbm_4602
crossref_primary_10_1002_jmri_26844
crossref_primary_10_1002_mrm_30164
crossref_primary_10_1021_acs_molpharmaceut_5b00430
crossref_primary_10_1021_acs_nanolett_5b04517
crossref_primary_10_1021_acs_analchem_6b03137
crossref_primary_10_1002_mrm_26100
crossref_primary_10_3390_ijms25189915
crossref_primary_10_1002_chem_201503942
crossref_primary_10_1002_ijch_201700025
crossref_primary_10_1007_s11307_018_1243_6
crossref_primary_10_1002_nbm_4671
crossref_primary_10_1002_mrm_26744
crossref_primary_10_1002_mrm_26900
crossref_primary_10_14316_pmp_2017_28_4_135
crossref_primary_10_1186_s41747_020_00174_1
crossref_primary_10_1088_0031_9155_59_16_4493
crossref_primary_10_1021_jacs_6b06421
crossref_primary_10_14814_phy2_16171
crossref_primary_10_1002_nbm_5238
crossref_primary_10_1002_nbm_5237
crossref_primary_10_1002_cmmi_1693
crossref_primary_10_1002_mrm_27380
crossref_primary_10_1002_nbm_3296
crossref_primary_10_1053_j_semnuclmed_2018_02_003
crossref_primary_10_1002_nbm_4704
crossref_primary_10_1002_mrm_28516
crossref_primary_10_1002_mrm_28117
crossref_primary_10_1097_RLI_0000000000000909
crossref_primary_10_1002_nbm_4789
crossref_primary_10_1016_j_mri_2023_10_009
crossref_primary_10_1016_j_neuroimage_2018_06_026
crossref_primary_10_1146_annurev_anchem_071015_041514
crossref_primary_10_1016_j_neuroimage_2021_118071
crossref_primary_10_1002_anie_201611733
crossref_primary_10_1039_C7CP07046B
crossref_primary_10_1002_cmmi_1629
crossref_primary_10_1002_cmmi_1628
crossref_primary_10_1002_jmri_29578
crossref_primary_10_1002_nbm_5104
crossref_primary_10_3389_fspor_2024_1481731
crossref_primary_10_1002_nbm_4133
crossref_primary_10_1002_nbm_3284
crossref_primary_10_1002_mrm_27690
crossref_primary_10_1038_srep19517
crossref_primary_10_1002_mrm_29876
crossref_primary_10_1038_s41467_024_55132_x
crossref_primary_10_1002_nbm_4139
crossref_primary_10_1002_mrm_26802
crossref_primary_10_1002_jmri_26183
crossref_primary_10_1002_mrm_30060
crossref_primary_10_1186_s12968_017_0411_1
crossref_primary_10_1016_j_jmr_2017_12_007
crossref_primary_10_1002_jmri_29445
crossref_primary_10_1002_jmri_29566
crossref_primary_10_1002_mrm_29223
crossref_primary_10_1161_CIRCULATIONAHA_118_036259
crossref_primary_10_1002_nbm_3673
crossref_primary_10_1038_s41467_024_49253_6
crossref_primary_10_1002_mrm_27206
crossref_primary_10_1002_mrm_27569
crossref_primary_10_1002_nbm_3715
crossref_primary_10_5114_pjr_2019_84242
crossref_primary_10_1002_nbm_4403
crossref_primary_10_1007_s13539_014_0130_5
crossref_primary_10_1016_j_mri_2016_02_001
crossref_primary_10_1002_mrm_29907
crossref_primary_10_1002_advs_202207090
crossref_primary_10_1002_jmri_27734
crossref_primary_10_1002_nbm_5160
crossref_primary_10_1002_jmri_27456
crossref_primary_10_1002_wnan_1246
crossref_primary_10_1002_nbm_4113
crossref_primary_10_1161_CIRCIMAGING_121_013869
crossref_primary_10_1002_jmri_25838
crossref_primary_10_1002_jmri_27859
crossref_primary_10_1016_j_neuroimage_2014_03_040
crossref_primary_10_1007_s10334_017_0642_z
crossref_primary_10_1007_s11307_016_0995_0
crossref_primary_10_1016_j_neuroimage_2017_04_045
crossref_primary_10_1002_mrm_28961
crossref_primary_10_1007_s10334_020_00902_z
crossref_primary_10_1097_RMR_0000000000000105
crossref_primary_10_1007_s00415_021_10821_1
crossref_primary_10_1371_journal_pone_0163765
crossref_primary_10_1002_ange_201611733
crossref_primary_10_1002_mrm_30354
crossref_primary_10_1002_nbm_4104
crossref_primary_10_1002_nbm_4468
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1038_s41598_021_97991_0
crossref_primary_10_1002_mrm_27221
crossref_primary_10_3389_fpsyt_2020_532606
crossref_primary_10_1002_cmmi_1652
crossref_primary_10_3390_diagnostics10080571
crossref_primary_10_1002_mrm_27866
crossref_primary_10_1021_jp410172k
crossref_primary_10_1002_cmdc_202300521
crossref_primary_10_1002_mrm_25562
crossref_primary_10_1002_mrm_27864
crossref_primary_10_1002_mrm_28436
crossref_primary_10_1038_jcbfm_2014_16
crossref_primary_10_1002_chem_201403943
Cites_doi 10.1152/ajpregu.00114.2004
10.1002/mrm.21873
10.1161/01.CIR.86.6.1810
10.1152/jappl.1992.73.4.1578
10.1002/nbm.2792
10.1002/nbm.1192
10.1016/S0021-9258(17)33527-5
10.1073/pnas.0700281104
10.1002/mrm.20989
10.1111/j.1749-6632.1987.tb32915.x
10.1002/mrm.21714
10.1002/mrm.10651
10.1002/mrm.24290
10.1172/JCI113508
10.1038/nm.2615
10.1152/japplphysiol.00446.2002
10.1016/0006-291X(62)90008-6
10.1006/jmre.1999.1956
10.1161/01.CIR.92.1.15
10.1016/S0021-9258(19)57191-5
10.1038/1991068a0
10.1002/ana.410300116
10.1161/01.CIR.78.2.320
10.1006/jmre.1998.1440
10.1002/mrm.1910010303
10.1038/252285a0
10.1042/cs0890581
10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S
10.1002/nbm.1940060404
10.1097/00004424-199104000-00005
10.1002/1097-4598(200009)23:9<1316::AID-MUS2>3.0.CO;2-I
10.1152/jappl.1999.87.6.2068
10.1007/BF00585150
10.1148/radiology.204.2.9240527
10.1016/j.pnmrs.2006.01.001
10.1002/cmmi.383
10.1038/274861a0
10.1097/00004424-199005000-00003
10.1002/(SICI)1097-4598(199909)22:9<1228::AID-MUS9>3.0.CO;2-6
10.1016/0022-2364(90)90220-4
10.1161/01.CIR.80.5.1338
10.1007/s00018-004-3345-3
10.1002/mrm.20048
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
DOI 10.1002/mrm.24641
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
MEDLINE - Academic

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 172
ExternalDocumentID PMC3725192
3158308491
23412909
10_1002_mrm_24641
MRM24641
ark_67375_WNG_ZNM9VK94_9
Genre article
Validation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB
  funderid: P41EB015893; P41EB015893S1; T32EB009384; UPENN TAPITMAT‐TBIC
– fundername: NIBIB NIH HHS
  grantid: T32EB009384
– fundername: NIBIB NIH HHS
  grantid: P41EB015893S1
– fundername: NIBIB NIH HHS
  grantid: P41 EB015893
– fundername: NIBIB NIH HHS
  grantid: T32 EB009384
– fundername: NIBIB NIH HHS
  grantid: P41EB015893
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: P41 EB015893 || EB
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: T32 EB009384 || EB
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ID FETCH-LOGICAL-c5801-36bd2fa0e8e2f5829c80d8c735e9e2ac8be94d1107d4957ece5b3bce1bec8b443
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 14:36:43 EDT 2025
Thu Jul 10 18:48:03 EDT 2025
Thu Jul 10 23:49:47 EDT 2025
Fri Jul 25 12:15:40 EDT 2025
Mon Jul 21 05:48:42 EDT 2025
Tue Jul 01 01:20:52 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Wed Jan 22 16:33:44 EST 2025
Wed Oct 30 09:51:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords endogenous contrast
CEST
creatine
muscle
chemical exchange
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5801-36bd2fa0e8e2f5829c80d8c735e9e2ac8be94d1107d4957ece5b3bce1bec8b443
Notes ArticleID:MRM24641
ark:/67375/WNG-ZNM9VK94-9
NIBIB - No. P41EB015893; No. P41EB015893S1; No. T32EB009384; No. UPENN TAPITMAT-TBIC
istex:7B84AB171FFB64EB4122D3076E2D76927947DBC8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1002/mrm.24641
PMID 23412909
PQID 1468618713
PQPubID 1016391
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3725192
proquest_miscellaneous_1492610310
proquest_miscellaneous_1469647189
proquest_journals_1468618713
pubmed_primary_23412909
crossref_primary_10_1002_mrm_24641
crossref_citationtrail_10_1002_mrm_24641
wiley_primary_10_1002_mrm_24641_MRM24641
istex_primary_ark_67375_WNG_ZNM9VK94_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Bottomley PA, Lee YH, Weiss RG. Total creatine in muscle: imaging and quantification with proton MR spectroscopy. Radiology 1997;204:403-410.
Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. 3. The steady state. J Biol Chem 1955;217:409-427.
Weidman ER, Charles HC, Negrovilar R, Sullivan MJ, Macfall JR. Muscle-activity localization with P-31 spectroscopy and calculated T2-weighted h-1 images. Invest Radiol 1991;26:309-316.
Zhou J, van Zijl P. Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectrosc 2006;48:109-136.
Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal-muscle Mr images. Invest Radiol 1990;25:480-485.
Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GAJ, Lackner K, Ertl G. P-31 magnetic-resonance spectroscopy in dilated cardiomyopathy and coronary-artery disease-altered cardiac high-energy phosphate-metabolism in heart-failure. Circulation 1992;86:1810-1818.
Bendahan D, Giannesini B, Cozzone PJ. Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell Mol Life Sci 2004;61:1001-1015.
Singh A, Haris M, Cai K, Hariharan H, Reddy R. Chemical exchange transfer imaging of creatine. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada, 2011. p. 2767.
Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic-resonance. Nature 1978;274:861-866.
Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 1999;22:1228-1233.
Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:502-516.
van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MR1 detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci USA 2007;104:4359-4364.
Arnold DL, Matthews PM, Radda GK. Metabolic recovery after exercise and the assessment of mitochondrial-function invivo in human skeletal-muscle by means of P-31 NMR. Magn Reson Med 1984;1:307-315.
Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflugers Arch 1976;367.
Burt CT, Glonek T, Barany M. Analysis of phosphate metabolites, intracellular ph, and state of adenosine-triphosphate in intact muscle by phosphorus nuclear magnetic-resonance. J Biol Chem 1976;251:2584-2591.
Zhou J, Wilson D, Sun P, Klaus J, van Zijl P. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004;51:945-952.
Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR. Contribution of intrinsic skeletal-muscle changes to P-31 NMR skeletal-muscle metabolic abnormalities in patients with chronic heart-failure. Circulation 1989;80:1338-1346.
Rico-Sanz J, Thomas EL, Jenkinson G, Mierisova S, Iles R, Bell JD. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by H-1-MRS. J Appl Physiol 1999;87:2068-2072.
Argov Z, Renshaw PF, Boden B, Winokur A, Bank WJ. Effects of thyroid-hormones on skeletal-muscle bioenergetics - in vivo P-31 magnetic-resonance spectroscopy study of humans and rats. J Clin Invest 1988;81:1695-1701.
Adams GR, Duvoisin MR, Dudley GA. Magnetic-resonance-imaging and electromyography as indexes of muscle function. J Appl Physiol 1992;73:1578-1589.
Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary-artery disease by P-31 magnetic-resonance spectroscopy. Circulation 1995;92:15-23.
Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular P-31-MRS P-i peak splitting and the slow components of PCr and O-2 uptake during exercise. J Appl Physiol 2002;93:2059-2069.
Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000;44:799-802.
Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B. In-vivo assessment of mitochondrial functionality in human gastrocnemius-muscle by P-31 MRS-the role of pH in the evaluation of phosphocreatine and inorganic-phosphate recoveries from exercise. NMR Biomed 1993;6:248-253.
Sun P, Benner T, Kumar A, Sorensen A. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 2008;60:834-841.
Guivel-Scharen V, Sinnwell T, Wolff S, Balaban R. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998;133:36-45.
Singh A, Cai K, Haris M, Hariharan H, Reddy R. On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 2013;69:818-824.
Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P-31 MRS: a quantitative review. NMR Biomed 2007;20:555-565.
Argov Z, Lofberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 2000;23:1316-1334.
Liu G, Gilad AA, Bulte JWM, van Zijl PCM, McMahon MT. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol Imaging 2010;5:162-170.
Davies RE. A molecular theory of muscle contraction-calcium-dependent contractions with hydrogen bond formation plus atp-dependent extensions of part of myosin-actin cross-bridges. Nature 1963;199:1068-1074.
Ingwall JS. Phosphorus nuclear magnetic-resonance spectroscopy of cardiac and skeletal-muscles. Am J Phys 1982;242:H729-H744.
Ward K, Aletras A, Balaban R. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79-87.
Jones C, Schlosser M, van Zijl P, Pomper M, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 2006;56:585-592.
Cain DF, Davies RE. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 1962;8:361-366.
Wolff S, Balaban R. NMR imaging of labile proton-exchange. J Magn Reson 1990;86:164-169.
Kim M, Gillen J, Landman B, Zhou J, van Zijl P. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 2009;61:1441-1450.
Bottomley PA. Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333-348.
Cai K, Haris M, Singh A, Kogan F, Greenberg J, Hariharan H, Detre J, Reddy R. Magnetic resonance imaging of glutamate. Nat Med 2012;18:302-306.
Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G. Skeletal-muscle metabolism during exercise under ischemic conditions in congestive heart-failure-evidence for abnormalities unrelated to blood-flow. Circulation 1988;78:320-326.
Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using P-31 nuclear magnetic-resonance. Nature 1974;252:285-287.
Argov Z, Bank WJ. Phosphorus magnetic-resonance spectroscopy (P-31 MRS) in neuromuscular disorders. Ann Neurol 1991;30:90-97.
Zhou J, Lal B, Wilson D, Laterra J, van Zijl P. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003;50:1120-1126.
Kemp GJ, Hands LJ, Ramaswami G, Taylor DJ, Nicolaides A, Amato A, Radda GK. Calf muscle mitochondrial and glycogenolytic atp synthesis in patients with claudication due to peripheral vascular-disease analyzed using P-31 magnetic-resonance spectroscopy. Clin Sci 1995;89:581-590.
Haris M, Nanga RPR, Singh A, Cai K, Kogan F, Hariharan H, Reddy R. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 2012;25:1305-1309.
2004; 287
2007; 104
2004; 61
1963; 199
1995; 92
2013; 69
2006; 56
1962; 8
2011
2000; 23
2009; 61
1991; 30
1989; 80
1955; 217
2000; 44
1976; 367
1978; 274
1999; 22
1988; 78
1982; 242
1999; 87
1987; 508
2012; 18
1998; 133
2003; 50
1992; 73
1993; 6
1990; 86
1997; 204
1976; 251
2004; 51
1990; 25
1991; 26
1984; 1
1995; 89
2006; 48
2000; 143
2002; 93
1974; 252
2007; 20
1992; 86
2012; 25
1988; 81
2010; 5
2008; 60
e_1_2_6_32_1
Singh A (e_1_2_6_34_1) 2011
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Chance B (e_1_2_6_2_1) 1955; 217
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_5_1
Ingwall JS (e_1_2_6_8_1) 1982; 242
e_1_2_6_4_1
e_1_2_6_7_1
Burt CT (e_1_2_6_10_1) 1976; 251
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
10698648 - J Magn Reson. 2000 Mar;143(1):79-87
10951434 - Muscle Nerve. 2000 Sep;23(9):1316-34
13343 - Pflugers Arch. 1976 Dec 28;367(2):143-9
8217526 - NMR Biomed. 1993 Jul-Aug;6(4):248-53
19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50
14066941 - Nature. 1963 Sep 14;199:1068-74
3396168 - Circulation. 1988 Aug;78(2):320-6
22431193 - NMR Biomed. 2012 Nov;25(11):1305-9
308189 - Nature. 1978 Aug 31;274(5674):861-6
12391122 - J Appl Physiol (1985). 2002 Dec;93(6):2059-69
11064415 - Magn Reson Med. 2000 Nov;44(5):799-802
4431445 - Nature. 1974 Nov 22;252(5481):285-7
15112049 - Cell Mol Life Sci. 2004 May;61(9):1001-15
2032818 - Invest Radiol. 1991 Apr;26(4):309-16
6571561 - Magn Reson Med. 1984 Sep;1(3):307-15
20586030 - Contrast Media Mol Imaging. 2010 May-Jun;5(3):162-70
10454718 - Muscle Nerve. 1999 Sep;22(9):1228-33
2805270 - Circulation. 1989 Nov;80(5):1338-46
2345077 - Invest Radiol. 1990 May;25(5):480-5
7044148 - Am J Physiol. 1982 May;242(5):H729-44
10601151 - J Appl Physiol (1985). 1999 Dec;87(6):2068-72
9654466 - J Magn Reson. 1998 Jul;133(1):36-45
22270722 - Nat Med. 2012 Feb;18(2):302-6
1834009 - Ann Neurol. 1991 Jul;30(1):90-7
9240527 - Radiology. 1997 Aug;204(2):403-10
13875588 - Biochem Biophys Res Commun. 1962 Aug 7;8:361-6
22511396 - Magn Reson Med. 2013 Mar 1;69(3):818-24
3326459 - Ann N Y Acad Sci. 1987;508:333-48
7788910 - Circulation. 1995 Jul 1;92(1):15-23
4452 - J Biol Chem. 1976 May 10;251(9):2584-91
17360529 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64
18816867 - Magn Reson Med. 2008 Oct;60(4):834-41
17628042 - NMR Biomed. 2007 Oct;20(6):555-65
15122676 - Magn Reson Med. 2004 May;51(5):945-52
1451253 - Circulation. 1992 Dec;86(6):1810-8
16892186 - Magn Reson Med. 2006 Sep;56(3):585-92
14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6
3384946 - J Clin Invest. 1988 Jun;81(6):1695-701
13271404 - J Biol Chem. 1955 Nov;217(1):409-27
1447107 - J Appl Physiol (1985). 1992 Oct;73(4):1578-83
8549076 - Clin Sci (Lond). 1995 Dec;89(6):581-90
15308499 - Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R502-16
References_xml – reference: Davies RE. A molecular theory of muscle contraction-calcium-dependent contractions with hydrogen bond formation plus atp-dependent extensions of part of myosin-actin cross-bridges. Nature 1963;199:1068-1074.
– reference: Ward K, Aletras A, Balaban R. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79-87.
– reference: Zhou J, van Zijl P. Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectrosc 2006;48:109-136.
– reference: Argov Z, Renshaw PF, Boden B, Winokur A, Bank WJ. Effects of thyroid-hormones on skeletal-muscle bioenergetics - in vivo P-31 magnetic-resonance spectroscopy study of humans and rats. J Clin Invest 1988;81:1695-1701.
– reference: Cain DF, Davies RE. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 1962;8:361-366.
– reference: Bendahan D, Giannesini B, Cozzone PJ. Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell Mol Life Sci 2004;61:1001-1015.
– reference: Haris M, Nanga RPR, Singh A, Cai K, Kogan F, Hariharan H, Reddy R. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 2012;25:1305-1309.
– reference: Argov Z, Lofberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 2000;23:1316-1334.
– reference: Burt CT, Glonek T, Barany M. Analysis of phosphate metabolites, intracellular ph, and state of adenosine-triphosphate in intact muscle by phosphorus nuclear magnetic-resonance. J Biol Chem 1976;251:2584-2591.
– reference: Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflugers Arch 1976;367.
– reference: Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using P-31 nuclear magnetic-resonance. Nature 1974;252:285-287.
– reference: Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR. Contribution of intrinsic skeletal-muscle changes to P-31 NMR skeletal-muscle metabolic abnormalities in patients with chronic heart-failure. Circulation 1989;80:1338-1346.
– reference: Jones C, Schlosser M, van Zijl P, Pomper M, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 2006;56:585-592.
– reference: Singh A, Cai K, Haris M, Hariharan H, Reddy R. On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 2013;69:818-824.
– reference: Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B. In-vivo assessment of mitochondrial functionality in human gastrocnemius-muscle by P-31 MRS-the role of pH in the evaluation of phosphocreatine and inorganic-phosphate recoveries from exercise. NMR Biomed 1993;6:248-253.
– reference: Arnold DL, Matthews PM, Radda GK. Metabolic recovery after exercise and the assessment of mitochondrial-function invivo in human skeletal-muscle by means of P-31 NMR. Magn Reson Med 1984;1:307-315.
– reference: Bottomley PA, Lee YH, Weiss RG. Total creatine in muscle: imaging and quantification with proton MR spectroscopy. Radiology 1997;204:403-410.
– reference: Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000;44:799-802.
– reference: Singh A, Haris M, Cai K, Hariharan H, Reddy R. Chemical exchange transfer imaging of creatine. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada, 2011. p. 2767.
– reference: Weidman ER, Charles HC, Negrovilar R, Sullivan MJ, Macfall JR. Muscle-activity localization with P-31 spectroscopy and calculated T2-weighted h-1 images. Invest Radiol 1991;26:309-316.
– reference: Kemp GJ, Hands LJ, Ramaswami G, Taylor DJ, Nicolaides A, Amato A, Radda GK. Calf muscle mitochondrial and glycogenolytic atp synthesis in patients with claudication due to peripheral vascular-disease analyzed using P-31 magnetic-resonance spectroscopy. Clin Sci 1995;89:581-590.
– reference: Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:502-516.
– reference: Zhou J, Wilson D, Sun P, Klaus J, van Zijl P. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004;51:945-952.
– reference: Ingwall JS. Phosphorus nuclear magnetic-resonance spectroscopy of cardiac and skeletal-muscles. Am J Phys 1982;242:H729-H744.
– reference: Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G. Skeletal-muscle metabolism during exercise under ischemic conditions in congestive heart-failure-evidence for abnormalities unrelated to blood-flow. Circulation 1988;78:320-326.
– reference: Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary-artery disease by P-31 magnetic-resonance spectroscopy. Circulation 1995;92:15-23.
– reference: van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MR1 detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci USA 2007;104:4359-4364.
– reference: Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal-muscle Mr images. Invest Radiol 1990;25:480-485.
– reference: Guivel-Scharen V, Sinnwell T, Wolff S, Balaban R. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998;133:36-45.
– reference: Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GAJ, Lackner K, Ertl G. P-31 magnetic-resonance spectroscopy in dilated cardiomyopathy and coronary-artery disease-altered cardiac high-energy phosphate-metabolism in heart-failure. Circulation 1992;86:1810-1818.
– reference: Kim M, Gillen J, Landman B, Zhou J, van Zijl P. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 2009;61:1441-1450.
– reference: Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. 3. The steady state. J Biol Chem 1955;217:409-427.
– reference: Rico-Sanz J, Thomas EL, Jenkinson G, Mierisova S, Iles R, Bell JD. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by H-1-MRS. J Appl Physiol 1999;87:2068-2072.
– reference: Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 1999;22:1228-1233.
– reference: Argov Z, Bank WJ. Phosphorus magnetic-resonance spectroscopy (P-31 MRS) in neuromuscular disorders. Ann Neurol 1991;30:90-97.
– reference: Sun P, Benner T, Kumar A, Sorensen A. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 2008;60:834-841.
– reference: Bottomley PA. Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333-348.
– reference: Cai K, Haris M, Singh A, Kogan F, Greenberg J, Hariharan H, Detre J, Reddy R. Magnetic resonance imaging of glutamate. Nat Med 2012;18:302-306.
– reference: Wolff S, Balaban R. NMR imaging of labile proton-exchange. J Magn Reson 1990;86:164-169.
– reference: Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P-31 MRS: a quantitative review. NMR Biomed 2007;20:555-565.
– reference: Adams GR, Duvoisin MR, Dudley GA. Magnetic-resonance-imaging and electromyography as indexes of muscle function. J Appl Physiol 1992;73:1578-1589.
– reference: Liu G, Gilad AA, Bulte JWM, van Zijl PCM, McMahon MT. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol Imaging 2010;5:162-170.
– reference: Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular P-31-MRS P-i peak splitting and the slow components of PCr and O-2 uptake during exercise. J Appl Physiol 2002;93:2059-2069.
– reference: Zhou J, Lal B, Wilson D, Laterra J, van Zijl P. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003;50:1120-1126.
– reference: Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic-resonance. Nature 1978;274:861-866.
– volume: 56
  start-page: 585
  year: 2006
  end-page: 592
  article-title: Amide proton transfer imaging of human brain tumors at 3T
  publication-title: Magn Reson Med
– volume: 104
  start-page: 4359
  year: 2007
  end-page: 4364
  article-title: MR1 detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST)
  publication-title: Proc Natl Acad Sci USA
– volume: 81
  start-page: 1695
  year: 1988
  end-page: 1701
  article-title: Effects of thyroid‐hormones on skeletal‐muscle bioenergetics – in vivo P‐31 magnetic‐resonance spectroscopy study of humans and rats
  publication-title: J Clin Invest
– volume: 242
  start-page: H729
  year: 1982
  end-page: H744
  article-title: Phosphorus nuclear magnetic‐resonance spectroscopy of cardiac and skeletal‐muscles
  publication-title: Am J Phys
– volume: 86
  start-page: 164
  year: 1990
  end-page: 169
  article-title: NMR imaging of labile proton‐exchange
  publication-title: J Magn Reson
– volume: 25
  start-page: 1305
  year: 2012
  end-page: 1309
  article-title: Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI
  publication-title: NMR Biomed
– volume: 199
  start-page: 1068
  year: 1963
  end-page: 1074
  article-title: A molecular theory of muscle contraction—calcium‐dependent contractions with hydrogen bond formation plus atp‐dependent extensions of part of myosin‐actin cross‐bridges
  publication-title: Nature
– volume: 92
  start-page: 15
  year: 1995
  end-page: 23
  article-title: Quantitative measurements of cardiac phosphorus metabolites in coronary‐artery disease by P‐31 magnetic‐resonance spectroscopy
  publication-title: Circulation
– volume: 20
  start-page: 555
  year: 2007
  end-page: 565
  article-title: Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P‐31 MRS: a quantitative review
  publication-title: NMR Biomed
– volume: 78
  start-page: 320
  year: 1988
  end-page: 326
  article-title: Skeletal‐muscle metabolism during exercise under ischemic conditions in congestive heart‐failure—evidence for abnormalities unrelated to blood‐flow
  publication-title: Circulation
– volume: 30
  start-page: 90
  year: 1991
  end-page: 97
  article-title: Phosphorus magnetic‐resonance spectroscopy (P‐31 MRS) in neuromuscular disorders
  publication-title: Ann Neurol
– volume: 86
  start-page: 1810
  year: 1992
  end-page: 1818
  article-title: P‐31 magnetic‐resonance spectroscopy in dilated cardiomyopathy and coronary‐artery disease—altered cardiac high‐energy phosphate‐metabolism in heart‐failure
  publication-title: Circulation
– volume: 87
  start-page: 2068
  year: 1999
  end-page: 2072
  article-title: Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by H‐1‐MRS
  publication-title: J Appl Physiol
– volume: 60
  start-page: 834
  year: 2008
  end-page: 841
  article-title: Investigation of optimizing and translating pH‐sensitive pulsed‐chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner
  publication-title: Magn Reson Med
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– volume: 25
  start-page: 480
  year: 1990
  end-page: 485
  article-title: Direct relationship between proton T2 and exercise intensity in skeletal‐muscle Mr images
  publication-title: Invest Radiol
– start-page: 2767
  year: 2011
  publication-title: Chemical exchange transfer imaging of creatine
– volume: 5
  start-page: 162
  year: 2010
  end-page: 170
  article-title: High‐throughput screening of chemical exchange saturation transfer MR contrast agents
  publication-title: Contrast Media Mol Imaging
– volume: 26
  start-page: 309
  year: 1991
  end-page: 316
  article-title: Muscle‐activity localization with P‐31 spectroscopy and calculated T2‐weighted h‐1 images
  publication-title: Invest Radiol
– volume: 93
  start-page: 2059
  year: 2002
  end-page: 2069
  article-title: Dynamics of intramuscular P‐31‐MRS P‐i peak splitting and the slow components of PCr and O‐2 uptake during exercise
  publication-title: J Appl Physiol
– volume: 217
  start-page: 409
  year: 1955
  end-page: 427
  article-title: Respiratory enzymes in oxidative phosphorylation. 3. The steady state
  publication-title: J Biol Chem
– volume: 69
  start-page: 818
  year: 2013
  end-page: 824
  article-title: On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T
  publication-title: Magn Reson Med
– volume: 287
  start-page: 502
  year: 2004
  end-page: 516
  article-title: Biochemistry of exercise‐induced metabolic acidosis
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 50
  start-page: 1120
  year: 2003
  end-page: 1126
  article-title: Amide proton transfer (APT) contrast for imaging of brain tumors
  publication-title: Magn Reson Med
– volume: 252
  start-page: 285
  year: 1974
  end-page: 287
  article-title: Observation of tissue metabolites using P‐31 nuclear magnetic‐resonance
  publication-title: Nature
– volume: 204
  start-page: 403
  year: 1997
  end-page: 410
  article-title: Total creatine in muscle: imaging and quantification with proton MR spectroscopy
  publication-title: Radiology
– volume: 508
  start-page: 333
  year: 1987
  end-page: 348
  article-title: Spatial localization in NMR‐spectroscopy in vivo
  publication-title: Ann N Y Acad Sci
– volume: 6
  start-page: 248
  year: 1993
  end-page: 253
  article-title: In‐vivo assessment of mitochondrial functionality in human gastrocnemius‐muscle by P‐31 MRS—the role of pH in the evaluation of phosphocreatine and inorganic‐phosphate recoveries from exercise
  publication-title: NMR Biomed
– volume: 44
  start-page: 799
  year: 2000
  end-page: 802
  article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)
  publication-title: Magn Reson Med
– volume: 61
  start-page: 1001
  year: 2004
  end-page: 1015
  article-title: Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy‐magnetic resonance imaging approach
  publication-title: Cell Mol Life Sci
– volume: 8
  start-page: 361
  year: 1962
  end-page: 366
  article-title: Breakdown of adenosine triphosphate during a single contraction of working muscle
  publication-title: Biochem Biophys Res Commun
– volume: 89
  start-page: 581
  year: 1995
  end-page: 590
  article-title: Calf muscle mitochondrial and glycogenolytic atp synthesis in patients with claudication due to peripheral vascular‐disease analyzed using P‐31 magnetic‐resonance spectroscopy
  publication-title: Clin Sci
– volume: 251
  start-page: 2584
  year: 1976
  end-page: 2591
  article-title: Analysis of phosphate metabolites, intracellular ph, and state of adenosine‐triphosphate in intact muscle by phosphorus nuclear magnetic‐resonance
  publication-title: J Biol Chem
– volume: 73
  start-page: 1578
  year: 1992
  end-page: 1589
  article-title: Magnetic‐resonance‐imaging and electromyography as indexes of muscle function
  publication-title: J Appl Physiol
– volume: 274
  start-page: 861
  year: 1978
  end-page: 866
  article-title: Muscular fatigue investigated by phosphorus nuclear magnetic‐resonance
  publication-title: Nature
– volume: 23
  start-page: 1316
  year: 2000
  end-page: 1334
  article-title: Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy
  publication-title: Muscle Nerve
– volume: 367
  year: 1976
  article-title: Lactate content and pH in muscle samples obtained after dynamic exercise
  publication-title: Pflugers Arch
– volume: 133
  start-page: 36
  year: 1998
  end-page: 45
  article-title: Detection of proton chemical exchange between metabolites and water in biological tissues
  publication-title: J Magn Reson
– volume: 80
  start-page: 1338
  year: 1989
  end-page: 1346
  article-title: Contribution of intrinsic skeletal‐muscle changes to P‐31 NMR skeletal‐muscle metabolic abnormalities in patients with chronic heart‐failure
  publication-title: Circulation
– volume: 18
  start-page: 302
  year: 2012
  end-page: 306
  article-title: Magnetic resonance imaging of glutamate
  publication-title: Nat Med
– volume: 48
  start-page: 109
  year: 2006
  end-page: 136
  article-title: Chemical exchange saturation transfer imaging and spectroscopy
  publication-title: Progr NMR Spectrosc
– volume: 1
  start-page: 307
  year: 1984
  end-page: 315
  article-title: Metabolic recovery after exercise and the assessment of mitochondrial‐function invivo in human skeletal‐muscle by means of P‐31 NMR
  publication-title: Magn Reson Med
– volume: 22
  start-page: 1228
  year: 1999
  end-page: 1233
  article-title: Direct measurement of high‐energy phosphate compounds in patients with neuromuscular disease
  publication-title: Muscle Nerve
– volume: 61
  start-page: 1441
  year: 2009
  end-page: 1450
  article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments
  publication-title: Magn Reson Med
– volume: 51
  start-page: 945
  year: 2004
  end-page: 952
  article-title: Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments
  publication-title: Magn Reson Med
– ident: e_1_2_6_41_1
  doi: 10.1152/ajpregu.00114.2004
– ident: e_1_2_6_36_1
  doi: 10.1002/mrm.21873
– ident: e_1_2_6_14_1
  doi: 10.1161/01.CIR.86.6.1810
– ident: e_1_2_6_24_1
  doi: 10.1152/jappl.1992.73.4.1578
– ident: e_1_2_6_35_1
  doi: 10.1002/nbm.2792
– start-page: 2767
  year: 2011
  ident: e_1_2_6_34_1
  publication-title: Chemical exchange transfer imaging of creatine
– ident: e_1_2_6_9_1
  doi: 10.1002/nbm.1192
– volume: 251
  start-page: 2584
  year: 1976
  ident: e_1_2_6_10_1
  article-title: Analysis of phosphate metabolites, intracellular ph, and state of adenosine‐triphosphate in intact muscle by phosphorus nuclear magnetic‐resonance
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)33527-5
– ident: e_1_2_6_43_1
  doi: 10.1073/pnas.0700281104
– ident: e_1_2_6_30_1
  doi: 10.1002/mrm.20989
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1749-6632.1987.tb32915.x
– ident: e_1_2_6_33_1
  doi: 10.1002/mrm.21714
– ident: e_1_2_6_46_1
  doi: 10.1002/mrm.10651
– ident: e_1_2_6_37_1
  doi: 10.1002/mrm.24290
– ident: e_1_2_6_19_1
  doi: 10.1172/JCI113508
– ident: e_1_2_6_32_1
  doi: 10.1038/nm.2615
– ident: e_1_2_6_42_1
  doi: 10.1152/japplphysiol.00446.2002
– ident: e_1_2_6_3_1
  doi: 10.1016/0006-291X(62)90008-6
– ident: e_1_2_6_27_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_6_15_1
  doi: 10.1161/01.CIR.92.1.15
– volume: 217
  start-page: 409
  year: 1955
  ident: e_1_2_6_2_1
  article-title: Respiratory enzymes in oxidative phosphorylation. 3. The steady state
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)57191-5
– ident: e_1_2_6_4_1
  doi: 10.1038/1991068a0
– ident: e_1_2_6_11_1
  doi: 10.1002/ana.410300116
– ident: e_1_2_6_16_1
  doi: 10.1161/01.CIR.78.2.320
– ident: e_1_2_6_26_1
  doi: 10.1006/jmre.1998.1440
– ident: e_1_2_6_44_1
  doi: 10.1002/mrm.1910010303
– ident: e_1_2_6_6_1
  doi: 10.1038/252285a0
– ident: e_1_2_6_18_1
  doi: 10.1042/cs0890581
– ident: e_1_2_6_28_1
  doi: 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S
– ident: e_1_2_6_40_1
  doi: 10.1002/nbm.1940060404
– ident: e_1_2_6_23_1
  doi: 10.1097/00004424-199104000-00005
– ident: e_1_2_6_12_1
  doi: 10.1002/1097-4598(200009)23:9<1316::AID-MUS2>3.0.CO;2-I
– ident: e_1_2_6_21_1
  doi: 10.1152/jappl.1999.87.6.2068
– ident: e_1_2_6_45_1
  doi: 10.1007/BF00585150
– ident: e_1_2_6_20_1
  doi: 10.1148/radiology.204.2.9240527
– ident: e_1_2_6_31_1
  doi: 10.1016/j.pnmrs.2006.01.001
– ident: e_1_2_6_39_1
  doi: 10.1002/cmmi.383
– volume: 242
  start-page: H729
  year: 1982
  ident: e_1_2_6_8_1
  article-title: Phosphorus nuclear magnetic‐resonance spectroscopy of cardiac and skeletal‐muscles
  publication-title: Am J Phys
– ident: e_1_2_6_7_1
  doi: 10.1038/274861a0
– ident: e_1_2_6_22_1
  doi: 10.1097/00004424-199005000-00003
– ident: e_1_2_6_13_1
  doi: 10.1002/(SICI)1097-4598(199909)22:9<1228::AID-MUS9>3.0.CO;2-6
– ident: e_1_2_6_25_1
  doi: 10.1016/0022-2364(90)90220-4
– ident: e_1_2_6_17_1
  doi: 10.1161/01.CIR.80.5.1338
– ident: e_1_2_6_5_1
  doi: 10.1007/s00018-004-3345-3
– ident: e_1_2_6_29_1
  doi: 10.1002/mrm.20048
– reference: 4452 - J Biol Chem. 1976 May 10;251(9):2584-91
– reference: 2805270 - Circulation. 1989 Nov;80(5):1338-46
– reference: 11064415 - Magn Reson Med. 2000 Nov;44(5):799-802
– reference: 3384946 - J Clin Invest. 1988 Jun;81(6):1695-701
– reference: 17360529 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64
– reference: 3326459 - Ann N Y Acad Sci. 1987;508:333-48
– reference: 22431193 - NMR Biomed. 2012 Nov;25(11):1305-9
– reference: 1834009 - Ann Neurol. 1991 Jul;30(1):90-7
– reference: 8217526 - NMR Biomed. 1993 Jul-Aug;6(4):248-53
– reference: 22511396 - Magn Reson Med. 2013 Mar 1;69(3):818-24
– reference: 14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6
– reference: 13343 - Pflugers Arch. 1976 Dec 28;367(2):143-9
– reference: 6571561 - Magn Reson Med. 1984 Sep;1(3):307-15
– reference: 10601151 - J Appl Physiol (1985). 1999 Dec;87(6):2068-72
– reference: 3396168 - Circulation. 1988 Aug;78(2):320-6
– reference: 12391122 - J Appl Physiol (1985). 2002 Dec;93(6):2059-69
– reference: 22270722 - Nat Med. 2012 Feb;18(2):302-6
– reference: 14066941 - Nature. 1963 Sep 14;199:1068-74
– reference: 13875588 - Biochem Biophys Res Commun. 1962 Aug 7;8:361-6
– reference: 15308499 - Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R502-16
– reference: 308189 - Nature. 1978 Aug 31;274(5674):861-6
– reference: 7044148 - Am J Physiol. 1982 May;242(5):H729-44
– reference: 10951434 - Muscle Nerve. 2000 Sep;23(9):1316-34
– reference: 10454718 - Muscle Nerve. 1999 Sep;22(9):1228-33
– reference: 16892186 - Magn Reson Med. 2006 Sep;56(3):585-92
– reference: 18816867 - Magn Reson Med. 2008 Oct;60(4):834-41
– reference: 4431445 - Nature. 1974 Nov 22;252(5481):285-7
– reference: 1447107 - J Appl Physiol (1985). 1992 Oct;73(4):1578-83
– reference: 15112049 - Cell Mol Life Sci. 2004 May;61(9):1001-15
– reference: 1451253 - Circulation. 1992 Dec;86(6):1810-8
– reference: 7788910 - Circulation. 1995 Jul 1;92(1):15-23
– reference: 10698648 - J Magn Reson. 2000 Mar;143(1):79-87
– reference: 15122676 - Magn Reson Med. 2004 May;51(5):945-52
– reference: 9654466 - J Magn Reson. 1998 Jul;133(1):36-45
– reference: 2345077 - Invest Radiol. 1990 May;25(5):480-5
– reference: 8549076 - Clin Sci (Lond). 1995 Dec;89(6):581-90
– reference: 9240527 - Radiology. 1997 Aug;204(2):403-10
– reference: 13271404 - J Biol Chem. 1955 Nov;217(1):409-27
– reference: 20586030 - Contrast Media Mol Imaging. 2010 May-Jun;5(3):162-70
– reference: 17628042 - NMR Biomed. 2007 Oct;20(6):555-65
– reference: 19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50
– reference: 2032818 - Invest Radiol. 1991 Apr;26(4):309-16
SSID ssj0009974
Score 2.4900448
Snippet Purpose To develop a chemical exchange saturation transfer (CEST)‐based technique to measure free creatine (Cr) and to validate the technique by measuring the...
To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the...
Purpose To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164
SubjectTerms Adult
Algorithms
CEST
chemical exchange
Creatine
Creatine - metabolism
endogenous contrast
Female
Humans
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Male
muscle
Muscle Contraction - physiology
Muscle, Skeletal - anatomy & histology
Muscle, Skeletal - physiology
Physical Exertion - physiology
Reproducibility of Results
Sensitivity and Specificity
Tissue Distribution
Young Adult
Title Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer
URI https://api.istex.fr/ark:/67375/WNG-ZNM9VK94-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24641
https://www.ncbi.nlm.nih.gov/pubmed/23412909
https://www.proquest.com/docview/1468618713
https://www.proquest.com/docview/1469647189
https://www.proquest.com/docview/1492610310
https://pubmed.ncbi.nlm.nih.gov/PMC3725192
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KRfHFS71Fq6wi4ktOk80m2cUnEWtRch6K1SLCkr1ED_XkyLmU4pM_wd_oL3FnN0k9WkV8C2QC2ck32W-SmW8AHvLUFqZsTFxoXscu_xKxwgafJs9yYQpqlG-krcbF3gF7eZgfbsCTvhcm6EMMH9wwMvz7GgO8VoudU9HQ6Xw6oqzwTetYq4WEaP9UOkqIoMBcMnzPCNarCiV0Z7hybS86h249OYto_l4v-TOP9RvR7mV43y8h1J8cjVZLNdJfflF3_M81XoFLHUElTwOirsKGbbfgQtX9gt-C875mVC-ugan89GniaC9B1ePvX7-53L2DMplM_fwjMmtIIKatJZOWHE-OZwSL7T8Q3WkVEHsS2o_JAlVGPVTI0hNqO78OB7vPXz_bi7uhDbHO3W4XZ4UytKkTyy1tck6F5onhusxyKyytNVdWMINZp3G5WWm1zVWmtE0dmLhiLLsBm-2stbeAiNygnKESKa0Zdce6sYllmlJRcFOnETzuH5_UnaI5Dtb4JIMWM5XOf9L7L4IHg-nnIONxltEjj4HBop4fYd1bmcu34xfy3bgSb14JJkUE2z1IZBfyC8yheJG6_DOL4P5w2gUr_oGpWztbeRvs_E25-JuNWzMO30giuBlwN9wQdZyDisRdXa4hcjBAsfD1M-3koxcNz0rsUabOZx5wf_aCrPYrf3D7303vwEVHJFn4NLUNm8v5yt51ZG2p7vmo_AGKTD23
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1Vrbi8cCmXBgoYhBAv2SaOk9gSLwhRFtrsQ9VChYSs-BK6KptFe6kqnvgEvpEvweNkUxYKQrxFykRaz56JzzgzZwAe89hmJq9MmGlehi7_EqHCBp8qTVJhMmqUb6QtBln_gL05TA9X4NmiF6bRh-gO3DAy_PsaAxwPpLfOVENHk1GPsgy71tdwordPqPbOxKOEaDSYc4ZvGsEWukIR3eoeXdqN1tCxp-dRzd8rJn9msn4r2r4KHxaLaCpQjnvzmerpL7_oO_7vKq_BlZajkucNqK7Diq3X4WLRfoVfhwu-bFRPb4Ap_ABq4pgvQeHj71-_ufS9RTMZjvwIJDKuSMNNa0uGNTkZnowJ1tt_JLqVKyD2tOlAJlMUGvVoITPPqe3kJhxsv9x_0Q_buQ2hTt2GFyaZMrQqI8strVJOheaR4TpPUissLTVXVjCDiadx6VlutU1VorSNHZ64Yiy5Bav1uLYbQERqUNFQiZiWjLprXdnIMk2pyLgp4wCeLv4_qVtRc5yt8Uk2csxUOv9J778AHnWmnxslj_OMnngQdBbl5BhL3_JUvhu8ku8HhXi7I5gUAWwuUCLbqJ9iGsWz2KWgSQAPu9suXvEjTFnb8dzbYPNvzMXfbNyacf5GFMDtBnjdD6KOdlARuafzJUh2BqgXvnynHh553fAkxzZl6nzmEfdnL8hir_AXd_7d9AFc6u8Xu3L39WDnLlx2vJI1J1WbsDqbzO09x91m6r4P0R8w9kHS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UFosvXuotWnUUEV-yTSaTZAafxLpWaxYpVosIQ-YSXepmy15K8cmf4G_0lzhnkk1drSK-BXICmZPvZL6TnPMdgAc8tpnJKxNmmpehy79EqLDBp0qTVJiMGuUbaYtBtrPPXh6kByvweNEL0-hDdB_cMDL8-xoD_MhUW6eioaPJqEdZhk3rayyLOEJ6e-9UO0qIRoI5Z_iiEWwhKxTRre7Spc1oDf16chbT_L1g8mci63ei_kX4sFhDU4By2JvPVE9_-UXe8T8XeQkutAyVPGkgdRlWbL0B60X7D34DzvmiUT29Aqbw46eJ470EZY-_f_3mkvcWy2Q48gOQyLgiDTOtLRnW5Hh4PCZYbf-R6FasgNiTpv-YTFFm1GOFzDyjtpOrsN9_9ubpTthObQh16ra7MMmUoVUZWW5plXIqNI8M13mSWmFpqbmyghlMO41LznKrbaoSpW3s0MQVY8k1WK3Htb0BRKQG9QyViGnJqDvWlY0s05SKjJsyDuDR4vFJ3Uqa42SNz7IRY6bS-U96_wVwvzM9anQ8zjJ66DHQWZSTQyx8y1P5bvBcvh8U4u2uYFIEsLkAiWxjfopJFM9il4AmAdzrTrtoxV8wZW3Hc2-Drb8xF3-zcWvG6RtRANcb3HU3RB3poCJyV-dLiOwMUC18-Uw9_ORVw5Mcm5Sp85kH3J-9IIu9wh_c_HfTu7D-ersvX70Y7N6C845UsuYz1SasziZze9sRt5m64wP0B2XJQIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+high-resolution+imaging+of+creatine+in+vivo+using+chemical+exchange+saturation+transfer&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kogan%2C+Feliks&rft.au=Haris%2C+Mohammad&rft.au=Singh%2C+Anup&rft.au=Cai%2C+Kejia&rft.date=2014-01-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=71&rft.issue=1&rft.spage=164&rft_id=info:doi/10.1002%2Fmrm.24641&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon