Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells

The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn1−xMgxO (ZMO)] as a high...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 9; no. 18; pp. 2640 - 2647
Main Authors Song, Jiaxing, Zheng, Enqiang, Liu, Leijing, Wang, Xiao-Feng, Chen, Gang, Tian, Wenjing, Miyasaka, Tsutomu
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 22.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn1−xMgxO (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3NH3PbI3]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0–30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3NH3PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. Mg+ZnO=improved stability: To improve the power conversion efficiency and the thermostability in ZnO/CH3NH3PbI3‐based perovskite solar cells (PSCs), magnesium‐doped ZnO is developed as the electron‐selective contact layer. The optimized ZMO PSCs exhibit significantly improved durability and photo‐stability.
AbstractList The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn sub(1-x)Mg sub(x)O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH sub(3)NH sub(3)PbI sub( 3)]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30mol% and the corresponding devices. We achieved a maximum PCE of 16.5% with improved thermal stability of CH sub(3)NH sub(3)PbI sub(3 ) on ESL with the optimal ZMO (0.4m) containing 10mol% Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. Mg+ZnO=improved stability: To improve the power conversion efficiency and the thermostability in ZnO/CH sub(3)NH sub(3)PbI sub(3)-based perovskite solar cells (PSCs), magnesium-doped ZnO is developed as the electron-selective contact layer. The optimized ZMO PSCs exhibit significantly improved durability and photo-stability.
The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn Mg O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH NH PbI ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH NH PbI on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.
The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn1-xMgxO (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3NH3PbI3]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30mol% and the corresponding devices. We achieved a maximum PCE of 16.5% with improved thermal stability of CH3NH3PbI3 on ESL with the optimal ZMO (0.4m) containing 10mol% Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.
The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn 1− x Mg x O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH 3 NH 3 PbI 3 ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0–30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH 3 NH 3 PbI 3 on ESL with the optimal ZMO (0.4  m ) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.
The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn1-x Mgx O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3 NH3 PbI3 ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3 NH3 PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO-based PSCs, we developed Mg-doped ZnO [Zn1-x Mgx O (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3 NH3 PbI3 ]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0-30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3 NH3 PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO.
The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE) but also the thermostability of PSCs. To improve the thermostability of ZnO‐based PSCs, we developed Mg‐doped ZnO [Zn1−xMgxO (ZMO)] as a high optical transmittance ESL for the methylammonium lead trihalide perovskite absorber [CH3NH3PbI3]. We further investigated the optical and electrical properties of the ESL films with Mg contents of 0–30 mol % and the corresponding devices. We achieved a maximum PCE of 16.5 % with improved thermal stability of CH3NH3PbI3 on ESL with the optimal ZMO (0.4 m) containing 10 mol % Mg. Moreover, this optimized ZMO PSC exhibited significantly improved durability and photostability owing to the improved chemical/photochemical stability of the wider optical bandgap ZMO. Mg+ZnO=improved stability: To improve the power conversion efficiency and the thermostability in ZnO/CH3NH3PbI3‐based perovskite solar cells (PSCs), magnesium‐doped ZnO is developed as the electron‐selective contact layer. The optimized ZMO PSCs exhibit significantly improved durability and photo‐stability.
Author Tian, Wenjing
Miyasaka, Tsutomu
Zheng, Enqiang
Chen, Gang
Song, Jiaxing
Liu, Leijing
Wang, Xiao-Feng
Author_xml – sequence: 1
  givenname: Jiaxing
  surname: Song
  fullname: Song, Jiaxing
  organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, PR China
– sequence: 2
  givenname: Enqiang
  surname: Zheng
  fullname: Zheng, Enqiang
  organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, 130012, Changchun, PR China
– sequence: 3
  givenname: Leijing
  surname: Liu
  fullname: Liu, Leijing
  organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, PR China
– sequence: 4
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
  email: xf_wang@jlu.edu.cn
  organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, 130012, Changchun, PR China
– sequence: 5
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, 130012, Changchun, PR China
– sequence: 6
  givenname: Wenjing
  surname: Tian
  fullname: Tian, Wenjing
  email: wjtian@jlu.edu.cn
  organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 130012, Changchun, PR China
– sequence: 7
  givenname: Tsutomu
  surname: Miyasaka
  fullname: Miyasaka, Tsutomu
  organization: Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Kanagawa, 225-8503, Yokohama, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27510561$$D View this record in MEDLINE/PubMed
BookMark eNqNkctv1DAQhy1URB9w5YgsceGSZfyI4xxptJRKuxRpoSAulteZILfZeGtnS_e_b6ItK1QJ0dPM4fvmod8xOehCh4S8ZjBhAPy9S8lNODAFoBU8I0dMK5nlSv442PeCHZLjlK4AFJRKvSCHvMgZ5IodkXpuf3WY_GaV1WGNNf3pO0cv7nyN1CY6bdH1MXR0gWPnb5FWoeut6-nMbjEm2oRIp03jnceup18whtt07Xuki9DaSCts2_SSPG9sm_DVQz0h3z5Ov1afstnF2Xn1YZa5XANkcindcBgy5XKuuKstF6pcQl3KBpRSmJdFrhkUQlimOQJK3Vgplw0vGqeVOCHvdnPXMdxsMPVm5ZMbLrAdhk0yTMtcc1kCfwIqclGqgrMnoLzQWhTFOPXtI_QqbGI3_DxSHLQAMVJvHqjNcoW1WUe_snFr_qQyAJMd4GJIKWKzRxiYMXYzxm72sQ-CfCQ439veD1FF69t_a-VO--1b3P5niakWi-pvN9u5PvV4t3dtvDaqEEVuvn8-M6dzfnl6Wc2NEPdVe85A
CitedBy_id crossref_primary_10_17714_gumusfenbil_1018705
crossref_primary_10_1021_acsaem_2c00170
crossref_primary_10_1016_j_mtener_2019_100351
crossref_primary_10_1016_j_nanoen_2017_08_008
crossref_primary_10_1002_solr_202100639
crossref_primary_10_1039_C7TA03331A
crossref_primary_10_3390_coatings12121981
crossref_primary_10_1039_D2CS00810F
crossref_primary_10_1016_j_orgel_2020_105959
crossref_primary_10_1039_C9TC00555B
crossref_primary_10_1002_adma_201703737
crossref_primary_10_1039_C6TA07775G
crossref_primary_10_1007_s40820_019_0320_y
crossref_primary_10_1016_j_ceramint_2022_05_018
crossref_primary_10_1016_j_jpowsour_2018_02_030
crossref_primary_10_1039_C7TC02740K
crossref_primary_10_1039_D1SE02001C
crossref_primary_10_1002_aesr_202200179
crossref_primary_10_1557_s43578_021_00219_0
crossref_primary_10_1039_C9RA10771A
crossref_primary_10_1142_S0217984924501823
crossref_primary_10_1002_admi_202200575
crossref_primary_10_1016_j_mssp_2019_104646
crossref_primary_10_1039_C7NR06812C
crossref_primary_10_1007_s10853_021_06275_5
crossref_primary_10_1002_cssc_201701864
crossref_primary_10_1007_s11696_022_02168_2
crossref_primary_10_1002_adfm_202205909
crossref_primary_10_1016_j_solmat_2018_04_021
crossref_primary_10_1021_acsenergylett_8b00493
crossref_primary_10_1002_slct_201702419
crossref_primary_10_1021_acsnano_7b04332
crossref_primary_10_1002_smll_202403460
crossref_primary_10_1021_acsami_7b09153
crossref_primary_10_1016_j_nanoen_2018_08_031
crossref_primary_10_1016_j_jpowsour_2019_227362
crossref_primary_10_1016_j_jechem_2017_09_026
crossref_primary_10_1016_j_solmat_2019_110351
crossref_primary_10_3390_nano13152255
crossref_primary_10_1039_C9TC00401G
crossref_primary_10_1039_D0MA00313A
crossref_primary_10_1016_j_scib_2019_04_013
crossref_primary_10_1002_solr_202000605
crossref_primary_10_1039_C6TA08426E
crossref_primary_10_1016_j_mtener_2018_07_003
crossref_primary_10_1021_acsaem_8b01623
crossref_primary_10_1088_1361_6528_ac6d69
crossref_primary_10_1039_D1CP00179E
crossref_primary_10_1016_j_dyepig_2019_107630
crossref_primary_10_1016_j_nanoen_2022_107918
crossref_primary_10_1016_j_optmat_2023_114440
crossref_primary_10_1039_C8TA05946B
crossref_primary_10_1016_j_hybadv_2024_100148
crossref_primary_10_1021_acsami_4c03591
crossref_primary_10_1021_acsami_8b12577
crossref_primary_10_1016_j_solener_2020_05_084
crossref_primary_10_1002_aenm_201902708
crossref_primary_10_1016_j_jpowsour_2017_04_025
crossref_primary_10_1016_j_energy_2019_116396
crossref_primary_10_1021_acs_chemrev_8b00539
crossref_primary_10_1007_s10311_020_01171_x
crossref_primary_10_1039_D2TC02911A
crossref_primary_10_1002_aenm_202201314
crossref_primary_10_1016_j_solmat_2023_112537
crossref_primary_10_1021_acsaem_7b00018
crossref_primary_10_1016_j_jclepro_2021_128368
crossref_primary_10_1016_j_orgel_2018_05_056
crossref_primary_10_1016_j_electacta_2018_09_097
crossref_primary_10_1016_j_solmat_2017_04_027
crossref_primary_10_1016_j_jallcom_2025_178800
crossref_primary_10_1007_s12596_024_01678_4
crossref_primary_10_1021_acsaem_2c02236
Cites_doi 10.1016/j.solmat.2010.11.025
10.1021/ja809598r
10.1201/9780585418049
10.1126/science.1254050
10.1039/C5TA01207D
10.1039/C5TA04695E
10.1126/science.aaa2725
10.1039/C6TA03164A
10.1021/ja508758k
10.1039/C5EE02194D
10.1126/science.1243167
10.1002/aenm.201501493
10.1246/cl.150175
10.1038/353737a0
10.1002/aenm.201301404
10.1039/C4CC04685D
10.1039/C6TA01074A
10.1039/C6TA01839D
10.1016/j.nanoen.2014.03.016
10.1021/nn5029828
10.1021/acs.jpclett.5b00010
10.1039/C5EE02608C
10.1038/ncomms8747
10.1039/c3ta11972f
10.1021/jacs.5b01994
10.1021/jp308847g
10.1016/j.solmat.2015.09.054
10.1002/aenm.201501354
10.1246/cl.150056
10.1038/nature12340
10.1039/C5EE03874J
10.1063/1.4916345
10.1021/acsami.5b04695
10.1021/jz500059v
10.1038/nchem.1861
10.1246/cl.150246
10.1039/C5TA04239A
10.1021/jz4020162
10.1021/acs.chemmater.5b01598
10.1021/nl403997a
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
F1W
H96
L.G
7X8
DOI 10.1002/cssc.201600860
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 2647
ExternalDocumentID 4190012281
27510561
10_1002_cssc_201600860
CSSC201600860
ark_67375_WNG_BM2VBVCM_3
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 11574111
– fundername: Graduate Innovation Fund of Jilin University
– fundername: Program for Chang Jiang Scholars and Innovative Research Team in University
  funderid: IRT101713018
– fundername: Japan Science and Technology Agency (JST)
– fundername: Open Project of State Key Laboratory of Supramolecular Structure and Materials
  funderid: sklssm201622
– fundername: 973 Program
  funderid: 2014CB643506
– fundername: Program for Changbaishan Scholars of Jilin Province
  funderid: 2016017; 2016068
– fundername: Natural Science Foundation of China
  funderid: 21221063
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAHQN
AAMNL
AAYCA
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
F1W
H96
L.G
7X8
ID FETCH-LOGICAL-c5800-4b4c751e16c5262cda2369b0d94f0666e5975810733a182e0e48fa44bf27fc863
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 11:51:38 EDT 2025
Fri Jul 11 10:45:42 EDT 2025
Fri Jul 11 00:04:27 EDT 2025
Fri Jul 25 12:18:38 EDT 2025
Mon Jul 21 06:02:03 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 00:35:58 EDT 2025
Wed Jan 22 16:33:54 EST 2025
Wed Oct 30 09:48:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords electron-selective contact
perovskite
solar cells
thermostability
zinc oxide
Language English
License 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5800-4b4c751e16c5262cda2369b0d94f0666e5975810733a182e0e48fa44bf27fc863
Notes Program for Chang Jiang Scholars and Innovative Research Team in University - No. IRT101713018
Natural Science Foundation of China - No. 21221063
Program for Changbaishan Scholars of Jilin Province - No. 2016017; No. 2016068
Japan Science and Technology Agency (JST)
ArticleID:CSSC201600860
973 Program - No. 2014CB643506
istex:2788E152F96CF29A3EF78121E44ED11C60B127F3
ark:/67375/WNG-BM2VBVCM-3
Graduate Innovation Fund of Jilin University
Open Project of State Key Laboratory of Supramolecular Structure and Materials - No. sklssm201622
Natural Science Foundation of China - No. 11574111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27510561
PQID 1822083032
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_1845824902
proquest_miscellaneous_1835396721
proquest_miscellaneous_1827883772
proquest_journals_1822083032
pubmed_primary_27510561
crossref_primary_10_1002_cssc_201600860
crossref_citationtrail_10_1002_cssc_201600860
wiley_primary_10_1002_cssc_201600860_CSSC201600860
istex_primary_ark_67375_WNG_BM2VBVCM_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 22, 2016
PublicationDateYYYYMMDD 2016-09-22
PublicationDate_xml – month: 09
  year: 2016
  text: September 22, 2016
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316-319.
C. J. Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, J. Phys. Chem. C 2013, 117, 2600-2607.
B. Zimmermann, H.-F. Schleiermacher, M. Niggemann, U. Würfel, Sol. Energy Mater. Sol. Cells 2011, 95, 1587-1589.
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344-347.
X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, Chem. Commun. 2014, 50, 14405.
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242-247.
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050-6051
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519-522.
J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, J. Mater. Chem. A 2016, 4, 8435.
J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, T. Miyasaka, Sol. Energy Mater. Sol. Cells 2016, 144, 623-630.
Q. Hu, Y. Liu, Y. Li, L. Ying, T. Liu, F. Huang, S. Wang, W. Huang, R. Zhu, Q. Gong, J. Mater. Chem. A 2015, 3, 18483-18491.
M. Park, J.-S. Park, I. K. Han, J. Y. Oh, J. Mater. Chem. A 2016, 4, 11307-11316.
X. Xu, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, Q. Meng, J. Mater. Chem. A 2015, 3, 19288-19293.
M. Kosmulski, Chemical Properties of Material Surfaces; Surfactant Science Series, Marcel Dekker, New York, 2001.
K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, J. Phys. Chem. Lett. 2015, 6, 755-759.
H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542-546.
D. Y. Liu, J. L. Yang, T. L. Kelly, J. Am. Chem. Soc. 2014, 136, 17116-17122.
H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci. 2016, 9, 12-31.
J. W. Qin Hu, C. Jiang, T. Liu, X. Que, R. Zhu, Q. Gong, ACS Nano 2014, 8, 10161-10167.
Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, ACS Appl. Mater. Interfaces 2015, 7, 19986-19993.
J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. N. Mora-Sero, J. Bisquert, H. J. Snaith, Nano Lett. 2014, 14, 724.
L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin, S. Li, H. Yu, G. Fang, J. Mater. Chem. A 2016, 4, 8374-8383.
B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740.
J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Chem. Lett. 2015, 44, 610-612.
Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, L. Zhou, J. Zhang, Adv. Energy Mater. 2014, 4, 1301404.
S. Zhang, X. Li, X. Gao, L. Lei, X. Ding, Q. Gao, Chem. Lett. 2015, 44, 1022-1024.
J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2015, 8, 2928-2934.
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.
J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, G. Fang, Appl. Phys. Lett. 2015, 106, 121104.
Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, Y. Ma, Adv. Energy Mater. 2016, 6, 1501493.
H. Zhang, J. Mao, H. He, D. Zhang, H. L. Zhu, F. Xie, K. S. Wong, M. Grätzel, W. C. H. Choy, Adv. Energy Mater. 2015, 5, 1501354.
J. Yang, B. D. Siempelkamp, E. Mosconi, F. D. Angelis, T. L. Kelly, Chem. Mater. 2015, 27, 4229-4236.
P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, I. Ramiro, A. Seeds, H. Liu, Nano Energy 2014, 6, 159-166.
T. Miyasaka, Chem. Lett. 2015, 44, 720-729.
E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 2014, 5, 680-685.
S. Yao, P. Li, J. Bian, Q. Dong, C. Im, W. Tian, J. Mater. Chem. A 2013, 1, 11443.
J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, J. Mater. Chem. A 2015, 3, 10837-10844.
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989-1997.
H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623-3630.
W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730-6733.
2015; 6
2013; 4
2015; 5
2013; 1
1991; 353
2015; 3
2015; 347
2013; 342
2016; 144
2015; 106
2009; 131
2015; 8
2015; 7
2014; 136
2016; 4
2016; 6
2014; 5
2015; 27
2014; 4
2015; 137
2001
2011; 95
2015; 44
2013; 117
2013; 499
2014; 14
2014; 8
2014; 50
2014; 6
2014; 345
2016; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, G. Fang, Appl. Phys. Lett. 2015, 106, 121104.
– reference: B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740.
– reference: B. Zimmermann, H.-F. Schleiermacher, M. Niggemann, U. Würfel, Sol. Energy Mater. Sol. Cells 2011, 95, 1587-1589.
– reference: J. Yang, B. D. Siempelkamp, E. Mosconi, F. D. Angelis, T. L. Kelly, Chem. Mater. 2015, 27, 4229-4236.
– reference: M. Kosmulski, Chemical Properties of Material Surfaces; Surfactant Science Series, Marcel Dekker, New York, 2001.
– reference: L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin, S. Li, H. Yu, G. Fang, J. Mater. Chem. A 2016, 4, 8374-8383.
– reference: M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989-1997.
– reference: J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, J. Mater. Chem. A 2016, 4, 8435.
– reference: Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, Y. Ma, Adv. Energy Mater. 2016, 6, 1501493.
– reference: C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.
– reference: J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, T. Miyasaka, Sol. Energy Mater. Sol. Cells 2016, 144, 623-630.
– reference: J. W. Qin Hu, C. Jiang, T. Liu, X. Que, R. Zhu, Q. Gong, ACS Nano 2014, 8, 10161-10167.
– reference: J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, J. Mater. Chem. A 2015, 3, 10837-10844.
– reference: D. Y. Liu, J. L. Yang, T. L. Kelly, J. Am. Chem. Soc. 2014, 136, 17116-17122.
– reference: P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, I. Ramiro, A. Seeds, H. Liu, Nano Energy 2014, 6, 159-166.
– reference: C. J. Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, J. Phys. Chem. C 2013, 117, 2600-2607.
– reference: S. Yao, P. Li, J. Bian, Q. Dong, C. Im, W. Tian, J. Mater. Chem. A 2013, 1, 11443.
– reference: G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344-347.
– reference: M. Park, J.-S. Park, I. K. Han, J. Y. Oh, J. Mater. Chem. A 2016, 4, 11307-11316.
– reference: S. Zhang, X. Li, X. Gao, L. Lei, X. Ding, Q. Gao, Chem. Lett. 2015, 44, 1022-1024.
– reference: D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519-522.
– reference: Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, L. Zhou, J. Zhang, Adv. Energy Mater. 2014, 4, 1301404.
– reference: T. Miyasaka, Chem. Lett. 2015, 44, 720-729.
– reference: Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, ACS Appl. Mater. Interfaces 2015, 7, 19986-19993.
– reference: S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242-247.
– reference: X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, Chem. Commun. 2014, 50, 14405.
– reference: J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2015, 8, 2928-2934.
– reference: W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730-6733.
– reference: H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542-546.
– reference: A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050-6051;
– reference: E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 2014, 5, 680-685.
– reference: Q. Hu, Y. Liu, Y. Li, L. Ying, T. Liu, F. Huang, S. Wang, W. Huang, R. Zhu, Q. Gong, J. Mater. Chem. A 2015, 3, 18483-18491.
– reference: J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Chem. Lett. 2015, 44, 610-612.
– reference: J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. N. Mora-Sero, J. Bisquert, H. J. Snaith, Nano Lett. 2014, 14, 724.
– reference: H. Zhang, J. Mao, H. He, D. Zhang, H. L. Zhu, F. Xie, K. S. Wong, M. Grätzel, W. C. H. Choy, Adv. Energy Mater. 2015, 5, 1501354.
– reference: K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, J. Phys. Chem. Lett. 2015, 6, 755-759.
– reference: J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316-319.
– reference: H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci. 2016, 9, 12-31.
– reference: X. Xu, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, Q. Meng, J. Mater. Chem. A 2015, 3, 19288-19293.
– reference: H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623-3630.
– volume: 5
  start-page: 680
  year: 2014
  end-page: 685
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 1501354
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 10161
  year: 2014
  end-page: 10167
  publication-title: ACS Nano
– volume: 3
  start-page: 10837
  year: 2015
  end-page: 10844
  publication-title: J. Mater. Chem. A
– volume: 95
  start-page: 1587
  year: 2011
  end-page: 1589
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 106
  start-page: 121104
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 4229
  year: 2015
  end-page: 4236
  publication-title: Chem. Mater.
– volume: 499
  start-page: 316
  year: 2013
  end-page: 319
  publication-title: Nature
– volume: 14
  start-page: 724
  year: 2014
  publication-title: Nano Lett.
– year: 2001
– volume: 342
  start-page: 344
  year: 2013
  end-page: 347
  publication-title: Science
– volume: 44
  start-page: 610
  year: 2015
  end-page: 612
  publication-title: Chem. Lett.
– volume: 4
  start-page: 8374
  year: 2016
  end-page: 8383
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 11307
  year: 2016
  end-page: 11316
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 242
  year: 2014
  end-page: 247
  publication-title: Nat. Chem.
– volume: 8
  start-page: 2928
  year: 2015
  end-page: 2934
  publication-title: Energy Environ. Sci.
– volume: 117
  start-page: 2600
  year: 2013
  end-page: 2607
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 14405
  year: 2014
  publication-title: Chem. Commun.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  publication-title: J. Am. Chem. Soc.
– volume: 347
  start-page: 519
  year: 2015
  end-page: 522
  publication-title: Science
– volume: 9
  start-page: 1989
  year: 2016
  end-page: 1997
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 159
  year: 2014
  end-page: 166
  publication-title: Nano Energy
– volume: 4
  start-page: 8435
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 755
  year: 2015
  end-page: 759
  publication-title: J. Phys. Chem. Lett.
– volume: 44
  start-page: 720
  year: 2015
  end-page: 729
  publication-title: Chem. Lett.
– volume: 4
  start-page: 1301404
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 144
  start-page: 623
  year: 2016
  end-page: 630
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 6
  start-page: 1501493
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 12
  year: 2016
  end-page: 31
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 18483
  year: 2015
  end-page: 18491
  publication-title: J. Mater. Chem. A
– volume: 353
  start-page: 737
  year: 1991
  end-page: 740
  publication-title: Nature
– volume: 3
  start-page: 19288
  year: 2015
  end-page: 19293
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 3623
  year: 2013
  end-page: 3630
  publication-title: J. Phys. Chem. Lett.
– volume: 345
  start-page: 542
  year: 2014
  end-page: 546
  publication-title: Science
– volume: 44
  start-page: 1022
  year: 2015
  end-page: 1024
  publication-title: Chem. Lett.
– volume: 137
  start-page: 6730
  year: 2015
  end-page: 6733
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 17116
  year: 2014
  end-page: 17122
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 11443
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 19986
  year: 2015
  end-page: 19993
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_6_4_1
  doi: 10.1016/j.solmat.2010.11.025
– ident: e_1_2_6_7_2
  doi: 10.1021/ja809598r
– ident: e_1_2_6_39_1
  doi: 10.1201/9780585418049
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1254050
– ident: e_1_2_6_20_1
  doi: 10.1039/C5TA01207D
– ident: e_1_2_6_30_1
  doi: 10.1039/C5TA04695E
– ident: e_1_2_6_16_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_6_38_1
  doi: 10.1039/C6TA03164A
– ident: e_1_2_6_21_1
  doi: 10.1021/ja508758k
– ident: e_1_2_6_37_1
  doi: 10.1039/C5EE02194D
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1243167
– ident: e_1_2_6_28_1
  doi: 10.1002/aenm.201501493
– ident: e_1_2_6_8_2
  doi: 10.1246/cl.150175
– ident: e_1_2_6_1_1
  doi: 10.1038/353737a0
– ident: e_1_2_6_35_1
  doi: 10.1002/aenm.201301404
– ident: e_1_2_6_40_1
  doi: 10.1039/C4CC04685D
– ident: e_1_2_6_11_1
– ident: e_1_2_6_27_1
  doi: 10.1039/C6TA01074A
– ident: e_1_2_6_36_1
  doi: 10.1039/C6TA01839D
– ident: e_1_2_6_3_1
  doi: 10.1016/j.nanoen.2014.03.016
– ident: e_1_2_6_18_1
  doi: 10.1021/nn5029828
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.jpclett.5b00010
– ident: e_1_2_6_19_1
  doi: 10.1039/C5EE02608C
– ident: e_1_2_6_9_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_6_5_1
  doi: 10.1039/c3ta11972f
– ident: e_1_2_6_25_1
  doi: 10.1021/jacs.5b01994
– ident: e_1_2_6_42_1
  doi: 10.1021/jp308847g
– ident: e_1_2_6_23_1
  doi: 10.1016/j.solmat.2015.09.054
– ident: e_1_2_6_34_1
  doi: 10.1002/aenm.201501354
– ident: e_1_2_6_26_1
  doi: 10.1246/cl.150056
– ident: e_1_2_6_17_1
  doi: 10.1038/nature12340
– ident: e_1_2_6_13_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_6_31_1
  doi: 10.1063/1.4916345
– ident: e_1_2_6_33_1
  doi: 10.1021/acsami.5b04695
– ident: e_1_2_6_14_1
  doi: 10.1021/jz500059v
– ident: e_1_2_6_2_1
  doi: 10.1038/nchem.1861
– ident: e_1_2_6_41_1
  doi: 10.1246/cl.150246
– ident: e_1_2_6_22_1
  doi: 10.1039/C5TA04239A
– ident: e_1_2_6_6_1
– ident: e_1_2_6_12_1
  doi: 10.1021/jz4020162
– ident: e_1_2_6_32_1
  doi: 10.1021/acs.chemmater.5b01598
– ident: e_1_2_6_29_1
  doi: 10.1021/nl403997a
SSID ssj0060966
Score 2.4581513
Snippet The electron‐selective contact layer (ESL) in organometal halide‐based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE)...
The electron-selective contact layer (ESL) in organometal halide-based perovskite solar cells (PSCs) determines not only the power conversion efficiency (PCE)...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2640
SubjectTerms Calcium Compounds - chemistry
Contact
Drug Stability
Electric Power Supplies
electron-selective contact
Energy conversion efficiency
Magnesium
Magnesium - chemistry
Oxides - chemistry
perovskite
Perovskites
Photovoltaic cells
Solar cells
Solar Energy
Stability
Temperature
Thermal stability
thermostability
Titanium - chemistry
Zinc oxide
Zinc Oxide - chemistry
Zinc oxides
Title Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells
URI https://api.istex.fr/ark:/67375/WNG-BM2VBVCM-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201600860
https://www.ncbi.nlm.nih.gov/pubmed/27510561
https://www.proquest.com/docview/1822083032
https://www.proquest.com/docview/1827883772
https://www.proquest.com/docview/1835396721
https://www.proquest.com/docview/1845824902
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4ALlPe2BRkJwclt4leSI422VIgtiKWl4mLZjoNWXbLVZreqeuIn8Bv5JXicByyCIsEtVsZRbM_Y39jjbxB6GmljGZcliZnhhBfCEM2cJkKktJSUGxui3UeH8uCIvzoRJz_d4m_4IfoNN7CMMF-DgWtT7_4gDbV1DRSEsQRUDk47BGwBKnrX80dJj8_D9aJUciIkizvWxojurlZfWZXWoYMvfgc5VxFsWIL2byHd_XwTeXK6s1yYHXv5C6_j_7RuA91s8Sl-0SjUbXTNVXfQ9bxLC3cXlSP9yU-Pk-Xnb1--FrMzV-CPk8riNxeTwmFd42GbWAePQ4odP5tioMDSdoFfawD42ONkPAzUFX7Fw2_dfHZewyYyHoOfjXM3ndb30NH-8H1-QNpkDcQKDzoJN9wmInaxtIJKagtNmcxMVGS8BB_Jec9FpDHkiNTep3GR42mpOTclTUqbSnYfrVWzyj1EmCfAlRQbUxjLWcR1VPqJx5cyI2miowEi3WAp2zKZQ0KNqWo4mKmC3lN97w3Q817-rOHw-KPkszD2vZien0LkWyLUh8OXam9Ej_eO85FiA7TdKYdqjb5WvlnUI9qI0QF60r_2wwNnMLpys2WQSdKUeZ_mKhkmWCa9b36VDBx48izy33nQKGf_0zQB1Cx9bRpU7C-NVvl4nPelzX-ptIVuwDPE0VC6jdYW86V75MHawjwOBvkdhi41Mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQeygX3o-lBYyE4JQ28SvZIw1bFtgsiG0L4mLZjoNW3WarzS6qOPET-I38EjzOAy2CIsHRyTiK7Rn7G3v8DUKPQ6UNZaIIIqpZwHKuA0WtCjhPSCEI08ZHu2djMTxirz7wNpoQ7sLU_BDdhhtYhp-vwcBhQ3rvJ2uoqSrgIIwEwHLntW9CWm-gz3_-rmOQEg6h-wtGiWABFzRqeRtDsrdef21d2oQuPv8d6FzHsH4ROriKdPv7dezJye5qqXfNl1-YHf-rfdfQlQai4me1Tl1Hl2x5A22lbWa4m6jI1Cc3Q05Xp9-_fsvnZzbHH6elwW_Op7nFqsKDJrcOnvgsO25CxcCCpcwSjxRgfOygMh549gq36OG3djH_XME-Mp6Aq41TO5tVt9DRweAwHQZNvobAcIc7A6aZiXlkI2E4EcTkilDR12HeZwW4SdY5LzyJIE2kcm6NDS1LCsWYLkhcmETQ22ijnJf2LsIsBrqkSOtcG0ZDpsLCzT2u1NeCxCrsoaAdLWkaMnPIqTGTNQ0zkdB7suu9HnrayZ_VNB5_lHziB78TU4sTCH6LuXw_fiH3M3K8f5xmkvbQTqsdsrH7SrpmEQdqQ0p66FH32g0PHMOo0s5XXiZOEurcmotkKKd94dzzi2TgzJP1Q_edO7V2dj9NYgDOwtUmXsf-0miZTiZpV7r3L5Ueoq3hYTaSo5fj19voMjyHsBpCdtDGcrGy9x12W-oH3jp_AMpAOU8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQJgEv3C-FAUZC8JQt8S3JI8taBqxlouwiXizbcaZqXVo1LZp44ifwG_kl-DhNoAiGBI92jqPYPsf-jn3yHYSehUobykQRRFSzgOVcB4paFXCekEIQpo2Pdu8PxO4Be3PMj3_6i7_mh2gP3MAy_HoNBj7Ni60fpKGmqoCCMBKAyp3Tvs5EmELyhp33LYGUq_G3lVEiWMAFjRraxpBsrbZf2ZbWYYTPf4c5VyGs34N615Fqvr4OPTndXMz1pvn8C7Hj_3TvBrq2BKj4Za1RN9ElW95CV7ImL9xtVPTViVsfR4uzb1--5pOpzfHHUWnwu_NRbrGqcHeZWQcPfY4dt5xi4MBSZo73FCB87IAy7nruCrfl4X07m3yq4BQZD8HRxpkdj6s76KDX_ZDtBstsDYHhDnUGTDMT88hGwnAiiMkVoSLVYZ6yApwk61wXnkSQJFI5p8aGliWFYkwXJC5MIuhdtFZOSnsfYRYDWVKkda4NoyFTYeFWHldKtSCxCjsoaCZLmiWVOWTUGMuahJlIGD3Zjl4HvWjlpzWJxx8ln_u5b8XU7BRC32Iujwav5HafHG4fZn1JO2ijUQ65tPpKum4RB2lDSjroafvYTQ9cwqjSThZeJk4S6pyai2Qop6lwzvlFMnDjydLQvederZztR5MYYLNwrYlXsb90WmbDYdaWHvxLoyfo8v5OT-69Hrx9iK5CNcTUELKB1uazhX3kgNtcP_a2-R3mkjf-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnesium-doped+Zinc+Oxide+as+Electron+Selective+Contact+Layers+for+Efficient+Perovskite+Solar+Cells&rft.jtitle=ChemSusChem&rft.au=Song%2C+Jiaxing&rft.au=Zheng%2C+Enqiang&rft.au=Liu%2C+Leijing&rft.au=Wang%2C+Xiao-Feng&rft.date=2016-09-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=9&rft.issue=18&rft.spage=2640&rft_id=info:doi/10.1002%2Fcssc.201600860&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4190012281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon