Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers

Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 31; no. 9; pp. 1359 - 1379
Main Authors Ding, Song-Lin, Van Hoesen, Gary W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2010
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium‐binding proteins (parvalbumin and calbindin‐D28k), nonphosphorylated neurofilament protein (SMI‐32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two‐thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium‐binding proteins (parvalbumin and calbindin‐D28k), nonphosphorylated neurofilament protein (SMI‐32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two‐thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.
Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium‐binding proteins (parvalbumin and calbindin‐D28k), nonphosphorylated neurofilament protein (SMI‐32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two‐thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.
Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions.
Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. [copy 2010 Wiley-Liss, Inc.
Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions.Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions.
Author Ding, Song-Lin
Van Hoesen, Gary W.
AuthorAffiliation 2 Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
1 Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa
AuthorAffiliation_xml – name: 1 Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa
– name: 2 Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
Author_xml – sequence: 1
  givenname: Song-Lin
  surname: Ding
  fullname: Ding, Song-Lin
  email: song-lin_ding@urmc.rochester.edu
  organization: Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa
– sequence: 2
  givenname: Gary W.
  surname: Van Hoesen
  fullname: Van Hoesen, Gary W.
  organization: Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23146246$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20082329$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURG8seAHkDUJITWsncS4bJFpBS9UCRYNYWifOycTg2MFOSucBeG88nZkWEIiVj-zv_31uu9GWsQaj6Amjh4zS5Kir-8OEVhl9EO0wWhUxZVW6tYxzHldZwbajXe-_UMoYp-xRtJ1QWiZpUu1EP46ta9D5A4I3I5rxgIBpyGgHO3cwdAtiW9JNPRgyoFOuUwY0kdaNeEPAE4fXCBobMnll5qSf9KgGjaS3wdQQg5OzYGC0vZJBuPQeYOystvPbix7c1_D7fvSwBe3x8frciz69eT07OYsv3p--PXl1EUteUhrnWGfAeM1kU-SMtzwPMWtrVkKVJXVVo4QM0qJqsaiSVhZJ3mITNKXM6iZp0r3o5cp3mOoeGxkKdqDF4FRIZCEsKPH7i1GdmNtrkZcFrfIiGDxfGzj7bUI_il55iVqDQTt5UZZl4EpO_0sWnLNQU84D-fTXpO6y2QwpAM_WAPjQtNaBkcrfcynL8iTLA3e04qSz3jtshVQjjMoua1FaMCqW6yLCuojbdQmKF38oNqZ_Y9fu35XGxb9BcXZ8uVHEK4XyYV3uFGHkIrSy4OLzu1NxeXX1cTY7_yDO05_zg-If
CitedBy_id crossref_primary_10_1016_j_neuropsychologia_2014_08_023
crossref_primary_10_3233_ADR_220035
crossref_primary_10_1002_cne_25684
crossref_primary_10_1002_cne_25243
crossref_primary_10_1002_cne_23786
crossref_primary_10_1126_scitranslmed_abc0655
crossref_primary_10_1002_hbm_25151
crossref_primary_10_1016_j_dadm_2019_04_001
crossref_primary_10_1016_j_neuroimage_2020_117301
crossref_primary_10_1002_cne_24080
crossref_primary_10_1016_j_neurobiolaging_2021_12_008
crossref_primary_10_3389_fnins_2020_00804
crossref_primary_10_1002_cne_23432
crossref_primary_10_1016_j_cortex_2020_02_022
crossref_primary_10_1016_j_neuroimage_2012_08_071
crossref_primary_10_1016_j_neuroimage_2016_04_017
crossref_primary_10_3389_fnins_2023_1194299
crossref_primary_10_1016_j_yebeh_2010_09_027
crossref_primary_10_3233_JAD_170945
crossref_primary_10_1002_hipo_23304
crossref_primary_10_1162_jocn_a_02222
crossref_primary_10_1038_s41583_019_0213_6
crossref_primary_10_1016_j_cortex_2016_09_011
crossref_primary_10_3389_fnana_2017_00106
crossref_primary_10_1002_hbm_22627
crossref_primary_10_1002_hbm_24607
crossref_primary_10_1016_j_neuroimage_2016_09_070
crossref_primary_10_1523_JNEUROSCI_1975_15_2016
crossref_primary_10_1016_j_nicl_2023_103374
crossref_primary_10_1186_s40478_021_01275_7
crossref_primary_10_1016_j_jalz_2019_05_009
crossref_primary_10_1002_hipo_22809
crossref_primary_10_1016_j_media_2022_102683
crossref_primary_10_1016_j_neurobiolaging_2023_06_003
crossref_primary_10_1002_cne_25344
crossref_primary_10_1162_jocn_2011_21611
crossref_primary_10_3389_fnana_2018_00093
crossref_primary_10_1016_j_neuroimage_2013_05_053
crossref_primary_10_1016_j_nicl_2018_101617
crossref_primary_10_1093_cercor_bht026
crossref_primary_10_1186_s40478_018_0520_6
crossref_primary_10_1111_bpa_12785
crossref_primary_10_1016_j_neulet_2012_03_020
crossref_primary_10_1016_j_dadm_2017_07_005
crossref_primary_10_1002_cne_25550
crossref_primary_10_1523_JNEUROSCI_4048_13_2014
crossref_primary_10_1016_j_neuron_2015_12_001
crossref_primary_10_1002_hipo_23602
crossref_primary_10_1002_cne_23416
crossref_primary_10_1002_hbm_22170
crossref_primary_10_1002_hipo_22354
crossref_primary_10_1016_j_neurobiolaging_2021_09_017
crossref_primary_10_1523_JNEUROSCI_1488_22_2023
crossref_primary_10_1016_j_neurobiolaging_2022_05_003
crossref_primary_10_1016_j_neurobiolaging_2016_09_011
crossref_primary_10_1002_hipo_23638
crossref_primary_10_3233_JAD_160014
crossref_primary_10_1093_brain_awaa068
crossref_primary_10_1016_j_nicl_2017_05_022
crossref_primary_10_1007_s10162_025_00977_2
crossref_primary_10_1523_ENEURO_0392_17_2017
Cites_doi 10.1111/j.1749-6632.2000.tb06730.x
10.1002/ana.92
10.1097/00005072-199904000-00008
10.1007/BF00248365
10.1111/j.1460-9568.2004.03710.x
10.1523/JNEUROSCI.22-02-00523.2002
10.1016/S0140-6736(05)74869-8
10.1016/0168-0102(92)90014-4
10.1016/0006-8993(75)90205-X
10.1016/S0079-6123(08)64313-7
10.1111/j.1749-6632.2000.tb06752.x
10.1523/JNEUROSCI.16-14-04491.1996
10.1016/j.neurobiolaging.2007.07.023
10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K
10.1016/0006-8993(75)90206-1
10.1002/hbm.20023
10.1002/cne.10516
10.1002/cne.21141
10.1111/j.1460-9568.2004.03282.x
10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3
10.1093/cercor/1.1.103
10.1212/WNL.58.8.1188
10.1002/hipo.20014
10.1093/cercor/12.12.1342
10.1002/hipo.10049
10.1080/02724990544000077
10.1126/science.6474172
10.1002/cne.22053
10.1093/brain/93.4.793
10.1002/ana.10086
10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4
10.1002/hipo.20032
10.1001/archpsyc.60.12.1193
10.1126/science.175.4029.1471
10.1038/nrn2154
10.1080/02724990444000186
10.1146/annurev.neuro.27.070203.144130
10.1002/cne.10609
10.1111/j.1749-6632.2000.tb06732.x
10.1007/BF00308809
10.1002/cne.10744
10.1016/0166-2236(82)90201-6
10.1002/cne.10866
10.1080/02724990444000168
10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
10.1016/0006-8993(75)90204-8
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
2015 INIST-CNRS
Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: 2015 INIST-CNRS
– notice: Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1002/hbm.20940
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef

MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Borders of Human Perirhinal Cortex
EISSN 1097-0193
EndPage 1379
ExternalDocumentID PMC6870967
20082329
23146246
10_1002_hbm_20940
HBM20940
ark_67375_WNG_MQQRTTJP_J
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS
  funderid: NS 14944
– fundername: NINDS NIH HHS
  grantid: NS 14944
– fundername: NINDS
  grantid: NS 14944
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c5800-6eb4a15b1cd7615f565b11fb18a942b9beca4a379fe792fc726fedb4a8c4bd2d3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:22:38 EDT 2025
Fri Jul 11 02:32:24 EDT 2025
Thu Jul 10 17:25:24 EDT 2025
Wed Feb 19 01:51:58 EST 2025
Mon Jul 21 09:16:16 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 04:25:57 EDT 2025
Wed Jan 22 16:21:56 EST 2025
Wed Oct 30 09:48:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Human
Cartography
Temporal lobe
cortical mapping
Nervous system diseases
Senescence
Calcium
Radiodiagnosis
Central nervous system
Perirhinal cortex
parahippocampal gyrus
aging brain
calcium-binding proteins
Encephalon
Binding protein
fusiform gyrus
Anatomic pathology
medial temporal lobe
Entorhinal cortex
Topography
Tau pathology
collateral sulcus
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5800-6eb4a15b1cd7615f565b11fb18a942b9beca4a379fe792fc726fedb4a8c4bd2d3
Notes istex:66469BE5043FA741A0172FBD771D876800D81159
NINDS - No. NS 14944
ArticleID:HBM20940
ark:/67375/WNG-MQQRTTJP-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20940?download=true
PMID 20082329
PQID 755180065
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870967
proquest_miscellaneous_888096850
proquest_miscellaneous_755180065
pubmed_primary_20082329
pascalfrancis_primary_23146246
crossref_citationtrail_10_1002_hbm_20940
crossref_primary_10_1002_hbm_20940
wiley_primary_10_1002_hbm_20940_HBM20940
istex_primary_ark_67375_WNG_MQQRTTJP_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Blatt GJ,Rosene DL ( 1998): Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392: 92-114.
Pihlajamaki M,Tanila H,Kononen M,Hanninen T,Hamalainen A,Soininen H,Aronen HJ ( 2004): Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19: 1939-1949.
Insausti R,Insausti AM,Sobreviela MT,Salinas A,Martinez-Penuela JM ( 1998a): Human medial temporal lobe in adding: Anatomical base of memory preservation. Micros Res Tech 43: 8-15.
Buckley MJ ( 2005): The role of the perirhinal cortex and hippocampus in learning, memory, and perception. Q J Exp Psychol B 58: 246-268.
Murray EA,Graham KS,Gaffan D ( 2005): Perirhinal cortex and its neighbours in the medial temporal lobe: Contributions to memory and perception. Q J Exp Psychol B 58: 378-396.
Pihlajamaki M,Tanila H,Hanninen T,Kononen M,Mikkonen M,Jalkanen V,Partanen K,Aronen HJ,Soininen H ( 2003): Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study. Hippocampus 13: 67-80.
Ding SL,Morecraft RL,Van Hoesen GW ( 2003): The topography, cytoarchitecture and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201.
Jones EG,Powell TP ( 1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820.
Van Hoesen GW,Pandya DN ( 1975a): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1-24.
Lee AC,Barense MD,Graham KS ( 2005): The contribution of the human medial temporal lobe to perception: Bridging the gap between animal and human studies. Q J Exp Psychol B 58: 300-325.
Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259.
Tranel D,Brady DR,Van Hoesen GW,Damasio AR ( 1988): Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old-World monkeys. Exp Brain Res 70: 406-416.
Davies RR,Graham KS,Xuereb JH,Williams GB,Hodges JR ( 2004): The human perirhinal cortex and semantic memory. Eur J Neurosci 20: 2441-2446.
Arnold SE ( 2000): Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann NY Acad Sci 911: 275-292.
Saleem KS,Price JL,Hashikawa T ( 2007): Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006.
Van Hoesen G,Pandya DN,Butters N ( 1975): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95: 25-38.
Ding SL,Van Hoesen GW,Cassell MD,Poremba A ( 2009): Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514: 595-623.
Kirwan CB,Stark CE ( 2004): Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus 14: 919-930.
Sarkissov SA,Filimonoff IN,Kononowa EP,Preobraschenskaja IS,Kukuew LA ( 1955): Atlas of the Cytoarchitectonics of the Human Cerebral Cortex. Moscow: Medgiz.
Jutila L,Ylinen A,Partanen K,Alafuzoff I,Mervaala E,Partanen J,Vapalahti M,Vainio P,Pitkänen A ( 2001): MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. Am J Neuroradiol 22: 1490-1501.
Von Economo C ( 1929): The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford University Press.
Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439.
Van Hoesen GW ( 1982): The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345-350.
Squire LR,Stark CEL,Clark RE ( 2004): The medial temporal lobe. Ann Rev Neurosci 27: 279-306.
Arnold SE,Hyman BT,Flory J,Damasio AR,Van Hoesen GW ( 1991): The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116.
Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40.
Strange BA,Otten LJ,Josephs O,Rugg MD,Dolan RJ ( 2002): Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 22: 523-528.
Van Hoesen GW,Pandya DN,Butters N ( 1972): Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175: 1471-1473.
Turetsky BI,Moberg PJ,Roalf DR,Arnold SE,Gur RE ( 2003): Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 60: 1193-1200.
Van Horsen GW,Hyman BT,Damasio AR ( 1986): Cell-specific pathology in neural systems of temporal lobe in Alzheimer's disease. Prog Brain Res 70: 321-335.
Feczko E,Augustinack JC,Fischl B,Dickerson BC ( 2009): An MRI-based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex. Neurobiol Aging 30: 420-431.
Blatt GJ,Pandya DN,Rosene DL ( 2003): Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study. J Comp Neurol 466: 161-179.
Suzuki WA,Amaral DG ( 2003): Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91.
Insausti R,Juottonen K,Soininen H,Insausti AM,Partanen K,Vainio P,Laakso MP,Pitkanen A ( 1998b): MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19: 659-671.
Kordower JH,Chu Y,Stebbins GT,DeKosky ST,Cochran EJ,Bennett D,Mufson EJ ( 2001): Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49: 202-213.
Mitchell TW,Mufson EJ,Schneider JA,Cochran EJ,Nissanov J,Han LY,Bienias JL,Lee VM,Trojanowski JQ,Bennett DA,Arnold SE ( 2002): Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 51: 182-189.
Brodmann K ( 1909): Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Barth.
Hyman BT,Van Horsen GW,Damasio AR,Barnes CL ( 1984): Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225: 1168-1170.
Squire LR,Wixted JT,Clark RE ( 2007): Recognition memory and the medial temporal lobe: A new perspective. Nat Rev Neurosci 8: 872-883.
Bonilha L,Kobayashi E,Cendes F,Li LM ( 2004): Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging. Hum Brain Mapp 22: 145-154.
Davis DG,Schmitt FA,Wekstein DR,Markesbery WR ( 1999): Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376-388.
Pruessner JC,Kohler S,Crane J,Pruessner M,Lord C,Byrne A,Kabani N,Collins DL,Evans AC ( 2002): Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: Considering the variability of the collateral sulcus. Cereb Cortex 12: 1342-1353.
Gold JJ,Squire LR ( 2005): Quantifying medial temporal lobe damage in memory-impaired patients. Hippocampus 15: 79-85.
Killiany RJ,Hyman BT,Gomez-Isla T,Moss MB,Kikinis R,Jolesz F,Tanzi R,Jones K,Albert MS ( 2002): MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188-1196.
Van Hoesen GW,Pandya DN ( 1975b): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections Brain Res 95: 39-59.
Gomez-Isla T,Price JL,McKeel DW Jr,Morris JC,Growdon JH,Hyman BT ( 1996): Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 16: 4491-4500.
De Toledo-Morrell L,Goncharova I,Dickerson B,Wilson RS,Bennett DA ( 2000): From healthy aging to early Alzheimer's disease: In vivo detection of entorhinal cortex atrophy. Ann NY Acad Sci 911: 240-253.
Von Economo C,Koskinas GN ( 1925): Die Cytoarchitecktonik der Grosshirnrinde des Erwachsenen Menschen. Berlin: Springer.
Ongur D,Ferry AT,Price JL ( 2003): Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449.
Bernasconi N,Bernasconi A,Caramanos Z,Andermann F,Dubeau F,Arnold DL ( 2000): Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann NY Acad Sci 911: 495-500.
Chan D,Fox NC,Scahill RI,Crum WR,Whitwell JL,Leschziner G,Rossor AM,Stevens JM,Cipolotti L,Rossor MN ( 2001): Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 9: 433-442.
Braak H,Braak E ( 1992): The human entorhinal cortex: Normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31.
2004; 22
2007; 500
2002; 58
1991; 1
2004; 20
1986; 70
2000; 47
2004; 27
2002; 51
2002; 12
2000; 911
1984; 225
2003; 13
1991; 82
1972; 175
2001; 49
1992; 15
1970; 93
2003; 456
2009; 514
2001; 22
1975b; 95
1996; 16
1988; 70
1975; 95
1998; 392
1955
2009; 30
1909
1998b; 19
2004; 19
1975a; 95
2004; 14
1982; 5
2001; 9
1999; 58
2002; 22
2007; 8
1999; 353
2005; 15
2003; 60
1929
2003; 466
2003; 463
1925
2005; 58
1998a; 43
2003; 460
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
Strange BA (e_1_2_6_42_1) 2002; 22
e_1_2_6_41_1
Insausti R (e_1_2_6_24_1) 1998; 19
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
Sarkissov SA (e_1_2_6_39_1) 1955
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
Von Economo C (e_1_2_6_52_1) 1929
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Brodmann K (e_1_2_6_11_1) 1909
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_37_1
Jutila L (e_1_2_6_26_1) 2001; 22
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Von Economo C (e_1_2_6_53_1) 1925
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Suzuki WA,Amaral DG ( 2003): Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91.
– reference: Van Hoesen GW ( 1982): The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345-350.
– reference: Saleem KS,Price JL,Hashikawa T ( 2007): Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006.
– reference: Van Hoesen G,Pandya DN,Butters N ( 1975): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95: 25-38.
– reference: Braak H,Braak E ( 1992): The human entorhinal cortex: Normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31.
– reference: Van Horsen GW,Hyman BT,Damasio AR ( 1986): Cell-specific pathology in neural systems of temporal lobe in Alzheimer's disease. Prog Brain Res 70: 321-335.
– reference: Lee AC,Barense MD,Graham KS ( 2005): The contribution of the human medial temporal lobe to perception: Bridging the gap between animal and human studies. Q J Exp Psychol B 58: 300-325.
– reference: Mitchell TW,Mufson EJ,Schneider JA,Cochran EJ,Nissanov J,Han LY,Bienias JL,Lee VM,Trojanowski JQ,Bennett DA,Arnold SE ( 2002): Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 51: 182-189.
– reference: Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439.
– reference: Ding SL,Morecraft RL,Van Hoesen GW ( 2003): The topography, cytoarchitecture and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201.
– reference: Hyman BT,Van Horsen GW,Damasio AR,Barnes CL ( 1984): Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225: 1168-1170.
– reference: Bonilha L,Kobayashi E,Cendes F,Li LM ( 2004): Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging. Hum Brain Mapp 22: 145-154.
– reference: Feczko E,Augustinack JC,Fischl B,Dickerson BC ( 2009): An MRI-based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex. Neurobiol Aging 30: 420-431.
– reference: Chan D,Fox NC,Scahill RI,Crum WR,Whitwell JL,Leschziner G,Rossor AM,Stevens JM,Cipolotti L,Rossor MN ( 2001): Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 9: 433-442.
– reference: Van Hoesen GW,Pandya DN ( 1975a): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1-24.
– reference: Blatt GJ,Pandya DN,Rosene DL ( 2003): Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study. J Comp Neurol 466: 161-179.
– reference: Pruessner JC,Kohler S,Crane J,Pruessner M,Lord C,Byrne A,Kabani N,Collins DL,Evans AC ( 2002): Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: Considering the variability of the collateral sulcus. Cereb Cortex 12: 1342-1353.
– reference: Von Economo C ( 1929): The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford University Press.
– reference: Turetsky BI,Moberg PJ,Roalf DR,Arnold SE,Gur RE ( 2003): Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 60: 1193-1200.
– reference: Davies RR,Graham KS,Xuereb JH,Williams GB,Hodges JR ( 2004): The human perirhinal cortex and semantic memory. Eur J Neurosci 20: 2441-2446.
– reference: Van Hoesen GW,Pandya DN ( 1975b): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections Brain Res 95: 39-59.
– reference: Van Hoesen GW,Pandya DN,Butters N ( 1972): Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175: 1471-1473.
– reference: Blatt GJ,Rosene DL ( 1998): Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392: 92-114.
– reference: Davis DG,Schmitt FA,Wekstein DR,Markesbery WR ( 1999): Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376-388.
– reference: Squire LR,Wixted JT,Clark RE ( 2007): Recognition memory and the medial temporal lobe: A new perspective. Nat Rev Neurosci 8: 872-883.
– reference: Von Economo C,Koskinas GN ( 1925): Die Cytoarchitecktonik der Grosshirnrinde des Erwachsenen Menschen. Berlin: Springer.
– reference: Tranel D,Brady DR,Van Hoesen GW,Damasio AR ( 1988): Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old-World monkeys. Exp Brain Res 70: 406-416.
– reference: Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40.
– reference: Insausti R,Juottonen K,Soininen H,Insausti AM,Partanen K,Vainio P,Laakso MP,Pitkanen A ( 1998b): MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19: 659-671.
– reference: Brodmann K ( 1909): Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Barth.
– reference: Jones EG,Powell TP ( 1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820.
– reference: Pihlajamaki M,Tanila H,Hanninen T,Kononen M,Mikkonen M,Jalkanen V,Partanen K,Aronen HJ,Soininen H ( 2003): Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study. Hippocampus 13: 67-80.
– reference: Kirwan CB,Stark CE ( 2004): Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus 14: 919-930.
– reference: Jutila L,Ylinen A,Partanen K,Alafuzoff I,Mervaala E,Partanen J,Vapalahti M,Vainio P,Pitkänen A ( 2001): MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. Am J Neuroradiol 22: 1490-1501.
– reference: Arnold SE ( 2000): Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann NY Acad Sci 911: 275-292.
– reference: Bernasconi N,Bernasconi A,Caramanos Z,Andermann F,Dubeau F,Arnold DL ( 2000): Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann NY Acad Sci 911: 495-500.
– reference: Ongur D,Ferry AT,Price JL ( 2003): Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449.
– reference: Sarkissov SA,Filimonoff IN,Kononowa EP,Preobraschenskaja IS,Kukuew LA ( 1955): Atlas of the Cytoarchitectonics of the Human Cerebral Cortex. Moscow: Medgiz.
– reference: Pihlajamaki M,Tanila H,Kononen M,Hanninen T,Hamalainen A,Soininen H,Aronen HJ ( 2004): Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19: 1939-1949.
– reference: De Toledo-Morrell L,Goncharova I,Dickerson B,Wilson RS,Bennett DA ( 2000): From healthy aging to early Alzheimer's disease: In vivo detection of entorhinal cortex atrophy. Ann NY Acad Sci 911: 240-253.
– reference: Murray EA,Graham KS,Gaffan D ( 2005): Perirhinal cortex and its neighbours in the medial temporal lobe: Contributions to memory and perception. Q J Exp Psychol B 58: 378-396.
– reference: Arnold SE,Hyman BT,Flory J,Damasio AR,Van Hoesen GW ( 1991): The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116.
– reference: Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259.
– reference: Killiany RJ,Hyman BT,Gomez-Isla T,Moss MB,Kikinis R,Jolesz F,Tanzi R,Jones K,Albert MS ( 2002): MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188-1196.
– reference: Gold JJ,Squire LR ( 2005): Quantifying medial temporal lobe damage in memory-impaired patients. Hippocampus 15: 79-85.
– reference: Ding SL,Van Hoesen GW,Cassell MD,Poremba A ( 2009): Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514: 595-623.
– reference: Buckley MJ ( 2005): The role of the perirhinal cortex and hippocampus in learning, memory, and perception. Q J Exp Psychol B 58: 246-268.
– reference: Kordower JH,Chu Y,Stebbins GT,DeKosky ST,Cochran EJ,Bennett D,Mufson EJ ( 2001): Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49: 202-213.
– reference: Insausti R,Insausti AM,Sobreviela MT,Salinas A,Martinez-Penuela JM ( 1998a): Human medial temporal lobe in adding: Anatomical base of memory preservation. Micros Res Tech 43: 8-15.
– reference: Squire LR,Stark CEL,Clark RE ( 2004): The medial temporal lobe. Ann Rev Neurosci 27: 279-306.
– reference: Strange BA,Otten LJ,Josephs O,Rugg MD,Dolan RJ ( 2002): Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 22: 523-528.
– reference: Gomez-Isla T,Price JL,McKeel DW Jr,Morris JC,Growdon JH,Hyman BT ( 1996): Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 16: 4491-4500.
– volume: 95
  start-page: 1
  year: 1975a
  end-page: 24
  article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents
  publication-title: Brain Res
– volume: 5
  start-page: 345
  year: 1982
  end-page: 350
  article-title: The parahippocampal gyrus. New observations regarding its cortical connections in the monkey
  publication-title: Trends Neurosci
– volume: 460
  start-page: 425
  year: 2003
  end-page: 449
  article-title: Architectonic subdivision of the human orbital and medial prefrontal cortex
  publication-title: J Comp Neurol
– volume: 500
  start-page: 973
  year: 2007
  end-page: 1006
  article-title: Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys
  publication-title: J Comp Neurol
– volume: 466
  start-page: 161
  year: 2003
  end-page: 179
  article-title: Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study
  publication-title: J Comp Neurol
– volume: 514
  start-page: 595
  year: 2009
  end-page: 623
  article-title: Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers
  publication-title: J Comp Neurol
– volume: 1
  start-page: 103
  year: 1991
  end-page: 116
  article-title: The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease
  publication-title: Cereb Cortex
– volume: 93
  start-page: 793
  year: 1970
  end-page: 820
  article-title: An anatomical study of converging sensory pathways within the cerebral cortex of the monkey
  publication-title: Brain
– volume: 95
  start-page: 39
  year: 1975b
  end-page: 59
  article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III
  publication-title: Efferent connections Brain Res
– volume: 58
  start-page: 246
  year: 2005
  end-page: 268
  article-title: The role of the perirhinal cortex and hippocampus in learning, memory, and perception
  publication-title: Q J Exp Psychol B
– volume: 19
  start-page: 659
  year: 1998b
  end-page: 671
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: Am J Neuroradiol
– volume: 14
  start-page: 919
  year: 2004
  end-page: 930
  article-title: Medial temporal lobe activation during encoding and retrieval of novel face‐name pairs
  publication-title: Hippocampus
– volume: 51
  start-page: 182
  year: 2002
  end-page: 189
  article-title: Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease
  publication-title: Ann Neurol
– volume: 16
  start-page: 4491
  year: 1996
  end-page: 4500
  article-title: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease
  publication-title: J Neurosci
– volume: 9
  start-page: 433
  year: 2001
  end-page: 442
  article-title: Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease
  publication-title: Ann Neurol
– volume: 30
  start-page: 420
  year: 2009
  end-page: 431
  article-title: An MRI‐based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex
  publication-title: Neurobiol Aging
– volume: 12
  start-page: 1342
  year: 2002
  end-page: 1353
  article-title: Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high‐resolution MR images: Considering the variability of the collateral sulcus
  publication-title: Cereb Cortex
– volume: 175
  start-page: 1471
  year: 1972
  end-page: 1473
  article-title: Cortical afferents to the entorhinal cortex of the rhesus monkey
  publication-title: Science
– volume: 60
  start-page: 1193
  year: 2003
  end-page: 1200
  article-title: Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia
  publication-title: Arch Gen Psychiatry
– volume: 27
  start-page: 279
  year: 2004
  end-page: 306
  article-title: The medial temporal lobe
  publication-title: Ann Rev Neurosci
– year: 1955
– volume: 911
  start-page: 240
  year: 2000
  end-page: 253
  article-title: From healthy aging to early Alzheimer's disease: In vivo detection of entorhinal cortex atrophy
  publication-title: Ann NY Acad Sci
– volume: 95
  start-page: 25
  year: 1975
  end-page: 38
  article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents
  publication-title: Brain Res
– volume: 19
  start-page: 1939
  year: 2004
  end-page: 1949
  article-title: Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans
  publication-title: Eur J Neurosci
– volume: 22
  start-page: 523
  year: 2002
  end-page: 528
  article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding
  publication-title: J Neurosci
– volume: 22
  start-page: 1490
  year: 2001
  end-page: 1501
  article-title: MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug‐refractory temporal lobe epilepsy
  publication-title: Am J Neuroradiol
– year: 1929
– volume: 392
  start-page: 92
  year: 1998
  end-page: 114
  article-title: Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe
  publication-title: J Comp Neurol
– volume: 911
  start-page: 275
  year: 2000
  end-page: 292
  article-title: Cellular and molecular neuropathology of the parahippocampal region in schizophrenia
  publication-title: Ann NY Acad Sci
– volume: 49
  start-page: 202
  year: 2001
  end-page: 213
  article-title: Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment
  publication-title: Ann Neurol
– volume: 43
  start-page: 8
  year: 1998a
  end-page: 15
  article-title: Human medial temporal lobe in adding: Anatomical base of memory preservation
  publication-title: Micros Res Tech
– volume: 22
  start-page: 145
  year: 2004
  end-page: 154
  article-title: Protocol for volumetric segmentation of medial temporal structures using high‐resolution 3‐D magnetic resonance imaging
  publication-title: Hum Brain Mapp
– volume: 13
  start-page: 67
  year: 2003
  end-page: 80
  article-title: Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study
  publication-title: Hippocampus
– volume: 58
  start-page: 1188
  year: 2002
  end-page: 1196
  article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD
  publication-title: Neurology
– volume: 353
  start-page: 38
  year: 1999
  end-page: 40
  article-title: MRI of entorhinal cortex in mild Alzheimer's disease
  publication-title: Lancet
– volume: 463
  start-page: 67
  year: 2003
  end-page: 91
  article-title: Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization
  publication-title: J Comp Neurol
– volume: 70
  start-page: 406
  year: 1988
  end-page: 416
  article-title: Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old‐World monkeys
  publication-title: Exp Brain Res
– year: 1925
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological stageing of Alzheimer‐related changes
  publication-title: Acta Neuropathol (Berl)
– volume: 456
  start-page: 184
  year: 2003
  end-page: 201
  article-title: The topography, cytoarchitecture and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey
  publication-title: J Comp Neurol
– volume: 58
  start-page: 378
  year: 2005
  end-page: 396
  article-title: Perirhinal cortex and its neighbours in the medial temporal lobe: Contributions to memory and perception
  publication-title: Q J Exp Psychol B
– volume: 8
  start-page: 872
  year: 2007
  end-page: 883
  article-title: Recognition memory and the medial temporal lobe: A new perspective
  publication-title: Nat Rev Neurosci
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1170
  article-title: Alzheimer's disease: Cell‐specific pathology isolates the hippocampal formation
  publication-title: Science
– year: 1909
– volume: 911
  start-page: 495
  year: 2000
  end-page: 500
  article-title: Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy
  publication-title: Ann NY Acad Sci
– volume: 70
  start-page: 321
  year: 1986
  end-page: 335
  article-title: Cell‐specific pathology in neural systems of temporal lobe in Alzheimer's disease
  publication-title: Prog Brain Res
– volume: 15
  start-page: 79
  year: 2005
  end-page: 85
  article-title: Quantifying medial temporal lobe damage in memory‐impaired patients
  publication-title: Hippocampus
– volume: 47
  start-page: 430
  year: 2000
  end-page: 439
  article-title: Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease
  publication-title: Ann Neurol
– volume: 20
  start-page: 2441
  year: 2004
  end-page: 2446
  article-title: The human perirhinal cortex and semantic memory
  publication-title: Eur J Neurosci
– volume: 15
  start-page: 6
  year: 1992
  end-page: 31
  article-title: The human entorhinal cortex: Normal morphology and lamina‐specific pathology in various diseases
  publication-title: Neurosci Res
– volume: 58
  start-page: 376
  year: 1999
  end-page: 388
  article-title: Alzheimer neuropathologic alterations in aged cognitively normal subjects
  publication-title: J Neuropathol Exp Neurol
– volume: 58
  start-page: 300
  year: 2005
  end-page: 325
  article-title: The contribution of the human medial temporal lobe to perception: Bridging the gap between animal and human studies
  publication-title: Q J Exp Psychol B
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1749-6632.2000.tb06730.x
– ident: e_1_2_6_13_1
  doi: 10.1002/ana.92
– ident: e_1_2_6_15_1
  doi: 10.1097/00005072-199904000-00008
– ident: e_1_2_6_44_1
  doi: 10.1007/BF00248365
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1460-9568.2004.03710.x
– volume: 22
  start-page: 523
  year: 2002
  ident: e_1_2_6_42_1
  article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-02-00523.2002
– ident: e_1_2_6_7_1
  doi: 10.1016/S0140-6736(05)74869-8
– ident: e_1_2_6_10_1
  doi: 10.1016/0168-0102(92)90014-4
– volume-title: Die Cytoarchitecktonik der Grosshirnrinde des Erwachsenen Menschen
  year: 1925
  ident: e_1_2_6_53_1
– ident: e_1_2_6_50_1
  doi: 10.1016/0006-8993(75)90205-X
– ident: e_1_2_6_51_1
  doi: 10.1016/S0079-6123(08)64313-7
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1749-6632.2000.tb06752.x
– volume: 22
  start-page: 1490
  year: 2001
  ident: e_1_2_6_26_1
  article-title: MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug‐refractory temporal lobe epilepsy
  publication-title: Am J Neuroradiol
– ident: e_1_2_6_21_1
  doi: 10.1523/JNEUROSCI.16-14-04491.1996
– ident: e_1_2_6_19_1
  doi: 10.1016/j.neurobiolaging.2007.07.023
– volume-title: The Cytoarchitectonics of the Human Cerebral Cortex
  year: 1929
  ident: e_1_2_6_52_1
– ident: e_1_2_6_5_1
  doi: 10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K
– volume-title: Vergleichende Lokalisationslehre der Grosshirnrinde
  year: 1909
  ident: e_1_2_6_11_1
– ident: e_1_2_6_48_1
  doi: 10.1016/0006-8993(75)90206-1
– ident: e_1_2_6_8_1
  doi: 10.1002/hbm.20023
– ident: e_1_2_6_17_1
  doi: 10.1002/cne.10516
– ident: e_1_2_6_38_1
  doi: 10.1002/cne.21141
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1460-9568.2004.03282.x
– ident: e_1_2_6_30_1
  doi: 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3
– ident: e_1_2_6_3_1
  doi: 10.1093/cercor/1.1.103
– ident: e_1_2_6_28_1
  doi: 10.1212/WNL.58.8.1188
– ident: e_1_2_6_29_1
  doi: 10.1002/hipo.20014
– ident: e_1_2_6_37_1
  doi: 10.1093/cercor/12.12.1342
– ident: e_1_2_6_35_1
  doi: 10.1002/hipo.10049
– ident: e_1_2_6_33_1
  doi: 10.1080/02724990544000077
– ident: e_1_2_6_22_1
  doi: 10.1126/science.6474172
– ident: e_1_2_6_18_1
  doi: 10.1002/cne.22053
– ident: e_1_2_6_25_1
  doi: 10.1093/brain/93.4.793
– ident: e_1_2_6_32_1
  doi: 10.1002/ana.10086
– ident: e_1_2_6_23_1
  doi: 10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4
– ident: e_1_2_6_20_1
  doi: 10.1002/hipo.20032
– volume-title: Atlas of the Cytoarchitectonics of the Human Cerebral Cortex
  year: 1955
  ident: e_1_2_6_39_1
– ident: e_1_2_6_45_1
  doi: 10.1001/archpsyc.60.12.1193
– ident: e_1_2_6_49_1
  doi: 10.1126/science.175.4029.1471
– ident: e_1_2_6_41_1
  doi: 10.1038/nrn2154
– ident: e_1_2_6_12_1
  doi: 10.1080/02724990444000186
– ident: e_1_2_6_40_1
  doi: 10.1146/annurev.neuro.27.070203.144130
– ident: e_1_2_6_34_1
  doi: 10.1002/cne.10609
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1749-6632.2000.tb06732.x
– ident: e_1_2_6_9_1
  doi: 10.1007/BF00308809
– ident: e_1_2_6_43_1
  doi: 10.1002/cne.10744
– ident: e_1_2_6_46_1
  doi: 10.1016/0166-2236(82)90201-6
– ident: e_1_2_6_6_1
  doi: 10.1002/cne.10866
– volume: 19
  start-page: 659
  year: 1998
  ident: e_1_2_6_24_1
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: Am J Neuroradiol
– ident: e_1_2_6_31_1
  doi: 10.1080/02724990444000168
– ident: e_1_2_6_27_1
  doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
– ident: e_1_2_6_47_1
  doi: 10.1016/0006-8993(75)90204-8
SSID ssj0011501
Score 2.2945037
Snippet Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1359
SubjectTerms aging brain
Biological and medical sciences
calcium-binding proteins
collateral sulcus
cortical mapping
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
entorhinal cortex
Fundamental and applied biological sciences. Psychology
fusiform gyrus
Humans
Investigative techniques, diagnostic techniques (general aspects)
medial temporal lobe
Medical sciences
Nervous system
parahippocampal gyrus
perirhinal cortex
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Tau pathology
Temporal Lobe - anatomy & histology
Vertebrates: nervous system and sense organs
Wisteria floribunda
Title Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers
URI https://api.istex.fr/ark:/67375/WNG-MQQRTTJP-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20940
https://www.ncbi.nlm.nih.gov/pubmed/20082329
https://www.proquest.com/docview/755180065
https://www.proquest.com/docview/888096850
https://pubmed.ncbi.nlm.nih.gov/PMC6870967
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5KBfHFH63atFoWkeJD0172NrtZfGrFehxcseWKfRDC_shasZcrlxxU3_2_ndlcUk9bEN8CmQ3Zyezst7tfviHkNRYtM9yJ2GmhY24zGytYh8SMS27SzBgWlJhGx2Jwxofn6fkKedv-C9PoQ3QbbjgyQr7GAa5NtX8jGnph8EdyxXG9jlwtBESnnXQUAp2w2IIpNlaQgVtVoR7b71ouzUX30K3XyI3UFbjHN3UtbgOef_Mnf8e1YWI6ekQ-t11q-Cjf9ua12bM__lB7_M8-PyYPF4CVHjQR9oSsFOUaWT8oYbE--U53aKCQhr35NXJ_tDipXyc_D4OoZ7VLwzZ7vUt16Wg9vVpIZNOpp6E-IEWp5RlW8b6kFpm_11RXFIWlYOpyFHn5X2hLe6STULqNBhVOHd4Bgyw8G2srt5mcTpB1NKuekrOj9-N3g3hR8iG2KUDXWBSG6yQ1iXUSsJYHuGmSxJsk04ozoyDiNNd9qXwhFfNWMuELB20yy41jrv-MrJbTstgg1PeYBlvpCzzG7mnVU1ZZlzLhIA_5fkTetB8_tws9dCzLcZk3Ss4sB2_nwdsRedWZXjUiILcZ7YQI6iygo8iak2n-6fhDPjo5OR2Phx_zYUS2l0KsawBQmwvGRURoG3M5DHY8wdFlMZ1XuUT9PESNd5tkkJCVyFJ4n-dNlN48PxyrMhURuRS_nQFKjS_fKb9eBMlxAWldCQk-C-F5txfyweEoXGz-u-kWedBwMpC594Ks1rN58RKgXm22w5j-BaNaU6M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTRq88LHxUT6GhdDEw7K1ruPEEi8b2ihlqdjUib0gy3YShljTqWmlwTv_N3eXJqOwSYi3SDlH8eV8_tn-5XeMvcKiZU6mKkitsoH0sQ80rEMCISPpwtg5QUpMyUD1TmT_NDxdYm_qf2EqfYhmww1HBuVrHOC4Ib1zpRp65vBPci1hwb6CFb1pQXXciEch1KHlFkyygYYcXOsKtcVO03RhNlpBx14iO9KW4KC8qmxxHfT8m0H5O7KlqengLvtcd6pipHzbnk3dtv_xh97j__b6Hrszx6x8twqy-2wpK9bY-m4B6_XRd77JiUVK2_NrbDWZH9avs597pOtZbnHaaZ9ucVukfDq-mKtk83HOqUQgR7XlCRbyPuceyb-X3JYctaVg9ko5UvO_8Jr5yEdUvY2TEKeld8A4o2djeeU6mfMREo8m5QN2crA_fNsL5lUfAh8Ceg1U5qTthK7j0wjgVg6I03U6uevEVkvhNASdlbYb6TyLtMh9JFSepdAm9tKlIu0-ZMvFuMgeM563hQXbKM_wJLttdVt77dNQqBRSUd5tsdf11zd-LomOlTnOTSXmLAx425C3W-xlY3pR6YBcZ7RJIdRYQEeROBeF5tPgnUmOjo6Hw_5H02-xjYUYaxoA2pZKSNVivA46A-MdD3FskY1npYlQQg-B480mMeRkreIQ3udRFaZXz6eTVaFbLFoI4MYA1cYX7xRfz0h1XEFm1yoCn1F83uwF09tL6OLJv5u-YLd6w-TQHL4ffHjKblcUDSTyPWPL08ksew7Ib-o2aID_ApdLV74
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTZp44bJxKZdhITTxsGyp6zixeNoYpRRabVMn9oBk-RIzxJpWvUiDd_435zhNRmGTEG-RchzFJ8fHn-0v3yHkJRYtM9yJyGmhI24zG0lYh0SMp9wkmTEsKDH1-qJzyrtnydkKeV39C1PqQ9QbbjgyQr7GAT52fu9KNPTc4I_kksN6fY2LOMOQPjyptaMQ6YTVFsyxkYQUXMkKxWyvbro0Ga2hXy-RHKmn4B9fFra4Dnn-TaD8HdiGmal9h3yu-lQSUr7tzmdm1_74Q-7xPzt9l9xeIFa6X4bYPbKSFxtkc7-A1frwO92mgUMaNuc3yHpvcVS_SX4eBFXP6Q4N--yzHaoLR2ej8UIjm448DQUCKWotT7CM9wW1SP29pHpKUVkK5i5HkZj_hVa8RzoMtdtokOHU4R0wysKzsbhylcrpEGlHk-l9ctp-O3jTiRY1HyKbAHaNRG64biamaV0KYMsD3jTNpjfNTEvOjISQ01y3UunzVDJvUyZ87qBNZrlxzLUekNViVOSPCPUx02Cb-hzPsWMtY2mldQkTDhKRbzXIq-rjK7sQRMe6HBeqlHJmCrytgrcb5EVtOi5VQK4z2g4RVFtAR5E2lybqU_-d6h0fnwwG3SPVbZCtpRCrGwDW5oJx0SC0ijkFox2PcHSRj-ZTlaKAHsLGm00yyMhSZAm8z8MySq-eH85VmWyQdCl-awPUGl--U3w9D5rjAvK6FCn4LITnzV5QnYNeuHj876bPyfrRYVt9fN__8ITcKvkZyOJ7SlZnk3n-DGDfzGyF4f0Lf_xWdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Borders%2C+extent%2C+and+topography+of+human+perirhinal+cortex+as+revealed+using+multiple+modern+neuroanatomical+and+pathological+markers&rft.jtitle=Human+brain+mapping&rft.au=Ding%2C+Song%E2%80%90Lin&rft.au=Van+Hoesen%2C+Gary+W.&rft.date=2010-09-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=31&rft.issue=9&rft.spage=1359&rft.epage=1379&rft_id=info:doi/10.1002%2Fhbm.20940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_20940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon