Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRN...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 13; pp. 5215 - 5220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.03.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. |
---|---|
AbstractList | To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on
Escherichia coli
ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu{bullet}GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu-GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome. [PUBLICATION ABSTRACT] |
Author | Schrader, Jared M Uhlenbeck, Olke C Chapman, Stephen J |
Author_xml | – sequence: 1 fullname: Schrader, Jared M – sequence: 2 fullname: Chapman, Stephen J – sequence: 3 fullname: Uhlenbeck, Olke C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21402928$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMycg4gKXtDNO7NgXpKriS6pAKtuz5XXsrVdZe4kTpP3vcdhtFyoBpznMb57mzbwTchRisIQ8RzhDaKrzTdDpDBEoUoEgHpEZgsSS1xKOyAyANqWoaX1MTlJaAYBkAp6QY4o1UEnFjFzPx-DDshhubaGd88EP2yK6Qq99iNpsu3K4_nJRDLGwXQxLPfgYCqfNEPtiPhYul7gZ_Fp3RWtNbLPWU_LY6S7ZZ_t6Sm4-vJ9ffiqvvn78fHlxVRrWyKG0rYVWc26YXlBLF5JS6YRrKDXaIROM6VZaNHlXUwtRLWxLna0XDVhdNbapTsm7ne5mXKxta2wYet2pTZ-36bcqaq_-7AR_q5bxh6qASwosC7zZC_Tx-2jToNY-Gdt1Otg4JiVphVLWrPkvKZisJecMM_n2nyQKbARwVk3o6wfoKo59yCdTggMI5Jxm6OXvJu_d3X0wA2wHmD6m1FunjB9-vSl79p1CUFNS1JQUdUhKnjt_MHcn_feJV_tVpsaBFgorxShOB32xI1Yp5-MeqREp4408KDgdlV72PqmbbxQwu8XJi6x-Alxi3Wg |
CitedBy_id | crossref_primary_10_1021_cb300255p crossref_primary_10_1016_j_jbc_2023_105089 crossref_primary_10_1093_nar_gkad435 crossref_primary_10_1261_rna_042234_113 crossref_primary_10_1002_iub_1724 crossref_primary_10_1021_jacs_8b07247 crossref_primary_10_1073_pnas_1610917113 crossref_primary_10_1021_acschembio_1c00062 crossref_primary_10_1021_acssynbio_6b00145 crossref_primary_10_1261_rna_2427311 crossref_primary_10_1261_rna_044529_114 crossref_primary_10_3390_ijms251810101 crossref_primary_10_1080_10409238_2016_1274284 crossref_primary_10_4161_rna_28718 crossref_primary_10_1002_biot_201200002 crossref_primary_10_1038_s41573_023_00829_9 crossref_primary_10_1016_j_tig_2017_12_007 crossref_primary_10_1093_nar_gkad007 crossref_primary_10_1093_nar_gkz1011 crossref_primary_10_1246_bcsj_20200326 crossref_primary_10_3389_fgene_2024_1436860 crossref_primary_10_1074_jbc_M112_366120 crossref_primary_10_1021_acs_chemrev_3c00912 crossref_primary_10_1093_nar_gkz745 crossref_primary_10_1093_nar_gku691 crossref_primary_10_1038_s41467_021_24076_x crossref_primary_10_1093_nar_gky651 crossref_primary_10_3389_fbioe_2020_01031 crossref_primary_10_1016_j_cbpa_2018_07_009 crossref_primary_10_1038_nchembio_657 crossref_primary_10_1080_15476286_2017_1356561 crossref_primary_10_1021_acssynbio_8b00305 crossref_primary_10_1016_j_bbagen_2017_03_012 crossref_primary_10_1261_rna_042226_113 crossref_primary_10_1016_j_jmb_2011_06_039 crossref_primary_10_1016_j_jmb_2016_03_022 crossref_primary_10_1093_nar_gkac846 crossref_primary_10_1098_rstb_2022_0038 crossref_primary_10_3390_life5041567 crossref_primary_10_1016_j_jbc_2024_107488 crossref_primary_10_3389_fchem_2022_815788 crossref_primary_10_1021_ja407511q crossref_primary_10_1038_s41467_023_38077_5 crossref_primary_10_1016_j_jmb_2024_168934 crossref_primary_10_1021_cb300229q crossref_primary_10_1016_j_tibs_2014_07_005 crossref_primary_10_1074_jbc_M111_294850 crossref_primary_10_1021_bi300077s crossref_primary_10_1038_s41586_023_06133_1 crossref_primary_10_1093_nar_gky346 crossref_primary_10_1016_j_cbpa_2018_07_016 crossref_primary_10_1093_nar_gks1240 crossref_primary_10_1126_science_1207203 crossref_primary_10_1093_nar_gkab288 crossref_primary_10_1021_cb500409y crossref_primary_10_3389_fgene_2024_1420331 crossref_primary_10_1261_rna_036038_112 crossref_primary_10_1021_acs_chemrev_4c00329 crossref_primary_10_1021_acs_biochem_7b00591 crossref_primary_10_1021_acs_chemrev_3c00894 crossref_primary_10_1021_ja3063524 crossref_primary_10_1261_rna_079797_123 crossref_primary_10_1021_acs_accounts_7b00376 crossref_primary_10_1021_acs_chemrev_6b00523 crossref_primary_10_3389_fmolb_2022_938114 crossref_primary_10_1093_nar_gkr641 crossref_primary_10_1093_nar_gkv566 crossref_primary_10_1016_j_chembiol_2016_11_012 crossref_primary_10_1021_acs_nanolett_5b03331 crossref_primary_10_1261_rna_033597_112 crossref_primary_10_1002_iub_2080 crossref_primary_10_1016_j_synbio_2018_09_003 crossref_primary_10_1073_pnas_2309714120 crossref_primary_10_1146_annurev_biochem_040320_103817 crossref_primary_10_1016_j_bbrc_2017_05_178 crossref_primary_10_1021_acscentsci_4c00314 crossref_primary_10_1021_bi500533x crossref_primary_10_7554_eLife_57947 crossref_primary_10_1093_nar_gkx1129 |
Cites_doi | 10.1017/S1355838298980013 10.1021/bi050204y 10.1016/S0167-4781(98)00169-9 10.1073/pnas.052028599 10.1016/0167-4781(90)90170-7 10.1073/pnas.85.4.1033 10.1021/bi036290o 10.1146/annurev.biochem.70.1.415 10.1016/j.ab.2005.08.008 10.1016/S0079-6603(08)60684-4 10.1126/science.1111408 10.1093/nar/gkl1129 10.1016/j.jmb.2009.01.021 10.1073/pnas.1012612107 10.1074/jbc.M109.081380 10.1016/0300-9084(90)90158-D 10.1146/annurev.biochem.77.070606.101431 10.1017/S0033583509990060 10.1126/science.1064242 10.1021/bi602548v 10.1261/rna.345907 10.1126/science.270.5241.1464 10.1093/emboj/17.24.7490 10.1002/anie.200904035 10.1038/nature08403 10.1016/S0165-022X(99)00032-9 10.1016/j.jmb.2007.01.075 10.1261/rna.485307 10.1021/bi00344a019 10.1002/j.1460-2075.1994.tb06531.x 10.1016/S0022-2836(03)00947-1 10.1038/nsmb831 10.1016/j.cell.2009.01.036 10.1017/S1355838299981529 10.1038/333140a0 10.1021/bi00459a014 10.1016/S0021-9258(17)42947-4 10.1016/j.ymeth.2007.08.001 10.1126/science.1179700 10.1021/bi0473399 10.1002/j.1460-2075.1995.tb07259.x 10.1002/j.1460-2075.1991.tb07756.x 10.1016/j.molcel.2008.04.026 10.1126/science.1194460 10.1073/pnas.0809211106 10.1016/j.molcel.2004.10.030 |
ContentType | Journal Article |
Copyright | Copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Mar 29, 2011 |
Copyright_xml | – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 29, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1102128108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5220 |
ExternalDocumentID | PMC3069205 2311140791 21402928 10_1073_pnas_1102128108 108_13_5215 41125679 US201600192839 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c579t-ede0da66c5ab2e2b9229f8f722caf15855ad9e1c214c4883bed2fe4b70ea37e73 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:38:18 EDT 2025 Sun Aug 24 03:29:41 EDT 2025 Thu Jul 10 22:17:27 EDT 2025 Thu Jul 10 17:47:46 EDT 2025 Mon Jun 30 08:10:56 EDT 2025 Thu Apr 03 07:02:51 EDT 2025 Tue Jul 01 00:47:07 EDT 2025 Thu Apr 24 22:57:40 EDT 2025 Wed Nov 11 00:29:32 EST 2020 Thu May 29 08:40:52 EDT 2025 Wed Dec 27 19:22:32 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c579t-ede0da66c5ab2e2b9229f8f722caf15855ad9e1c214c4883bed2fe4b70ea37e73 |
Notes | http://dx.doi.org/10.1073/pnas.1102128108 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Contributed by Olke C. Uhlenbeck, February 8, 2011 (sent for review December 22, 2010) Author contributions: J.M.S. and O.C.U. designed research; J.M.S. and S.J.C. performed research; S.J.C. contributed new reagents/analytic tools; J.M.S. analyzed data; and J.M.S. and O.C.U. wrote the paper. |
PMID | 21402928 |
PQID | 860081662 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1102128108 pubmed_primary_21402928 fao_agris_US201600192839 proquest_miscellaneous_859496651 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3069205 pnas_primary_108_13_5215 jstor_primary_41125679 proquest_miscellaneous_1817806531 proquest_journals_860081662 proquest_miscellaneous_923199457 crossref_primary_10_1073_pnas_1102128108 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-29 |
PublicationDateYYYYMMDD | 2011-03-29 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Schrader J (e_1_3_2_40_2) 2011 2078590 - Biochimie. 1990 Oct;72(10):735-43 21169502 - Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):79-84 19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64 20025795 - Q Rev Biophys. 2009 Aug;42(3):159-200 19940162 - J Biol Chem. 2010 Jan 29;285(5):3014-20 11395413 - Annu Rev Biochem. 2001;70:415-35 15448679 - Nat Struct Mol Biol. 2004 Oct;11(10):1008-14 10647810 - J Biochem Biophys Methods. 2000 Jan 3;42(1-2):1-14 17379816 - RNA. 2007 May;13(5):651-60 17328911 - J Mol Biol. 2007 Apr 20;368(1):119-30 15835891 - Biochemistry. 2005 Apr 26;44(16):6024-33 11588263 - Science. 2001 Oct 5;294(5540):165-8 6370998 - J Biol Chem. 1984 Apr 25;259(8):5010-6 19838167 - Nature. 2009 Oct 29;461(7268):1234-42 2207146 - Biochim Biophys Acta. 1990 Aug 27;1050(1-3):222-5 15905403 - Science. 2005 May 20;308(5725):1178-80 17449728 - RNA. 2007 Jun;13(6):835-40 19833920 - Science. 2009 Oct 30;326(5953):688-94 3910093 - Biochemistry. 1985 Nov 5;24(23):6433-9 10024171 - RNA. 1999 Feb;5(2):188-94 11891293 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3499-504 3277187 - Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033-7 9622123 - RNA. 1998 Jun;4(6):639-46 1712293 - EMBO J. 1991 Aug;10(8):2203-14 9838020 - Biochim Biophys Acta. 1998 Nov 26;1443(1-2):1-22 17489561 - Biochemistry. 2007 May 29;46(21):6194-200 18614050 - Mol Cell. 2008 Jul 11;31(1):114-23 21051640 - Science. 2010 Nov 5;330(6005):835-8 17251194 - Nucleic Acids Res. 2007;35(4):e24 19239893 - Cell. 2009 Feb 20;136(4):746-62 15147200 - Biochemistry. 2004 May 25;43(20):6159-66 19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51 15574334 - Mol Cell. 2004 Dec 3;16(5):799-805 7491491 - Science. 1995 Dec 1;270(5241):1464-72 18518820 - Annu Rev Biochem. 2008;77:177-203 6364232 - Prog Nucleic Acid Res Mol Biol. 1983;30:91-126 3285220 - Nature. 1988 May 12;333(6169):140-5 9857203 - EMBO J. 1998 Dec 15;17(24):7490-7 16101309 - Biochemistry. 2005 Aug 23;44(33):11254-61 16307719 - Anal Biochem. 2006 Jan 15;348(2):321-3 19104062 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):50-4 2110000 - Biochemistry. 1990 Feb 20;29(7):1757-63 8194535 - EMBO J. 1994 May 15;13(10):2464-71 7781613 - EMBO J. 1995 Jun 1;14(11):2613-9 12963376 - J Mol Biol. 2003 Sep 19;332(3):689-99 18241789 - Methods. 2008 Feb;44(2):74-80 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1017/S1355838298980013 – ident: e_1_3_2_8_2 doi: 10.1021/bi050204y – ident: e_1_3_2_4_2 doi: 10.1016/S0167-4781(98)00169-9 – ident: e_1_3_2_10_2 doi: 10.1073/pnas.052028599 – ident: e_1_3_2_9_2 doi: 10.1016/0167-4781(90)90170-7 – ident: e_1_3_2_25_2 doi: 10.1073/pnas.85.4.1033 – ident: e_1_3_2_11_2 doi: 10.1021/bi036290o – ident: e_1_3_2_3_2 doi: 10.1146/annurev.biochem.70.1.415 – ident: e_1_3_2_42_2 doi: 10.1016/j.ab.2005.08.008 – ident: e_1_3_2_17_2 doi: 10.1016/S0079-6603(08)60684-4 – ident: e_1_3_2_30_2 doi: 10.1126/science.1111408 – ident: e_1_3_2_47_2 doi: 10.1093/nar/gkl1129 – ident: e_1_3_2_16_2 doi: 10.1016/j.jmb.2009.01.021 – ident: e_1_3_2_36_2 doi: 10.1073/pnas.1012612107 – ident: e_1_3_2_43_2 doi: 10.1074/jbc.M109.081380 – ident: e_1_3_2_23_2 doi: 10.1016/0300-9084(90)90158-D – ident: e_1_3_2_2_2 doi: 10.1146/annurev.biochem.77.070606.101431 – ident: e_1_3_2_1_2 doi: 10.1017/S0033583509990060 – ident: e_1_3_2_12_2 doi: 10.1126/science.1064242 – ident: e_1_3_2_14_2 doi: 10.1021/bi602548v – ident: e_1_3_2_39_2 doi: 10.1261/rna.345907 – ident: e_1_3_2_13_2 doi: 10.1126/science.270.5241.1464 – ident: e_1_3_2_28_2 doi: 10.1093/emboj/17.24.7490 – ident: e_1_3_2_41_2 doi: 10.1002/anie.200904035 – ident: e_1_3_2_6_2 doi: 10.1038/nature08403 – volume-title: Ribosomes: Structure, Function & Dynamics year: 2011 ident: e_1_3_2_40_2 – ident: e_1_3_2_20_2 doi: 10.1016/S0165-022X(99)00032-9 – ident: e_1_3_2_46_2 doi: 10.1016/j.jmb.2007.01.075 – ident: e_1_3_2_15_2 doi: 10.1261/rna.485307 – ident: e_1_3_2_19_2 doi: 10.1021/bi00344a019 – ident: e_1_3_2_21_2 doi: 10.1002/j.1460-2075.1994.tb06531.x – ident: e_1_3_2_26_2 doi: 10.1016/S0022-2836(03)00947-1 – ident: e_1_3_2_31_2 doi: 10.1038/nsmb831 – ident: e_1_3_2_5_2 doi: 10.1016/j.cell.2009.01.036 – ident: e_1_3_2_35_2 doi: 10.1017/S1355838299981529 – ident: e_1_3_2_37_2 doi: 10.1038/333140a0 – ident: e_1_3_2_38_2 doi: 10.1021/bi00459a014 – ident: e_1_3_2_7_2 doi: 10.1016/S0021-9258(17)42947-4 – ident: e_1_3_2_33_2 doi: 10.1016/j.ymeth.2007.08.001 – ident: e_1_3_2_18_2 doi: 10.1126/science.1179700 – ident: e_1_3_2_24_2 doi: 10.1021/bi0473399 – ident: e_1_3_2_29_2 doi: 10.1002/j.1460-2075.1995.tb07259.x – ident: e_1_3_2_44_2 doi: 10.1002/j.1460-2075.1991.tb07756.x – ident: e_1_3_2_27_2 doi: 10.1016/j.molcel.2008.04.026 – ident: e_1_3_2_34_2 doi: 10.1126/science.1194460 – ident: e_1_3_2_32_2 doi: 10.1073/pnas.0809211106 – ident: e_1_3_2_45_2 doi: 10.1016/j.molcel.2004.10.030 – reference: 11395413 - Annu Rev Biochem. 2001;70:415-35 – reference: 6364232 - Prog Nucleic Acid Res Mol Biol. 1983;30:91-126 – reference: 18614050 - Mol Cell. 2008 Jul 11;31(1):114-23 – reference: 2078590 - Biochimie. 1990 Oct;72(10):735-43 – reference: 19838167 - Nature. 2009 Oct 29;461(7268):1234-42 – reference: 15905403 - Science. 2005 May 20;308(5725):1178-80 – reference: 19833920 - Science. 2009 Oct 30;326(5953):688-94 – reference: 9857203 - EMBO J. 1998 Dec 15;17(24):7490-7 – reference: 15574334 - Mol Cell. 2004 Dec 3;16(5):799-805 – reference: 7491491 - Science. 1995 Dec 1;270(5241):1464-72 – reference: 19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51 – reference: 3285220 - Nature. 1988 May 12;333(6169):140-5 – reference: 21051640 - Science. 2010 Nov 5;330(6005):835-8 – reference: 15147200 - Biochemistry. 2004 May 25;43(20):6159-66 – reference: 16307719 - Anal Biochem. 2006 Jan 15;348(2):321-3 – reference: 19940162 - J Biol Chem. 2010 Jan 29;285(5):3014-20 – reference: 11891293 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3499-504 – reference: 3910093 - Biochemistry. 1985 Nov 5;24(23):6433-9 – reference: 6370998 - J Biol Chem. 1984 Apr 25;259(8):5010-6 – reference: 9622123 - RNA. 1998 Jun;4(6):639-46 – reference: 19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64 – reference: 11588263 - Science. 2001 Oct 5;294(5540):165-8 – reference: 17251194 - Nucleic Acids Res. 2007;35(4):e24 – reference: 19104062 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):50-4 – reference: 10024171 - RNA. 1999 Feb;5(2):188-94 – reference: 8194535 - EMBO J. 1994 May 15;13(10):2464-71 – reference: 2110000 - Biochemistry. 1990 Feb 20;29(7):1757-63 – reference: 17328911 - J Mol Biol. 2007 Apr 20;368(1):119-30 – reference: 2207146 - Biochim Biophys Acta. 1990 Aug 27;1050(1-3):222-5 – reference: 18518820 - Annu Rev Biochem. 2008;77:177-203 – reference: 7781613 - EMBO J. 1995 Jun 1;14(11):2613-9 – reference: 16101309 - Biochemistry. 2005 Aug 23;44(33):11254-61 – reference: 12963376 - J Mol Biol. 2003 Sep 19;332(3):689-99 – reference: 21169502 - Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):79-84 – reference: 20025795 - Q Rev Biophys. 2009 Aug;42(3):159-200 – reference: 9838020 - Biochim Biophys Acta. 1998 Nov 26;1443(1-2):1-22 – reference: 18241789 - Methods. 2008 Feb;44(2):74-80 – reference: 1712293 - EMBO J. 1991 Aug;10(8):2203-14 – reference: 3277187 - Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033-7 – reference: 15835891 - Biochemistry. 2005 Apr 26;44(16):6024-33 – reference: 17489561 - Biochemistry. 2007 May 29;46(21):6194-200 – reference: 10647810 - J Biochem Biophys Methods. 2000 Jan 3;42(1-2):1-14 – reference: 17449728 - RNA. 2007 Jun;13(6):835-40 – reference: 15448679 - Nat Struct Mol Biol. 2004 Oct;11(10):1008-14 – reference: 17379816 - RNA. 2007 May;13(5):651-60 – reference: 19239893 - Cell. 2009 Feb 20;136(4):746-62 |
SSID | ssj0009580 |
Score | 2.3330133 |
Snippet | To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5215 |
SubjectTerms | Amino acids Bacteria Bacterial proteins Base Sequence Binding sites Biochemistry Biological Sciences Chimeras codons crystal structure E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism esterification Hydrogen bonds Hydrolysis Models, Molecular Molecular Sequence Data mutants Mutation Nucleic Acid Conformation Peptide Elongation Factor Tu - genetics Peptide Elongation Factor Tu - metabolism Peptide elongation factors Peptides Protein Binding Protein Biosynthesis Protein Conformation Ribosomes Ribosomes - metabolism RNA, Transfer, Amino Acyl - genetics RNA, Transfer, Amino Acyl - metabolism Standard error Thermodynamics Transfer RNA |
Title | Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding |
URI | https://www.jstor.org/stable/41125679 http://www.pnas.org/content/108/13/5215.abstract https://www.ncbi.nlm.nih.gov/pubmed/21402928 https://www.proquest.com/docview/860081662 https://www.proquest.com/docview/1817806531 https://www.proquest.com/docview/859496651 https://www.proquest.com/docview/923199457 https://pubmed.ncbi.nlm.nih.gov/PMC3069205 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ceGCGDAaBshIHIaqlMRO7ORYIVA1iTJtrbRb5DjOWtElaE0O8Kfw1_KcOF9TNwGXKGpc1_H79X3Yv_eM0HsVQoRGVWAHgWS2R7lrBy7c6WCCSkGSWOoF_a8LNl95Z1f-1Wj0u8daKot4Kn_tzSv5H6nCZyBXnSX7D5JtO4UP4B7kC1eQMFz_TsZl1mQ7iTTdZIZeIW42WS7kz61dXCxm2rtU2zy7NrTC6oCdybKsCIY5aIwbvU8DUWhrxYyvet7atl3DJFg0S4ezLhHFaIfdxJ6cL7pjjS_l-lYkNSDOKpZ7n0rQ5DwYklm3ObVabzXnrFbS37bflVnGTbqVVmqTTv09NKK-RiZgJb06j3qqaiUMPozNvPoY0VZLO0EfjrSndMED8XsGHDxKZ69xAG2mTzTOxE4nPxC9h2g6HVbcXl0SXXdPO7_gPh6gRwRCkIo0Ou8XdA7q9CYz_qZsFKcf7_zCwOM5SEXeUF91PV1oui-2uUvR7fk8y6foiQlW8KxG3hEaqewZOmqmF5-amuUfnqOLGooYQIIbKOI8xUMo4iLHHRRxDUW8LDFAERso4gaKL9Dqy-flp7ltjuuwpc_DwlaJchLBmPRFTBSJQ0LCNEg5IVKkLoSlvkhC5UriehLMBo1VQlLlxdxRgnLF6TE6zPJMjRHmcUxF7BKpT4GRPhPgmcuQQ_QCnQrmWmjaTGkkTS17faTKNqo4FZxGemKjTgYWOm2_8KMu43J_0zHIKBLXYGSjIRQsdFwJru3Cg2jFZxwejKteuq6DyKWRBqaFThrpRkZ17KKAaVecMWKhd-1T0Ot6s05kKi9hQIHLNemBwsvie9oEfuiFjPkPNNHxWxh6PrfQyxpR7SBBDg6B97IQH2CtbaArzw-fZJt1VYGeOiwkjv_q_qk6QY87nfAaHRa3pXoD7nsRv63-R38AxcvrBw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+affinity+of+aminoacyl-tRNA+to+elongation+factor+Tu+for+optimal+decoding&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schrader%2C+Jared+M&rft.au=Chapman%2C+Stephen+J&rft.au=Uhlenbeck%2C+Olke+C&rft.date=2011-03-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=13&rft.spage=5215&rft.epage=5220&rft_id=info:doi/10.1073%2Fpnas.1102128108&rft.externalDocID=US201600192839 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F13.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F13.cover.gif |