Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom

Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the applica...

Full description

Saved in:
Bibliographic Details
Published inSoil use and management Vol. 32; no. 3; pp. 390 - 399
Main Author Goulding, K. W. T.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.
AbstractList Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N sub(2)O emissions, but this is more than offset by CO sub(2) emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N 2 O emissions, but this is more than offset by CO 2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘ EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH .
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N O emissions, but this is more than offset by CO emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N2O emissions, but this is more than offset by CO 2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N₂O emissions, but this is more than offset by CO₂ emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.
Author Goulding, K. W. T.
AuthorAffiliation 1 Department of Sustainable Soils and Grassland Systems Rothamsted Research Harpenden AL5 2JQ UK
AuthorAffiliation_xml – name: 1 Department of Sustainable Soils and Grassland Systems Rothamsted Research Harpenden AL5 2JQ UK
Author_xml – sequence: 1
  givenname: K. W. T.
  surname: Goulding
  fullname: Goulding, K. W. T.
  email: keith.goulding@rothamsted.ac.uk, keith.goulding@rothamsted.ac.uk
  organization: Department of Sustainable Soils and Grassland Systems, Rothamsted Research, AL5 2JQ, Harpenden, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27708478$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv0zAYhi00xLrBgT-ALHFhh2yf7cR2LkhoYgNtwGFUQ1wsN3Faj8QutsPYv8dttwomAfMlBz_PK-vNu4d2nHcGoecEDkk-R3EcDgmlAh6hCSlFVVBRsh00Acp5AcDoLtqL8QqAEsHhCdqlQoAshZygcOFtj3VjW9vZRifrHdauxWlhsB2WPiTtGoN9h3s7WDfHeh5sM_ZpDLrHMcsRX9u0wEsd0upCBxxMZ4JZacmvg6bOJtPis-y3fniKHne6j-bZ7XcfTU_efj5-V5x_On1__Oa8aCoJUPDStO2MSiGlho4KRkVtSMlZSzTQshOyg9mso6ytajCNaCTjs5JzKRk1wAjbR683uctxNpi2MS7lN6tlsIMON8prq_68cXah5v6HqnJjshY54NVtQPDfRxOTGmxsTN9rZ_wYFQUAAqKqy_-iRLKKg6x59SCUCSYr-gA0dwISyhX68h565cfgcr-ZIlzmVM4z9eL3SrZd3O0hAwcboAk-xvwjtwgBtdqayltT661l9uge29i0XlBu0_b_Mq5tb27-Hq0uph_ujGJj2JjMz62hwzfFBROVuvx4qr6c1aK8_Fopzn4B9Jrzpw
CitedBy_id crossref_primary_10_1016_j_eja_2020_126132
crossref_primary_10_3390_agronomy11040785
crossref_primary_10_1016_j_jclepro_2020_122575
crossref_primary_10_1007_s13762_021_03783_4
crossref_primary_10_1080_03650340_2020_1864341
crossref_primary_10_1016_j_geoderma_2020_114171
crossref_primary_10_1016_j_geoderma_2019_06_015
crossref_primary_10_1016_j_still_2020_104730
crossref_primary_10_1002_jpln_202300065
crossref_primary_10_1016_j_catena_2019_02_016
crossref_primary_10_1016_j_jclepro_2021_128036
crossref_primary_10_20961_stjssa_v18i1_43631
crossref_primary_10_1016_j_jia_2024_07_035
crossref_primary_10_1016_j_agee_2018_11_015
crossref_primary_10_3389_fpls_2020_01012
crossref_primary_10_1088_1755_1315_653_1_012057
crossref_primary_10_1016_j_catena_2022_106688
crossref_primary_10_21657_soilst_1143238
crossref_primary_10_3390_su17031191
crossref_primary_10_1016_j_agwat_2025_109337
crossref_primary_10_1155_2021_5556563
crossref_primary_10_3390_su11030798
crossref_primary_10_1007_s10661_022_10430_z
crossref_primary_10_1007_s11948_019_00109_z
crossref_primary_10_5194_gmd_17_4515_2024
crossref_primary_10_1016_j_eja_2024_127214
crossref_primary_10_1016_j_jenvman_2021_113341
crossref_primary_10_1007_s10341_022_00794_4
crossref_primary_10_1111_gcb_15607
crossref_primary_10_1007_s43621_025_00910_w
crossref_primary_10_1002_agg2_20468
crossref_primary_10_1146_annurev_environ_030323_075629
crossref_primary_10_3390_su16041468
crossref_primary_10_1016_j_chemosphere_2023_137838
crossref_primary_10_1111_gcbb_12700
crossref_primary_10_1088_1755_1315_756_1_012060
crossref_primary_10_1017_S002185962300062X
crossref_primary_10_1080_14735903_2021_1926150
crossref_primary_10_1007_s42729_023_01446_6
crossref_primary_10_3390_cryst11091033
crossref_primary_10_1016_j_surfin_2024_103943
crossref_primary_10_1126_sciadv_aav8083
crossref_primary_10_1007_s11356_023_28506_9
crossref_primary_10_1111_sum_12682
crossref_primary_10_1134_S2635167624600810
crossref_primary_10_1016_j_agee_2022_107900
crossref_primary_10_1016_j_scitotenv_2017_09_289
crossref_primary_10_1002_saj2_20610
crossref_primary_10_1016_j_jenvman_2024_121702
crossref_primary_10_1021_acs_est_3c03609
crossref_primary_10_1080_10807039_2024_2441441
crossref_primary_10_1061__ASCE_EE_1943_7870_0001507
crossref_primary_10_1088_1755_1315_1201_1_012075
crossref_primary_10_3390_conservation4040046
crossref_primary_10_1016_j_scitotenv_2018_09_339
crossref_primary_10_1016_j_eti_2023_103306
crossref_primary_10_1016_j_scitotenv_2022_156083
crossref_primary_10_1017_S0014479721000132
crossref_primary_10_5424_sjar_2021193_17638
crossref_primary_10_3390_ijerph192416855
crossref_primary_10_1002_jobm_202300585
crossref_primary_10_1021_acs_jafc_1c03776
crossref_primary_10_1016_j_jclepro_2021_125925
crossref_primary_10_1111_gcb_14844
crossref_primary_10_1007_s10653_024_02322_7
crossref_primary_10_1016_j_still_2019_104480
crossref_primary_10_2134_age2018_08_0031
crossref_primary_10_3390_su13179808
crossref_primary_10_1111_1462_2920_16185
crossref_primary_10_1016_j_envres_2024_119485
crossref_primary_10_4081_ija_2022_2029
crossref_primary_10_3390_su17051952
crossref_primary_10_1017_S174217051900019X
crossref_primary_10_1007_s11104_024_06870_w
crossref_primary_10_1016_j_scitotenv_2017_08_020
crossref_primary_10_1111_gcb_15819
crossref_primary_10_1007_s11104_021_05293_1
crossref_primary_10_1016_j_eja_2024_127392
crossref_primary_10_1016_j_geodrs_2024_e00894
crossref_primary_10_1016_j_scitotenv_2020_137058
crossref_primary_10_3389_fsufs_2020_00106
crossref_primary_10_1016_j_fcr_2023_109043
crossref_primary_10_3390_agronomy11040748
crossref_primary_10_1111_ejss_13367
crossref_primary_10_1016_j_envpol_2019_113145
crossref_primary_10_1088_1755_1315_1377_1_012095
crossref_primary_10_1111_sum_12867
crossref_primary_10_3390_agronomy12051040
crossref_primary_10_1007_s11119_022_09945_9
crossref_primary_10_1016_j_geoderma_2019_05_026
crossref_primary_10_3390_plants10122605
crossref_primary_10_1002_jeq2_20666
crossref_primary_10_15407_agrisp9_03_018
crossref_primary_10_1080_10106049_2022_2076925
crossref_primary_10_1080_03650340_2020_1852551
crossref_primary_10_1007_s11356_023_27182_z
crossref_primary_10_1186_s12932_019_0065_z
crossref_primary_10_1590_s1678_3921_pab2021_v56_01548x
crossref_primary_10_1109_JSTARS_2024_3422494
crossref_primary_10_1016_j_agwat_2024_109248
crossref_primary_10_1017_S0021859621000666
crossref_primary_10_1007_s10333_020_00826_3
crossref_primary_10_3390_ijms24076620
crossref_primary_10_3390_agronomy9110688
crossref_primary_10_1016_j_ecolind_2023_111063
crossref_primary_10_3390_microorganisms9102008
crossref_primary_10_34659_eis_2024_90_3_705
crossref_primary_10_5424_sjar_2020184_15677
crossref_primary_10_1016_j_still_2022_105576
crossref_primary_10_1007_s11053_024_10373_x
crossref_primary_10_1002_ldr_4568
crossref_primary_10_1016_j_geoderma_2020_114239
crossref_primary_10_5194_soil_8_687_2022
crossref_primary_10_1016_j_rhisph_2025_101028
crossref_primary_10_1016_j_agwat_2019_105894
crossref_primary_10_1016_j_scitotenv_2019_07_154
crossref_primary_10_1038_s41598_020_64036_x
crossref_primary_10_1016_j_scitotenv_2021_150555
crossref_primary_10_1111_jac_12642
crossref_primary_10_3390_plants10122624
crossref_primary_10_1007_s10457_021_00721_8
crossref_primary_10_38124_ijisrt_25feb1578
crossref_primary_10_1016_j_jclepro_2025_144717
crossref_primary_10_3390_fermentation8090420
crossref_primary_10_3390_agriculture14040643
crossref_primary_10_1016_j_ancene_2023_100390
crossref_primary_10_1016_j_geodrs_2024_e00877
crossref_primary_10_1016_j_still_2021_105162
crossref_primary_10_1016_j_still_2021_105165
crossref_primary_10_1016_j_envexpbot_2019_06_007
crossref_primary_10_2989_10220119_2021_2014964
crossref_primary_10_1002_ldr_4672
crossref_primary_10_3390_soilsystems8030068
crossref_primary_10_1007_s10661_021_09080_4
crossref_primary_10_1016_j_geoderma_2021_115639
crossref_primary_10_1007_s00374_024_01825_w
crossref_primary_10_3390_horticulturae10121328
crossref_primary_10_1016_j_apsoil_2017_11_025
crossref_primary_10_1016_j_jece_2020_104761
crossref_primary_10_3389_fpls_2020_00212
crossref_primary_10_1016_j_jenvman_2021_113356
crossref_primary_10_1111_sum_12750
crossref_primary_10_3390_app142210726
crossref_primary_10_1080_23311916_2024_2345519
crossref_primary_10_1080_00103624_2020_1744629
crossref_primary_10_1111_ejss_13219
crossref_primary_10_1016_j_jconhyd_2024_104493
crossref_primary_10_1071_SR18246
crossref_primary_10_2478_boku_2018_0013
crossref_primary_10_1088_1755_1315_667_1_012045
crossref_primary_10_3390_agronomy8110256
crossref_primary_10_1016_j_apgeog_2023_103103
crossref_primary_10_3390_su14148912
crossref_primary_10_3390_su141912287
crossref_primary_10_1111_gcb_17516
crossref_primary_10_1016_j_clay_2021_105999
crossref_primary_10_1016_j_fcr_2023_108827
crossref_primary_10_1111_1365_2745_14039
crossref_primary_10_1098_rsta_2019_0324
crossref_primary_10_1088_1755_1315_712_1_012031
crossref_primary_10_3390_agronomy11050980
crossref_primary_10_1016_j_scitotenv_2023_167989
crossref_primary_10_1109_ACCESS_2022_3232485
crossref_primary_10_3390_agriculture12030322
crossref_primary_10_3390_agronomy13071860
crossref_primary_10_3390_plants9060765
crossref_primary_10_2298_JAS2303283E
crossref_primary_10_1080_03067319_2020_1711889
crossref_primary_10_1016_j_still_2023_105839
crossref_primary_10_1111_sum_12825
crossref_primary_10_1007_s10668_024_05827_4
crossref_primary_10_1016_j_agsy_2020_102934
crossref_primary_10_1016_j_scitotenv_2024_174447
crossref_primary_10_1111_gcb_15329
crossref_primary_10_1016_j_scitotenv_2024_174328
crossref_primary_10_1016_j_apsoil_2023_105230
crossref_primary_10_13080_z_a_2020_107_006
crossref_primary_10_3168_jds_2020_19077
crossref_primary_10_1080_00103624_2019_1589490
crossref_primary_10_20961_stjssa_v19i1_59444
crossref_primary_10_31285_AGRO_28_1184
crossref_primary_10_1016_j_scitotenv_2019_134098
crossref_primary_10_1016_j_ijggc_2020_103017
crossref_primary_10_1002_agg2_20502
crossref_primary_10_1016_j_envc_2024_101070
crossref_primary_10_3390_app12073324
crossref_primary_10_1016_j_envpol_2020_114981
crossref_primary_10_3390_agriculture14071063
crossref_primary_10_1002_tqem_21925
crossref_primary_10_1002_ghg_2313
crossref_primary_10_1371_journal_pone_0307884
crossref_primary_10_3390_ijms19103073
crossref_primary_10_5194_acp_20_2277_2020
crossref_primary_10_3390_plants12152844
crossref_primary_10_1016_j_envpol_2022_118999
crossref_primary_10_1016_j_envadv_2023_100447
crossref_primary_10_1016_j_scitotenv_2019_136249
crossref_primary_10_1016_j_scitotenv_2019_136369
crossref_primary_10_1111_1365_2745_14051
crossref_primary_10_1016_j_geoderma_2024_116859
crossref_primary_10_1016_j_scitotenv_2022_159505
crossref_primary_10_1007_s10668_020_00615_2
crossref_primary_10_1016_j_jenvman_2023_118531
crossref_primary_10_17221_633_2019_PSE
crossref_primary_10_1016_j_scitotenv_2024_170189
crossref_primary_10_1016_j_animal_2021_100247
crossref_primary_10_1038_s41477_018_0108_y
crossref_primary_10_1016_j_agee_2021_107679
crossref_primary_10_1002_bbb_2453
crossref_primary_10_1007_s11053_021_09862_0
crossref_primary_10_1016_j_ecoleng_2023_107118
crossref_primary_10_1098_rstb_2019_0242
crossref_primary_10_1111_gcb_15101
crossref_primary_10_3389_fmicb_2018_01982
crossref_primary_10_1007_s42773_025_00451_5
crossref_primary_10_1016_j_envpol_2021_117017
crossref_primary_10_1111_ejss_12964
crossref_primary_10_3103_S1068367423010159
crossref_primary_10_1016_j_eti_2022_102607
crossref_primary_10_1016_j_still_2021_105230
crossref_primary_10_1016_j_still_2024_106286
crossref_primary_10_7745_KJSSF_2023_56_4_449
crossref_primary_10_1007_s11104_024_06617_7
crossref_primary_10_1111_gcbb_12879
crossref_primary_10_3390_agronomy11102081
crossref_primary_10_1016_j_agsy_2021_103251
crossref_primary_10_1080_12269328_2021_1947901
crossref_primary_10_1007_s13399_020_00672_7
crossref_primary_10_1016_j_scitotenv_2023_163063
crossref_primary_10_3390_f12020190
crossref_primary_10_1016_j_catena_2021_105434
crossref_primary_10_1111_jac_12468
crossref_primary_10_1002_1873_3468_14706
crossref_primary_10_1080_02571862_2022_2121438
crossref_primary_10_3389_ffgc_2022_959799
crossref_primary_10_3390_agronomy11102069
crossref_primary_10_1071_SR21022
crossref_primary_10_1016_j_geodrs_2024_e00814
crossref_primary_10_1002_agj2_21530
crossref_primary_10_1016_j_jenvman_2019_06_046
crossref_primary_10_3390_plants9081011
crossref_primary_10_1007_s12633_020_00427_z
crossref_primary_10_1007_s44378_024_00016_1
crossref_primary_10_1021_acssusresmgt_4c00023
crossref_primary_10_1360_TB_2022_0048
crossref_primary_10_1016_j_agee_2018_06_022
crossref_primary_10_3390_pr9071181
crossref_primary_10_1111_ejss_13515
crossref_primary_10_3389_fevo_2020_588318
crossref_primary_10_1080_01904167_2022_2064293
crossref_primary_10_3390_su12083072
crossref_primary_10_1007_s11368_022_03385_8
crossref_primary_10_3390_ani12182374
crossref_primary_10_1016_j_chemosphere_2020_127372
crossref_primary_10_1590_1983_40632018v4849212
crossref_primary_10_1007_s44279_024_00072_9
crossref_primary_10_2139_ssrn_4020171
crossref_primary_10_3390_agronomy10060877
crossref_primary_10_1080_01904167_2018_1457684
crossref_primary_10_3390_plants11212871
crossref_primary_10_1016_j_agsy_2022_103551
crossref_primary_10_1016_j_ecoenv_2020_110355
crossref_primary_10_1016_j_scitotenv_2021_150955
crossref_primary_10_3390_agronomy11050844
crossref_primary_10_1016_j_soisec_2024_100164
crossref_primary_10_2139_ssrn_3465426
crossref_primary_10_32615_bp_2023_024
crossref_primary_10_1016_j_catena_2021_105698
crossref_primary_10_1038_s41598_017_12373_9
crossref_primary_10_1080_09064710_2020_1807595
crossref_primary_10_2139_ssrn_3989510
crossref_primary_10_1002_ldr_4713
crossref_primary_10_1071_SR22210
crossref_primary_10_3839_jabc_2025_009
crossref_primary_10_1016_j_jenvman_2025_124118
crossref_primary_10_1007_s11368_024_03898_4
crossref_primary_10_1016_j_fmre_2023_10_025
crossref_primary_10_1080_00103624_2023_2227208
crossref_primary_10_1007_s13258_019_00895_7
crossref_primary_10_3390_su12177165
crossref_primary_10_3390_app13158723
crossref_primary_10_3390_land8120179
crossref_primary_10_1016_j_envpol_2022_120632
crossref_primary_10_5194_soil_10_33_2024
crossref_primary_10_1016_j_still_2023_105807
crossref_primary_10_1071_CP19101
crossref_primary_10_1007_s11119_020_09766_8
crossref_primary_10_1029_2019GB006356
crossref_primary_10_3390_pr8101245
crossref_primary_10_1038_s41598_021_85308_0
crossref_primary_10_1515_opag_2020_0018
crossref_primary_10_3390_agriculture12091443
crossref_primary_10_15446_rfmvz_v67n1_87689
crossref_primary_10_1016_j_cosust_2020_08_010
crossref_primary_10_1016_j_geoderma_2019_114156
crossref_primary_10_1007_s44242_022_00002_2
crossref_primary_10_1016_j_scitotenv_2016_12_169
crossref_primary_10_12944_CARJ_6_3_12
crossref_primary_10_3390_app11188745
crossref_primary_10_3390_land9060209
crossref_primary_10_36783_18069657rbcs20210034
crossref_primary_10_1016_j_scitotenv_2025_178369
crossref_primary_10_3390_agronomy14010046
crossref_primary_10_1007_s11368_022_03265_1
crossref_primary_10_1016_j_jenvman_2024_120293
crossref_primary_10_1007_s11270_020_04540_y
crossref_primary_10_1088_1755_1315_648_1_012027
crossref_primary_10_3389_fagro_2021_680456
crossref_primary_10_7717_peerj_13960
crossref_primary_10_22581_muet1982_2102_19
crossref_primary_10_1002_jpln_202100063
crossref_primary_10_1111_gcb_17349
crossref_primary_10_1111_wre_70002
crossref_primary_10_1007_s12517_022_10397_8
crossref_primary_10_3389_fagro_2023_1194896
crossref_primary_10_3390_su15010645
crossref_primary_10_1016_j_catena_2018_12_025
crossref_primary_10_1016_j_seh_2024_100060
crossref_primary_10_3390_agriculture12020223
crossref_primary_10_1007_s42773_025_00432_8
crossref_primary_10_3389_fgene_2022_1063984
crossref_primary_10_7717_peerj_14803
crossref_primary_10_1016_j_jhazmat_2020_123664
crossref_primary_10_1007_s11368_021_03007_9
crossref_primary_10_1016_j_agee_2024_109052
crossref_primary_10_1007_s11852_023_00943_1
crossref_primary_10_1007_s11119_021_09830_x
crossref_primary_10_1039_D3AY00647F
crossref_primary_10_3390_su151712816
crossref_primary_10_1080_00103624_2020_1849267
crossref_primary_10_2139_ssrn_4158191
crossref_primary_10_1016_S1002_0160_21_60056_5
crossref_primary_10_3390_horticulturae10101090
crossref_primary_10_1016_j_agsy_2024_103959
crossref_primary_10_1016_j_scitotenv_2021_146670
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1038_s41598_020_76892_8
crossref_primary_10_5937_ZemBilj2002068L
crossref_primary_10_3390_agronomy14092151
crossref_primary_10_1002_agj2_20421
crossref_primary_10_1007_s44279_024_00081_8
crossref_primary_10_1186_s40793_025_00694_6
crossref_primary_10_1038_s41598_019_56694_3
crossref_primary_10_1111_sum_13089
crossref_primary_10_2355_isijinternational_ISIJINT_2022_247
crossref_primary_10_1016_j_geoderma_2024_116908
crossref_primary_10_3390_agronomy8060084
crossref_primary_10_1016_j_hazadv_2024_100582
crossref_primary_10_1038_s41561_022_00925_2
crossref_primary_10_1016_j_energy_2021_120655
crossref_primary_10_1016_j_envpol_2020_115452
crossref_primary_10_1007_s00128_019_02719_6
crossref_primary_10_3390_plants13131740
crossref_primary_10_1051_e3sconf_202343403003
crossref_primary_10_1007_s11104_023_06011_9
crossref_primary_10_3389_fsufs_2022_821994
crossref_primary_10_1016_j_still_2024_106323
crossref_primary_10_1038_s43017_023_00482_1
crossref_primary_10_1111_sum_13034
crossref_primary_10_3390_molecules25225359
crossref_primary_10_1007_s00709_021_01719_w
crossref_primary_10_1111_sum_13032
crossref_primary_10_1016_j_scitotenv_2023_167701
crossref_primary_10_1007_s11368_023_03523_w
crossref_primary_10_1038_s41396_021_01045_2
crossref_primary_10_1016_j_plaphy_2023_108279
crossref_primary_10_1080_01904167_2019_1701028
crossref_primary_10_1016_j_scp_2024_101892
crossref_primary_10_1016_j_psep_2018_08_015
crossref_primary_10_1016_j_geoderma_2023_116421
crossref_primary_10_1016_j_jenvman_2023_117863
crossref_primary_10_1007_s11368_022_03330_9
crossref_primary_10_1007_s40502_020_00515_7
crossref_primary_10_1002_admt_202400038
crossref_primary_10_1007_s11368_023_03436_8
crossref_primary_10_1016_j_aquabot_2023_103737
crossref_primary_10_1016_j_wasman_2024_04_011
crossref_primary_10_1080_09064710_2023_2212674
crossref_primary_10_5897_AJAR2023_16505
crossref_primary_10_1016_j_scitotenv_2019_02_241
crossref_primary_10_1016_j_agee_2023_108746
crossref_primary_10_1080_00103624_2022_2063312
crossref_primary_10_1016_j_scitotenv_2020_139904
crossref_primary_10_1016_j_indcrop_2023_118016
crossref_primary_10_1016_j_plaphy_2024_108447
crossref_primary_10_1590_1981_6723_9415
crossref_primary_10_1080_03650340_2018_1557323
crossref_primary_10_1038_s41598_019_46175_y
crossref_primary_10_1016_j_heliyon_2023_e17044
crossref_primary_10_1016_j_heliyon_2023_e17286
crossref_primary_10_3390_su152115218
crossref_primary_10_1007_s11104_018_3760_0
crossref_primary_10_1016_j_envpol_2022_120591
crossref_primary_10_1016_j_still_2025_106546
crossref_primary_10_1111_sum_13054
crossref_primary_10_1016_j_aoas_2022_10_001
crossref_primary_10_1016_j_scitotenv_2020_136788
crossref_primary_10_1080_01904167_2024_2342365
crossref_primary_10_1088_1755_1315_1262_8_082068
crossref_primary_10_3390_w12092529
crossref_primary_10_1016_j_scitotenv_2021_148933
crossref_primary_10_3390_land12040909
crossref_primary_10_1007_s11368_021_03017_7
crossref_primary_10_1016_j_scitotenv_2021_148934
crossref_primary_10_1016_j_apsoil_2018_06_010
crossref_primary_10_1016_j_apsoil_2020_103702
crossref_primary_10_1111_sum_13160
crossref_primary_10_1590_1807_1929_agriambi_v27n10p820_827
crossref_primary_10_3390_su151813366
crossref_primary_10_3390_plants10102002
crossref_primary_10_36783_18069657rbcs20210125
crossref_primary_10_1007_s11629_024_8907_2
crossref_primary_10_1007_s10265_024_01533_4
crossref_primary_10_7717_peerj_6745
crossref_primary_10_3389_fenvs_2020_598513
crossref_primary_10_1038_s41598_021_98735_w
crossref_primary_10_1093_aobpla_plac026
crossref_primary_10_1016_j_catena_2023_107408
crossref_primary_10_1111_ejss_13297
crossref_primary_10_1007_s12649_020_01241_9
crossref_primary_10_3390_plants10020204
crossref_primary_10_1007_s11258_025_01492_3
crossref_primary_10_1080_00103624_2019_1705322
crossref_primary_10_1080_00103624_2019_1604735
crossref_primary_10_3389_fmicb_2023_1164826
crossref_primary_10_1016_j_jclepro_2023_138119
crossref_primary_10_3390_agronomy12051243
crossref_primary_10_3389_fmicb_2019_01061
crossref_primary_10_3390_molecules27072273
crossref_primary_10_1007_s42106_022_00187_3
crossref_primary_10_3390_gels8090548
crossref_primary_10_1155_2020_8872475
crossref_primary_10_1016_j_geoderma_2021_115256
crossref_primary_10_1016_j_scitotenv_2022_159171
crossref_primary_10_1016_j_still_2019_104434
crossref_primary_10_1016_j_scitotenv_2022_159052
crossref_primary_10_1016_j_scitotenv_2022_160165
crossref_primary_10_1038_s41598_024_56099_x
crossref_primary_10_3390_ijpb13020009
crossref_primary_10_4236_nr_2019_106015
crossref_primary_10_1016_j_wasman_2019_10_006
crossref_primary_10_1080_01904167_2018_1527935
crossref_primary_10_1007_s11119_021_09812_z
crossref_primary_10_1016_j_jenvman_2020_110888
crossref_primary_10_1590_1809_4430_eng_agric_v42n1e20210185_2022
crossref_primary_10_30901_2227_8834_2020_4_205_212
crossref_primary_10_1051_bioconf_20201700129
crossref_primary_10_5433_1679_0359_2020v41n4p1119
crossref_primary_10_1016_j_agee_2024_109214
crossref_primary_10_55905_cuadv16n3_094
crossref_primary_10_11648_j_aff_20241302_13
crossref_primary_10_1016_j_rhisph_2021_100445
crossref_primary_10_1111_sum_70002
crossref_primary_10_1002_jpln_202100357
crossref_primary_10_3390_agronomy11020310
crossref_primary_10_47836_pjtas_45_1_06
crossref_primary_10_1080_09064710_2021_1954239
crossref_primary_10_3389_fpls_2020_00300
crossref_primary_10_5897_AJAR2018_13066
crossref_primary_10_1016_j_scitotenv_2020_142189
crossref_primary_10_1016_j_eja_2021_126281
crossref_primary_10_1007_s11356_024_33241_w
crossref_primary_10_1080_02571862_2022_2043470
crossref_primary_10_1016_j_soisec_2023_100102
crossref_primary_10_1016_j_foreco_2023_121071
crossref_primary_10_1016_j_geoderma_2025_117219
crossref_primary_10_1007_s11104_018_03898_7
crossref_primary_10_1016_j_earscirev_2021_103915
crossref_primary_10_1111_ecog_04656
crossref_primary_10_1016_j_wasman_2020_06_012
crossref_primary_10_1080_23311932_2023_2294543
crossref_primary_10_3390_land11040557
crossref_primary_10_1111_sum_13124
crossref_primary_10_1007_s11104_021_04879_z
crossref_primary_10_1016_j_sjbs_2020_08_012
crossref_primary_10_3390_land13111839
crossref_primary_10_1007_s11119_024_10114_3
crossref_primary_10_1016_j_agee_2022_108182
crossref_primary_10_3390_agriculture12091366
crossref_primary_10_1016_j_scitotenv_2017_06_257
crossref_primary_10_1016_j_geoderma_2021_115586
crossref_primary_10_1016_j_scitotenv_2019_134320
crossref_primary_10_1016_j_still_2020_104651
crossref_primary_10_3390_agronomy12112649
crossref_primary_10_1007_s10705_023_10284_y
crossref_primary_10_1007_s10653_025_02400_4
crossref_primary_10_1016_j_catena_2019_104440
crossref_primary_10_3390_land11040521
crossref_primary_10_1016_j_aquatox_2023_106726
crossref_primary_10_1016_j_chemosphere_2022_137089
crossref_primary_10_3390_land13060790
crossref_primary_10_1016_j_envexpbot_2023_105642
crossref_primary_10_3390_pr8070863
crossref_primary_10_1016_j_scitotenv_2023_169034
crossref_primary_10_1007_s11104_024_06907_0
crossref_primary_10_1016_j_heliyon_2023_e17354
crossref_primary_10_3390_app12010248
crossref_primary_10_2478_forj_2020_0002
crossref_primary_10_11648_j_advances_20240503_11
crossref_primary_10_3390_plants14050793
crossref_primary_10_1007_s11104_023_06250_w
crossref_primary_10_1016_j_scitotenv_2020_142469
crossref_primary_10_1080_01904167_2024_2378229
crossref_primary_10_1016_j_eja_2019_02_016
crossref_primary_10_1016_j_apsoil_2021_104113
crossref_primary_10_3390_pr8060702
crossref_primary_10_1007_s42729_020_00297_9
crossref_primary_10_1016_j_iot_2020_100187
crossref_primary_10_1016_j_pedsph_2023_07_003
crossref_primary_10_1016_j_plaphy_2024_108602
crossref_primary_10_1111_rec_70013
crossref_primary_10_3923_ajps_2023_382_393
crossref_primary_10_3390_agronomy13112762
crossref_primary_10_36783_18069657rbcs20240146
crossref_primary_10_1002_jpln_201800670
crossref_primary_10_1007_s11356_021_13039_w
crossref_primary_10_1111_sum_12483
crossref_primary_10_1016_j_envres_2022_112676
crossref_primary_10_1016_j_soilbio_2019_107601
crossref_primary_10_1016_j_chemosphere_2023_138110
crossref_primary_10_1007_s42729_024_01866_y
crossref_primary_10_3390_agronomy10122005
crossref_primary_10_3390_agronomy14112642
crossref_primary_10_1016_j_scitotenv_2024_171631
crossref_primary_10_1007_s42832_024_0250_6
crossref_primary_10_1002_saj2_20495
crossref_primary_10_3389_fpls_2016_01920
crossref_primary_10_1016_j_scitotenv_2018_08_291
crossref_primary_10_1016_j_geoderma_2021_115597
crossref_primary_10_1002_ldr_3065
crossref_primary_10_1038_s41467_024_46931_3
crossref_primary_10_3390_molecules26227019
crossref_primary_10_15302_J_FASE_2024562
crossref_primary_10_3389_fmicb_2024_1426957
crossref_primary_10_1016_j_heliyon_2024_e37106
Cites_doi 10.1111/j.1475-2743.1995.tb00507.x
10.1016/S0065-2113(02)78006-1
10.1046/j.1365-2389.1999.00253.x
10.1071/SR13118
10.1111/j.1475-2743.2011.00380.x
10.1111/j.1365-2486.2010.02328.x
10.1201/9780203912317
10.1111/j.1475-2743.1989.tb00760.x
10.1071/9780643094680
10.1046/j.1469-8137.1998.00182.x
10.1017/CBO9780511974199
10.1111/j.1475-2743.1986.tb00669.x
10.1016/j.biocon.2008.03.010
10.1071/SR06169
10.1097/00010694-194807000-00005
10.1017/S0021859600027210
10.1016/j.agee.2014.02.016
10.1023/A:1009738307837
10.2134/jeq2013.03.0080
10.2134/agronmonogr12.2ed
10.1111/j.1475-2743.1994.tb00458.x
10.1023/A:1022371130939
10.1016/j.agee.2015.01.005
10.1111/j.1365-2494.2010.00772.x
ContentType Journal Article
Copyright 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
Journal compilation © 2016 British Society of Soil Science
Copyright_xml – notice: 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
– notice: Journal compilation © 2016 British Society of Soil Science
DBID BSCLL
24P
AAYXX
CITATION
NPM
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7X8
7S9
L.6
5PM
DOI 10.1111/sum.12270
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
PubMed
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database

Civil Engineering Abstracts

Environment Abstracts
PubMed
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate K. W. T. Goulding
EISSN 1475-2743
Editor de Varennes, Amarilis
Editor_xml – sequence: 2
  givenname: Amarilis
  surname: de Varennes
  fullname: de Varennes, Amarilis
EndPage 399
ExternalDocumentID PMC5032897
4171286551
27708478
10_1111_sum_12270
SUM12270
ark_67375_WNG_XK974WZ5_6
Genre reviewArticle
Journal Article
Review
GeographicLocations British Isles
United Kingdom
GeographicLocations_xml – name: British Isles
– name: United Kingdom
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council, UK
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7ST
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KR7
L.G
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5800-64eddb28788a0f273279e1463d1a024f78f0bbf23d590ec7c836b4668832e0313
IEDL.DBID DR2
ISSN 0266-0032
IngestDate Thu Aug 21 13:20:28 EDT 2025
Fri Jul 11 18:37:40 EDT 2025
Fri Jul 11 05:21:35 EDT 2025
Fri Jul 11 05:24:25 EDT 2025
Fri Jul 11 05:38:31 EDT 2025
Sun Jul 13 05:10:23 EDT 2025
Thu Apr 03 06:56:32 EDT 2025
Tue Jul 01 00:47:30 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
Wed Jan 22 16:48:10 EST 2025
Wed Oct 30 10:00:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords soil acidification
Acid deposition
liming
fertilizer
lime requirement
Language English
License Attribution
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5800-64eddb28788a0f273279e1463d1a024f78f0bbf23d590ec7c836b4668832e0313
Notes istex:EAC05E0A36B1CB4268F1577A1F09F8F698104EA2
ArticleID:SUM12270
Biotechnology and Biological Sciences Research Council, UK
ark:/67375/WNG-XK974WZ5-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12270
PMID 27708478
PQID 1816818366
PQPubID 1046348
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5032897
proquest_miscellaneous_2000107594
proquest_miscellaneous_1835608965
proquest_miscellaneous_1835373852
proquest_miscellaneous_1827908042
proquest_journals_1816818366
pubmed_primary_27708478
crossref_primary_10_1111_sum_12270
crossref_citationtrail_10_1111_sum_12270
wiley_primary_10_1111_sum_12270_SUM12270
istex_primary_ark_67375_WNG_XK974WZ5_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bedfordshire
– name: Hoboken
PublicationTitle Soil use and management
PublicationTitleAlternate Soil Use Manage
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Kirkham, J.M., Rowe, B.A. & Doyle, R.B. 2007. Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming. Australian Journal of Soil Research, 45, 218-223.
Kirkham, F.W., Tallowin, J.R.B., Sanderson, R.A., Bhogal, A., Chambers, B.J. & Stevens, D.P. 2008. The impact of organic and inorganic fertilizers and lime on the species-richness and plant functional characteristics of hay meadow communities. Biological Conservation, 141, 1411-1427.
Adams F. (ed.) 1984. Soil acidity and liming, 2nd edn, Agronomy 12. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, Wisconsin.
Fageria, N.K., Baligar, V.C. & Jones, C.A. 1997. Growth and mineral nutrition of field crops, 3rd edn. Marcel Dekker, New York.
Kennedy, I.R. 1992. Acid soil and acid rain, 2nd edn. John Wiley and Sons, New York.
Marschner, P. (ed.) 2012. Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, London.
Defra. 2000. Fertiliser recommendations for agricultural and horticultural crops (RB209). TSO, London.
Johnston, A.E., Goulding, K.W.T. & Poulton, P.R. 1986. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management, 2, 3-10.
Paradelo, R., Virto, I. & Chenu, C. 2015. Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems and Environment, 202, 98-107.
MAFF (Ministry of Agriculture, Fisheries and Food). 1981. Lime and liming. Reference Book 35. HMSO, London.
Connor, D.J., Loomis, R.J. & Cassman, K.G. 2011. Crop Ecology: productivity and Management in Agricultural Systems, 2nd edn. Cambridge University Press, Cambridge.
Gibbs, P., Muir, I., Richardson, S., Hickman, G. & Chambers, B. 2005. Landspreading on agricultural land: nature and impact of paper wastes applied in England and Wales. Science Report SC030181/SR. Environment Agency, Bristol, UK.
Orr, R., Murray, P., Eyles, C., Blackwell, M., Cardenas, L., Collins, A., Crawford, J., Dungait, J., Goulding, K., Griffith, B., Gurr, S., Harris, P., Hawkins, J., Misselbrook, T., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K., Wu, L. & Lee, M. 2016. The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming. Environmental Science and Technology, in press.
Upjohn, B., Fenton, G. & Conyers, M. 2005. Soil acidity and liming. Agfact AC 19, 3rd edn. New South Wales Department of Primary Industries, Australia.
Defra. 2010. The Fertiliser Manual (RB209). TSO, London.
Bennett, J.McL, Greene, R.S.B., Murphy, B.W., Hocking, P. & Tongway, D. 2014. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales. Soil Research, 52, 120-128.
Fornara, D.A., Steinbeiss, S., McNamara, N.P., Gleixner, G., Oakley, S., Poulton, P.R., Macdonald, A.J. & Bardgett, R.D. 2011. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology, 17, 1925-1934.
Johnston, A.E. & Whinham, W.N. 1980. The use of lime on agricultural soils. Proceedings No. 189. The Fertiliser Society, Peterborough, UK.
Johnston, A. E., Poulton, P. R., Dawson, C. J. & Crawley, M.J. 2001. Inputs of nutrients and lime for the maintenance of fertility of grassland soils. Proceedings No. 486. The International Fertiliser Society, York, UK.
Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43-59.
GB Statutory Instruments. 1990. The Fertiliser Regulations. Statutory Instrument No. 887, HMSO, London.
Goulding, K.W.T., McGrath, S.P. & Johnston, A.E. 1989. Predicting the lime requirement of soils under permanent grassland and arable crops. Soil Use and Management, 5, 54-57.
Hazelton, P. & Murphy, B. 2007. Interpreting soil test results. What do all the numbers mean? CSIRO Publishing, Collingwood, Australia.
Blake, L., Johnston, A.E. & Goulding, K.W.T. 1994. Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay - a Chemical Time Bomb. Soil Use and Management, 10, 51-55.
Goulding, K.W.T., Bailey, N.J., Bradbury, N.J., Hargreaves, P., Howe, M.T., Murphy, D.V., Poulton, P.R. & Willison, T.W. 1998. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49-58.
Goulding, K.W.T. & Annis, B. 1998. Lime and liming in UK agriculture. Proceedings No 410. The Fertiliser Society. York, UK.
Higgins, S., Morrison, S. & Watson, C.J. 2012. Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity. Soil Use and Management, 28, 62-69.
Haynes, R.J. & Naidu, R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123-137.
Blake, L., Goulding, K.W.T., Mott, C.J.B. & Johnston, A.E. 1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401-412.
Bolan, N.S., Adriano, D.C. & Curtin, D. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215-272.
Rengel, Z. (ed.) 2003. Handbook of soil acidity. Marcel Dekker, New York.
Yu, Y.-W., Fraser, M.D. & Evans, J.G. 2010. Long-term effects on sward composition and animal performance of reducing fertilizer inputs to upland permanent pasture. Grass and Forage Science, 66, 138-151.
Foth, H.D. 1990. Fundamentals of soil science, 8th edn. John Wiley & Sons, New York.
McGrath, S.P. & Zhao, F.J. 1995. A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use and Management, 11, 110-114.
Bolton, J. 1977. Changes in soil pH and exchangeable calcium in two liming experiments on contrasting soils over 12 years. Journal of Agricultural Science, 89, 81-86.
Gagnon, B., Robichaud, A., Ziadi, N. & Karam, A. 2014. Repeated annual paper mill and alkaline residuals application affects soil metal fractions. Journal of Environmental Quality, 43, 517-527.
Gibbons, J.M., Williamson, J.C., Williams, A.P., Withers, P.J.A., Hockley, N., Harris, I.M., Hughes, J.W., Taylor, R.L., Jones, D.L. & Healey, J.R. 2014. Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agriculture, Ecosystems and Environment, 188, 48-56.
Woodruff, C.M. 1948. Testing soils for lime requirement by means of a buffered solution and a glass electrode. Soil Science, 66, 53-63.
1989; 5
2012
2011
2010
2015; 202
1995; 11
1998
1997
2008
2007
2006
2005
2004
2003
1998; 139
1992
1977; 89
2011; 17
2008; 141
2014; 43
2003; 78
2010; 66
1986; 2
2003; 248
1990
2001
2000
1984
2016
2015
2012; 28
1981
2014
2013
1999; 50
1980
2014; 52
1948; 66
2014; 188
1998; 51
2007; 45
1994; 10
e_1_2_10_23_1
e_1_2_10_46_1
Goulding K.W.T. (e_1_2_10_22_1) 1998
e_1_2_10_24_1
e_1_2_10_45_1
Upjohn B. (e_1_2_10_47_1) 2005
Foth H.D. (e_1_2_10_16_1) 1990
e_1_2_10_44_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
Defra (e_1_2_10_13_1) 2010
Kennedy I.R. (e_1_2_10_34_1) 1992
Klein C. (e_1_2_10_30_1) 2006
GB Statutory Instruments (e_1_2_10_19_1) 1990
Marschner P. (e_1_2_10_38_1) 2012
Bolan N.S. (e_1_2_10_8_1) 2003
Johnston A. E. (e_1_2_10_33_1) 2001
e_1_2_10_2_1
Morgan M. (e_1_2_10_40_1) 2008
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
MAFF (Ministry of Agriculture, Fisheries and Food) (e_1_2_10_37_1) 1981
e_1_2_10_35_1
e_1_2_10_9_1
Gibbs P. (e_1_2_10_21_1) 2005
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
Fageria N.K. (e_1_2_10_14_1) 1997
Defra (e_1_2_10_12_1) 2000
Orr R. (e_1_2_10_41_1) 2016
Anderson G.D (e_1_2_10_3_1) 2004
Johnston A.E. (e_1_2_10_31_1) 1980
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_26_1
25602653 - J Environ Qual. 2014 Mar;43(2):517-27
References_xml – reference: Defra. 2000. Fertiliser recommendations for agricultural and horticultural crops (RB209). TSO, London.
– reference: GB Statutory Instruments. 1990. The Fertiliser Regulations. Statutory Instrument No. 887, HMSO, London.
– reference: Hazelton, P. & Murphy, B. 2007. Interpreting soil test results. What do all the numbers mean? CSIRO Publishing, Collingwood, Australia.
– reference: Fageria, N.K., Baligar, V.C. & Jones, C.A. 1997. Growth and mineral nutrition of field crops, 3rd edn. Marcel Dekker, New York.
– reference: Bennett, J.McL, Greene, R.S.B., Murphy, B.W., Hocking, P. & Tongway, D. 2014. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales. Soil Research, 52, 120-128.
– reference: Kennedy, I.R. 1992. Acid soil and acid rain, 2nd edn. John Wiley and Sons, New York.
– reference: Johnston, A.E. & Whinham, W.N. 1980. The use of lime on agricultural soils. Proceedings No. 189. The Fertiliser Society, Peterborough, UK.
– reference: Goulding, K.W.T., McGrath, S.P. & Johnston, A.E. 1989. Predicting the lime requirement of soils under permanent grassland and arable crops. Soil Use and Management, 5, 54-57.
– reference: Bolan, N.S., Adriano, D.C. & Curtin, D. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215-272.
– reference: McGrath, S.P. & Zhao, F.J. 1995. A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use and Management, 11, 110-114.
– reference: MAFF (Ministry of Agriculture, Fisheries and Food). 1981. Lime and liming. Reference Book 35. HMSO, London.
– reference: Gagnon, B., Robichaud, A., Ziadi, N. & Karam, A. 2014. Repeated annual paper mill and alkaline residuals application affects soil metal fractions. Journal of Environmental Quality, 43, 517-527.
– reference: Kirkham, J.M., Rowe, B.A. & Doyle, R.B. 2007. Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming. Australian Journal of Soil Research, 45, 218-223.
– reference: Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43-59.
– reference: Paradelo, R., Virto, I. & Chenu, C. 2015. Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems and Environment, 202, 98-107.
– reference: Upjohn, B., Fenton, G. & Conyers, M. 2005. Soil acidity and liming. Agfact AC 19, 3rd edn. New South Wales Department of Primary Industries, Australia.
– reference: Adams F. (ed.) 1984. Soil acidity and liming, 2nd edn, Agronomy 12. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, Wisconsin.
– reference: Orr, R., Murray, P., Eyles, C., Blackwell, M., Cardenas, L., Collins, A., Crawford, J., Dungait, J., Goulding, K., Griffith, B., Gurr, S., Harris, P., Hawkins, J., Misselbrook, T., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K., Wu, L. & Lee, M. 2016. The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming. Environmental Science and Technology, in press.
– reference: Fornara, D.A., Steinbeiss, S., McNamara, N.P., Gleixner, G., Oakley, S., Poulton, P.R., Macdonald, A.J. & Bardgett, R.D. 2011. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology, 17, 1925-1934.
– reference: Defra. 2010. The Fertiliser Manual (RB209). TSO, London.
– reference: Blake, L., Johnston, A.E. & Goulding, K.W.T. 1994. Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay - a Chemical Time Bomb. Soil Use and Management, 10, 51-55.
– reference: Haynes, R.J. & Naidu, R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123-137.
– reference: Goulding, K.W.T., Bailey, N.J., Bradbury, N.J., Hargreaves, P., Howe, M.T., Murphy, D.V., Poulton, P.R. & Willison, T.W. 1998. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49-58.
– reference: Rengel, Z. (ed.) 2003. Handbook of soil acidity. Marcel Dekker, New York.
– reference: Higgins, S., Morrison, S. & Watson, C.J. 2012. Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity. Soil Use and Management, 28, 62-69.
– reference: Johnston, A.E., Goulding, K.W.T. & Poulton, P.R. 1986. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management, 2, 3-10.
– reference: Johnston, A. E., Poulton, P. R., Dawson, C. J. & Crawley, M.J. 2001. Inputs of nutrients and lime for the maintenance of fertility of grassland soils. Proceedings No. 486. The International Fertiliser Society, York, UK.
– reference: Woodruff, C.M. 1948. Testing soils for lime requirement by means of a buffered solution and a glass electrode. Soil Science, 66, 53-63.
– reference: Blake, L., Goulding, K.W.T., Mott, C.J.B. & Johnston, A.E. 1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401-412.
– reference: Foth, H.D. 1990. Fundamentals of soil science, 8th edn. John Wiley & Sons, New York.
– reference: Marschner, P. (ed.) 2012. Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, London.
– reference: Gibbons, J.M., Williamson, J.C., Williams, A.P., Withers, P.J.A., Hockley, N., Harris, I.M., Hughes, J.W., Taylor, R.L., Jones, D.L. & Healey, J.R. 2014. Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agriculture, Ecosystems and Environment, 188, 48-56.
– reference: Bolton, J. 1977. Changes in soil pH and exchangeable calcium in two liming experiments on contrasting soils over 12 years. Journal of Agricultural Science, 89, 81-86.
– reference: Goulding, K.W.T. & Annis, B. 1998. Lime and liming in UK agriculture. Proceedings No 410. The Fertiliser Society. York, UK.
– reference: Kirkham, F.W., Tallowin, J.R.B., Sanderson, R.A., Bhogal, A., Chambers, B.J. & Stevens, D.P. 2008. The impact of organic and inorganic fertilizers and lime on the species-richness and plant functional characteristics of hay meadow communities. Biological Conservation, 141, 1411-1427.
– reference: Gibbs, P., Muir, I., Richardson, S., Hickman, G. & Chambers, B. 2005. Landspreading on agricultural land: nature and impact of paper wastes applied in England and Wales. Science Report SC030181/SR. Environment Agency, Bristol, UK.
– reference: Yu, Y.-W., Fraser, M.D. & Evans, J.G. 2010. Long-term effects on sward composition and animal performance of reducing fertilizer inputs to upland permanent pasture. Grass and Forage Science, 66, 138-151.
– reference: Connor, D.J., Loomis, R.J. & Cassman, K.G. 2011. Crop Ecology: productivity and Management in Agricultural Systems, 2nd edn. Cambridge University Press, Cambridge.
– year: 2011
– volume: 43
  start-page: 517
  year: 2014
  end-page: 527
  article-title: Repeated annual paper mill and alkaline residuals application affects soil metal fractions
  publication-title: Journal of Environmental Quality
– volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  article-title: Origins of root‐mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant and Soil
– start-page: 992
  year: 2008
  end-page: 4
– volume: 188
  start-page: 48
  year: 2014
  end-page: 56
  article-title: Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade‐off between lime application and greenhouse gas emissions
  publication-title: Agriculture, Ecosystems and Environment
– year: 1981
– year: 2005
– volume: 28
  start-page: 62
  year: 2012
  end-page: 69
  article-title: Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity
  publication-title: Soil Use and Management
– volume: 2
  start-page: 3
  year: 1986
  end-page: 10
  article-title: Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted
  publication-title: Soil Use and Management
– volume: 17
  start-page: 1925
  year: 2011
  end-page: 1934
  article-title: Increases in soil organic carbon sequestration can reduce the global warming potential of long‐term liming to permanent grassland
  publication-title: Global Change Biology
– year: 2007
– year: 2001
– volume: 78
  start-page: 215
  year: 2003
  end-page: 272
  article-title: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability
  publication-title: Advances in Agronomy
– volume: 11
  start-page: 110
  year: 1995
  end-page: 114
  article-title: A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data
  publication-title: Soil Use and Management
– year: 2003
– year: 2000
– start-page: 96
  year: 2004
  end-page: 100
– volume: 45
  start-page: 218
  year: 2007
  end-page: 223
  article-title: Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming
  publication-title: Australian Journal of Soil Research
– volume: 139
  start-page: 49
  year: 1998
  end-page: 58
  article-title: Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes
  publication-title: New Phytologist
– start-page: 29
  year: 2003
  end-page: 52
– volume: 10
  start-page: 51
  year: 1994
  end-page: 55
  article-title: Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay ‐ a Chemical Time Bomb
  publication-title: Soil Use and Management
– year: 1990
– year: 1992
– volume: 89
  start-page: 81
  year: 1977
  end-page: 86
  article-title: Changes in soil pH and exchangeable calcium in two liming experiments on contrasting soils over 12 years
  publication-title: Journal of Agricultural Science
– year: 2014
– volume: 51
  start-page: 123
  year: 1998
  end-page: 137
  article-title: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review
  publication-title: Nutrient Cycling in Agroecosystems
– year: 2010
– year: 1998
– volume: 5
  start-page: 54
  year: 1989
  end-page: 57
  article-title: Predicting the lime requirement of soils under permanent grassland and arable crops
  publication-title: Soil Use and Management
– year: 2012
– volume: 66
  start-page: 138
  year: 2010
  end-page: 151
  article-title: Long‐term effects on sward composition and animal performance of reducing fertilizer inputs to upland permanent pasture
  publication-title: Grass and Forage Science
– volume: 52
  start-page: 120
  year: 2014
  end-page: 128
  article-title: Influence of lime and gypsum on long‐term rehabilitation of a Red Sodosol, in a semi‐arid environment of New South Wales
  publication-title: Soil Research
– year: 1984
– volume: 66
  start-page: 53
  year: 1948
  end-page: 63
  article-title: Testing soils for lime requirement by means of a buffered solution and a glass electrode
  publication-title: Soil Science
– year: 2016
  article-title: The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming
  publication-title: Environmental Science and Technology
– start-page: 294
  year: 2012
– year: 1980
– year: 2006
– volume: 141
  start-page: 1411
  year: 2008
  end-page: 1427
  article-title: The impact of organic and inorganic fertilizers and lime on the species‐richness and plant functional characteristics of hay meadow communities
  publication-title: Biological Conservation
– year: 1997
– volume: 202
  start-page: 98
  year: 2015
  end-page: 107
  article-title: Net effect of liming on soil organic carbon stocks: a review
  publication-title: Agriculture, Ecosystems and Environment
– year: 2015
– year: 2013
– volume: 50
  start-page: 401
  year: 1999
  end-page: 412
  article-title: Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK
  publication-title: European Journal of Soil Science
– volume-title: Landspreading on agricultural land: nature and impact of paper wastes applied in England and Wales. Science Report SC030181/SR
  year: 2005
  ident: e_1_2_10_21_1
– ident: e_1_2_10_39_1
  doi: 10.1111/j.1475-2743.1995.tb00507.x
– volume-title: Fundamentals of soil science
  year: 1990
  ident: e_1_2_10_16_1
– volume-title: Lime and liming in UK agriculture
  year: 1998
  ident: e_1_2_10_22_1
– start-page: 96
  volume-title: Organic farming: science and practice for profitable livestock and cropping
  year: 2004
  ident: e_1_2_10_3_1
– ident: e_1_2_10_9_1
  doi: 10.1016/S0065-2113(02)78006-1
– volume-title: Soil acidity and liming. Agfact AC 19
  year: 2005
  ident: e_1_2_10_47_1
– volume-title: Fertiliser recommendations for agricultural and horticultural crops (RB209)
  year: 2000
  ident: e_1_2_10_12_1
– ident: e_1_2_10_7_1
  doi: 10.1046/j.1365-2389.1999.00253.x
– ident: e_1_2_10_5_1
  doi: 10.1071/SR13118
– volume-title: Lime and liming
  year: 1981
  ident: e_1_2_10_37_1
– volume-title: Growth and mineral nutrition of field crops
  year: 1997
  ident: e_1_2_10_14_1
– volume-title: The Fertiliser Regulations. Statutory Instrument No. 887
  year: 1990
  ident: e_1_2_10_19_1
– ident: e_1_2_10_27_1
  doi: 10.1111/j.1475-2743.2011.00380.x
– year: 2016
  ident: e_1_2_10_41_1
  article-title: The UK North Wyke Farm Platform: a systems approach to investigate the impact and value of temperate Grassland farming
  publication-title: Environmental Science and Technology
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1365-2486.2010.02328.x
– ident: e_1_2_10_44_1
  doi: 10.1201/9780203912317
– ident: e_1_2_10_46_1
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1475-2743.1989.tb00760.x
– start-page: 29
  volume-title: Handbook of soil acidity
  year: 2003
  ident: e_1_2_10_8_1
– ident: e_1_2_10_26_1
  doi: 10.1071/9780643094680
– ident: e_1_2_10_24_1
  doi: 10.1046/j.1469-8137.1998.00182.x
– ident: e_1_2_10_11_1
  doi: 10.1017/CBO9780511974199
– ident: e_1_2_10_32_1
  doi: 10.1111/j.1475-2743.1986.tb00669.x
– ident: e_1_2_10_36_1
  doi: 10.1016/j.biocon.2008.03.010
– volume-title: Agriculture, forestry and other land use. IPCC guidelines for national greenhouse gas inventories
  year: 2006
  ident: e_1_2_10_30_1
– ident: e_1_2_10_35_1
  doi: 10.1071/SR06169
– ident: e_1_2_10_29_1
– ident: e_1_2_10_48_1
  doi: 10.1097/00010694-194807000-00005
– volume-title: Acid soil and acid rain
  year: 1992
  ident: e_1_2_10_34_1
– volume-title: Inputs of nutrients and lime for the maintenance of fertility of grassland soils
  year: 2001
  ident: e_1_2_10_33_1
– ident: e_1_2_10_10_1
  doi: 10.1017/S0021859600027210
– volume-title: The use of lime on agricultural soils
  year: 1980
  ident: e_1_2_10_31_1
– ident: e_1_2_10_4_1
– ident: e_1_2_10_20_1
  doi: 10.1016/j.agee.2014.02.016
– ident: e_1_2_10_25_1
  doi: 10.1023/A:1009738307837
– ident: e_1_2_10_18_1
  doi: 10.2134/jeq2013.03.0080
– volume-title: The Fertiliser Manual (RB209)
  year: 2010
  ident: e_1_2_10_13_1
– ident: e_1_2_10_2_1
  doi: 10.2134/agronmonogr12.2ed
– ident: e_1_2_10_6_1
  doi: 10.1111/j.1475-2743.1994.tb00458.x
– ident: e_1_2_10_28_1
  doi: 10.1023/A:1022371130939
– ident: e_1_2_10_42_1
– ident: e_1_2_10_17_1
– ident: e_1_2_10_43_1
  doi: 10.1016/j.agee.2015.01.005
– start-page: 992
  volume-title: Grassland Science in Europe, 13
  year: 2008
  ident: e_1_2_10_40_1
– ident: e_1_2_10_45_1
– volume-title: Marschner's mineral nutrition of higher plants
  year: 2012
  ident: e_1_2_10_38_1
– ident: e_1_2_10_49_1
  doi: 10.1111/j.1365-2494.2010.00772.x
– reference: 25602653 - J Environ Qual. 2014 Mar;43(2):517-27
SSID ssj0021760
Score 2.6249008
SecondaryResourceType review_article
Snippet Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 390
SubjectTerms Acid deposition
Acidification
Acidity
Agricultural land
Agricultural production
agricultural soils
Aluminum
ammonia
Ammonium
carbon dioxide
Carbon dioxide emissions
Cation exchange
cation exchange capacity
Cation exchanging
Cations
chemical bases
clay
Crop yield
crops
Farming
farming systems
Farms
fertilizer
Fertilizers
gases
grassland soils
Grasslands
greenhouse gas emissions
Land
legumes
Lime
lime requirement
Liming
liming materials
neutralization
Nitric acid
Nitrous oxide
nutrients
Review
Soil (material)
Soil acidification
Soil pH
Soil Physico‐chemical Properties and Their Management
Soil quality
Soils
Sulfur dioxide
sulfur fertilizers
United Kingdom
Urea
urea fertilizers
Title Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom
URI https://api.istex.fr/ark:/67375/WNG-XK974WZ5-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12270
https://www.ncbi.nlm.nih.gov/pubmed/27708478
https://www.proquest.com/docview/1816818366
https://www.proquest.com/docview/1827908042
https://www.proquest.com/docview/1835373852
https://www.proquest.com/docview/1835608965
https://www.proquest.com/docview/2000107594
https://pubmed.ncbi.nlm.nih.gov/PMC5032897
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1vuiD39bTtkQR8WWPvWTzsfSpSGtRLKKWHiKEbDZbj153y32A-Nd3Jrsbetqq-LaQSSCTmeQ32clvCHnJpKt4yTGl0ckk81mR5HrkEia1UB4M2gp84PzhUB4cZe_GYrxGdvq3MC0_RLxwQ88I-zU6uC3ml5wcFmo4YkxhvI65WgiIPkXqKEDasrtfgYg55axjFcIsnthz5Sy6iWr9cRXQ_D1f8jKODQfR_l3yrZ9Cm39yOlwuiqH7-Qu743_O8R650wFUutta1H2y5usH5Pbuyawj6fAPyexzM5lS6yYl5hmFpaW2LilgSTo5C4AeTIk2FZ1izbATamNvGHkOnecU73_pebBbTISlsdwJXTRhoBYMU6y5UjZnj8jR_t6XNwdJV7shcQIwaCIzX5YFhGNa27QCjMRU7mFX5uXIAiyolK7SoqgYL0Weeqec5rLIpNSww3jkk3xM1uum9k8IFZo75UXJcqsgmNS6yjPutIJITLtCZAPyul9F4zpic6yvMTV9gANqNEGNA_Iiip63bB5XCb0KphAl7OwU09-UMMeHb834PYRgx1-FkQOy2duK6Tx_bkZYyAT2SQnNz2Mz-Cz-iLG1b5YoA9oAqJ6xP8lwgaxT4i8yoIRciutl8CkWhPgiBz1ttGYcJ8aUSgGd6AFRKwYeBZB7fLWlnnwPHOQCeRhzBboP9nu9Ng2gg_Dx9N9Fn5FbgEtlm8q3SdYXs6XfAuy3KLbJDZZ93A6ufgFYJVap
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAcKM-ytIBBCHHJKuvEj0hcKkRZaLsHaNUVErIcxymrbpNqHxLi1zPjJFYXWkDcInlsyeMZ-xtn_A0hL5mwZVIkmNJoRZS6NI8yNbARE4pLBwZtOD5wPhyJ4XH6cczHa-RN9xam4YcIF27oGX6_RgfHC-lLXg4r1R8wJiFg38CK3j6g-hTIowBri_aGBWLmOGEtrxDm8YSuK6fRBir2-1VQ8_eMyctI1h9Fe5vkazeJJgPlrL9c5H374xd-x_-d5R1yu8WodLcxqrtkzVX3yK3d01nL0-Huk9nnejKlxk4KTDXyq0tNVVCAk3Ry7jE9WBOtSzrFsmGn1ITeMPIcOs8pXgHTC2-6mAtLQ8UTuqj9QA0eplh2pajPH5DjvXdHb4dRW74hshxgaCRSVxQ5RGRKmbgEmMRk5mBjToqBAWRQSlXGeV6ypOBZ7Ky0KhF5KoSCTcYhpeRDsl7VlXtEKFeJlY4XLDMS4kmlyixNrJIQjCmb87RHXnfLqG3LbY4lNqa6i3FAjdqrsUdeBNGLhtDjKqFX3haChJmdYQac5Ppk9F6P9yEKO_nCteiRnc5YdOv8cz3AWiawVQpofh6awW3xX4ypXL1EGdAGoPWU_Ukm4Ug8xf8iA0rIBL9eBl9jQZTPM9DTVmPHYWJMyhgAiuoRuWLhQQDpx1dbqsk3T0POkYoxk6B7b8DXa1MDQPAfj_9d9Bm5MTw6PNAHH0b72-QmwFTRZPbtkPXFbOmeABRc5E-9x_8EeFNZ7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lBdEH75fVqlFEfJllNjO5DD4V61qtLqKWLkUIM0mmLt3OLHsB8dd7TmYmdLVV8W0hJwM5-U7mO7Mn3yHkGROmTGyCJY1GRKlLiyhTAxMxobh0AOic4wXnDyOxd5C-G_PxBnnZ3YVp9CHCBzeMDH9eY4DPbHkmyGGj-gPGJOTrW6mIFUJ691PQjgKqLdoPLJAyxwlrZYWwjCdMXXsZbaFfv5_HNH8vmDxLZP2baHiNfO3W0BSgnPRXy6Jvfvwi7_ifi7xOrrYMle40kLpBNlx1k1zZOZ63Kh3uFpl_ridTmpuJxUIjv7c0rywFMkknp57RA5ZoXdIpNg07pnmYDU9ewOQFxQ_AdOaBi5WwNPQ7ocvaP6hhwxSbrtj69DY5GL7-8movaps3RIYDCY1E6qwtIB9TKo9LIElMZg6O5cQOcuAFpVRlXBQlSyzPYmekUYkoUiEUHDEOBSXvkM2qrtw9QrlKjHTcsiyXkE0qVWZpYpSEVEyZgqc98qLbRW1aZXNssDHVXYYDbtTejT3yNJjOGjmP84yeeygEi3x-gvVvkuvD0Rs93occ7PCIa9Ej2x1WdBv6Cz3ATiZwUAoYfhKGIWjxn5i8cvUKbcAbwNVT9iebhKPsFP-LDUJf8Itt8C4W5Pg8Az_dbWAcFsakjIGeqB6RawAPBig-vj5STb55EXKOQoyZBN97_F7sTQ30wP-4_--mj8mlj7tD_f7taP8BuQwcVTRlfdtkczlfuYfAA5fFIx_vPwFMz1il
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+acidification+and+the+importance+of+liming+agricultural+soils+with+particular+reference+to+the+United+Kingdom&rft.jtitle=Soil+use+and+management&rft.au=Goulding%2C+KWT&rft.date=2016-09-01&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=32&rft.issue=3&rft.spage=390&rft.epage=399&rft_id=info:doi/10.1111%2Fsum.12270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon