Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the applica...
Saved in:
Published in | Soil use and management Vol. 32; no. 3; pp. 390 - 399 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH. |
---|---|
AbstractList | Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N sub(2)O emissions, but this is more than offset by CO sub(2) emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH. Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N 2 O emissions, but this is more than offset by CO 2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘ EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH . Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH. Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N O emissions, but this is more than offset by CO emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH. Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N2O emissions, but this is more than offset by CO 2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH. Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N₂O emissions, but this is more than offset by CO₂ emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH. |
Author | Goulding, K. W. T. |
AuthorAffiliation | 1 Department of Sustainable Soils and Grassland Systems Rothamsted Research Harpenden AL5 2JQ UK |
AuthorAffiliation_xml | – name: 1 Department of Sustainable Soils and Grassland Systems Rothamsted Research Harpenden AL5 2JQ UK |
Author_xml | – sequence: 1 givenname: K. W. T. surname: Goulding fullname: Goulding, K. W. T. email: keith.goulding@rothamsted.ac.uk, keith.goulding@rothamsted.ac.uk organization: Department of Sustainable Soils and Grassland Systems, Rothamsted Research, AL5 2JQ, Harpenden, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27708478$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv0zAYhi00xLrBgT-ALHFhh2yf7cR2LkhoYgNtwGFUQ1wsN3Faj8QutsPYv8dttwomAfMlBz_PK-vNu4d2nHcGoecEDkk-R3EcDgmlAh6hCSlFVVBRsh00Acp5AcDoLtqL8QqAEsHhCdqlQoAshZygcOFtj3VjW9vZRifrHdauxWlhsB2WPiTtGoN9h3s7WDfHeh5sM_ZpDLrHMcsRX9u0wEsd0upCBxxMZ4JZacmvg6bOJtPis-y3fniKHne6j-bZ7XcfTU_efj5-V5x_On1__Oa8aCoJUPDStO2MSiGlho4KRkVtSMlZSzTQshOyg9mso6ytajCNaCTjs5JzKRk1wAjbR683uctxNpi2MS7lN6tlsIMON8prq_68cXah5v6HqnJjshY54NVtQPDfRxOTGmxsTN9rZ_wYFQUAAqKqy_-iRLKKg6x59SCUCSYr-gA0dwISyhX68h565cfgcr-ZIlzmVM4z9eL3SrZd3O0hAwcboAk-xvwjtwgBtdqayltT661l9uge29i0XlBu0_b_Mq5tb27-Hq0uph_ujGJj2JjMz62hwzfFBROVuvx4qr6c1aK8_Fopzn4B9Jrzpw |
CitedBy_id | crossref_primary_10_1016_j_eja_2020_126132 crossref_primary_10_3390_agronomy11040785 crossref_primary_10_1016_j_jclepro_2020_122575 crossref_primary_10_1007_s13762_021_03783_4 crossref_primary_10_1080_03650340_2020_1864341 crossref_primary_10_1016_j_geoderma_2020_114171 crossref_primary_10_1016_j_geoderma_2019_06_015 crossref_primary_10_1016_j_still_2020_104730 crossref_primary_10_1002_jpln_202300065 crossref_primary_10_1016_j_catena_2019_02_016 crossref_primary_10_1016_j_jclepro_2021_128036 crossref_primary_10_20961_stjssa_v18i1_43631 crossref_primary_10_1016_j_jia_2024_07_035 crossref_primary_10_1016_j_agee_2018_11_015 crossref_primary_10_3389_fpls_2020_01012 crossref_primary_10_1088_1755_1315_653_1_012057 crossref_primary_10_1016_j_catena_2022_106688 crossref_primary_10_21657_soilst_1143238 crossref_primary_10_3390_su17031191 crossref_primary_10_1016_j_agwat_2025_109337 crossref_primary_10_1155_2021_5556563 crossref_primary_10_3390_su11030798 crossref_primary_10_1007_s10661_022_10430_z crossref_primary_10_1007_s11948_019_00109_z crossref_primary_10_5194_gmd_17_4515_2024 crossref_primary_10_1016_j_eja_2024_127214 crossref_primary_10_1016_j_jenvman_2021_113341 crossref_primary_10_1007_s10341_022_00794_4 crossref_primary_10_1111_gcb_15607 crossref_primary_10_1007_s43621_025_00910_w crossref_primary_10_1002_agg2_20468 crossref_primary_10_1146_annurev_environ_030323_075629 crossref_primary_10_3390_su16041468 crossref_primary_10_1016_j_chemosphere_2023_137838 crossref_primary_10_1111_gcbb_12700 crossref_primary_10_1088_1755_1315_756_1_012060 crossref_primary_10_1017_S002185962300062X crossref_primary_10_1080_14735903_2021_1926150 crossref_primary_10_1007_s42729_023_01446_6 crossref_primary_10_3390_cryst11091033 crossref_primary_10_1016_j_surfin_2024_103943 crossref_primary_10_1126_sciadv_aav8083 crossref_primary_10_1007_s11356_023_28506_9 crossref_primary_10_1111_sum_12682 crossref_primary_10_1134_S2635167624600810 crossref_primary_10_1016_j_agee_2022_107900 crossref_primary_10_1016_j_scitotenv_2017_09_289 crossref_primary_10_1002_saj2_20610 crossref_primary_10_1016_j_jenvman_2024_121702 crossref_primary_10_1021_acs_est_3c03609 crossref_primary_10_1080_10807039_2024_2441441 crossref_primary_10_1061__ASCE_EE_1943_7870_0001507 crossref_primary_10_1088_1755_1315_1201_1_012075 crossref_primary_10_3390_conservation4040046 crossref_primary_10_1016_j_scitotenv_2018_09_339 crossref_primary_10_1016_j_eti_2023_103306 crossref_primary_10_1016_j_scitotenv_2022_156083 crossref_primary_10_1017_S0014479721000132 crossref_primary_10_5424_sjar_2021193_17638 crossref_primary_10_3390_ijerph192416855 crossref_primary_10_1002_jobm_202300585 crossref_primary_10_1021_acs_jafc_1c03776 crossref_primary_10_1016_j_jclepro_2021_125925 crossref_primary_10_1111_gcb_14844 crossref_primary_10_1007_s10653_024_02322_7 crossref_primary_10_1016_j_still_2019_104480 crossref_primary_10_2134_age2018_08_0031 crossref_primary_10_3390_su13179808 crossref_primary_10_1111_1462_2920_16185 crossref_primary_10_1016_j_envres_2024_119485 crossref_primary_10_4081_ija_2022_2029 crossref_primary_10_3390_su17051952 crossref_primary_10_1017_S174217051900019X crossref_primary_10_1007_s11104_024_06870_w crossref_primary_10_1016_j_scitotenv_2017_08_020 crossref_primary_10_1111_gcb_15819 crossref_primary_10_1007_s11104_021_05293_1 crossref_primary_10_1016_j_eja_2024_127392 crossref_primary_10_1016_j_geodrs_2024_e00894 crossref_primary_10_1016_j_scitotenv_2020_137058 crossref_primary_10_3389_fsufs_2020_00106 crossref_primary_10_1016_j_fcr_2023_109043 crossref_primary_10_3390_agronomy11040748 crossref_primary_10_1111_ejss_13367 crossref_primary_10_1016_j_envpol_2019_113145 crossref_primary_10_1088_1755_1315_1377_1_012095 crossref_primary_10_1111_sum_12867 crossref_primary_10_3390_agronomy12051040 crossref_primary_10_1007_s11119_022_09945_9 crossref_primary_10_1016_j_geoderma_2019_05_026 crossref_primary_10_3390_plants10122605 crossref_primary_10_1002_jeq2_20666 crossref_primary_10_15407_agrisp9_03_018 crossref_primary_10_1080_10106049_2022_2076925 crossref_primary_10_1080_03650340_2020_1852551 crossref_primary_10_1007_s11356_023_27182_z crossref_primary_10_1186_s12932_019_0065_z crossref_primary_10_1590_s1678_3921_pab2021_v56_01548x crossref_primary_10_1109_JSTARS_2024_3422494 crossref_primary_10_1016_j_agwat_2024_109248 crossref_primary_10_1017_S0021859621000666 crossref_primary_10_1007_s10333_020_00826_3 crossref_primary_10_3390_ijms24076620 crossref_primary_10_3390_agronomy9110688 crossref_primary_10_1016_j_ecolind_2023_111063 crossref_primary_10_3390_microorganisms9102008 crossref_primary_10_34659_eis_2024_90_3_705 crossref_primary_10_5424_sjar_2020184_15677 crossref_primary_10_1016_j_still_2022_105576 crossref_primary_10_1007_s11053_024_10373_x crossref_primary_10_1002_ldr_4568 crossref_primary_10_1016_j_geoderma_2020_114239 crossref_primary_10_5194_soil_8_687_2022 crossref_primary_10_1016_j_rhisph_2025_101028 crossref_primary_10_1016_j_agwat_2019_105894 crossref_primary_10_1016_j_scitotenv_2019_07_154 crossref_primary_10_1038_s41598_020_64036_x crossref_primary_10_1016_j_scitotenv_2021_150555 crossref_primary_10_1111_jac_12642 crossref_primary_10_3390_plants10122624 crossref_primary_10_1007_s10457_021_00721_8 crossref_primary_10_38124_ijisrt_25feb1578 crossref_primary_10_1016_j_jclepro_2025_144717 crossref_primary_10_3390_fermentation8090420 crossref_primary_10_3390_agriculture14040643 crossref_primary_10_1016_j_ancene_2023_100390 crossref_primary_10_1016_j_geodrs_2024_e00877 crossref_primary_10_1016_j_still_2021_105162 crossref_primary_10_1016_j_still_2021_105165 crossref_primary_10_1016_j_envexpbot_2019_06_007 crossref_primary_10_2989_10220119_2021_2014964 crossref_primary_10_1002_ldr_4672 crossref_primary_10_3390_soilsystems8030068 crossref_primary_10_1007_s10661_021_09080_4 crossref_primary_10_1016_j_geoderma_2021_115639 crossref_primary_10_1007_s00374_024_01825_w crossref_primary_10_3390_horticulturae10121328 crossref_primary_10_1016_j_apsoil_2017_11_025 crossref_primary_10_1016_j_jece_2020_104761 crossref_primary_10_3389_fpls_2020_00212 crossref_primary_10_1016_j_jenvman_2021_113356 crossref_primary_10_1111_sum_12750 crossref_primary_10_3390_app142210726 crossref_primary_10_1080_23311916_2024_2345519 crossref_primary_10_1080_00103624_2020_1744629 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1016_j_jconhyd_2024_104493 crossref_primary_10_1071_SR18246 crossref_primary_10_2478_boku_2018_0013 crossref_primary_10_1088_1755_1315_667_1_012045 crossref_primary_10_3390_agronomy8110256 crossref_primary_10_1016_j_apgeog_2023_103103 crossref_primary_10_3390_su14148912 crossref_primary_10_3390_su141912287 crossref_primary_10_1111_gcb_17516 crossref_primary_10_1016_j_clay_2021_105999 crossref_primary_10_1016_j_fcr_2023_108827 crossref_primary_10_1111_1365_2745_14039 crossref_primary_10_1098_rsta_2019_0324 crossref_primary_10_1088_1755_1315_712_1_012031 crossref_primary_10_3390_agronomy11050980 crossref_primary_10_1016_j_scitotenv_2023_167989 crossref_primary_10_1109_ACCESS_2022_3232485 crossref_primary_10_3390_agriculture12030322 crossref_primary_10_3390_agronomy13071860 crossref_primary_10_3390_plants9060765 crossref_primary_10_2298_JAS2303283E crossref_primary_10_1080_03067319_2020_1711889 crossref_primary_10_1016_j_still_2023_105839 crossref_primary_10_1111_sum_12825 crossref_primary_10_1007_s10668_024_05827_4 crossref_primary_10_1016_j_agsy_2020_102934 crossref_primary_10_1016_j_scitotenv_2024_174447 crossref_primary_10_1111_gcb_15329 crossref_primary_10_1016_j_scitotenv_2024_174328 crossref_primary_10_1016_j_apsoil_2023_105230 crossref_primary_10_13080_z_a_2020_107_006 crossref_primary_10_3168_jds_2020_19077 crossref_primary_10_1080_00103624_2019_1589490 crossref_primary_10_20961_stjssa_v19i1_59444 crossref_primary_10_31285_AGRO_28_1184 crossref_primary_10_1016_j_scitotenv_2019_134098 crossref_primary_10_1016_j_ijggc_2020_103017 crossref_primary_10_1002_agg2_20502 crossref_primary_10_1016_j_envc_2024_101070 crossref_primary_10_3390_app12073324 crossref_primary_10_1016_j_envpol_2020_114981 crossref_primary_10_3390_agriculture14071063 crossref_primary_10_1002_tqem_21925 crossref_primary_10_1002_ghg_2313 crossref_primary_10_1371_journal_pone_0307884 crossref_primary_10_3390_ijms19103073 crossref_primary_10_5194_acp_20_2277_2020 crossref_primary_10_3390_plants12152844 crossref_primary_10_1016_j_envpol_2022_118999 crossref_primary_10_1016_j_envadv_2023_100447 crossref_primary_10_1016_j_scitotenv_2019_136249 crossref_primary_10_1016_j_scitotenv_2019_136369 crossref_primary_10_1111_1365_2745_14051 crossref_primary_10_1016_j_geoderma_2024_116859 crossref_primary_10_1016_j_scitotenv_2022_159505 crossref_primary_10_1007_s10668_020_00615_2 crossref_primary_10_1016_j_jenvman_2023_118531 crossref_primary_10_17221_633_2019_PSE crossref_primary_10_1016_j_scitotenv_2024_170189 crossref_primary_10_1016_j_animal_2021_100247 crossref_primary_10_1038_s41477_018_0108_y crossref_primary_10_1016_j_agee_2021_107679 crossref_primary_10_1002_bbb_2453 crossref_primary_10_1007_s11053_021_09862_0 crossref_primary_10_1016_j_ecoleng_2023_107118 crossref_primary_10_1098_rstb_2019_0242 crossref_primary_10_1111_gcb_15101 crossref_primary_10_3389_fmicb_2018_01982 crossref_primary_10_1007_s42773_025_00451_5 crossref_primary_10_1016_j_envpol_2021_117017 crossref_primary_10_1111_ejss_12964 crossref_primary_10_3103_S1068367423010159 crossref_primary_10_1016_j_eti_2022_102607 crossref_primary_10_1016_j_still_2021_105230 crossref_primary_10_1016_j_still_2024_106286 crossref_primary_10_7745_KJSSF_2023_56_4_449 crossref_primary_10_1007_s11104_024_06617_7 crossref_primary_10_1111_gcbb_12879 crossref_primary_10_3390_agronomy11102081 crossref_primary_10_1016_j_agsy_2021_103251 crossref_primary_10_1080_12269328_2021_1947901 crossref_primary_10_1007_s13399_020_00672_7 crossref_primary_10_1016_j_scitotenv_2023_163063 crossref_primary_10_3390_f12020190 crossref_primary_10_1016_j_catena_2021_105434 crossref_primary_10_1111_jac_12468 crossref_primary_10_1002_1873_3468_14706 crossref_primary_10_1080_02571862_2022_2121438 crossref_primary_10_3389_ffgc_2022_959799 crossref_primary_10_3390_agronomy11102069 crossref_primary_10_1071_SR21022 crossref_primary_10_1016_j_geodrs_2024_e00814 crossref_primary_10_1002_agj2_21530 crossref_primary_10_1016_j_jenvman_2019_06_046 crossref_primary_10_3390_plants9081011 crossref_primary_10_1007_s12633_020_00427_z crossref_primary_10_1007_s44378_024_00016_1 crossref_primary_10_1021_acssusresmgt_4c00023 crossref_primary_10_1360_TB_2022_0048 crossref_primary_10_1016_j_agee_2018_06_022 crossref_primary_10_3390_pr9071181 crossref_primary_10_1111_ejss_13515 crossref_primary_10_3389_fevo_2020_588318 crossref_primary_10_1080_01904167_2022_2064293 crossref_primary_10_3390_su12083072 crossref_primary_10_1007_s11368_022_03385_8 crossref_primary_10_3390_ani12182374 crossref_primary_10_1016_j_chemosphere_2020_127372 crossref_primary_10_1590_1983_40632018v4849212 crossref_primary_10_1007_s44279_024_00072_9 crossref_primary_10_2139_ssrn_4020171 crossref_primary_10_3390_agronomy10060877 crossref_primary_10_1080_01904167_2018_1457684 crossref_primary_10_3390_plants11212871 crossref_primary_10_1016_j_agsy_2022_103551 crossref_primary_10_1016_j_ecoenv_2020_110355 crossref_primary_10_1016_j_scitotenv_2021_150955 crossref_primary_10_3390_agronomy11050844 crossref_primary_10_1016_j_soisec_2024_100164 crossref_primary_10_2139_ssrn_3465426 crossref_primary_10_32615_bp_2023_024 crossref_primary_10_1016_j_catena_2021_105698 crossref_primary_10_1038_s41598_017_12373_9 crossref_primary_10_1080_09064710_2020_1807595 crossref_primary_10_2139_ssrn_3989510 crossref_primary_10_1002_ldr_4713 crossref_primary_10_1071_SR22210 crossref_primary_10_3839_jabc_2025_009 crossref_primary_10_1016_j_jenvman_2025_124118 crossref_primary_10_1007_s11368_024_03898_4 crossref_primary_10_1016_j_fmre_2023_10_025 crossref_primary_10_1080_00103624_2023_2227208 crossref_primary_10_1007_s13258_019_00895_7 crossref_primary_10_3390_su12177165 crossref_primary_10_3390_app13158723 crossref_primary_10_3390_land8120179 crossref_primary_10_1016_j_envpol_2022_120632 crossref_primary_10_5194_soil_10_33_2024 crossref_primary_10_1016_j_still_2023_105807 crossref_primary_10_1071_CP19101 crossref_primary_10_1007_s11119_020_09766_8 crossref_primary_10_1029_2019GB006356 crossref_primary_10_3390_pr8101245 crossref_primary_10_1038_s41598_021_85308_0 crossref_primary_10_1515_opag_2020_0018 crossref_primary_10_3390_agriculture12091443 crossref_primary_10_15446_rfmvz_v67n1_87689 crossref_primary_10_1016_j_cosust_2020_08_010 crossref_primary_10_1016_j_geoderma_2019_114156 crossref_primary_10_1007_s44242_022_00002_2 crossref_primary_10_1016_j_scitotenv_2016_12_169 crossref_primary_10_12944_CARJ_6_3_12 crossref_primary_10_3390_app11188745 crossref_primary_10_3390_land9060209 crossref_primary_10_36783_18069657rbcs20210034 crossref_primary_10_1016_j_scitotenv_2025_178369 crossref_primary_10_3390_agronomy14010046 crossref_primary_10_1007_s11368_022_03265_1 crossref_primary_10_1016_j_jenvman_2024_120293 crossref_primary_10_1007_s11270_020_04540_y crossref_primary_10_1088_1755_1315_648_1_012027 crossref_primary_10_3389_fagro_2021_680456 crossref_primary_10_7717_peerj_13960 crossref_primary_10_22581_muet1982_2102_19 crossref_primary_10_1002_jpln_202100063 crossref_primary_10_1111_gcb_17349 crossref_primary_10_1111_wre_70002 crossref_primary_10_1007_s12517_022_10397_8 crossref_primary_10_3389_fagro_2023_1194896 crossref_primary_10_3390_su15010645 crossref_primary_10_1016_j_catena_2018_12_025 crossref_primary_10_1016_j_seh_2024_100060 crossref_primary_10_3390_agriculture12020223 crossref_primary_10_1007_s42773_025_00432_8 crossref_primary_10_3389_fgene_2022_1063984 crossref_primary_10_7717_peerj_14803 crossref_primary_10_1016_j_jhazmat_2020_123664 crossref_primary_10_1007_s11368_021_03007_9 crossref_primary_10_1016_j_agee_2024_109052 crossref_primary_10_1007_s11852_023_00943_1 crossref_primary_10_1007_s11119_021_09830_x crossref_primary_10_1039_D3AY00647F crossref_primary_10_3390_su151712816 crossref_primary_10_1080_00103624_2020_1849267 crossref_primary_10_2139_ssrn_4158191 crossref_primary_10_1016_S1002_0160_21_60056_5 crossref_primary_10_3390_horticulturae10101090 crossref_primary_10_1016_j_agsy_2024_103959 crossref_primary_10_1016_j_scitotenv_2021_146670 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1038_s41598_020_76892_8 crossref_primary_10_5937_ZemBilj2002068L crossref_primary_10_3390_agronomy14092151 crossref_primary_10_1002_agj2_20421 crossref_primary_10_1007_s44279_024_00081_8 crossref_primary_10_1186_s40793_025_00694_6 crossref_primary_10_1038_s41598_019_56694_3 crossref_primary_10_1111_sum_13089 crossref_primary_10_2355_isijinternational_ISIJINT_2022_247 crossref_primary_10_1016_j_geoderma_2024_116908 crossref_primary_10_3390_agronomy8060084 crossref_primary_10_1016_j_hazadv_2024_100582 crossref_primary_10_1038_s41561_022_00925_2 crossref_primary_10_1016_j_energy_2021_120655 crossref_primary_10_1016_j_envpol_2020_115452 crossref_primary_10_1007_s00128_019_02719_6 crossref_primary_10_3390_plants13131740 crossref_primary_10_1051_e3sconf_202343403003 crossref_primary_10_1007_s11104_023_06011_9 crossref_primary_10_3389_fsufs_2022_821994 crossref_primary_10_1016_j_still_2024_106323 crossref_primary_10_1038_s43017_023_00482_1 crossref_primary_10_1111_sum_13034 crossref_primary_10_3390_molecules25225359 crossref_primary_10_1007_s00709_021_01719_w crossref_primary_10_1111_sum_13032 crossref_primary_10_1016_j_scitotenv_2023_167701 crossref_primary_10_1007_s11368_023_03523_w crossref_primary_10_1038_s41396_021_01045_2 crossref_primary_10_1016_j_plaphy_2023_108279 crossref_primary_10_1080_01904167_2019_1701028 crossref_primary_10_1016_j_scp_2024_101892 crossref_primary_10_1016_j_psep_2018_08_015 crossref_primary_10_1016_j_geoderma_2023_116421 crossref_primary_10_1016_j_jenvman_2023_117863 crossref_primary_10_1007_s11368_022_03330_9 crossref_primary_10_1007_s40502_020_00515_7 crossref_primary_10_1002_admt_202400038 crossref_primary_10_1007_s11368_023_03436_8 crossref_primary_10_1016_j_aquabot_2023_103737 crossref_primary_10_1016_j_wasman_2024_04_011 crossref_primary_10_1080_09064710_2023_2212674 crossref_primary_10_5897_AJAR2023_16505 crossref_primary_10_1016_j_scitotenv_2019_02_241 crossref_primary_10_1016_j_agee_2023_108746 crossref_primary_10_1080_00103624_2022_2063312 crossref_primary_10_1016_j_scitotenv_2020_139904 crossref_primary_10_1016_j_indcrop_2023_118016 crossref_primary_10_1016_j_plaphy_2024_108447 crossref_primary_10_1590_1981_6723_9415 crossref_primary_10_1080_03650340_2018_1557323 crossref_primary_10_1038_s41598_019_46175_y crossref_primary_10_1016_j_heliyon_2023_e17044 crossref_primary_10_1016_j_heliyon_2023_e17286 crossref_primary_10_3390_su152115218 crossref_primary_10_1007_s11104_018_3760_0 crossref_primary_10_1016_j_envpol_2022_120591 crossref_primary_10_1016_j_still_2025_106546 crossref_primary_10_1111_sum_13054 crossref_primary_10_1016_j_aoas_2022_10_001 crossref_primary_10_1016_j_scitotenv_2020_136788 crossref_primary_10_1080_01904167_2024_2342365 crossref_primary_10_1088_1755_1315_1262_8_082068 crossref_primary_10_3390_w12092529 crossref_primary_10_1016_j_scitotenv_2021_148933 crossref_primary_10_3390_land12040909 crossref_primary_10_1007_s11368_021_03017_7 crossref_primary_10_1016_j_scitotenv_2021_148934 crossref_primary_10_1016_j_apsoil_2018_06_010 crossref_primary_10_1016_j_apsoil_2020_103702 crossref_primary_10_1111_sum_13160 crossref_primary_10_1590_1807_1929_agriambi_v27n10p820_827 crossref_primary_10_3390_su151813366 crossref_primary_10_3390_plants10102002 crossref_primary_10_36783_18069657rbcs20210125 crossref_primary_10_1007_s11629_024_8907_2 crossref_primary_10_1007_s10265_024_01533_4 crossref_primary_10_7717_peerj_6745 crossref_primary_10_3389_fenvs_2020_598513 crossref_primary_10_1038_s41598_021_98735_w crossref_primary_10_1093_aobpla_plac026 crossref_primary_10_1016_j_catena_2023_107408 crossref_primary_10_1111_ejss_13297 crossref_primary_10_1007_s12649_020_01241_9 crossref_primary_10_3390_plants10020204 crossref_primary_10_1007_s11258_025_01492_3 crossref_primary_10_1080_00103624_2019_1705322 crossref_primary_10_1080_00103624_2019_1604735 crossref_primary_10_3389_fmicb_2023_1164826 crossref_primary_10_1016_j_jclepro_2023_138119 crossref_primary_10_3390_agronomy12051243 crossref_primary_10_3389_fmicb_2019_01061 crossref_primary_10_3390_molecules27072273 crossref_primary_10_1007_s42106_022_00187_3 crossref_primary_10_3390_gels8090548 crossref_primary_10_1155_2020_8872475 crossref_primary_10_1016_j_geoderma_2021_115256 crossref_primary_10_1016_j_scitotenv_2022_159171 crossref_primary_10_1016_j_still_2019_104434 crossref_primary_10_1016_j_scitotenv_2022_159052 crossref_primary_10_1016_j_scitotenv_2022_160165 crossref_primary_10_1038_s41598_024_56099_x crossref_primary_10_3390_ijpb13020009 crossref_primary_10_4236_nr_2019_106015 crossref_primary_10_1016_j_wasman_2019_10_006 crossref_primary_10_1080_01904167_2018_1527935 crossref_primary_10_1007_s11119_021_09812_z crossref_primary_10_1016_j_jenvman_2020_110888 crossref_primary_10_1590_1809_4430_eng_agric_v42n1e20210185_2022 crossref_primary_10_30901_2227_8834_2020_4_205_212 crossref_primary_10_1051_bioconf_20201700129 crossref_primary_10_5433_1679_0359_2020v41n4p1119 crossref_primary_10_1016_j_agee_2024_109214 crossref_primary_10_55905_cuadv16n3_094 crossref_primary_10_11648_j_aff_20241302_13 crossref_primary_10_1016_j_rhisph_2021_100445 crossref_primary_10_1111_sum_70002 crossref_primary_10_1002_jpln_202100357 crossref_primary_10_3390_agronomy11020310 crossref_primary_10_47836_pjtas_45_1_06 crossref_primary_10_1080_09064710_2021_1954239 crossref_primary_10_3389_fpls_2020_00300 crossref_primary_10_5897_AJAR2018_13066 crossref_primary_10_1016_j_scitotenv_2020_142189 crossref_primary_10_1016_j_eja_2021_126281 crossref_primary_10_1007_s11356_024_33241_w crossref_primary_10_1080_02571862_2022_2043470 crossref_primary_10_1016_j_soisec_2023_100102 crossref_primary_10_1016_j_foreco_2023_121071 crossref_primary_10_1016_j_geoderma_2025_117219 crossref_primary_10_1007_s11104_018_03898_7 crossref_primary_10_1016_j_earscirev_2021_103915 crossref_primary_10_1111_ecog_04656 crossref_primary_10_1016_j_wasman_2020_06_012 crossref_primary_10_1080_23311932_2023_2294543 crossref_primary_10_3390_land11040557 crossref_primary_10_1111_sum_13124 crossref_primary_10_1007_s11104_021_04879_z crossref_primary_10_1016_j_sjbs_2020_08_012 crossref_primary_10_3390_land13111839 crossref_primary_10_1007_s11119_024_10114_3 crossref_primary_10_1016_j_agee_2022_108182 crossref_primary_10_3390_agriculture12091366 crossref_primary_10_1016_j_scitotenv_2017_06_257 crossref_primary_10_1016_j_geoderma_2021_115586 crossref_primary_10_1016_j_scitotenv_2019_134320 crossref_primary_10_1016_j_still_2020_104651 crossref_primary_10_3390_agronomy12112649 crossref_primary_10_1007_s10705_023_10284_y crossref_primary_10_1007_s10653_025_02400_4 crossref_primary_10_1016_j_catena_2019_104440 crossref_primary_10_3390_land11040521 crossref_primary_10_1016_j_aquatox_2023_106726 crossref_primary_10_1016_j_chemosphere_2022_137089 crossref_primary_10_3390_land13060790 crossref_primary_10_1016_j_envexpbot_2023_105642 crossref_primary_10_3390_pr8070863 crossref_primary_10_1016_j_scitotenv_2023_169034 crossref_primary_10_1007_s11104_024_06907_0 crossref_primary_10_1016_j_heliyon_2023_e17354 crossref_primary_10_3390_app12010248 crossref_primary_10_2478_forj_2020_0002 crossref_primary_10_11648_j_advances_20240503_11 crossref_primary_10_3390_plants14050793 crossref_primary_10_1007_s11104_023_06250_w crossref_primary_10_1016_j_scitotenv_2020_142469 crossref_primary_10_1080_01904167_2024_2378229 crossref_primary_10_1016_j_eja_2019_02_016 crossref_primary_10_1016_j_apsoil_2021_104113 crossref_primary_10_3390_pr8060702 crossref_primary_10_1007_s42729_020_00297_9 crossref_primary_10_1016_j_iot_2020_100187 crossref_primary_10_1016_j_pedsph_2023_07_003 crossref_primary_10_1016_j_plaphy_2024_108602 crossref_primary_10_1111_rec_70013 crossref_primary_10_3923_ajps_2023_382_393 crossref_primary_10_3390_agronomy13112762 crossref_primary_10_36783_18069657rbcs20240146 crossref_primary_10_1002_jpln_201800670 crossref_primary_10_1007_s11356_021_13039_w crossref_primary_10_1111_sum_12483 crossref_primary_10_1016_j_envres_2022_112676 crossref_primary_10_1016_j_soilbio_2019_107601 crossref_primary_10_1016_j_chemosphere_2023_138110 crossref_primary_10_1007_s42729_024_01866_y crossref_primary_10_3390_agronomy10122005 crossref_primary_10_3390_agronomy14112642 crossref_primary_10_1016_j_scitotenv_2024_171631 crossref_primary_10_1007_s42832_024_0250_6 crossref_primary_10_1002_saj2_20495 crossref_primary_10_3389_fpls_2016_01920 crossref_primary_10_1016_j_scitotenv_2018_08_291 crossref_primary_10_1016_j_geoderma_2021_115597 crossref_primary_10_1002_ldr_3065 crossref_primary_10_1038_s41467_024_46931_3 crossref_primary_10_3390_molecules26227019 crossref_primary_10_15302_J_FASE_2024562 crossref_primary_10_3389_fmicb_2024_1426957 crossref_primary_10_1016_j_heliyon_2024_e37106 |
Cites_doi | 10.1111/j.1475-2743.1995.tb00507.x 10.1016/S0065-2113(02)78006-1 10.1046/j.1365-2389.1999.00253.x 10.1071/SR13118 10.1111/j.1475-2743.2011.00380.x 10.1111/j.1365-2486.2010.02328.x 10.1201/9780203912317 10.1111/j.1475-2743.1989.tb00760.x 10.1071/9780643094680 10.1046/j.1469-8137.1998.00182.x 10.1017/CBO9780511974199 10.1111/j.1475-2743.1986.tb00669.x 10.1016/j.biocon.2008.03.010 10.1071/SR06169 10.1097/00010694-194807000-00005 10.1017/S0021859600027210 10.1016/j.agee.2014.02.016 10.1023/A:1009738307837 10.2134/jeq2013.03.0080 10.2134/agronmonogr12.2ed 10.1111/j.1475-2743.1994.tb00458.x 10.1023/A:1022371130939 10.1016/j.agee.2015.01.005 10.1111/j.1365-2494.2010.00772.x |
ContentType | Journal Article |
Copyright | 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. Journal compilation © 2016 British Society of Soil Science |
Copyright_xml | – notice: 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. – notice: Journal compilation © 2016 British Society of Soil Science |
DBID | BSCLL 24P AAYXX CITATION NPM 7ST 7UA 8FD C1K F1W FR3 H96 KR7 L.G SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/sum.12270 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef PubMed Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Civil Engineering Abstracts Environment Abstracts PubMed MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | K. W. T. Goulding |
EISSN | 1475-2743 |
Editor | de Varennes, Amarilis |
Editor_xml | – sequence: 2 givenname: Amarilis surname: de Varennes fullname: de Varennes, Amarilis |
EndPage | 399 |
ExternalDocumentID | PMC5032897 4171286551 27708478 10_1111_sum_12270 SUM12270 ark_67375_WNG_XK974WZ5_6 |
Genre | reviewArticle Journal Article Review |
GeographicLocations | British Isles United Kingdom |
GeographicLocations_xml | – name: British Isles – name: United Kingdom |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council, UK |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7ST 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KR7 L.G SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5800-64eddb28788a0f273279e1463d1a024f78f0bbf23d590ec7c836b4668832e0313 |
IEDL.DBID | DR2 |
ISSN | 0266-0032 |
IngestDate | Thu Aug 21 13:20:28 EDT 2025 Fri Jul 11 18:37:40 EDT 2025 Fri Jul 11 05:21:35 EDT 2025 Fri Jul 11 05:24:25 EDT 2025 Fri Jul 11 05:38:31 EDT 2025 Sun Jul 13 05:10:23 EDT 2025 Thu Apr 03 06:56:32 EDT 2025 Tue Jul 01 00:47:30 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 Wed Jan 22 16:48:10 EST 2025 Wed Oct 30 10:00:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | soil acidification Acid deposition liming fertilizer lime requirement |
Language | English |
License | Attribution This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5800-64eddb28788a0f273279e1463d1a024f78f0bbf23d590ec7c836b4668832e0313 |
Notes | istex:EAC05E0A36B1CB4268F1577A1F09F8F698104EA2 ArticleID:SUM12270 Biotechnology and Biological Sciences Research Council, UK ark:/67375/WNG-XK974WZ5-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Review-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12270 |
PMID | 27708478 |
PQID | 1816818366 |
PQPubID | 1046348 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5032897 proquest_miscellaneous_2000107594 proquest_miscellaneous_1835608965 proquest_miscellaneous_1835373852 proquest_miscellaneous_1827908042 proquest_journals_1816818366 pubmed_primary_27708478 crossref_primary_10_1111_sum_12270 crossref_citationtrail_10_1111_sum_12270 wiley_primary_10_1111_sum_12270_SUM12270 istex_primary_ark_67375_WNG_XK974WZ5_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bedfordshire – name: Hoboken |
PublicationTitle | Soil use and management |
PublicationTitleAlternate | Soil Use Manage |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | Kirkham, J.M., Rowe, B.A. & Doyle, R.B. 2007. Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming. Australian Journal of Soil Research, 45, 218-223. Kirkham, F.W., Tallowin, J.R.B., Sanderson, R.A., Bhogal, A., Chambers, B.J. & Stevens, D.P. 2008. The impact of organic and inorganic fertilizers and lime on the species-richness and plant functional characteristics of hay meadow communities. Biological Conservation, 141, 1411-1427. Adams F. (ed.) 1984. Soil acidity and liming, 2nd edn, Agronomy 12. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, Wisconsin. Fageria, N.K., Baligar, V.C. & Jones, C.A. 1997. Growth and mineral nutrition of field crops, 3rd edn. Marcel Dekker, New York. Kennedy, I.R. 1992. Acid soil and acid rain, 2nd edn. John Wiley and Sons, New York. Marschner, P. (ed.) 2012. Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, London. Defra. 2000. Fertiliser recommendations for agricultural and horticultural crops (RB209). TSO, London. Johnston, A.E., Goulding, K.W.T. & Poulton, P.R. 1986. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management, 2, 3-10. Paradelo, R., Virto, I. & Chenu, C. 2015. Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems and Environment, 202, 98-107. MAFF (Ministry of Agriculture, Fisheries and Food). 1981. Lime and liming. Reference Book 35. HMSO, London. Connor, D.J., Loomis, R.J. & Cassman, K.G. 2011. Crop Ecology: productivity and Management in Agricultural Systems, 2nd edn. Cambridge University Press, Cambridge. Gibbs, P., Muir, I., Richardson, S., Hickman, G. & Chambers, B. 2005. Landspreading on agricultural land: nature and impact of paper wastes applied in England and Wales. Science Report SC030181/SR. Environment Agency, Bristol, UK. Orr, R., Murray, P., Eyles, C., Blackwell, M., Cardenas, L., Collins, A., Crawford, J., Dungait, J., Goulding, K., Griffith, B., Gurr, S., Harris, P., Hawkins, J., Misselbrook, T., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K., Wu, L. & Lee, M. 2016. The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming. Environmental Science and Technology, in press. Upjohn, B., Fenton, G. & Conyers, M. 2005. Soil acidity and liming. Agfact AC 19, 3rd edn. New South Wales Department of Primary Industries, Australia. Defra. 2010. The Fertiliser Manual (RB209). TSO, London. Bennett, J.McL, Greene, R.S.B., Murphy, B.W., Hocking, P. & Tongway, D. 2014. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales. Soil Research, 52, 120-128. Fornara, D.A., Steinbeiss, S., McNamara, N.P., Gleixner, G., Oakley, S., Poulton, P.R., Macdonald, A.J. & Bardgett, R.D. 2011. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology, 17, 1925-1934. Johnston, A.E. & Whinham, W.N. 1980. The use of lime on agricultural soils. Proceedings No. 189. The Fertiliser Society, Peterborough, UK. Johnston, A. E., Poulton, P. R., Dawson, C. J. & Crawley, M.J. 2001. Inputs of nutrients and lime for the maintenance of fertility of grassland soils. Proceedings No. 486. The International Fertiliser Society, York, UK. Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43-59. GB Statutory Instruments. 1990. The Fertiliser Regulations. Statutory Instrument No. 887, HMSO, London. Goulding, K.W.T., McGrath, S.P. & Johnston, A.E. 1989. Predicting the lime requirement of soils under permanent grassland and arable crops. Soil Use and Management, 5, 54-57. Hazelton, P. & Murphy, B. 2007. Interpreting soil test results. What do all the numbers mean? CSIRO Publishing, Collingwood, Australia. Blake, L., Johnston, A.E. & Goulding, K.W.T. 1994. Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay - a Chemical Time Bomb. Soil Use and Management, 10, 51-55. Goulding, K.W.T., Bailey, N.J., Bradbury, N.J., Hargreaves, P., Howe, M.T., Murphy, D.V., Poulton, P.R. & Willison, T.W. 1998. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49-58. Goulding, K.W.T. & Annis, B. 1998. Lime and liming in UK agriculture. Proceedings No 410. The Fertiliser Society. York, UK. Higgins, S., Morrison, S. & Watson, C.J. 2012. Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity. Soil Use and Management, 28, 62-69. Haynes, R.J. & Naidu, R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123-137. Blake, L., Goulding, K.W.T., Mott, C.J.B. & Johnston, A.E. 1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401-412. Bolan, N.S., Adriano, D.C. & Curtin, D. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215-272. Rengel, Z. (ed.) 2003. Handbook of soil acidity. Marcel Dekker, New York. Yu, Y.-W., Fraser, M.D. & Evans, J.G. 2010. Long-term effects on sward composition and animal performance of reducing fertilizer inputs to upland permanent pasture. Grass and Forage Science, 66, 138-151. Foth, H.D. 1990. Fundamentals of soil science, 8th edn. John Wiley & Sons, New York. McGrath, S.P. & Zhao, F.J. 1995. A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use and Management, 11, 110-114. Bolton, J. 1977. Changes in soil pH and exchangeable calcium in two liming experiments on contrasting soils over 12 years. Journal of Agricultural Science, 89, 81-86. Gagnon, B., Robichaud, A., Ziadi, N. & Karam, A. 2014. Repeated annual paper mill and alkaline residuals application affects soil metal fractions. Journal of Environmental Quality, 43, 517-527. Gibbons, J.M., Williamson, J.C., Williams, A.P., Withers, P.J.A., Hockley, N., Harris, I.M., Hughes, J.W., Taylor, R.L., Jones, D.L. & Healey, J.R. 2014. Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agriculture, Ecosystems and Environment, 188, 48-56. Woodruff, C.M. 1948. Testing soils for lime requirement by means of a buffered solution and a glass electrode. Soil Science, 66, 53-63. 1989; 5 2012 2011 2010 2015; 202 1995; 11 1998 1997 2008 2007 2006 2005 2004 2003 1998; 139 1992 1977; 89 2011; 17 2008; 141 2014; 43 2003; 78 2010; 66 1986; 2 2003; 248 1990 2001 2000 1984 2016 2015 2012; 28 1981 2014 2013 1999; 50 1980 2014; 52 1948; 66 2014; 188 1998; 51 2007; 45 1994; 10 e_1_2_10_23_1 e_1_2_10_46_1 Goulding K.W.T. (e_1_2_10_22_1) 1998 e_1_2_10_24_1 e_1_2_10_45_1 Upjohn B. (e_1_2_10_47_1) 2005 Foth H.D. (e_1_2_10_16_1) 1990 e_1_2_10_44_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 Defra (e_1_2_10_13_1) 2010 Kennedy I.R. (e_1_2_10_34_1) 1992 Klein C. (e_1_2_10_30_1) 2006 GB Statutory Instruments (e_1_2_10_19_1) 1990 Marschner P. (e_1_2_10_38_1) 2012 Bolan N.S. (e_1_2_10_8_1) 2003 Johnston A. E. (e_1_2_10_33_1) 2001 e_1_2_10_2_1 Morgan M. (e_1_2_10_40_1) 2008 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 MAFF (Ministry of Agriculture, Fisheries and Food) (e_1_2_10_37_1) 1981 e_1_2_10_35_1 e_1_2_10_9_1 Gibbs P. (e_1_2_10_21_1) 2005 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_32_1 Fageria N.K. (e_1_2_10_14_1) 1997 Defra (e_1_2_10_12_1) 2000 Orr R. (e_1_2_10_41_1) 2016 Anderson G.D (e_1_2_10_3_1) 2004 Johnston A.E. (e_1_2_10_31_1) 1980 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_26_1 25602653 - J Environ Qual. 2014 Mar;43(2):517-27 |
References_xml | – reference: Defra. 2000. Fertiliser recommendations for agricultural and horticultural crops (RB209). TSO, London. – reference: GB Statutory Instruments. 1990. The Fertiliser Regulations. Statutory Instrument No. 887, HMSO, London. – reference: Hazelton, P. & Murphy, B. 2007. Interpreting soil test results. What do all the numbers mean? CSIRO Publishing, Collingwood, Australia. – reference: Fageria, N.K., Baligar, V.C. & Jones, C.A. 1997. Growth and mineral nutrition of field crops, 3rd edn. Marcel Dekker, New York. – reference: Bennett, J.McL, Greene, R.S.B., Murphy, B.W., Hocking, P. & Tongway, D. 2014. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales. Soil Research, 52, 120-128. – reference: Kennedy, I.R. 1992. Acid soil and acid rain, 2nd edn. John Wiley and Sons, New York. – reference: Johnston, A.E. & Whinham, W.N. 1980. The use of lime on agricultural soils. Proceedings No. 189. The Fertiliser Society, Peterborough, UK. – reference: Goulding, K.W.T., McGrath, S.P. & Johnston, A.E. 1989. Predicting the lime requirement of soils under permanent grassland and arable crops. Soil Use and Management, 5, 54-57. – reference: Bolan, N.S., Adriano, D.C. & Curtin, D. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215-272. – reference: McGrath, S.P. & Zhao, F.J. 1995. A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use and Management, 11, 110-114. – reference: MAFF (Ministry of Agriculture, Fisheries and Food). 1981. Lime and liming. Reference Book 35. HMSO, London. – reference: Gagnon, B., Robichaud, A., Ziadi, N. & Karam, A. 2014. Repeated annual paper mill and alkaline residuals application affects soil metal fractions. Journal of Environmental Quality, 43, 517-527. – reference: Kirkham, J.M., Rowe, B.A. & Doyle, R.B. 2007. Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming. Australian Journal of Soil Research, 45, 218-223. – reference: Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43-59. – reference: Paradelo, R., Virto, I. & Chenu, C. 2015. Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems and Environment, 202, 98-107. – reference: Upjohn, B., Fenton, G. & Conyers, M. 2005. Soil acidity and liming. Agfact AC 19, 3rd edn. New South Wales Department of Primary Industries, Australia. – reference: Adams F. (ed.) 1984. Soil acidity and liming, 2nd edn, Agronomy 12. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, Wisconsin. – reference: Orr, R., Murray, P., Eyles, C., Blackwell, M., Cardenas, L., Collins, A., Crawford, J., Dungait, J., Goulding, K., Griffith, B., Gurr, S., Harris, P., Hawkins, J., Misselbrook, T., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K., Wu, L. & Lee, M. 2016. The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming. Environmental Science and Technology, in press. – reference: Fornara, D.A., Steinbeiss, S., McNamara, N.P., Gleixner, G., Oakley, S., Poulton, P.R., Macdonald, A.J. & Bardgett, R.D. 2011. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology, 17, 1925-1934. – reference: Defra. 2010. The Fertiliser Manual (RB209). TSO, London. – reference: Blake, L., Johnston, A.E. & Goulding, K.W.T. 1994. Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay - a Chemical Time Bomb. Soil Use and Management, 10, 51-55. – reference: Haynes, R.J. & Naidu, R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123-137. – reference: Goulding, K.W.T., Bailey, N.J., Bradbury, N.J., Hargreaves, P., Howe, M.T., Murphy, D.V., Poulton, P.R. & Willison, T.W. 1998. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49-58. – reference: Rengel, Z. (ed.) 2003. Handbook of soil acidity. Marcel Dekker, New York. – reference: Higgins, S., Morrison, S. & Watson, C.J. 2012. Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity. Soil Use and Management, 28, 62-69. – reference: Johnston, A.E., Goulding, K.W.T. & Poulton, P.R. 1986. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management, 2, 3-10. – reference: Johnston, A. E., Poulton, P. R., Dawson, C. J. & Crawley, M.J. 2001. Inputs of nutrients and lime for the maintenance of fertility of grassland soils. Proceedings No. 486. The International Fertiliser Society, York, UK. – reference: Woodruff, C.M. 1948. Testing soils for lime requirement by means of a buffered solution and a glass electrode. Soil Science, 66, 53-63. – reference: Blake, L., Goulding, K.W.T., Mott, C.J.B. & Johnston, A.E. 1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401-412. – reference: Foth, H.D. 1990. Fundamentals of soil science, 8th edn. John Wiley & Sons, New York. – reference: Marschner, P. (ed.) 2012. Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, London. – reference: Gibbons, J.M., Williamson, J.C., Williams, A.P., Withers, P.J.A., Hockley, N., Harris, I.M., Hughes, J.W., Taylor, R.L., Jones, D.L. & Healey, J.R. 2014. Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agriculture, Ecosystems and Environment, 188, 48-56. – reference: Bolton, J. 1977. Changes in soil pH and exchangeable calcium in two liming experiments on contrasting soils over 12 years. Journal of Agricultural Science, 89, 81-86. – reference: Goulding, K.W.T. & Annis, B. 1998. Lime and liming in UK agriculture. Proceedings No 410. The Fertiliser Society. York, UK. – reference: Kirkham, F.W., Tallowin, J.R.B., Sanderson, R.A., Bhogal, A., Chambers, B.J. & Stevens, D.P. 2008. The impact of organic and inorganic fertilizers and lime on the species-richness and plant functional characteristics of hay meadow communities. Biological Conservation, 141, 1411-1427. – reference: Gibbs, P., Muir, I., Richardson, S., Hickman, G. & Chambers, B. 2005. Landspreading on agricultural land: nature and impact of paper wastes applied in England and Wales. Science Report SC030181/SR. Environment Agency, Bristol, UK. – reference: Yu, Y.-W., Fraser, M.D. & Evans, J.G. 2010. Long-term effects on sward composition and animal performance of reducing fertilizer inputs to upland permanent pasture. Grass and Forage Science, 66, 138-151. – reference: Connor, D.J., Loomis, R.J. & Cassman, K.G. 2011. Crop Ecology: productivity and Management in Agricultural Systems, 2nd edn. Cambridge University Press, Cambridge. – year: 2011 – volume: 43 start-page: 517 year: 2014 end-page: 527 article-title: Repeated annual paper mill and alkaline residuals application affects soil metal fractions publication-title: Journal of Environmental Quality – volume: 248 start-page: 43 year: 2003 end-page: 59 article-title: Origins of root‐mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant and Soil – start-page: 992 year: 2008 end-page: 4 – volume: 188 start-page: 48 year: 2014 end-page: 56 article-title: Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade‐off between lime application and greenhouse gas emissions publication-title: Agriculture, Ecosystems and Environment – year: 1981 – year: 2005 – volume: 28 start-page: 62 year: 2012 end-page: 69 article-title: Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity publication-title: Soil Use and Management – volume: 2 start-page: 3 year: 1986 end-page: 10 article-title: Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted publication-title: Soil Use and Management – volume: 17 start-page: 1925 year: 2011 end-page: 1934 article-title: Increases in soil organic carbon sequestration can reduce the global warming potential of long‐term liming to permanent grassland publication-title: Global Change Biology – year: 2007 – year: 2001 – volume: 78 start-page: 215 year: 2003 end-page: 272 article-title: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability publication-title: Advances in Agronomy – volume: 11 start-page: 110 year: 1995 end-page: 114 article-title: A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data publication-title: Soil Use and Management – year: 2003 – year: 2000 – start-page: 96 year: 2004 end-page: 100 – volume: 45 start-page: 218 year: 2007 end-page: 223 article-title: Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming publication-title: Australian Journal of Soil Research – volume: 139 start-page: 49 year: 1998 end-page: 58 article-title: Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes publication-title: New Phytologist – start-page: 29 year: 2003 end-page: 52 – volume: 10 start-page: 51 year: 1994 end-page: 55 article-title: Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay ‐ a Chemical Time Bomb publication-title: Soil Use and Management – year: 1990 – year: 1992 – volume: 89 start-page: 81 year: 1977 end-page: 86 article-title: Changes in soil pH and exchangeable calcium in two liming experiments on contrasting soils over 12 years publication-title: Journal of Agricultural Science – year: 2014 – volume: 51 start-page: 123 year: 1998 end-page: 137 article-title: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review publication-title: Nutrient Cycling in Agroecosystems – year: 2010 – year: 1998 – volume: 5 start-page: 54 year: 1989 end-page: 57 article-title: Predicting the lime requirement of soils under permanent grassland and arable crops publication-title: Soil Use and Management – year: 2012 – volume: 66 start-page: 138 year: 2010 end-page: 151 article-title: Long‐term effects on sward composition and animal performance of reducing fertilizer inputs to upland permanent pasture publication-title: Grass and Forage Science – volume: 52 start-page: 120 year: 2014 end-page: 128 article-title: Influence of lime and gypsum on long‐term rehabilitation of a Red Sodosol, in a semi‐arid environment of New South Wales publication-title: Soil Research – year: 1984 – volume: 66 start-page: 53 year: 1948 end-page: 63 article-title: Testing soils for lime requirement by means of a buffered solution and a glass electrode publication-title: Soil Science – year: 2016 article-title: The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming publication-title: Environmental Science and Technology – start-page: 294 year: 2012 – year: 1980 – year: 2006 – volume: 141 start-page: 1411 year: 2008 end-page: 1427 article-title: The impact of organic and inorganic fertilizers and lime on the species‐richness and plant functional characteristics of hay meadow communities publication-title: Biological Conservation – year: 1997 – volume: 202 start-page: 98 year: 2015 end-page: 107 article-title: Net effect of liming on soil organic carbon stocks: a review publication-title: Agriculture, Ecosystems and Environment – year: 2015 – year: 2013 – volume: 50 start-page: 401 year: 1999 end-page: 412 article-title: Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK publication-title: European Journal of Soil Science – volume-title: Landspreading on agricultural land: nature and impact of paper wastes applied in England and Wales. Science Report SC030181/SR year: 2005 ident: e_1_2_10_21_1 – ident: e_1_2_10_39_1 doi: 10.1111/j.1475-2743.1995.tb00507.x – volume-title: Fundamentals of soil science year: 1990 ident: e_1_2_10_16_1 – volume-title: Lime and liming in UK agriculture year: 1998 ident: e_1_2_10_22_1 – start-page: 96 volume-title: Organic farming: science and practice for profitable livestock and cropping year: 2004 ident: e_1_2_10_3_1 – ident: e_1_2_10_9_1 doi: 10.1016/S0065-2113(02)78006-1 – volume-title: Soil acidity and liming. Agfact AC 19 year: 2005 ident: e_1_2_10_47_1 – volume-title: Fertiliser recommendations for agricultural and horticultural crops (RB209) year: 2000 ident: e_1_2_10_12_1 – ident: e_1_2_10_7_1 doi: 10.1046/j.1365-2389.1999.00253.x – ident: e_1_2_10_5_1 doi: 10.1071/SR13118 – volume-title: Lime and liming year: 1981 ident: e_1_2_10_37_1 – volume-title: Growth and mineral nutrition of field crops year: 1997 ident: e_1_2_10_14_1 – volume-title: The Fertiliser Regulations. Statutory Instrument No. 887 year: 1990 ident: e_1_2_10_19_1 – ident: e_1_2_10_27_1 doi: 10.1111/j.1475-2743.2011.00380.x – year: 2016 ident: e_1_2_10_41_1 article-title: The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming publication-title: Environmental Science and Technology – ident: e_1_2_10_15_1 doi: 10.1111/j.1365-2486.2010.02328.x – ident: e_1_2_10_44_1 doi: 10.1201/9780203912317 – ident: e_1_2_10_46_1 – ident: e_1_2_10_23_1 doi: 10.1111/j.1475-2743.1989.tb00760.x – start-page: 29 volume-title: Handbook of soil acidity year: 2003 ident: e_1_2_10_8_1 – ident: e_1_2_10_26_1 doi: 10.1071/9780643094680 – ident: e_1_2_10_24_1 doi: 10.1046/j.1469-8137.1998.00182.x – ident: e_1_2_10_11_1 doi: 10.1017/CBO9780511974199 – ident: e_1_2_10_32_1 doi: 10.1111/j.1475-2743.1986.tb00669.x – ident: e_1_2_10_36_1 doi: 10.1016/j.biocon.2008.03.010 – volume-title: Agriculture, forestry and other land use. IPCC guidelines for national greenhouse gas inventories year: 2006 ident: e_1_2_10_30_1 – ident: e_1_2_10_35_1 doi: 10.1071/SR06169 – ident: e_1_2_10_29_1 – ident: e_1_2_10_48_1 doi: 10.1097/00010694-194807000-00005 – volume-title: Acid soil and acid rain year: 1992 ident: e_1_2_10_34_1 – volume-title: Inputs of nutrients and lime for the maintenance of fertility of grassland soils year: 2001 ident: e_1_2_10_33_1 – ident: e_1_2_10_10_1 doi: 10.1017/S0021859600027210 – volume-title: The use of lime on agricultural soils year: 1980 ident: e_1_2_10_31_1 – ident: e_1_2_10_4_1 – ident: e_1_2_10_20_1 doi: 10.1016/j.agee.2014.02.016 – ident: e_1_2_10_25_1 doi: 10.1023/A:1009738307837 – ident: e_1_2_10_18_1 doi: 10.2134/jeq2013.03.0080 – volume-title: The Fertiliser Manual (RB209) year: 2010 ident: e_1_2_10_13_1 – ident: e_1_2_10_2_1 doi: 10.2134/agronmonogr12.2ed – ident: e_1_2_10_6_1 doi: 10.1111/j.1475-2743.1994.tb00458.x – ident: e_1_2_10_28_1 doi: 10.1023/A:1022371130939 – ident: e_1_2_10_42_1 – ident: e_1_2_10_17_1 – ident: e_1_2_10_43_1 doi: 10.1016/j.agee.2015.01.005 – start-page: 992 volume-title: Grassland Science in Europe, 13 year: 2008 ident: e_1_2_10_40_1 – ident: e_1_2_10_45_1 – volume-title: Marschner's mineral nutrition of higher plants year: 2012 ident: e_1_2_10_38_1 – ident: e_1_2_10_49_1 doi: 10.1111/j.1365-2494.2010.00772.x – reference: 25602653 - J Environ Qual. 2014 Mar;43(2):517-27 |
SSID | ssj0021760 |
Score | 2.6249008 |
SecondaryResourceType | review_article |
Snippet | Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles,... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 390 |
SubjectTerms | Acid deposition Acidification Acidity Agricultural land Agricultural production agricultural soils Aluminum ammonia Ammonium carbon dioxide Carbon dioxide emissions Cation exchange cation exchange capacity Cation exchanging Cations chemical bases clay Crop yield crops Farming farming systems Farms fertilizer Fertilizers gases grassland soils Grasslands greenhouse gas emissions Land legumes Lime lime requirement Liming liming materials neutralization Nitric acid Nitrous oxide nutrients Review Soil (material) Soil acidification Soil pH Soil Physico‐chemical Properties and Their Management Soil quality Soils Sulfur dioxide sulfur fertilizers United Kingdom Urea urea fertilizers |
Title | Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom |
URI | https://api.istex.fr/ark:/67375/WNG-XK974WZ5-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12270 https://www.ncbi.nlm.nih.gov/pubmed/27708478 https://www.proquest.com/docview/1816818366 https://www.proquest.com/docview/1827908042 https://www.proquest.com/docview/1835373852 https://www.proquest.com/docview/1835608965 https://www.proquest.com/docview/2000107594 https://pubmed.ncbi.nlm.nih.gov/PMC5032897 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1vuiD39bTtkQR8WWPvWTzsfSpSGtRLKKWHiKEbDZbj153y32A-Nd3Jrsbetqq-LaQSSCTmeQ32clvCHnJpKt4yTGl0ckk81mR5HrkEia1UB4M2gp84PzhUB4cZe_GYrxGdvq3MC0_RLxwQ88I-zU6uC3ml5wcFmo4YkxhvI65WgiIPkXqKEDasrtfgYg55axjFcIsnthz5Sy6iWr9cRXQ_D1f8jKODQfR_l3yrZ9Cm39yOlwuiqH7-Qu743_O8R650wFUutta1H2y5usH5Pbuyawj6fAPyexzM5lS6yYl5hmFpaW2LilgSTo5C4AeTIk2FZ1izbATamNvGHkOnecU73_pebBbTISlsdwJXTRhoBYMU6y5UjZnj8jR_t6XNwdJV7shcQIwaCIzX5YFhGNa27QCjMRU7mFX5uXIAiyolK7SoqgYL0Weeqec5rLIpNSww3jkk3xM1uum9k8IFZo75UXJcqsgmNS6yjPutIJITLtCZAPyul9F4zpic6yvMTV9gANqNEGNA_Iiip63bB5XCb0KphAl7OwU09-UMMeHb834PYRgx1-FkQOy2duK6Tx_bkZYyAT2SQnNz2Mz-Cz-iLG1b5YoA9oAqJ6xP8lwgaxT4i8yoIRciutl8CkWhPgiBz1ttGYcJ8aUSgGd6AFRKwYeBZB7fLWlnnwPHOQCeRhzBboP9nu9Ng2gg_Dx9N9Fn5FbgEtlm8q3SdYXs6XfAuy3KLbJDZZ93A6ufgFYJVap |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAcKM-ytIBBCHHJKuvEj0hcKkRZaLsHaNUVErIcxymrbpNqHxLi1zPjJFYXWkDcInlsyeMZ-xtn_A0hL5mwZVIkmNJoRZS6NI8yNbARE4pLBwZtOD5wPhyJ4XH6cczHa-RN9xam4YcIF27oGX6_RgfHC-lLXg4r1R8wJiFg38CK3j6g-hTIowBri_aGBWLmOGEtrxDm8YSuK6fRBir2-1VQ8_eMyctI1h9Fe5vkazeJJgPlrL9c5H374xd-x_-d5R1yu8WodLcxqrtkzVX3yK3d01nL0-Huk9nnejKlxk4KTDXyq0tNVVCAk3Ry7jE9WBOtSzrFsmGn1ITeMPIcOs8pXgHTC2-6mAtLQ8UTuqj9QA0eplh2pajPH5DjvXdHb4dRW74hshxgaCRSVxQ5RGRKmbgEmMRk5mBjToqBAWRQSlXGeV6ypOBZ7Ky0KhF5KoSCTcYhpeRDsl7VlXtEKFeJlY4XLDMS4kmlyixNrJIQjCmb87RHXnfLqG3LbY4lNqa6i3FAjdqrsUdeBNGLhtDjKqFX3haChJmdYQac5Ppk9F6P9yEKO_nCteiRnc5YdOv8cz3AWiawVQpofh6awW3xX4ypXL1EGdAGoPWU_Ukm4Ug8xf8iA0rIBL9eBl9jQZTPM9DTVmPHYWJMyhgAiuoRuWLhQQDpx1dbqsk3T0POkYoxk6B7b8DXa1MDQPAfj_9d9Bm5MTw6PNAHH0b72-QmwFTRZPbtkPXFbOmeABRc5E-9x_8EeFNZ7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lBdEH75fVqlFEfJllNjO5DD4V61qtLqKWLkUIM0mmLt3OLHsB8dd7TmYmdLVV8W0hJwM5-U7mO7Mn3yHkGROmTGyCJY1GRKlLiyhTAxMxobh0AOic4wXnDyOxd5C-G_PxBnnZ3YVp9CHCBzeMDH9eY4DPbHkmyGGj-gPGJOTrW6mIFUJ691PQjgKqLdoPLJAyxwlrZYWwjCdMXXsZbaFfv5_HNH8vmDxLZP2baHiNfO3W0BSgnPRXy6Jvfvwi7_ifi7xOrrYMle40kLpBNlx1k1zZOZ63Kh3uFpl_ridTmpuJxUIjv7c0rywFMkknp57RA5ZoXdIpNg07pnmYDU9ewOQFxQ_AdOaBi5WwNPQ7ocvaP6hhwxSbrtj69DY5GL7-8movaps3RIYDCY1E6qwtIB9TKo9LIElMZg6O5cQOcuAFpVRlXBQlSyzPYmekUYkoUiEUHDEOBSXvkM2qrtw9QrlKjHTcsiyXkE0qVWZpYpSEVEyZgqc98qLbRW1aZXNssDHVXYYDbtTejT3yNJjOGjmP84yeeygEi3x-gvVvkuvD0Rs93occ7PCIa9Ej2x1WdBv6Cz3ATiZwUAoYfhKGIWjxn5i8cvUKbcAbwNVT9iebhKPsFP-LDUJf8Itt8C4W5Pg8Az_dbWAcFsakjIGeqB6RawAPBig-vj5STb55EXKOQoyZBN97_F7sTQ30wP-4_--mj8mlj7tD_f7taP8BuQwcVTRlfdtkczlfuYfAA5fFIx_vPwFMz1il |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+acidification+and+the+importance+of+liming+agricultural+soils+with+particular+reference+to+the+United+Kingdom&rft.jtitle=Soil+use+and+management&rft.au=Goulding%2C+KWT&rft.date=2016-09-01&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=32&rft.issue=3&rft.spage=390&rft.epage=399&rft_id=info:doi/10.1111%2Fsum.12270&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon |