Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells
The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn1−xMgxO (ZMO)] as a high...
Saved in:
Published in | ChemSusChem Vol. 9; no. 18; pp. 2640 - 2647 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
22.09.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn1−xMgxO (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3NH3PbI3]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0–30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3NH3PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.
Mg+ZnO=improved stability: To improve the power conversion efficiency and the thermostability in ZnO/CH3NH3PbI3‐based perovskite solar cells (PSCs), magnesium‐doped ZnO is developed as the electron‐selective contact layer. The optimized ZMO PSCs exhibit significantly improved durability and photo‐stability. |
---|---|
AbstractList | The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn sub(1-x)Mg sub(x)O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH sub(3)NH sub(3)PbI sub( 3)]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30mol% and the corresponding devices. We achieved a maximum PCE of 16.5% with improved thermal stability of CH sub(3)NH sub(3)PbI sub(3 ) on ESL with the optimal ZMO (0.4m) containing 10mol% Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. Mg+ZnO=improved stability: To improve the power conversion efficiency and the thermostability in ZnO/CH sub(3)NH sub(3)PbI sub(3)-based perovskite solar cells (PSCs), magnesium-doped ZnO is developed as the electron-selective contact layer. The optimized ZMO PSCs exhibit significantly improved durability and photo-stability. The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn Mg O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH NH PbI ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH NH PbI on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn1-xMgxO (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3NH3PbI3]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30mol% and the corresponding devices. We achieved a maximum PCE of 16.5% with improved thermal stability of CH3NH3PbI3 on ESL with the optimal ZMO (0.4m) containing 10mol% Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn 1− x Mg x O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH 3 NH 3 PbI 3 ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0–30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH 3 NH 3 PbI 3 on ESL with the optimal ZMO (0.4 m ) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn1-x Mgx O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3 NH3 PbI3 ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3 NH3 PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn1-x Mgx O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3 NH3 PbI3 ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3 NH3 PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn1−xMgxO (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3NH3PbI3]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0–30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3NH3PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. Mg+ZnO=improved stability: To improve the power conversion efficiency and the thermostability in ZnO/CH3NH3PbI3‐based perovskite solar cells (PSCs), magnesium‐doped ZnO is developed as the electron‐selective contact layer. The optimized ZMO PSCs exhibit significantly improved durability and photo‐stability. |
Author | Tian, Wenjing Miyasaka, Tsutomu Zheng, Enqiang Chen, Gang Song, Jiaxing Liu, Leijing Wang, Xiao-Feng |
Author_xml | – sequence: 1 givenname: Jiaxing surname: Song fullname: Song, Jiaxing organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, PR China – sequence: 2 givenname: Enqiang surname: Zheng fullname: Zheng, Enqiang organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, 130012, Changchun, PR China – sequence: 3 givenname: Leijing surname: Liu fullname: Liu, Leijing organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, PR China – sequence: 4 givenname: Xiao-Feng surname: Wang fullname: Wang, Xiao-Feng email: xf_wang@jlu.edu.cn organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, 130012, Changchun, PR China – sequence: 5 givenname: Gang surname: Chen fullname: Chen, Gang organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, 130012, Changchun, PR China – sequence: 6 givenname: Wenjing surname: Tian fullname: Tian, Wenjing email: wjtian@jlu.edu.cn organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, PR China – sequence: 7 givenname: Tsutomu surname: Miyasaka fullname: Miyasaka, Tsutomu organization: Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Kanagawa, 225-8503, Yokohama, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27510561$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctv1DAQhy1URB9w5YgsceGSZfyI4xxptJRKuxRpoSAulteZILfZeGtnS_e_b6ItK1QJ0dPM4fvmod8xOehCh4S8ZjBhAPy9S8lNODAFoBU8I0dMK5nlSv442PeCHZLjlK4AFJRKvSCHvMgZ5IodkXpuf3WY_GaV1WGNNf3pO0cv7nyN1CY6bdH1MXR0gWPnb5FWoeut6-nMbjEm2oRIp03jnceup18whtt07Xuki9DaSCts2_SSPG9sm_DVQz0h3z5Ov1afstnF2Xn1YZa5XANkcindcBgy5XKuuKstF6pcQl3KBpRSmJdFrhkUQlimOQJK3Vgplw0vGqeVOCHvdnPXMdxsMPVm5ZMbLrAdhk0yTMtcc1kCfwIqclGqgrMnoLzQWhTFOPXtI_QqbGI3_DxSHLQAMVJvHqjNcoW1WUe_snFr_qQyAJMd4GJIKWKzRxiYMXYzxm72sQ-CfCQ439veD1FF69t_a-VO--1b3P5niakWi-pvN9u5PvV4t3dtvDaqEEVuvn8-M6dzfnl6Wc2NEPdVe85A |
CitedBy_id | crossref_primary_10_17714_gumusfenbil_1018705 crossref_primary_10_1021_acsaem_2c00170 crossref_primary_10_1016_j_mtener_2019_100351 crossref_primary_10_1016_j_nanoen_2017_08_008 crossref_primary_10_1002_solr_202100639 crossref_primary_10_1039_C7TA03331A crossref_primary_10_3390_coatings12121981 crossref_primary_10_1039_D2CS00810F crossref_primary_10_1016_j_orgel_2020_105959 crossref_primary_10_1039_C9TC00555B crossref_primary_10_1002_adma_201703737 crossref_primary_10_1039_C6TA07775G crossref_primary_10_1007_s40820_019_0320_y crossref_primary_10_1016_j_ceramint_2022_05_018 crossref_primary_10_1016_j_jpowsour_2018_02_030 crossref_primary_10_1039_C7TC02740K crossref_primary_10_1039_D1SE02001C crossref_primary_10_1002_aesr_202200179 crossref_primary_10_1557_s43578_021_00219_0 crossref_primary_10_1039_C9RA10771A crossref_primary_10_1142_S0217984924501823 crossref_primary_10_1002_admi_202200575 crossref_primary_10_1016_j_mssp_2019_104646 crossref_primary_10_1039_C7NR06812C crossref_primary_10_1007_s10853_021_06275_5 crossref_primary_10_1002_cssc_201701864 crossref_primary_10_1007_s11696_022_02168_2 crossref_primary_10_1002_adfm_202205909 crossref_primary_10_1016_j_solmat_2018_04_021 crossref_primary_10_1021_acsenergylett_8b00493 crossref_primary_10_1002_slct_201702419 crossref_primary_10_1021_acsnano_7b04332 crossref_primary_10_1002_smll_202403460 crossref_primary_10_1021_acsami_7b09153 crossref_primary_10_1016_j_nanoen_2018_08_031 crossref_primary_10_1016_j_jpowsour_2019_227362 crossref_primary_10_1016_j_jechem_2017_09_026 crossref_primary_10_1016_j_solmat_2019_110351 crossref_primary_10_3390_nano13152255 crossref_primary_10_1039_C9TC00401G crossref_primary_10_1039_D0MA00313A crossref_primary_10_1016_j_scib_2019_04_013 crossref_primary_10_1002_solr_202000605 crossref_primary_10_1039_C6TA08426E crossref_primary_10_1016_j_mtener_2018_07_003 crossref_primary_10_1021_acsaem_8b01623 crossref_primary_10_1088_1361_6528_ac6d69 crossref_primary_10_1039_D1CP00179E crossref_primary_10_1016_j_dyepig_2019_107630 crossref_primary_10_1016_j_nanoen_2022_107918 crossref_primary_10_1016_j_optmat_2023_114440 crossref_primary_10_1039_C8TA05946B crossref_primary_10_1016_j_hybadv_2024_100148 crossref_primary_10_1021_acsami_4c03591 crossref_primary_10_1021_acsami_8b12577 crossref_primary_10_1016_j_solener_2020_05_084 crossref_primary_10_1002_aenm_201902708 crossref_primary_10_1016_j_jpowsour_2017_04_025 crossref_primary_10_1016_j_energy_2019_116396 crossref_primary_10_1021_acs_chemrev_8b00539 crossref_primary_10_1007_s10311_020_01171_x crossref_primary_10_1039_D2TC02911A crossref_primary_10_1002_aenm_202201314 crossref_primary_10_1016_j_solmat_2023_112537 crossref_primary_10_1021_acsaem_7b00018 crossref_primary_10_1016_j_jclepro_2021_128368 crossref_primary_10_1016_j_orgel_2018_05_056 crossref_primary_10_1016_j_electacta_2018_09_097 crossref_primary_10_1016_j_solmat_2017_04_027 crossref_primary_10_1016_j_jallcom_2025_178800 crossref_primary_10_1007_s12596_024_01678_4 crossref_primary_10_1021_acsaem_2c02236 |
Cites_doi | 10.1016/j.solmat.2010.11.025 10.1021/ja809598r 10.1201/9780585418049 10.1126/science.1254050 10.1039/C5TA01207D 10.1039/C5TA04695E 10.1126/science.aaa2725 10.1039/C6TA03164A 10.1021/ja508758k 10.1039/C5EE02194D 10.1126/science.1243167 10.1002/aenm.201501493 10.1246/cl.150175 10.1038/353737a0 10.1002/aenm.201301404 10.1039/C4CC04685D 10.1039/C6TA01074A 10.1039/C6TA01839D 10.1016/j.nanoen.2014.03.016 10.1021/nn5029828 10.1021/acs.jpclett.5b00010 10.1039/C5EE02608C 10.1038/ncomms8747 10.1039/c3ta11972f 10.1021/jacs.5b01994 10.1021/jp308847g 10.1016/j.solmat.2015.09.054 10.1002/aenm.201501354 10.1246/cl.150056 10.1038/nature12340 10.1039/C5EE03874J 10.1063/1.4916345 10.1021/acsami.5b04695 10.1021/jz500059v 10.1038/nchem.1861 10.1246/cl.150246 10.1039/C5TA04239A 10.1021/jz4020162 10.1021/acs.chemmater.5b01598 10.1021/nl403997a |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. F1W H96 L.G 7X8 |
DOI | 10.1002/cssc.201600860 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 2647 |
ExternalDocumentID | 4190012281 27510561 10_1002_cssc_201600860 CSSC201600860 ark_67375_WNG_BM2VBVCM_3 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 11574111 – fundername: Graduate Innovation Fund of Jilin University – fundername: Program for Chang Jiang Scholars and Innovative Research Team in University funderid: IRT101713018 – fundername: Japan Science and Technology Agency (JST) – fundername: Open Project of State Key Laboratory of Supramolecular Structure and Materials funderid: sklssm201622 – fundername: 973 Program funderid: 2014CB643506 – fundername: Program for Changbaishan Scholars of Jilin Province funderid: 2016017; 2016068 – fundername: Natural Science Foundation of China funderid: 21221063 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAHQN AAMNL AAYCA AFWVQ ALVPJ AAYXX AEYWJ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. F1W H96 L.G 7X8 |
ID | FETCH-LOGICAL-c5800-4b4c751e16c5262cda2369b0d94f0666e5975810733a182e0e48fa44bf27fc863 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 11:51:38 EDT 2025 Fri Jul 11 10:45:42 EDT 2025 Fri Jul 11 00:04:27 EDT 2025 Fri Jul 25 12:18:38 EDT 2025 Mon Jul 21 06:02:03 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 00:35:58 EDT 2025 Wed Jan 22 16:33:54 EST 2025 Wed Oct 30 09:48:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | electron-selective contact perovskite solar cells thermostability zinc oxide |
Language | English |
License | 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5800-4b4c751e16c5262cda2369b0d94f0666e5975810733a182e0e48fa44bf27fc863 |
Notes | Program for Chang Jiang Scholars and Innovative Research Team in University - No. IRT101713018 Natural Science Foundation of China - No. 21221063 Program for Changbaishan Scholars of Jilin Province - No. 2016017; No. 2016068 Japan Science and Technology Agency (JST) ArticleID:CSSC201600860 973 Program - No. 2014CB643506 istex:2788E152F96CF29A3EF78121E44ED11C60B127F3 ark:/67375/WNG-BM2VBVCM-3 Graduate Innovation Fund of Jilin University Open Project of State Key Laboratory of Supramolecular Structure and Materials - No. sklssm201622 Natural Science Foundation of China - No. 11574111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27510561 |
PQID | 1822083032 |
PQPubID | 986333 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1845824902 proquest_miscellaneous_1835396721 proquest_miscellaneous_1827883772 proquest_journals_1822083032 pubmed_primary_27510561 crossref_primary_10_1002_cssc_201600860 crossref_citationtrail_10_1002_cssc_201600860 wiley_primary_10_1002_cssc_201600860_CSSC201600860 istex_primary_ark_67375_WNG_BM2VBVCM_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 22, 2016 |
PublicationDateYYYYMMDD | 2016-09-22 |
PublicationDate_xml | – month: 09 year: 2016 text: September 22, 2016 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316-319. C. J. Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, J. Phys. Chem. C 2013, 117, 2600-2607. B. Zimmermann, H.-F. Schleiermacher, M. Niggemann, U. Würfel, Sol. Energy Mater. Sol. Cells 2011, 95, 1587-1589. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344-347. X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, Chem. Commun. 2014, 50, 14405. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242-247. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050-6051 D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519-522. J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, J. Mater. Chem. A 2016, 4, 8435. J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, T. Miyasaka, Sol. Energy Mater. Sol. Cells 2016, 144, 623-630. Q. Hu, Y. Liu, Y. Li, L. Ying, T. Liu, F. Huang, S. Wang, W. Huang, R. Zhu, Q. Gong, J. Mater. Chem. A 2015, 3, 18483-18491. M. Park, J.-S. Park, I. K. Han, J. Y. Oh, J. Mater. Chem. A 2016, 4, 11307-11316. X. Xu, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, Q. Meng, J. Mater. Chem. A 2015, 3, 19288-19293. M. Kosmulski, Chemical Properties of Material Surfaces; Surfactant Science Series, Marcel Dekker, New York, 2001. K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, J. Phys. Chem. Lett. 2015, 6, 755-759. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542-546. D. Y. Liu, J. L. Yang, T. L. Kelly, J. Am. Chem. Soc. 2014, 136, 17116-17122. H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci. 2016, 9, 12-31. J. W. Qin Hu, C. Jiang, T. Liu, X. Que, R. Zhu, Q. Gong, ACS Nano 2014, 8, 10161-10167. Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, ACS Appl. Mater. Interfaces 2015, 7, 19986-19993. J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. N. Mora-Sero, J. Bisquert, H. J. Snaith, Nano Lett. 2014, 14, 724. L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin, S. Li, H. Yu, G. Fang, J. Mater. Chem. A 2016, 4, 8374-8383. B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740. J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Chem. Lett. 2015, 44, 610-612. Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, L. Zhou, J. Zhang, Adv. Energy Mater. 2014, 4, 1301404. S. Zhang, X. Li, X. Gao, L. Lei, X. Ding, Q. Gao, Chem. Lett. 2015, 44, 1022-1024. J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2015, 8, 2928-2934. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747. J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, G. Fang, Appl. Phys. Lett. 2015, 106, 121104. Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, Y. Ma, Adv. Energy Mater. 2016, 6, 1501493. H. Zhang, J. Mao, H. He, D. Zhang, H. L. Zhu, F. Xie, K. S. Wong, M. Grätzel, W. C. H. Choy, Adv. Energy Mater. 2015, 5, 1501354. J. Yang, B. D. Siempelkamp, E. Mosconi, F. D. Angelis, T. L. Kelly, Chem. Mater. 2015, 27, 4229-4236. P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, I. Ramiro, A. Seeds, H. Liu, Nano Energy 2014, 6, 159-166. T. Miyasaka, Chem. Lett. 2015, 44, 720-729. E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 2014, 5, 680-685. S. Yao, P. Li, J. Bian, Q. Dong, C. Im, W. Tian, J. Mater. Chem. A 2013, 1, 11443. J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, J. Mater. Chem. A 2015, 3, 10837-10844. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989-1997. H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623-3630. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730-6733. 2015; 6 2013; 4 2015; 5 2013; 1 1991; 353 2015; 3 2015; 347 2013; 342 2016; 144 2015; 106 2009; 131 2015; 8 2015; 7 2014; 136 2016; 4 2016; 6 2014; 5 2015; 27 2014; 4 2015; 137 2001 2011; 95 2015; 44 2013; 117 2013; 499 2014; 14 2014; 8 2014; 50 2014; 6 2014; 345 2016; 9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, G. Fang, Appl. Phys. Lett. 2015, 106, 121104. – reference: B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740. – reference: B. Zimmermann, H.-F. Schleiermacher, M. Niggemann, U. Würfel, Sol. Energy Mater. Sol. Cells 2011, 95, 1587-1589. – reference: J. Yang, B. D. Siempelkamp, E. Mosconi, F. D. Angelis, T. L. Kelly, Chem. Mater. 2015, 27, 4229-4236. – reference: M. Kosmulski, Chemical Properties of Material Surfaces; Surfactant Science Series, Marcel Dekker, New York, 2001. – reference: L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin, S. Li, H. Yu, G. Fang, J. Mater. Chem. A 2016, 4, 8374-8383. – reference: M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989-1997. – reference: J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, J. Mater. Chem. A 2016, 4, 8435. – reference: Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, Y. Ma, Adv. Energy Mater. 2016, 6, 1501493. – reference: C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747. – reference: J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, T. Miyasaka, Sol. Energy Mater. Sol. Cells 2016, 144, 623-630. – reference: J. W. Qin Hu, C. Jiang, T. Liu, X. Que, R. Zhu, Q. Gong, ACS Nano 2014, 8, 10161-10167. – reference: J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, J. Mater. Chem. A 2015, 3, 10837-10844. – reference: D. Y. Liu, J. L. Yang, T. L. Kelly, J. Am. Chem. Soc. 2014, 136, 17116-17122. – reference: P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, I. Ramiro, A. Seeds, H. Liu, Nano Energy 2014, 6, 159-166. – reference: C. J. Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, J. Phys. Chem. C 2013, 117, 2600-2607. – reference: S. Yao, P. Li, J. Bian, Q. Dong, C. Im, W. Tian, J. Mater. Chem. A 2013, 1, 11443. – reference: G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344-347. – reference: M. Park, J.-S. Park, I. K. Han, J. Y. Oh, J. Mater. Chem. A 2016, 4, 11307-11316. – reference: S. Zhang, X. Li, X. Gao, L. Lei, X. Ding, Q. Gao, Chem. Lett. 2015, 44, 1022-1024. – reference: D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519-522. – reference: Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, L. Zhou, J. Zhang, Adv. Energy Mater. 2014, 4, 1301404. – reference: T. Miyasaka, Chem. Lett. 2015, 44, 720-729. – reference: Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, ACS Appl. Mater. Interfaces 2015, 7, 19986-19993. – reference: S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242-247. – reference: X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, Chem. Commun. 2014, 50, 14405. – reference: J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2015, 8, 2928-2934. – reference: W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730-6733. – reference: H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542-546. – reference: A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050-6051; – reference: E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 2014, 5, 680-685. – reference: Q. Hu, Y. Liu, Y. Li, L. Ying, T. Liu, F. Huang, S. Wang, W. Huang, R. Zhu, Q. Gong, J. Mater. Chem. A 2015, 3, 18483-18491. – reference: J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Chem. Lett. 2015, 44, 610-612. – reference: J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. N. Mora-Sero, J. Bisquert, H. J. Snaith, Nano Lett. 2014, 14, 724. – reference: H. Zhang, J. Mao, H. He, D. Zhang, H. L. Zhu, F. Xie, K. S. Wong, M. Grätzel, W. C. H. Choy, Adv. Energy Mater. 2015, 5, 1501354. – reference: K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, J. Phys. Chem. Lett. 2015, 6, 755-759. – reference: J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316-319. – reference: H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci. 2016, 9, 12-31. – reference: X. Xu, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, Q. Meng, J. Mater. Chem. A 2015, 3, 19288-19293. – reference: H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623-3630. – volume: 5 start-page: 680 year: 2014 end-page: 685 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 1501354 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 start-page: 10161 year: 2014 end-page: 10167 publication-title: ACS Nano – volume: 3 start-page: 10837 year: 2015 end-page: 10844 publication-title: J. Mater. Chem. A – volume: 95 start-page: 1587 year: 2011 end-page: 1589 publication-title: Sol. Energy Mater. Sol. Cells – volume: 106 start-page: 121104 year: 2015 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 4229 year: 2015 end-page: 4236 publication-title: Chem. Mater. – volume: 499 start-page: 316 year: 2013 end-page: 319 publication-title: Nature – volume: 14 start-page: 724 year: 2014 publication-title: Nano Lett. – year: 2001 – volume: 342 start-page: 344 year: 2013 end-page: 347 publication-title: Science – volume: 44 start-page: 610 year: 2015 end-page: 612 publication-title: Chem. Lett. – volume: 4 start-page: 8374 year: 2016 end-page: 8383 publication-title: J. Mater. Chem. A – volume: 4 start-page: 11307 year: 2016 end-page: 11316 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 242 year: 2014 end-page: 247 publication-title: Nat. Chem. – volume: 8 start-page: 2928 year: 2015 end-page: 2934 publication-title: Energy Environ. Sci. – volume: 117 start-page: 2600 year: 2013 end-page: 2607 publication-title: J. Phys. Chem. C – volume: 50 start-page: 14405 year: 2014 publication-title: Chem. Commun. – volume: 131 start-page: 6050 year: 2009 end-page: 6051 publication-title: J. Am. Chem. Soc. – volume: 347 start-page: 519 year: 2015 end-page: 522 publication-title: Science – volume: 9 start-page: 1989 year: 2016 end-page: 1997 publication-title: Energy Environ. Sci. – volume: 6 start-page: 159 year: 2014 end-page: 166 publication-title: Nano Energy – volume: 4 start-page: 8435 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 755 year: 2015 end-page: 759 publication-title: J. Phys. Chem. Lett. – volume: 44 start-page: 720 year: 2015 end-page: 729 publication-title: Chem. Lett. – volume: 4 start-page: 1301404 year: 2014 publication-title: Adv. Energy Mater. – volume: 144 start-page: 623 year: 2016 end-page: 630 publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 start-page: 1501493 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 12 year: 2016 end-page: 31 publication-title: Energy Environ. Sci. – volume: 3 start-page: 18483 year: 2015 end-page: 18491 publication-title: J. Mater. Chem. A – volume: 353 start-page: 737 year: 1991 end-page: 740 publication-title: Nature – volume: 3 start-page: 19288 year: 2015 end-page: 19293 publication-title: J. Mater. Chem. A – volume: 4 start-page: 3623 year: 2013 end-page: 3630 publication-title: J. Phys. Chem. Lett. – volume: 345 start-page: 542 year: 2014 end-page: 546 publication-title: Science – volume: 44 start-page: 1022 year: 2015 end-page: 1024 publication-title: Chem. Lett. – volume: 137 start-page: 6730 year: 2015 end-page: 6733 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 17116 year: 2014 end-page: 17122 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 11443 year: 2013 publication-title: J. Mater. Chem. A – volume: 7 start-page: 19986 year: 2015 end-page: 19993 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_6_4_1 doi: 10.1016/j.solmat.2010.11.025 – ident: e_1_2_6_7_2 doi: 10.1021/ja809598r – ident: e_1_2_6_39_1 doi: 10.1201/9780585418049 – ident: e_1_2_6_10_1 doi: 10.1126/science.1254050 – ident: e_1_2_6_20_1 doi: 10.1039/C5TA01207D – ident: e_1_2_6_30_1 doi: 10.1039/C5TA04695E – ident: e_1_2_6_16_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_6_38_1 doi: 10.1039/C6TA03164A – ident: e_1_2_6_21_1 doi: 10.1021/ja508758k – ident: e_1_2_6_37_1 doi: 10.1039/C5EE02194D – ident: e_1_2_6_15_1 doi: 10.1126/science.1243167 – ident: e_1_2_6_28_1 doi: 10.1002/aenm.201501493 – ident: e_1_2_6_8_2 doi: 10.1246/cl.150175 – ident: e_1_2_6_1_1 doi: 10.1038/353737a0 – ident: e_1_2_6_35_1 doi: 10.1002/aenm.201301404 – ident: e_1_2_6_40_1 doi: 10.1039/C4CC04685D – ident: e_1_2_6_11_1 – ident: e_1_2_6_27_1 doi: 10.1039/C6TA01074A – ident: e_1_2_6_36_1 doi: 10.1039/C6TA01839D – ident: e_1_2_6_3_1 doi: 10.1016/j.nanoen.2014.03.016 – ident: e_1_2_6_18_1 doi: 10.1021/nn5029828 – ident: e_1_2_6_24_1 doi: 10.1021/acs.jpclett.5b00010 – ident: e_1_2_6_19_1 doi: 10.1039/C5EE02608C – ident: e_1_2_6_9_1 doi: 10.1038/ncomms8747 – ident: e_1_2_6_5_1 doi: 10.1039/c3ta11972f – ident: e_1_2_6_25_1 doi: 10.1021/jacs.5b01994 – ident: e_1_2_6_42_1 doi: 10.1021/jp308847g – ident: e_1_2_6_23_1 doi: 10.1016/j.solmat.2015.09.054 – ident: e_1_2_6_34_1 doi: 10.1002/aenm.201501354 – ident: e_1_2_6_26_1 doi: 10.1246/cl.150056 – ident: e_1_2_6_17_1 doi: 10.1038/nature12340 – ident: e_1_2_6_13_1 doi: 10.1039/C5EE03874J – ident: e_1_2_6_31_1 doi: 10.1063/1.4916345 – ident: e_1_2_6_33_1 doi: 10.1021/acsami.5b04695 – ident: e_1_2_6_14_1 doi: 10.1021/jz500059v – ident: e_1_2_6_2_1 doi: 10.1038/nchem.1861 – ident: e_1_2_6_41_1 doi: 10.1246/cl.150246 – ident: e_1_2_6_22_1 doi: 10.1039/C5TA04239A – ident: e_1_2_6_6_1 – ident: e_1_2_6_12_1 doi: 10.1021/jz4020162 – ident: e_1_2_6_32_1 doi: 10.1021/acs.chemmater.5b01598 – ident: e_1_2_6_29_1 doi: 10.1021/nl403997a |
SSID | ssj0060966 |
Score | 2.4581513 |
Snippet | The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE)... The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE)... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2640 |
SubjectTerms | Calcium Compounds - chemistry Contact Drug Stability Electric Power Supplies electron-selective contact Energy conversion efficiency Magnesium Magnesium - chemistry Oxides - chemistry perovskite Perovskites Photovoltaic cells Solar cells Solar Energy Stability Temperature Thermal stability thermostability Titanium - chemistry Zinc oxide Zinc Oxide - chemistry Zinc oxides |
Title | Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells |
URI | https://api.istex.fr/ark:/67375/WNG-BM2VBVCM-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201600860 https://www.ncbi.nlm.nih.gov/pubmed/27510561 https://www.proquest.com/docview/1822083032 https://www.proquest.com/docview/1827883772 https://www.proquest.com/docview/1835396721 https://www.proquest.com/docview/1845824902 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4ALlPe2BRkJwclt4leSI422VIgtiKWl4mLZjoNWXbLVZreqeuIn8Bv5JXicByyCIsEtVsZRbM_Y39jjbxB6GmljGZcliZnhhBfCEM2cJkKktJSUGxui3UeH8uCIvzoRJz_d4m_4IfoNN7CMMF-DgWtT7_4gDbV1DRSEsQRUDk47BGwBKnrX80dJj8_D9aJUciIkizvWxojurlZfWZXWoYMvfgc5VxFsWIL2byHd_XwTeXK6s1yYHXv5C6_j_7RuA91s8Sl-0SjUbXTNVXfQ9bxLC3cXlSP9yU-Pk-Xnb1--FrMzV-CPk8riNxeTwmFd42GbWAePQ4odP5tioMDSdoFfawD42ONkPAzUFX7Fw2_dfHZewyYyHoOfjXM3ndb30NH-8H1-QNpkDcQKDzoJN9wmInaxtIJKagtNmcxMVGS8BB_Jec9FpDHkiNTep3GR42mpOTclTUqbSnYfrVWzyj1EmCfAlRQbUxjLWcR1VPqJx5cyI2miowEi3WAp2zKZQ0KNqWo4mKmC3lN97w3Q817-rOHw-KPkszD2vZien0LkWyLUh8OXam9Ej_eO85FiA7TdKYdqjb5WvlnUI9qI0QF60r_2wwNnMLpys2WQSdKUeZ_mKhkmWCa9b36VDBx48izy33nQKGf_0zQB1Cx9bRpU7C-NVvl4nPelzX-ptIVuwDPE0VC6jdYW86V75MHawjwOBvkdhi41Mw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQeygX3o-lBYyE4JQ28SvZIw1bFtgsiG0L4mLZjoNW3WarzS6qOPET-I38EjzOAy2CIsHRyTiK7Rn7G3v8DUKPQ6UNZaIIIqpZwHKuA0WtCjhPSCEI08ZHu2djMTxirz7wNpoQ7sLU_BDdhhtYhp-vwcBhQ3rvJ2uoqSrgIIwEwHLntW9CWm-gz3_-rmOQEg6h-wtGiWABFzRqeRtDsrdef21d2oQuPv8d6FzHsH4ROriKdPv7dezJye5qqXfNl1-YHf-rfdfQlQai4me1Tl1Hl2x5A22lbWa4m6jI1Cc3Q05Xp9-_fsvnZzbHH6elwW_Op7nFqsKDJrcOnvgsO25CxcCCpcwSjxRgfOygMh549gq36OG3djH_XME-Mp6Aq41TO5tVt9DRweAwHQZNvobAcIc7A6aZiXlkI2E4EcTkilDR12HeZwW4SdY5LzyJIE2kcm6NDS1LCsWYLkhcmETQ22ijnJf2LsIsBrqkSOtcG0ZDpsLCzT2u1NeCxCrsoaAdLWkaMnPIqTGTNQ0zkdB7suu9HnrayZ_VNB5_lHziB78TU4sTCH6LuXw_fiH3M3K8f5xmkvbQTqsdsrH7SrpmEQdqQ0p66FH32g0PHMOo0s5XXiZOEurcmotkKKd94dzzi2TgzJP1Q_edO7V2dj9NYgDOwtUmXsf-0miZTiZpV7r3L5Ueoq3hYTaSo5fj19voMjyHsBpCdtDGcrGy9x12W-oH3jp_AMpAOU8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQJgEv3C-FAUZC8JQt8S3JI8taBqxlouwiXizbcaZqXVo1LZp44ifwG_kl-DhNoAiGBI92jqPYPsf-jn3yHYSehUobykQRRFSzgOVcB4paFXCekEIQpo2Pdu8PxO4Be3PMj3_6i7_mh2gP3MAy_HoNBj7Ni60fpKGmqoCCMBKAyp3Tvs5EmELyhp33LYGUq_G3lVEiWMAFjRraxpBsrbZf2ZbWYYTPf4c5VyGs34N615Fqvr4OPTndXMz1pvn8C7Hj_3TvBrq2BKj4Za1RN9ElW95CV7ImL9xtVPTViVsfR4uzb1--5pOpzfHHUWnwu_NRbrGqcHeZWQcPfY4dt5xi4MBSZo73FCB87IAy7nruCrfl4X07m3yq4BQZD8HRxpkdj6s76KDX_ZDtBstsDYHhDnUGTDMT88hGwnAiiMkVoSLVYZ6yApwk61wXnkSQJFI5p8aGliWFYkwXJC5MIuhdtFZOSnsfYRYDWVKkda4NoyFTYeFWHldKtSCxCjsoaCZLmiWVOWTUGMuahJlIGD3Zjl4HvWjlpzWJxx8ln_u5b8XU7BRC32Iujwav5HafHG4fZn1JO2ijUQ65tPpKum4RB2lDSjroafvYTQ9cwqjSThZeJk4S6pyai2Qop6lwzvlFMnDjydLQvederZztR5MYYLNwrYlXsb90WmbDYdaWHvxLoyfo8v5OT-69Hrx9iK5CNcTUELKB1uazhX3kgNtcP_a2-R3mkjf- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnesium-doped+Zinc+Oxide+as+Electron+Selective+Contact+Layers+for+Efficient+Perovskite+Solar+Cells&rft.jtitle=ChemSusChem&rft.au=Song%2C+Jiaxing&rft.au=Zheng%2C+Enqiang&rft.au=Liu%2C+Leijing&rft.au=Wang%2C+Xiao-Feng&rft.date=2016-09-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=9&rft.issue=18&rft.spage=2640&rft_id=info:doi/10.1002%2Fcssc.201600860&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4190012281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |