Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding

To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRN...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 13; pp. 5215 - 5220
Main Authors Schrader, Jared M, Chapman, Stephen J, Uhlenbeck, Olke C
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.03.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
AbstractList To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu{bullet}GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu-GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. [PUBLICATION ABSTRACT]
Author Schrader, Jared M
Uhlenbeck, Olke C
Chapman, Stephen J
Author_xml – sequence: 1
  fullname: Schrader, Jared M
– sequence: 2
  fullname: Chapman, Stephen J
– sequence: 3
  fullname: Uhlenbeck, Olke C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21402928$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFMycg4gKXtDNO7NgXpKriS6pAKtuz5XXsrVdZe4kTpP3vcdhtFyoBpznMb57mzbwTchRisIQ8RzhDaKrzTdDpDBEoUoEgHpEZgsSS1xKOyAyANqWoaX1MTlJaAYBkAp6QY4o1UEnFjFzPx-DDshhubaGd88EP2yK6Qq99iNpsu3K4_nJRDLGwXQxLPfgYCqfNEPtiPhYul7gZ_Fp3RWtNbLPWU_LY6S7ZZ_t6Sm4-vJ9ffiqvvn78fHlxVRrWyKG0rYVWc26YXlBLF5JS6YRrKDXaIROM6VZaNHlXUwtRLWxLna0XDVhdNbapTsm7ne5mXKxta2wYet2pTZ-36bcqaq_-7AR_q5bxh6qASwosC7zZC_Tx-2jToNY-Gdt1Otg4JiVphVLWrPkvKZisJecMM_n2nyQKbARwVk3o6wfoKo59yCdTggMI5Jxm6OXvJu_d3X0wA2wHmD6m1FunjB9-vSl79p1CUFNS1JQUdUhKnjt_MHcn_feJV_tVpsaBFgorxShOB32xI1Yp5-MeqREp4408KDgdlV72PqmbbxQwu8XJi6x-Alxi3Wg
CitedBy_id crossref_primary_10_1021_cb300255p
crossref_primary_10_1016_j_jbc_2023_105089
crossref_primary_10_1093_nar_gkad435
crossref_primary_10_1261_rna_042234_113
crossref_primary_10_1002_iub_1724
crossref_primary_10_1021_jacs_8b07247
crossref_primary_10_1073_pnas_1610917113
crossref_primary_10_1021_acschembio_1c00062
crossref_primary_10_1021_acssynbio_6b00145
crossref_primary_10_1261_rna_2427311
crossref_primary_10_1261_rna_044529_114
crossref_primary_10_3390_ijms251810101
crossref_primary_10_1080_10409238_2016_1274284
crossref_primary_10_4161_rna_28718
crossref_primary_10_1002_biot_201200002
crossref_primary_10_1038_s41573_023_00829_9
crossref_primary_10_1016_j_tig_2017_12_007
crossref_primary_10_1093_nar_gkad007
crossref_primary_10_1093_nar_gkz1011
crossref_primary_10_1246_bcsj_20200326
crossref_primary_10_3389_fgene_2024_1436860
crossref_primary_10_1074_jbc_M112_366120
crossref_primary_10_1021_acs_chemrev_3c00912
crossref_primary_10_1093_nar_gkz745
crossref_primary_10_1093_nar_gku691
crossref_primary_10_1038_s41467_021_24076_x
crossref_primary_10_1093_nar_gky651
crossref_primary_10_3389_fbioe_2020_01031
crossref_primary_10_1016_j_cbpa_2018_07_009
crossref_primary_10_1038_nchembio_657
crossref_primary_10_1080_15476286_2017_1356561
crossref_primary_10_1021_acssynbio_8b00305
crossref_primary_10_1016_j_bbagen_2017_03_012
crossref_primary_10_1261_rna_042226_113
crossref_primary_10_1016_j_jmb_2011_06_039
crossref_primary_10_1016_j_jmb_2016_03_022
crossref_primary_10_1093_nar_gkac846
crossref_primary_10_1098_rstb_2022_0038
crossref_primary_10_3390_life5041567
crossref_primary_10_1016_j_jbc_2024_107488
crossref_primary_10_3389_fchem_2022_815788
crossref_primary_10_1021_ja407511q
crossref_primary_10_1038_s41467_023_38077_5
crossref_primary_10_1016_j_jmb_2024_168934
crossref_primary_10_1021_cb300229q
crossref_primary_10_1016_j_tibs_2014_07_005
crossref_primary_10_1074_jbc_M111_294850
crossref_primary_10_1021_bi300077s
crossref_primary_10_1038_s41586_023_06133_1
crossref_primary_10_1093_nar_gky346
crossref_primary_10_1016_j_cbpa_2018_07_016
crossref_primary_10_1093_nar_gks1240
crossref_primary_10_1126_science_1207203
crossref_primary_10_1093_nar_gkab288
crossref_primary_10_1021_cb500409y
crossref_primary_10_3389_fgene_2024_1420331
crossref_primary_10_1261_rna_036038_112
crossref_primary_10_1021_acs_chemrev_4c00329
crossref_primary_10_1021_acs_biochem_7b00591
crossref_primary_10_1021_acs_chemrev_3c00894
crossref_primary_10_1021_ja3063524
crossref_primary_10_1261_rna_079797_123
crossref_primary_10_1021_acs_accounts_7b00376
crossref_primary_10_1021_acs_chemrev_6b00523
crossref_primary_10_3389_fmolb_2022_938114
crossref_primary_10_1093_nar_gkr641
crossref_primary_10_1093_nar_gkv566
crossref_primary_10_1016_j_chembiol_2016_11_012
crossref_primary_10_1021_acs_nanolett_5b03331
crossref_primary_10_1261_rna_033597_112
crossref_primary_10_1002_iub_2080
crossref_primary_10_1016_j_synbio_2018_09_003
crossref_primary_10_1073_pnas_2309714120
crossref_primary_10_1146_annurev_biochem_040320_103817
crossref_primary_10_1016_j_bbrc_2017_05_178
crossref_primary_10_1021_acscentsci_4c00314
crossref_primary_10_1021_bi500533x
crossref_primary_10_7554_eLife_57947
crossref_primary_10_1093_nar_gkx1129
Cites_doi 10.1017/S1355838298980013
10.1021/bi050204y
10.1016/S0167-4781(98)00169-9
10.1073/pnas.052028599
10.1016/0167-4781(90)90170-7
10.1073/pnas.85.4.1033
10.1021/bi036290o
10.1146/annurev.biochem.70.1.415
10.1016/j.ab.2005.08.008
10.1016/S0079-6603(08)60684-4
10.1126/science.1111408
10.1093/nar/gkl1129
10.1016/j.jmb.2009.01.021
10.1073/pnas.1012612107
10.1074/jbc.M109.081380
10.1016/0300-9084(90)90158-D
10.1146/annurev.biochem.77.070606.101431
10.1017/S0033583509990060
10.1126/science.1064242
10.1021/bi602548v
10.1261/rna.345907
10.1126/science.270.5241.1464
10.1093/emboj/17.24.7490
10.1002/anie.200904035
10.1038/nature08403
10.1016/S0165-022X(99)00032-9
10.1016/j.jmb.2007.01.075
10.1261/rna.485307
10.1021/bi00344a019
10.1002/j.1460-2075.1994.tb06531.x
10.1016/S0022-2836(03)00947-1
10.1038/nsmb831
10.1016/j.cell.2009.01.036
10.1017/S1355838299981529
10.1038/333140a0
10.1021/bi00459a014
10.1016/S0021-9258(17)42947-4
10.1016/j.ymeth.2007.08.001
10.1126/science.1179700
10.1021/bi0473399
10.1002/j.1460-2075.1995.tb07259.x
10.1002/j.1460-2075.1991.tb07756.x
10.1016/j.molcel.2008.04.026
10.1126/science.1194460
10.1073/pnas.0809211106
10.1016/j.molcel.2004.10.030
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 29, 2011
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 29, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1102128108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic

Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5220
ExternalDocumentID PMC3069205
2311140791
21402928
10_1073_pnas_1102128108
108_13_5215
41125679
US201600192839
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c579t-ede0da66c5ab2e2b9229f8f722caf15855ad9e1c214c4883bed2fe4b70ea37e73
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:38:18 EDT 2025
Sun Aug 24 03:29:41 EDT 2025
Thu Jul 10 22:17:27 EDT 2025
Thu Jul 10 17:47:46 EDT 2025
Mon Jun 30 08:10:56 EDT 2025
Thu Apr 03 07:02:51 EDT 2025
Tue Jul 01 00:47:07 EDT 2025
Thu Apr 24 22:57:40 EDT 2025
Wed Nov 11 00:29:32 EST 2020
Thu May 29 08:40:52 EDT 2025
Wed Dec 27 19:22:32 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c579t-ede0da66c5ab2e2b9229f8f722caf15855ad9e1c214c4883bed2fe4b70ea37e73
Notes http://dx.doi.org/10.1073/pnas.1102128108
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Contributed by Olke C. Uhlenbeck, February 8, 2011 (sent for review December 22, 2010)
Author contributions: J.M.S. and O.C.U. designed research; J.M.S. and S.J.C. performed research; S.J.C. contributed new reagents/analytic tools; J.M.S. analyzed data; and J.M.S. and O.C.U. wrote the paper.
PMID 21402928
PQID 860081662
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1102128108
pubmed_primary_21402928
fao_agris_US201600192839
proquest_miscellaneous_859496651
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3069205
pnas_primary_108_13_5215
jstor_primary_41125679
proquest_miscellaneous_1817806531
proquest_journals_860081662
proquest_miscellaneous_923199457
crossref_primary_10_1073_pnas_1102128108
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-29
PublicationDateYYYYMMDD 2011-03-29
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Schrader J (e_1_3_2_40_2) 2011
2078590 - Biochimie. 1990 Oct;72(10):735-43
21169502 - Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):79-84
19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64
20025795 - Q Rev Biophys. 2009 Aug;42(3):159-200
19940162 - J Biol Chem. 2010 Jan 29;285(5):3014-20
11395413 - Annu Rev Biochem. 2001;70:415-35
15448679 - Nat Struct Mol Biol. 2004 Oct;11(10):1008-14
10647810 - J Biochem Biophys Methods. 2000 Jan 3;42(1-2):1-14
17379816 - RNA. 2007 May;13(5):651-60
17328911 - J Mol Biol. 2007 Apr 20;368(1):119-30
15835891 - Biochemistry. 2005 Apr 26;44(16):6024-33
11588263 - Science. 2001 Oct 5;294(5540):165-8
6370998 - J Biol Chem. 1984 Apr 25;259(8):5010-6
19838167 - Nature. 2009 Oct 29;461(7268):1234-42
2207146 - Biochim Biophys Acta. 1990 Aug 27;1050(1-3):222-5
15905403 - Science. 2005 May 20;308(5725):1178-80
17449728 - RNA. 2007 Jun;13(6):835-40
19833920 - Science. 2009 Oct 30;326(5953):688-94
3910093 - Biochemistry. 1985 Nov 5;24(23):6433-9
10024171 - RNA. 1999 Feb;5(2):188-94
11891293 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3499-504
3277187 - Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033-7
9622123 - RNA. 1998 Jun;4(6):639-46
1712293 - EMBO J. 1991 Aug;10(8):2203-14
9838020 - Biochim Biophys Acta. 1998 Nov 26;1443(1-2):1-22
17489561 - Biochemistry. 2007 May 29;46(21):6194-200
18614050 - Mol Cell. 2008 Jul 11;31(1):114-23
21051640 - Science. 2010 Nov 5;330(6005):835-8
17251194 - Nucleic Acids Res. 2007;35(4):e24
19239893 - Cell. 2009 Feb 20;136(4):746-62
15147200 - Biochemistry. 2004 May 25;43(20):6159-66
19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51
15574334 - Mol Cell. 2004 Dec 3;16(5):799-805
7491491 - Science. 1995 Dec 1;270(5241):1464-72
18518820 - Annu Rev Biochem. 2008;77:177-203
6364232 - Prog Nucleic Acid Res Mol Biol. 1983;30:91-126
3285220 - Nature. 1988 May 12;333(6169):140-5
9857203 - EMBO J. 1998 Dec 15;17(24):7490-7
16101309 - Biochemistry. 2005 Aug 23;44(33):11254-61
16307719 - Anal Biochem. 2006 Jan 15;348(2):321-3
19104062 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):50-4
2110000 - Biochemistry. 1990 Feb 20;29(7):1757-63
8194535 - EMBO J. 1994 May 15;13(10):2464-71
7781613 - EMBO J. 1995 Jun 1;14(11):2613-9
12963376 - J Mol Biol. 2003 Sep 19;332(3):689-99
18241789 - Methods. 2008 Feb;44(2):74-80
References_xml – ident: e_1_3_2_22_2
  doi: 10.1017/S1355838298980013
– ident: e_1_3_2_8_2
  doi: 10.1021/bi050204y
– ident: e_1_3_2_4_2
  doi: 10.1016/S0167-4781(98)00169-9
– ident: e_1_3_2_10_2
  doi: 10.1073/pnas.052028599
– ident: e_1_3_2_9_2
  doi: 10.1016/0167-4781(90)90170-7
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.85.4.1033
– ident: e_1_3_2_11_2
  doi: 10.1021/bi036290o
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev.biochem.70.1.415
– ident: e_1_3_2_42_2
  doi: 10.1016/j.ab.2005.08.008
– ident: e_1_3_2_17_2
  doi: 10.1016/S0079-6603(08)60684-4
– ident: e_1_3_2_30_2
  doi: 10.1126/science.1111408
– ident: e_1_3_2_47_2
  doi: 10.1093/nar/gkl1129
– ident: e_1_3_2_16_2
  doi: 10.1016/j.jmb.2009.01.021
– ident: e_1_3_2_36_2
  doi: 10.1073/pnas.1012612107
– ident: e_1_3_2_43_2
  doi: 10.1074/jbc.M109.081380
– ident: e_1_3_2_23_2
  doi: 10.1016/0300-9084(90)90158-D
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev.biochem.77.070606.101431
– ident: e_1_3_2_1_2
  doi: 10.1017/S0033583509990060
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1064242
– ident: e_1_3_2_14_2
  doi: 10.1021/bi602548v
– ident: e_1_3_2_39_2
  doi: 10.1261/rna.345907
– ident: e_1_3_2_13_2
  doi: 10.1126/science.270.5241.1464
– ident: e_1_3_2_28_2
  doi: 10.1093/emboj/17.24.7490
– ident: e_1_3_2_41_2
  doi: 10.1002/anie.200904035
– ident: e_1_3_2_6_2
  doi: 10.1038/nature08403
– volume-title: Ribosomes: Structure, Function & Dynamics
  year: 2011
  ident: e_1_3_2_40_2
– ident: e_1_3_2_20_2
  doi: 10.1016/S0165-022X(99)00032-9
– ident: e_1_3_2_46_2
  doi: 10.1016/j.jmb.2007.01.075
– ident: e_1_3_2_15_2
  doi: 10.1261/rna.485307
– ident: e_1_3_2_19_2
  doi: 10.1021/bi00344a019
– ident: e_1_3_2_21_2
  doi: 10.1002/j.1460-2075.1994.tb06531.x
– ident: e_1_3_2_26_2
  doi: 10.1016/S0022-2836(03)00947-1
– ident: e_1_3_2_31_2
  doi: 10.1038/nsmb831
– ident: e_1_3_2_5_2
  doi: 10.1016/j.cell.2009.01.036
– ident: e_1_3_2_35_2
  doi: 10.1017/S1355838299981529
– ident: e_1_3_2_37_2
  doi: 10.1038/333140a0
– ident: e_1_3_2_38_2
  doi: 10.1021/bi00459a014
– ident: e_1_3_2_7_2
  doi: 10.1016/S0021-9258(17)42947-4
– ident: e_1_3_2_33_2
  doi: 10.1016/j.ymeth.2007.08.001
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1179700
– ident: e_1_3_2_24_2
  doi: 10.1021/bi0473399
– ident: e_1_3_2_29_2
  doi: 10.1002/j.1460-2075.1995.tb07259.x
– ident: e_1_3_2_44_2
  doi: 10.1002/j.1460-2075.1991.tb07756.x
– ident: e_1_3_2_27_2
  doi: 10.1016/j.molcel.2008.04.026
– ident: e_1_3_2_34_2
  doi: 10.1126/science.1194460
– ident: e_1_3_2_32_2
  doi: 10.1073/pnas.0809211106
– ident: e_1_3_2_45_2
  doi: 10.1016/j.molcel.2004.10.030
– reference: 11395413 - Annu Rev Biochem. 2001;70:415-35
– reference: 6364232 - Prog Nucleic Acid Res Mol Biol. 1983;30:91-126
– reference: 18614050 - Mol Cell. 2008 Jul 11;31(1):114-23
– reference: 2078590 - Biochimie. 1990 Oct;72(10):735-43
– reference: 19838167 - Nature. 2009 Oct 29;461(7268):1234-42
– reference: 15905403 - Science. 2005 May 20;308(5725):1178-80
– reference: 19833920 - Science. 2009 Oct 30;326(5953):688-94
– reference: 9857203 - EMBO J. 1998 Dec 15;17(24):7490-7
– reference: 15574334 - Mol Cell. 2004 Dec 3;16(5):799-805
– reference: 7491491 - Science. 1995 Dec 1;270(5241):1464-72
– reference: 19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51
– reference: 3285220 - Nature. 1988 May 12;333(6169):140-5
– reference: 21051640 - Science. 2010 Nov 5;330(6005):835-8
– reference: 15147200 - Biochemistry. 2004 May 25;43(20):6159-66
– reference: 16307719 - Anal Biochem. 2006 Jan 15;348(2):321-3
– reference: 19940162 - J Biol Chem. 2010 Jan 29;285(5):3014-20
– reference: 11891293 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3499-504
– reference: 3910093 - Biochemistry. 1985 Nov 5;24(23):6433-9
– reference: 6370998 - J Biol Chem. 1984 Apr 25;259(8):5010-6
– reference: 9622123 - RNA. 1998 Jun;4(6):639-46
– reference: 19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64
– reference: 11588263 - Science. 2001 Oct 5;294(5540):165-8
– reference: 17251194 - Nucleic Acids Res. 2007;35(4):e24
– reference: 19104062 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):50-4
– reference: 10024171 - RNA. 1999 Feb;5(2):188-94
– reference: 8194535 - EMBO J. 1994 May 15;13(10):2464-71
– reference: 2110000 - Biochemistry. 1990 Feb 20;29(7):1757-63
– reference: 17328911 - J Mol Biol. 2007 Apr 20;368(1):119-30
– reference: 2207146 - Biochim Biophys Acta. 1990 Aug 27;1050(1-3):222-5
– reference: 18518820 - Annu Rev Biochem. 2008;77:177-203
– reference: 7781613 - EMBO J. 1995 Jun 1;14(11):2613-9
– reference: 16101309 - Biochemistry. 2005 Aug 23;44(33):11254-61
– reference: 12963376 - J Mol Biol. 2003 Sep 19;332(3):689-99
– reference: 21169502 - Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):79-84
– reference: 20025795 - Q Rev Biophys. 2009 Aug;42(3):159-200
– reference: 9838020 - Biochim Biophys Acta. 1998 Nov 26;1443(1-2):1-22
– reference: 18241789 - Methods. 2008 Feb;44(2):74-80
– reference: 1712293 - EMBO J. 1991 Aug;10(8):2203-14
– reference: 3277187 - Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033-7
– reference: 15835891 - Biochemistry. 2005 Apr 26;44(16):6024-33
– reference: 17489561 - Biochemistry. 2007 May 29;46(21):6194-200
– reference: 10647810 - J Biochem Biophys Methods. 2000 Jan 3;42(1-2):1-14
– reference: 17449728 - RNA. 2007 Jun;13(6):835-40
– reference: 15448679 - Nat Struct Mol Biol. 2004 Oct;11(10):1008-14
– reference: 17379816 - RNA. 2007 May;13(5):651-60
– reference: 19239893 - Cell. 2009 Feb 20;136(4):746-62
SSID ssj0009580
Score 2.3330133
Snippet To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5215
SubjectTerms Amino acids
Bacteria
Bacterial proteins
Base Sequence
Binding sites
Biochemistry
Biological Sciences
Chimeras
codons
crystal structure
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
esterification
Hydrogen bonds
Hydrolysis
Models, Molecular
Molecular Sequence Data
mutants
Mutation
Nucleic Acid Conformation
Peptide Elongation Factor Tu - genetics
Peptide Elongation Factor Tu - metabolism
Peptide elongation factors
Peptides
Protein Binding
Protein Biosynthesis
Protein Conformation
Ribosomes
Ribosomes - metabolism
RNA, Transfer, Amino Acyl - genetics
RNA, Transfer, Amino Acyl - metabolism
Standard error
Thermodynamics
Transfer RNA
Title Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding
URI https://www.jstor.org/stable/41125679
http://www.pnas.org/content/108/13/5215.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21402928
https://www.proquest.com/docview/860081662
https://www.proquest.com/docview/1817806531
https://www.proquest.com/docview/859496651
https://www.proquest.com/docview/923199457
https://pubmed.ncbi.nlm.nih.gov/PMC3069205
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ceGCGDAaBshIHIaqlMRO7ORYIVA1iTJtrbRb5DjOWtElaE0O8Kfw1_KcOF9TNwGXKGpc1_H79X3Yv_eM0HsVQoRGVWAHgWS2R7lrBy7c6WCCSkGSWOoF_a8LNl95Z1f-1Wj0u8daKot4Kn_tzSv5H6nCZyBXnSX7D5JtO4UP4B7kC1eQMFz_TsZl1mQ7iTTdZIZeIW42WS7kz61dXCxm2rtU2zy7NrTC6oCdybKsCIY5aIwbvU8DUWhrxYyvet7atl3DJFg0S4ezLhHFaIfdxJ6cL7pjjS_l-lYkNSDOKpZ7n0rQ5DwYklm3ObVabzXnrFbS37bflVnGTbqVVmqTTv09NKK-RiZgJb06j3qqaiUMPozNvPoY0VZLO0EfjrSndMED8XsGHDxKZ69xAG2mTzTOxE4nPxC9h2g6HVbcXl0SXXdPO7_gPh6gRwRCkIo0Ou8XdA7q9CYz_qZsFKcf7_zCwOM5SEXeUF91PV1oui-2uUvR7fk8y6foiQlW8KxG3hEaqewZOmqmF5-amuUfnqOLGooYQIIbKOI8xUMo4iLHHRRxDUW8LDFAERso4gaKL9Dqy-flp7ltjuuwpc_DwlaJchLBmPRFTBSJQ0LCNEg5IVKkLoSlvkhC5UriehLMBo1VQlLlxdxRgnLF6TE6zPJMjRHmcUxF7BKpT4GRPhPgmcuQQ_QCnQrmWmjaTGkkTS17faTKNqo4FZxGemKjTgYWOm2_8KMu43J_0zHIKBLXYGSjIRQsdFwJru3Cg2jFZxwejKteuq6DyKWRBqaFThrpRkZ17KKAaVecMWKhd-1T0Ot6s05kKi9hQIHLNemBwsvie9oEfuiFjPkPNNHxWxh6PrfQyxpR7SBBDg6B97IQH2CtbaArzw-fZJt1VYGeOiwkjv_q_qk6QY87nfAaHRa3pXoD7nsRv63-R38AxcvrBw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+affinity+of+aminoacyl-tRNA+to+elongation+factor+Tu+for+optimal+decoding&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schrader%2C+Jared+M&rft.au=Chapman%2C+Stephen+J&rft.au=Uhlenbeck%2C+Olke+C&rft.date=2011-03-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=13&rft.spage=5215&rft.epage=5220&rft_id=info:doi/10.1073%2Fpnas.1102128108&rft.externalDocID=US201600192839
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F13.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F13.cover.gif