Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers
Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are...
Saved in:
Published in | Human brain mapping Vol. 31; no. 9; pp. 1359 - 1379 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2010
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium‐binding proteins (parvalbumin and calbindin‐D28k), nonphosphorylated neurofilament protein (SMI‐32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two‐thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium‐binding proteins (parvalbumin and calbindin‐D28k), nonphosphorylated neurofilament protein (SMI‐32),
Wisteria floribunda
agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two‐thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc. Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium‐binding proteins (parvalbumin and calbindin‐D28k), nonphosphorylated neurofilament protein (SMI‐32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two‐thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc. Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. Hum Brain Mapp, 2010. [copy 2010 Wiley-Liss, Inc. Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions.Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in normal aging and in many abnormal conditions such as Alzheimer's disease and Pick's disease, few modern neuroanatomical studies are available about the borders, extent, and topography of human perirhinal areas 35 and 36, which are important components of the MTL memory system. By a combined use of several cellular, neurochemical, and pathological markers, which mainly include neuronal nuclear antigen, calcium-binding proteins (parvalbumin and calbindin-D28k), nonphosphorylated neurofilament protein (SMI-32), Wisteria floribunda agglutinin, and abnormally phosphorylated tau (AT8), this study has revealed that the borders of human perirhinal areas 35 and 36 are significantly different from those defined with conventional Nissl staining. In general, areas 35 and 36 occupy the ventromedial temporopolar and rhinal sulcal regions, the collateral sulcal region, and the anterior two-thirds of fusiform gyrus or occipitotemporal gyrus. Furthermore, the precise borders, extent, and topography of human areas 35 and 36 and adjoining entorhinal cortex were marked at different anteroposterior levels of the MTL with reference to variations of rhinal and collateral sulci and other useful landmarks. These findings would provide reliable neuroanatomical base for the great and yet rapidly increasing number of neuroimaging studies of the human MTL structures in healthy and many abnormal conditions. |
Author | Ding, Song-Lin Van Hoesen, Gary W. |
AuthorAffiliation | 2 Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 1 Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa |
AuthorAffiliation_xml | – name: 1 Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa – name: 2 Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York |
Author_xml | – sequence: 1 givenname: Song-Lin surname: Ding fullname: Ding, Song-Lin email: song-lin_ding@urmc.rochester.edu organization: Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa – sequence: 2 givenname: Gary W. surname: Van Hoesen fullname: Van Hoesen, Gary W. organization: Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23146246$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20082329$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURG8seAHkDUJITWsncS4bJFpBS9UCRYNYWifOycTg2MFOSucBeG88nZkWEIiVj-zv_31uu9GWsQaj6Amjh4zS5Kir-8OEVhl9EO0wWhUxZVW6tYxzHldZwbajXe-_UMoYp-xRtJ1QWiZpUu1EP46ta9D5A4I3I5rxgIBpyGgHO3cwdAtiW9JNPRgyoFOuUwY0kdaNeEPAE4fXCBobMnll5qSf9KgGjaS3wdQQg5OzYGC0vZJBuPQeYOystvPbix7c1_D7fvSwBe3x8frciz69eT07OYsv3p--PXl1EUteUhrnWGfAeM1kU-SMtzwPMWtrVkKVJXVVo4QM0qJqsaiSVhZJ3mITNKXM6iZp0r3o5cp3mOoeGxkKdqDF4FRIZCEsKPH7i1GdmNtrkZcFrfIiGDxfGzj7bUI_il55iVqDQTt5UZZl4EpO_0sWnLNQU84D-fTXpO6y2QwpAM_WAPjQtNaBkcrfcynL8iTLA3e04qSz3jtshVQjjMoua1FaMCqW6yLCuojbdQmKF38oNqZ_Y9fu35XGxb9BcXZ8uVHEK4XyYV3uFGHkIrSy4OLzu1NxeXX1cTY7_yDO05_zg-If |
CitedBy_id | crossref_primary_10_1016_j_neuropsychologia_2014_08_023 crossref_primary_10_3233_ADR_220035 crossref_primary_10_1002_cne_25684 crossref_primary_10_1002_cne_25243 crossref_primary_10_1002_cne_23786 crossref_primary_10_1126_scitranslmed_abc0655 crossref_primary_10_1002_hbm_25151 crossref_primary_10_1016_j_dadm_2019_04_001 crossref_primary_10_1016_j_neuroimage_2020_117301 crossref_primary_10_1002_cne_24080 crossref_primary_10_1016_j_neurobiolaging_2021_12_008 crossref_primary_10_3389_fnins_2020_00804 crossref_primary_10_1002_cne_23432 crossref_primary_10_1016_j_cortex_2020_02_022 crossref_primary_10_1016_j_neuroimage_2012_08_071 crossref_primary_10_1016_j_neuroimage_2016_04_017 crossref_primary_10_3389_fnins_2023_1194299 crossref_primary_10_1016_j_yebeh_2010_09_027 crossref_primary_10_3233_JAD_170945 crossref_primary_10_1002_hipo_23304 crossref_primary_10_1162_jocn_a_02222 crossref_primary_10_1038_s41583_019_0213_6 crossref_primary_10_1016_j_cortex_2016_09_011 crossref_primary_10_3389_fnana_2017_00106 crossref_primary_10_1002_hbm_22627 crossref_primary_10_1002_hbm_24607 crossref_primary_10_1016_j_neuroimage_2016_09_070 crossref_primary_10_1523_JNEUROSCI_1975_15_2016 crossref_primary_10_1016_j_nicl_2023_103374 crossref_primary_10_1186_s40478_021_01275_7 crossref_primary_10_1016_j_jalz_2019_05_009 crossref_primary_10_1002_hipo_22809 crossref_primary_10_1016_j_media_2022_102683 crossref_primary_10_1016_j_neurobiolaging_2023_06_003 crossref_primary_10_1002_cne_25344 crossref_primary_10_1162_jocn_2011_21611 crossref_primary_10_3389_fnana_2018_00093 crossref_primary_10_1016_j_neuroimage_2013_05_053 crossref_primary_10_1016_j_nicl_2018_101617 crossref_primary_10_1093_cercor_bht026 crossref_primary_10_1186_s40478_018_0520_6 crossref_primary_10_1111_bpa_12785 crossref_primary_10_1016_j_neulet_2012_03_020 crossref_primary_10_1016_j_dadm_2017_07_005 crossref_primary_10_1002_cne_25550 crossref_primary_10_1523_JNEUROSCI_4048_13_2014 crossref_primary_10_1016_j_neuron_2015_12_001 crossref_primary_10_1002_hipo_23602 crossref_primary_10_1002_cne_23416 crossref_primary_10_1002_hbm_22170 crossref_primary_10_1002_hipo_22354 crossref_primary_10_1016_j_neurobiolaging_2021_09_017 crossref_primary_10_1523_JNEUROSCI_1488_22_2023 crossref_primary_10_1016_j_neurobiolaging_2022_05_003 crossref_primary_10_1016_j_neurobiolaging_2016_09_011 crossref_primary_10_1002_hipo_23638 crossref_primary_10_3233_JAD_160014 crossref_primary_10_1093_brain_awaa068 crossref_primary_10_1016_j_nicl_2017_05_022 crossref_primary_10_1007_s10162_025_00977_2 crossref_primary_10_1523_ENEURO_0392_17_2017 |
Cites_doi | 10.1111/j.1749-6632.2000.tb06730.x 10.1002/ana.92 10.1097/00005072-199904000-00008 10.1007/BF00248365 10.1111/j.1460-9568.2004.03710.x 10.1523/JNEUROSCI.22-02-00523.2002 10.1016/S0140-6736(05)74869-8 10.1016/0168-0102(92)90014-4 10.1016/0006-8993(75)90205-X 10.1016/S0079-6123(08)64313-7 10.1111/j.1749-6632.2000.tb06752.x 10.1523/JNEUROSCI.16-14-04491.1996 10.1016/j.neurobiolaging.2007.07.023 10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K 10.1016/0006-8993(75)90206-1 10.1002/hbm.20023 10.1002/cne.10516 10.1002/cne.21141 10.1111/j.1460-9568.2004.03282.x 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 10.1093/cercor/1.1.103 10.1212/WNL.58.8.1188 10.1002/hipo.20014 10.1093/cercor/12.12.1342 10.1002/hipo.10049 10.1080/02724990544000077 10.1126/science.6474172 10.1002/cne.22053 10.1093/brain/93.4.793 10.1002/ana.10086 10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4 10.1002/hipo.20032 10.1001/archpsyc.60.12.1193 10.1126/science.175.4029.1471 10.1038/nrn2154 10.1080/02724990444000186 10.1146/annurev.neuro.27.070203.144130 10.1002/cne.10609 10.1111/j.1749-6632.2000.tb06732.x 10.1007/BF00308809 10.1002/cne.10744 10.1016/0166-2236(82)90201-6 10.1002/cne.10866 10.1080/02724990444000168 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I 10.1016/0006-8993(75)90204-8 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. 2015 INIST-CNRS Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: 2015 INIST-CNRS – notice: Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1002/hbm.20940 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Borders of Human Perirhinal Cortex |
EISSN | 1097-0193 |
EndPage | 1379 |
ExternalDocumentID | PMC6870967 20082329 23146246 10_1002_hbm_20940 HBM20940 ark_67375_WNG_MQQRTTJP_J |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS funderid: NS 14944 – fundername: NINDS NIH HHS grantid: NS 14944 – fundername: NINDS grantid: NS 14944 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c5800-6eb4a15b1cd7615f565b11fb18a942b9beca4a379fe792fc726fedb4a8c4bd2d3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:22:38 EDT 2025 Fri Jul 11 02:32:24 EDT 2025 Thu Jul 10 17:25:24 EDT 2025 Wed Feb 19 01:51:58 EST 2025 Mon Jul 21 09:16:16 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 04:25:57 EDT 2025 Wed Jan 22 16:21:56 EST 2025 Wed Oct 30 09:48:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Human Cartography Temporal lobe cortical mapping Nervous system diseases Senescence Calcium Radiodiagnosis Central nervous system Perirhinal cortex parahippocampal gyrus aging brain calcium-binding proteins Encephalon Binding protein fusiform gyrus Anatomic pathology medial temporal lobe Entorhinal cortex Topography Tau pathology collateral sulcus |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5800-6eb4a15b1cd7615f565b11fb18a942b9beca4a379fe792fc726fedb4a8c4bd2d3 |
Notes | istex:66469BE5043FA741A0172FBD771D876800D81159 NINDS - No. NS 14944 ArticleID:HBM20940 ark:/67375/WNG-MQQRTTJP-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20940?download=true |
PMID | 20082329 |
PQID | 755180065 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870967 proquest_miscellaneous_888096850 proquest_miscellaneous_755180065 pubmed_primary_20082329 pascalfrancis_primary_23146246 crossref_citationtrail_10_1002_hbm_20940 crossref_primary_10_1002_hbm_20940 wiley_primary_10_1002_hbm_20940_HBM20940 istex_primary_ark_67375_WNG_MQQRTTJP_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Blatt GJ,Rosene DL ( 1998): Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392: 92-114. Pihlajamaki M,Tanila H,Kononen M,Hanninen T,Hamalainen A,Soininen H,Aronen HJ ( 2004): Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19: 1939-1949. Insausti R,Insausti AM,Sobreviela MT,Salinas A,Martinez-Penuela JM ( 1998a): Human medial temporal lobe in adding: Anatomical base of memory preservation. Micros Res Tech 43: 8-15. Buckley MJ ( 2005): The role of the perirhinal cortex and hippocampus in learning, memory, and perception. Q J Exp Psychol B 58: 246-268. Murray EA,Graham KS,Gaffan D ( 2005): Perirhinal cortex and its neighbours in the medial temporal lobe: Contributions to memory and perception. Q J Exp Psychol B 58: 378-396. Pihlajamaki M,Tanila H,Hanninen T,Kononen M,Mikkonen M,Jalkanen V,Partanen K,Aronen HJ,Soininen H ( 2003): Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study. Hippocampus 13: 67-80. Ding SL,Morecraft RL,Van Hoesen GW ( 2003): The topography, cytoarchitecture and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201. Jones EG,Powell TP ( 1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820. Van Hoesen GW,Pandya DN ( 1975a): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1-24. Lee AC,Barense MD,Graham KS ( 2005): The contribution of the human medial temporal lobe to perception: Bridging the gap between animal and human studies. Q J Exp Psychol B 58: 300-325. Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259. Tranel D,Brady DR,Van Hoesen GW,Damasio AR ( 1988): Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old-World monkeys. Exp Brain Res 70: 406-416. Davies RR,Graham KS,Xuereb JH,Williams GB,Hodges JR ( 2004): The human perirhinal cortex and semantic memory. Eur J Neurosci 20: 2441-2446. Arnold SE ( 2000): Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann NY Acad Sci 911: 275-292. Saleem KS,Price JL,Hashikawa T ( 2007): Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006. Van Hoesen G,Pandya DN,Butters N ( 1975): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95: 25-38. Ding SL,Van Hoesen GW,Cassell MD,Poremba A ( 2009): Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514: 595-623. Kirwan CB,Stark CE ( 2004): Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus 14: 919-930. Sarkissov SA,Filimonoff IN,Kononowa EP,Preobraschenskaja IS,Kukuew LA ( 1955): Atlas of the Cytoarchitectonics of the Human Cerebral Cortex. Moscow: Medgiz. Jutila L,Ylinen A,Partanen K,Alafuzoff I,Mervaala E,Partanen J,Vapalahti M,Vainio P,Pitkänen A ( 2001): MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. Am J Neuroradiol 22: 1490-1501. Von Economo C ( 1929): The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford University Press. Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439. Van Hoesen GW ( 1982): The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345-350. Squire LR,Stark CEL,Clark RE ( 2004): The medial temporal lobe. Ann Rev Neurosci 27: 279-306. Arnold SE,Hyman BT,Flory J,Damasio AR,Van Hoesen GW ( 1991): The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116. Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40. Strange BA,Otten LJ,Josephs O,Rugg MD,Dolan RJ ( 2002): Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 22: 523-528. Van Hoesen GW,Pandya DN,Butters N ( 1972): Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175: 1471-1473. Turetsky BI,Moberg PJ,Roalf DR,Arnold SE,Gur RE ( 2003): Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 60: 1193-1200. Van Horsen GW,Hyman BT,Damasio AR ( 1986): Cell-specific pathology in neural systems of temporal lobe in Alzheimer's disease. Prog Brain Res 70: 321-335. Feczko E,Augustinack JC,Fischl B,Dickerson BC ( 2009): An MRI-based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex. Neurobiol Aging 30: 420-431. Blatt GJ,Pandya DN,Rosene DL ( 2003): Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study. J Comp Neurol 466: 161-179. Suzuki WA,Amaral DG ( 2003): Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91. Insausti R,Juottonen K,Soininen H,Insausti AM,Partanen K,Vainio P,Laakso MP,Pitkanen A ( 1998b): MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19: 659-671. Kordower JH,Chu Y,Stebbins GT,DeKosky ST,Cochran EJ,Bennett D,Mufson EJ ( 2001): Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49: 202-213. Mitchell TW,Mufson EJ,Schneider JA,Cochran EJ,Nissanov J,Han LY,Bienias JL,Lee VM,Trojanowski JQ,Bennett DA,Arnold SE ( 2002): Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 51: 182-189. Brodmann K ( 1909): Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Barth. Hyman BT,Van Horsen GW,Damasio AR,Barnes CL ( 1984): Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225: 1168-1170. Squire LR,Wixted JT,Clark RE ( 2007): Recognition memory and the medial temporal lobe: A new perspective. Nat Rev Neurosci 8: 872-883. Bonilha L,Kobayashi E,Cendes F,Li LM ( 2004): Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging. Hum Brain Mapp 22: 145-154. Davis DG,Schmitt FA,Wekstein DR,Markesbery WR ( 1999): Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376-388. Pruessner JC,Kohler S,Crane J,Pruessner M,Lord C,Byrne A,Kabani N,Collins DL,Evans AC ( 2002): Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: Considering the variability of the collateral sulcus. Cereb Cortex 12: 1342-1353. Gold JJ,Squire LR ( 2005): Quantifying medial temporal lobe damage in memory-impaired patients. Hippocampus 15: 79-85. Killiany RJ,Hyman BT,Gomez-Isla T,Moss MB,Kikinis R,Jolesz F,Tanzi R,Jones K,Albert MS ( 2002): MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188-1196. Van Hoesen GW,Pandya DN ( 1975b): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections Brain Res 95: 39-59. Gomez-Isla T,Price JL,McKeel DW Jr,Morris JC,Growdon JH,Hyman BT ( 1996): Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 16: 4491-4500. De Toledo-Morrell L,Goncharova I,Dickerson B,Wilson RS,Bennett DA ( 2000): From healthy aging to early Alzheimer's disease: In vivo detection of entorhinal cortex atrophy. Ann NY Acad Sci 911: 240-253. Von Economo C,Koskinas GN ( 1925): Die Cytoarchitecktonik der Grosshirnrinde des Erwachsenen Menschen. Berlin: Springer. Ongur D,Ferry AT,Price JL ( 2003): Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449. Bernasconi N,Bernasconi A,Caramanos Z,Andermann F,Dubeau F,Arnold DL ( 2000): Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann NY Acad Sci 911: 495-500. Chan D,Fox NC,Scahill RI,Crum WR,Whitwell JL,Leschziner G,Rossor AM,Stevens JM,Cipolotti L,Rossor MN ( 2001): Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 9: 433-442. Braak H,Braak E ( 1992): The human entorhinal cortex: Normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31. 2004; 22 2007; 500 2002; 58 1991; 1 2004; 20 1986; 70 2000; 47 2004; 27 2002; 51 2002; 12 2000; 911 1984; 225 2003; 13 1991; 82 1972; 175 2001; 49 1992; 15 1970; 93 2003; 456 2009; 514 2001; 22 1975b; 95 1996; 16 1988; 70 1975; 95 1998; 392 1955 2009; 30 1909 1998b; 19 2004; 19 1975a; 95 2004; 14 1982; 5 2001; 9 1999; 58 2002; 22 2007; 8 1999; 353 2005; 15 2003; 60 1929 2003; 466 2003; 463 1925 2005; 58 1998a; 43 2003; 460 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 Strange BA (e_1_2_6_42_1) 2002; 22 e_1_2_6_41_1 Insausti R (e_1_2_6_24_1) 1998; 19 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 Sarkissov SA (e_1_2_6_39_1) 1955 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 Von Economo C (e_1_2_6_52_1) 1929 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Brodmann K (e_1_2_6_11_1) 1909 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_37_1 Jutila L (e_1_2_6_26_1) 2001; 22 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Von Economo C (e_1_2_6_53_1) 1925 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Suzuki WA,Amaral DG ( 2003): Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91. – reference: Van Hoesen GW ( 1982): The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345-350. – reference: Saleem KS,Price JL,Hashikawa T ( 2007): Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006. – reference: Van Hoesen G,Pandya DN,Butters N ( 1975): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95: 25-38. – reference: Braak H,Braak E ( 1992): The human entorhinal cortex: Normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31. – reference: Van Horsen GW,Hyman BT,Damasio AR ( 1986): Cell-specific pathology in neural systems of temporal lobe in Alzheimer's disease. Prog Brain Res 70: 321-335. – reference: Lee AC,Barense MD,Graham KS ( 2005): The contribution of the human medial temporal lobe to perception: Bridging the gap between animal and human studies. Q J Exp Psychol B 58: 300-325. – reference: Mitchell TW,Mufson EJ,Schneider JA,Cochran EJ,Nissanov J,Han LY,Bienias JL,Lee VM,Trojanowski JQ,Bennett DA,Arnold SE ( 2002): Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 51: 182-189. – reference: Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439. – reference: Ding SL,Morecraft RL,Van Hoesen GW ( 2003): The topography, cytoarchitecture and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201. – reference: Hyman BT,Van Horsen GW,Damasio AR,Barnes CL ( 1984): Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225: 1168-1170. – reference: Bonilha L,Kobayashi E,Cendes F,Li LM ( 2004): Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging. Hum Brain Mapp 22: 145-154. – reference: Feczko E,Augustinack JC,Fischl B,Dickerson BC ( 2009): An MRI-based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex. Neurobiol Aging 30: 420-431. – reference: Chan D,Fox NC,Scahill RI,Crum WR,Whitwell JL,Leschziner G,Rossor AM,Stevens JM,Cipolotti L,Rossor MN ( 2001): Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 9: 433-442. – reference: Van Hoesen GW,Pandya DN ( 1975a): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1-24. – reference: Blatt GJ,Pandya DN,Rosene DL ( 2003): Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study. J Comp Neurol 466: 161-179. – reference: Pruessner JC,Kohler S,Crane J,Pruessner M,Lord C,Byrne A,Kabani N,Collins DL,Evans AC ( 2002): Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: Considering the variability of the collateral sulcus. Cereb Cortex 12: 1342-1353. – reference: Von Economo C ( 1929): The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford University Press. – reference: Turetsky BI,Moberg PJ,Roalf DR,Arnold SE,Gur RE ( 2003): Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 60: 1193-1200. – reference: Davies RR,Graham KS,Xuereb JH,Williams GB,Hodges JR ( 2004): The human perirhinal cortex and semantic memory. Eur J Neurosci 20: 2441-2446. – reference: Van Hoesen GW,Pandya DN ( 1975b): Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections Brain Res 95: 39-59. – reference: Van Hoesen GW,Pandya DN,Butters N ( 1972): Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175: 1471-1473. – reference: Blatt GJ,Rosene DL ( 1998): Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392: 92-114. – reference: Davis DG,Schmitt FA,Wekstein DR,Markesbery WR ( 1999): Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376-388. – reference: Squire LR,Wixted JT,Clark RE ( 2007): Recognition memory and the medial temporal lobe: A new perspective. Nat Rev Neurosci 8: 872-883. – reference: Von Economo C,Koskinas GN ( 1925): Die Cytoarchitecktonik der Grosshirnrinde des Erwachsenen Menschen. Berlin: Springer. – reference: Tranel D,Brady DR,Van Hoesen GW,Damasio AR ( 1988): Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old-World monkeys. Exp Brain Res 70: 406-416. – reference: Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40. – reference: Insausti R,Juottonen K,Soininen H,Insausti AM,Partanen K,Vainio P,Laakso MP,Pitkanen A ( 1998b): MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19: 659-671. – reference: Brodmann K ( 1909): Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Barth. – reference: Jones EG,Powell TP ( 1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820. – reference: Pihlajamaki M,Tanila H,Hanninen T,Kononen M,Mikkonen M,Jalkanen V,Partanen K,Aronen HJ,Soininen H ( 2003): Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study. Hippocampus 13: 67-80. – reference: Kirwan CB,Stark CE ( 2004): Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus 14: 919-930. – reference: Jutila L,Ylinen A,Partanen K,Alafuzoff I,Mervaala E,Partanen J,Vapalahti M,Vainio P,Pitkänen A ( 2001): MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. Am J Neuroradiol 22: 1490-1501. – reference: Arnold SE ( 2000): Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann NY Acad Sci 911: 275-292. – reference: Bernasconi N,Bernasconi A,Caramanos Z,Andermann F,Dubeau F,Arnold DL ( 2000): Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann NY Acad Sci 911: 495-500. – reference: Ongur D,Ferry AT,Price JL ( 2003): Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449. – reference: Sarkissov SA,Filimonoff IN,Kononowa EP,Preobraschenskaja IS,Kukuew LA ( 1955): Atlas of the Cytoarchitectonics of the Human Cerebral Cortex. Moscow: Medgiz. – reference: Pihlajamaki M,Tanila H,Kononen M,Hanninen T,Hamalainen A,Soininen H,Aronen HJ ( 2004): Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19: 1939-1949. – reference: De Toledo-Morrell L,Goncharova I,Dickerson B,Wilson RS,Bennett DA ( 2000): From healthy aging to early Alzheimer's disease: In vivo detection of entorhinal cortex atrophy. Ann NY Acad Sci 911: 240-253. – reference: Murray EA,Graham KS,Gaffan D ( 2005): Perirhinal cortex and its neighbours in the medial temporal lobe: Contributions to memory and perception. Q J Exp Psychol B 58: 378-396. – reference: Arnold SE,Hyman BT,Flory J,Damasio AR,Van Hoesen GW ( 1991): The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116. – reference: Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259. – reference: Killiany RJ,Hyman BT,Gomez-Isla T,Moss MB,Kikinis R,Jolesz F,Tanzi R,Jones K,Albert MS ( 2002): MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188-1196. – reference: Gold JJ,Squire LR ( 2005): Quantifying medial temporal lobe damage in memory-impaired patients. Hippocampus 15: 79-85. – reference: Ding SL,Van Hoesen GW,Cassell MD,Poremba A ( 2009): Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514: 595-623. – reference: Buckley MJ ( 2005): The role of the perirhinal cortex and hippocampus in learning, memory, and perception. Q J Exp Psychol B 58: 246-268. – reference: Kordower JH,Chu Y,Stebbins GT,DeKosky ST,Cochran EJ,Bennett D,Mufson EJ ( 2001): Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49: 202-213. – reference: Insausti R,Insausti AM,Sobreviela MT,Salinas A,Martinez-Penuela JM ( 1998a): Human medial temporal lobe in adding: Anatomical base of memory preservation. Micros Res Tech 43: 8-15. – reference: Squire LR,Stark CEL,Clark RE ( 2004): The medial temporal lobe. Ann Rev Neurosci 27: 279-306. – reference: Strange BA,Otten LJ,Josephs O,Rugg MD,Dolan RJ ( 2002): Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 22: 523-528. – reference: Gomez-Isla T,Price JL,McKeel DW Jr,Morris JC,Growdon JH,Hyman BT ( 1996): Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 16: 4491-4500. – volume: 95 start-page: 1 year: 1975a end-page: 24 article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents publication-title: Brain Res – volume: 5 start-page: 345 year: 1982 end-page: 350 article-title: The parahippocampal gyrus. New observations regarding its cortical connections in the monkey publication-title: Trends Neurosci – volume: 460 start-page: 425 year: 2003 end-page: 449 article-title: Architectonic subdivision of the human orbital and medial prefrontal cortex publication-title: J Comp Neurol – volume: 500 start-page: 973 year: 2007 end-page: 1006 article-title: Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys publication-title: J Comp Neurol – volume: 466 start-page: 161 year: 2003 end-page: 179 article-title: Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study publication-title: J Comp Neurol – volume: 514 start-page: 595 year: 2009 end-page: 623 article-title: Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers publication-title: J Comp Neurol – volume: 1 start-page: 103 year: 1991 end-page: 116 article-title: The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease publication-title: Cereb Cortex – volume: 93 start-page: 793 year: 1970 end-page: 820 article-title: An anatomical study of converging sensory pathways within the cerebral cortex of the monkey publication-title: Brain – volume: 95 start-page: 39 year: 1975b end-page: 59 article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III publication-title: Efferent connections Brain Res – volume: 58 start-page: 246 year: 2005 end-page: 268 article-title: The role of the perirhinal cortex and hippocampus in learning, memory, and perception publication-title: Q J Exp Psychol B – volume: 19 start-page: 659 year: 1998b end-page: 671 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: Am J Neuroradiol – volume: 14 start-page: 919 year: 2004 end-page: 930 article-title: Medial temporal lobe activation during encoding and retrieval of novel face‐name pairs publication-title: Hippocampus – volume: 51 start-page: 182 year: 2002 end-page: 189 article-title: Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease publication-title: Ann Neurol – volume: 16 start-page: 4491 year: 1996 end-page: 4500 article-title: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease publication-title: J Neurosci – volume: 9 start-page: 433 year: 2001 end-page: 442 article-title: Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease publication-title: Ann Neurol – volume: 30 start-page: 420 year: 2009 end-page: 431 article-title: An MRI‐based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex publication-title: Neurobiol Aging – volume: 12 start-page: 1342 year: 2002 end-page: 1353 article-title: Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high‐resolution MR images: Considering the variability of the collateral sulcus publication-title: Cereb Cortex – volume: 175 start-page: 1471 year: 1972 end-page: 1473 article-title: Cortical afferents to the entorhinal cortex of the rhesus monkey publication-title: Science – volume: 60 start-page: 1193 year: 2003 end-page: 1200 article-title: Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia publication-title: Arch Gen Psychiatry – volume: 27 start-page: 279 year: 2004 end-page: 306 article-title: The medial temporal lobe publication-title: Ann Rev Neurosci – year: 1955 – volume: 911 start-page: 240 year: 2000 end-page: 253 article-title: From healthy aging to early Alzheimer's disease: In vivo detection of entorhinal cortex atrophy publication-title: Ann NY Acad Sci – volume: 95 start-page: 25 year: 1975 end-page: 38 article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents publication-title: Brain Res – volume: 19 start-page: 1939 year: 2004 end-page: 1949 article-title: Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans publication-title: Eur J Neurosci – volume: 22 start-page: 523 year: 2002 end-page: 528 article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding publication-title: J Neurosci – volume: 22 start-page: 1490 year: 2001 end-page: 1501 article-title: MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug‐refractory temporal lobe epilepsy publication-title: Am J Neuroradiol – year: 1929 – volume: 392 start-page: 92 year: 1998 end-page: 114 article-title: Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe publication-title: J Comp Neurol – volume: 911 start-page: 275 year: 2000 end-page: 292 article-title: Cellular and molecular neuropathology of the parahippocampal region in schizophrenia publication-title: Ann NY Acad Sci – volume: 49 start-page: 202 year: 2001 end-page: 213 article-title: Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment publication-title: Ann Neurol – volume: 43 start-page: 8 year: 1998a end-page: 15 article-title: Human medial temporal lobe in adding: Anatomical base of memory preservation publication-title: Micros Res Tech – volume: 22 start-page: 145 year: 2004 end-page: 154 article-title: Protocol for volumetric segmentation of medial temporal structures using high‐resolution 3‐D magnetic resonance imaging publication-title: Hum Brain Mapp – volume: 13 start-page: 67 year: 2003 end-page: 80 article-title: Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study publication-title: Hippocampus – volume: 58 start-page: 1188 year: 2002 end-page: 1196 article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD publication-title: Neurology – volume: 353 start-page: 38 year: 1999 end-page: 40 article-title: MRI of entorhinal cortex in mild Alzheimer's disease publication-title: Lancet – volume: 463 start-page: 67 year: 2003 end-page: 91 article-title: Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization publication-title: J Comp Neurol – volume: 70 start-page: 406 year: 1988 end-page: 416 article-title: Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old‐World monkeys publication-title: Exp Brain Res – year: 1925 – volume: 82 start-page: 239 year: 1991 end-page: 259 article-title: Neuropathological stageing of Alzheimer‐related changes publication-title: Acta Neuropathol (Berl) – volume: 456 start-page: 184 year: 2003 end-page: 201 article-title: The topography, cytoarchitecture and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey publication-title: J Comp Neurol – volume: 58 start-page: 378 year: 2005 end-page: 396 article-title: Perirhinal cortex and its neighbours in the medial temporal lobe: Contributions to memory and perception publication-title: Q J Exp Psychol B – volume: 8 start-page: 872 year: 2007 end-page: 883 article-title: Recognition memory and the medial temporal lobe: A new perspective publication-title: Nat Rev Neurosci – volume: 225 start-page: 1168 year: 1984 end-page: 1170 article-title: Alzheimer's disease: Cell‐specific pathology isolates the hippocampal formation publication-title: Science – year: 1909 – volume: 911 start-page: 495 year: 2000 end-page: 500 article-title: Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy publication-title: Ann NY Acad Sci – volume: 70 start-page: 321 year: 1986 end-page: 335 article-title: Cell‐specific pathology in neural systems of temporal lobe in Alzheimer's disease publication-title: Prog Brain Res – volume: 15 start-page: 79 year: 2005 end-page: 85 article-title: Quantifying medial temporal lobe damage in memory‐impaired patients publication-title: Hippocampus – volume: 47 start-page: 430 year: 2000 end-page: 439 article-title: Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease publication-title: Ann Neurol – volume: 20 start-page: 2441 year: 2004 end-page: 2446 article-title: The human perirhinal cortex and semantic memory publication-title: Eur J Neurosci – volume: 15 start-page: 6 year: 1992 end-page: 31 article-title: The human entorhinal cortex: Normal morphology and lamina‐specific pathology in various diseases publication-title: Neurosci Res – volume: 58 start-page: 376 year: 1999 end-page: 388 article-title: Alzheimer neuropathologic alterations in aged cognitively normal subjects publication-title: J Neuropathol Exp Neurol – volume: 58 start-page: 300 year: 2005 end-page: 325 article-title: The contribution of the human medial temporal lobe to perception: Bridging the gap between animal and human studies publication-title: Q J Exp Psychol B – ident: e_1_2_6_16_1 doi: 10.1111/j.1749-6632.2000.tb06730.x – ident: e_1_2_6_13_1 doi: 10.1002/ana.92 – ident: e_1_2_6_15_1 doi: 10.1097/00005072-199904000-00008 – ident: e_1_2_6_44_1 doi: 10.1007/BF00248365 – ident: e_1_2_6_14_1 doi: 10.1111/j.1460-9568.2004.03710.x – volume: 22 start-page: 523 year: 2002 ident: e_1_2_6_42_1 article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-02-00523.2002 – ident: e_1_2_6_7_1 doi: 10.1016/S0140-6736(05)74869-8 – ident: e_1_2_6_10_1 doi: 10.1016/0168-0102(92)90014-4 – volume-title: Die Cytoarchitecktonik der Grosshirnrinde des Erwachsenen Menschen year: 1925 ident: e_1_2_6_53_1 – ident: e_1_2_6_50_1 doi: 10.1016/0006-8993(75)90205-X – ident: e_1_2_6_51_1 doi: 10.1016/S0079-6123(08)64313-7 – ident: e_1_2_6_4_1 doi: 10.1111/j.1749-6632.2000.tb06752.x – volume: 22 start-page: 1490 year: 2001 ident: e_1_2_6_26_1 article-title: MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug‐refractory temporal lobe epilepsy publication-title: Am J Neuroradiol – ident: e_1_2_6_21_1 doi: 10.1523/JNEUROSCI.16-14-04491.1996 – ident: e_1_2_6_19_1 doi: 10.1016/j.neurobiolaging.2007.07.023 – volume-title: The Cytoarchitectonics of the Human Cerebral Cortex year: 1929 ident: e_1_2_6_52_1 – ident: e_1_2_6_5_1 doi: 10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K – volume-title: Vergleichende Lokalisationslehre der Grosshirnrinde year: 1909 ident: e_1_2_6_11_1 – ident: e_1_2_6_48_1 doi: 10.1016/0006-8993(75)90206-1 – ident: e_1_2_6_8_1 doi: 10.1002/hbm.20023 – ident: e_1_2_6_17_1 doi: 10.1002/cne.10516 – ident: e_1_2_6_38_1 doi: 10.1002/cne.21141 – ident: e_1_2_6_36_1 doi: 10.1111/j.1460-9568.2004.03282.x – ident: e_1_2_6_30_1 doi: 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 – ident: e_1_2_6_3_1 doi: 10.1093/cercor/1.1.103 – ident: e_1_2_6_28_1 doi: 10.1212/WNL.58.8.1188 – ident: e_1_2_6_29_1 doi: 10.1002/hipo.20014 – ident: e_1_2_6_37_1 doi: 10.1093/cercor/12.12.1342 – ident: e_1_2_6_35_1 doi: 10.1002/hipo.10049 – ident: e_1_2_6_33_1 doi: 10.1080/02724990544000077 – ident: e_1_2_6_22_1 doi: 10.1126/science.6474172 – ident: e_1_2_6_18_1 doi: 10.1002/cne.22053 – ident: e_1_2_6_25_1 doi: 10.1093/brain/93.4.793 – ident: e_1_2_6_32_1 doi: 10.1002/ana.10086 – ident: e_1_2_6_23_1 doi: 10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4 – ident: e_1_2_6_20_1 doi: 10.1002/hipo.20032 – volume-title: Atlas of the Cytoarchitectonics of the Human Cerebral Cortex year: 1955 ident: e_1_2_6_39_1 – ident: e_1_2_6_45_1 doi: 10.1001/archpsyc.60.12.1193 – ident: e_1_2_6_49_1 doi: 10.1126/science.175.4029.1471 – ident: e_1_2_6_41_1 doi: 10.1038/nrn2154 – ident: e_1_2_6_12_1 doi: 10.1080/02724990444000186 – ident: e_1_2_6_40_1 doi: 10.1146/annurev.neuro.27.070203.144130 – ident: e_1_2_6_34_1 doi: 10.1002/cne.10609 – ident: e_1_2_6_2_1 doi: 10.1111/j.1749-6632.2000.tb06732.x – ident: e_1_2_6_9_1 doi: 10.1007/BF00308809 – ident: e_1_2_6_43_1 doi: 10.1002/cne.10744 – ident: e_1_2_6_46_1 doi: 10.1016/0166-2236(82)90201-6 – ident: e_1_2_6_6_1 doi: 10.1002/cne.10866 – volume: 19 start-page: 659 year: 1998 ident: e_1_2_6_24_1 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: Am J Neuroradiol – ident: e_1_2_6_31_1 doi: 10.1080/02724990444000168 – ident: e_1_2_6_27_1 doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I – ident: e_1_2_6_47_1 doi: 10.1016/0006-8993(75)90204-8 |
SSID | ssj0011501 |
Score | 2.2945037 |
Snippet | Despite rapidly increasing interests in specific contributions of different components of human medial temporal lobe (MTL) to memory and memory impairments in... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1359 |
SubjectTerms | aging brain Biological and medical sciences calcium-binding proteins collateral sulcus cortical mapping Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation entorhinal cortex Fundamental and applied biological sciences. Psychology fusiform gyrus Humans Investigative techniques, diagnostic techniques (general aspects) medial temporal lobe Medical sciences Nervous system parahippocampal gyrus perirhinal cortex Radiodiagnosis. Nmr imagery. Nmr spectrometry Tau pathology Temporal Lobe - anatomy & histology Vertebrates: nervous system and sense organs Wisteria floribunda |
Title | Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers |
URI | https://api.istex.fr/ark:/67375/WNG-MQQRTTJP-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20940 https://www.ncbi.nlm.nih.gov/pubmed/20082329 https://www.proquest.com/docview/755180065 https://www.proquest.com/docview/888096850 https://pubmed.ncbi.nlm.nih.gov/PMC6870967 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5KBfHFH63atFoWkeJD0172NrtZfGrFehxcseWKfRDC_shasZcrlxxU3_2_ndlcUk9bEN8CmQ3Zyezst7tfviHkNRYtM9yJ2GmhY24zGytYh8SMS27SzBgWlJhGx2Jwxofn6fkKedv-C9PoQ3QbbjgyQr7GAa5NtX8jGnph8EdyxXG9jlwtBESnnXQUAp2w2IIpNlaQgVtVoR7b71ouzUX30K3XyI3UFbjHN3UtbgOef_Mnf8e1YWI6ekQ-t11q-Cjf9ua12bM__lB7_M8-PyYPF4CVHjQR9oSsFOUaWT8oYbE--U53aKCQhr35NXJ_tDipXyc_D4OoZ7VLwzZ7vUt16Wg9vVpIZNOpp6E-IEWp5RlW8b6kFpm_11RXFIWlYOpyFHn5X2hLe6STULqNBhVOHd4Bgyw8G2srt5mcTpB1NKuekrOj9-N3g3hR8iG2KUDXWBSG6yQ1iXUSsJYHuGmSxJsk04ozoyDiNNd9qXwhFfNWMuELB20yy41jrv-MrJbTstgg1PeYBlvpCzzG7mnVU1ZZlzLhIA_5fkTetB8_tws9dCzLcZk3Ss4sB2_nwdsRedWZXjUiILcZ7YQI6iygo8iak2n-6fhDPjo5OR2Phx_zYUS2l0KsawBQmwvGRURoG3M5DHY8wdFlMZ1XuUT9PESNd5tkkJCVyFJ4n-dNlN48PxyrMhURuRS_nQFKjS_fKb9eBMlxAWldCQk-C-F5txfyweEoXGz-u-kWedBwMpC594Ks1rN58RKgXm22w5j-BaNaU6M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTRq88LHxUT6GhdDEw7K1ruPEEi8b2ihlqdjUib0gy3YShljTqWmlwTv_N3eXJqOwSYi3SDlH8eV8_tn-5XeMvcKiZU6mKkitsoH0sQ80rEMCISPpwtg5QUpMyUD1TmT_NDxdYm_qf2EqfYhmww1HBuVrHOC4Ib1zpRp65vBPci1hwb6CFb1pQXXciEch1KHlFkyygYYcXOsKtcVO03RhNlpBx14iO9KW4KC8qmxxHfT8m0H5O7KlqengLvtcd6pipHzbnk3dtv_xh97j__b6Hrszx6x8twqy-2wpK9bY-m4B6_XRd77JiUVK2_NrbDWZH9avs597pOtZbnHaaZ9ucVukfDq-mKtk83HOqUQgR7XlCRbyPuceyb-X3JYctaVg9ko5UvO_8Jr5yEdUvY2TEKeld8A4o2djeeU6mfMREo8m5QN2crA_fNsL5lUfAh8Ceg1U5qTthK7j0wjgVg6I03U6uevEVkvhNASdlbYb6TyLtMh9JFSepdAm9tKlIu0-ZMvFuMgeM563hQXbKM_wJLttdVt77dNQqBRSUd5tsdf11zd-LomOlTnOTSXmLAx425C3W-xlY3pR6YBcZ7RJIdRYQEeROBeF5tPgnUmOjo6Hw_5H02-xjYUYaxoA2pZKSNVivA46A-MdD3FskY1npYlQQg-B480mMeRkreIQ3udRFaZXz6eTVaFbLFoI4MYA1cYX7xRfz0h1XEFm1yoCn1F83uwF09tL6OLJv5u-YLd6w-TQHL4ffHjKblcUDSTyPWPL08ksew7Ib-o2aID_ApdLV74 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTZp44bJxKZdhITTxsGyp6zixeNoYpRRabVMn9oBk-RIzxJpWvUiDd_435zhNRmGTEG-RchzFJ8fHn-0v3yHkJRYtM9yJyGmhI24zG0lYh0SMp9wkmTEsKDH1-qJzyrtnydkKeV39C1PqQ9QbbjgyQr7GAT52fu9KNPTc4I_kksN6fY2LOMOQPjyptaMQ6YTVFsyxkYQUXMkKxWyvbro0Ga2hXy-RHKmn4B9fFra4Dnn-TaD8HdiGmal9h3yu-lQSUr7tzmdm1_74Q-7xPzt9l9xeIFa6X4bYPbKSFxtkc7-A1frwO92mgUMaNuc3yHpvcVS_SX4eBFXP6Q4N--yzHaoLR2ej8UIjm448DQUCKWotT7CM9wW1SP29pHpKUVkK5i5HkZj_hVa8RzoMtdtokOHU4R0wysKzsbhylcrpEGlHk-l9ctp-O3jTiRY1HyKbAHaNRG64biamaV0KYMsD3jTNpjfNTEvOjISQ01y3UunzVDJvUyZ87qBNZrlxzLUekNViVOSPCPUx02Cb-hzPsWMtY2mldQkTDhKRbzXIq-rjK7sQRMe6HBeqlHJmCrytgrcb5EVtOi5VQK4z2g4RVFtAR5E2lybqU_-d6h0fnwwG3SPVbZCtpRCrGwDW5oJx0SC0ijkFox2PcHSRj-ZTlaKAHsLGm00yyMhSZAm8z8MySq-eH85VmWyQdCl-awPUGl--U3w9D5rjAvK6FCn4LITnzV5QnYNeuHj876bPyfrRYVt9fN__8ITcKvkZyOJ7SlZnk3n-DGDfzGyF4f0Lf_xWdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Borders%2C+extent%2C+and+topography+of+human+perirhinal+cortex+as+revealed+using+multiple+modern+neuroanatomical+and+pathological+markers&rft.jtitle=Human+brain+mapping&rft.au=Ding%2C+Song%E2%80%90Lin&rft.au=Van+Hoesen%2C+Gary+W.&rft.date=2010-09-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=31&rft.issue=9&rft.spage=1359&rft.epage=1379&rft_id=info:doi/10.1002%2Fhbm.20940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_20940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |