Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2
Highlights Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated expe...
Saved in:
Published in | Nano-micro letters Vol. 11; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2311-6706 2150-5551 2150-5551 |
DOI | 10.1007/s40820-019-0324-7 |
Cover
Loading…
Abstract | Highlights
Single-atom Co–MoS
2
(SA Co–MoS
2
) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes.
The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically.
The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS
2
(SA Co–MoS
2
) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS
2
, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS
2
in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS
2
relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS
2
. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis. |
---|---|
AbstractList | The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS2 (SA Co-MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS2 (SA Co-MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis. Highlights Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically. The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis. The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis. HighlightsSingle-atom Co–MoS2 (SA Co–MoS2) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes.The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically. Abstract The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS2 (SA Co–MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis. Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically. The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis. |
ArticleNumber | 102 |
Author | Bao, Qiaoliang Cui, Xiaoqiang Wu, Qiong Jia, Guangri Zheng, Lirong Zheng, Weitao Wang, Qingqing Zhao, Jingxiang Wang, Ying Qi, Kun Yu, Shansheng Cheng, Zhiliang |
Author_xml | – sequence: 1 givenname: Ying surname: Wang fullname: Wang, Ying organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University – sequence: 2 givenname: Kun surname: Qi fullname: Qi, Kun organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University – sequence: 3 givenname: Shansheng surname: Yu fullname: Yu, Shansheng organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University – sequence: 4 givenname: Guangri surname: Jia fullname: Jia, Guangri organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University – sequence: 5 givenname: Zhiliang surname: Cheng fullname: Cheng, Zhiliang organization: Department of Bioengineering, University of Pennsylvania – sequence: 6 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 7 givenname: Qiong surname: Wu fullname: Wu, Qiong organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University – sequence: 8 givenname: Qiaoliang surname: Bao fullname: Bao, Qiaoliang organization: Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University – sequence: 9 givenname: Qingqing surname: Wang fullname: Wang, Qingqing organization: School of Chemistry and Chemical Engineering, MOE Key Laboratory of Micro-System and Micro-Structure Manufacturing, Harbin Institute of Technology – sequence: 10 givenname: Jingxiang surname: Zhao fullname: Zhao, Jingxiang email: xjz_hmily@163.com organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University – sequence: 11 givenname: Xiaoqiang surname: Cui fullname: Cui, Xiaoqiang email: xqcui@jlu.edu.cn organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University – sequence: 12 givenname: Weitao surname: Zheng fullname: Zheng, Weitao organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University |
BookMark | eNp9Us1u1DAYjFARLaUPwC0SFy4B_8VfckGqVkBX2gpE4Wx9cT7vumTjYmcreuMdeEOeBG9TgVoJTrb8zYzH43laHIxhpKJ4ztkrzhi8Too1glWMtxWTQlXwqDgSvGZVXdf8IO8l55UGpg-Lk5R8x2qhQECtnhSHUnHZMAlHRfeJrgkHP67LaUPlcpyiH5O35UeK4bvvMVG18l-pXOCEw82UJ-dkNzj6tC2DK89oysA1jRR2qbzIOgNVp1PYlovw68fP83AhnhWPHQ6JTu7W4-LLu7efF2fV6sP75eJ0Vdka2qmizgqhrdXaAbSu7zpSPdfUYcuV41Jgm_07IR0XTqJWHRc99jangE0DKI-L5azbB7w0V9FvMd6YgN7cHoS4NhjzAwYyJJ3ugavGNUxhI1qUEmSPjPdatkJnrTez1tWu21JvKeeCwz3R-5PRb8w6XBsAYA2ILPDyTiCGbztKk9n6ZGkY8DYpI2olpOYKZIa-eAC9DLs45qhM_kNgAhrJM4rPKBtDSpHcHzOcmX0hzFwIkwth9oUwkDnwgGP9hJMPe89--C9TzMyUbxnXFP96-jfpN6_byyM |
CitedBy_id | crossref_primary_10_1016_j_snb_2023_135044 crossref_primary_10_1039_D0TB02051F crossref_primary_10_1016_j_ccr_2022_214613 crossref_primary_10_1039_D3NR04853E crossref_primary_10_1002_adhm_202101682 crossref_primary_10_1002_adma_202204798 crossref_primary_10_1002_anie_202204502 crossref_primary_10_1186_s11671_022_03693_5 crossref_primary_10_1038_s41467_024_46528_w crossref_primary_10_1002_anie_202301879 crossref_primary_10_1016_j_addr_2022_114269 crossref_primary_10_1002_asia_202101422 crossref_primary_10_1016_j_nantod_2021_101261 crossref_primary_10_1039_D3NR01976D crossref_primary_10_1039_D2QI02727E crossref_primary_10_1002_cjoc_202000383 crossref_primary_10_1021_acsami_1c01470 crossref_primary_10_1002_asia_202000560 crossref_primary_10_1039_D0DT02395G crossref_primary_10_1002_smll_202311584 crossref_primary_10_1039_D0CS00367K crossref_primary_10_1016_j_talanta_2021_122675 crossref_primary_10_1016_j_xcrp_2020_100149 crossref_primary_10_1021_acsnano_3c10552 crossref_primary_10_1002_anie_202315933 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1007_s40820_023_01214_2 crossref_primary_10_1016_j_jhazmat_2024_135228 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_1007_s10853_021_06190_9 crossref_primary_10_1016_j_chemosphere_2023_140557 crossref_primary_10_1016_j_cis_2025_103404 crossref_primary_10_1021_acs_analchem_1c04496 crossref_primary_10_1039_D1TB01521D crossref_primary_10_1016_j_apsusc_2023_156713 crossref_primary_10_1002_SMMD_20220025 crossref_primary_10_1021_acs_chemrev_1c00505 crossref_primary_10_1021_acscatal_1c03231 crossref_primary_10_1039_D4CE00148F crossref_primary_10_1002_VIW_20200188 crossref_primary_10_1016_j_ccr_2022_214710 crossref_primary_10_1016_j_cclet_2022_108018 crossref_primary_10_1021_acs_analchem_3c01005 crossref_primary_10_1007_s41664_025_00353_2 crossref_primary_10_1002_ange_202300119 crossref_primary_10_1002_adma_202206208 crossref_primary_10_1016_j_aca_2021_338856 crossref_primary_10_1016_j_snb_2022_131980 crossref_primary_10_1039_D3TB00681F crossref_primary_10_1016_j_mattod_2021_10_032 crossref_primary_10_3390_ma15010337 crossref_primary_10_1016_j_chempr_2020_10_023 crossref_primary_10_1002_smll_202207378 crossref_primary_10_1016_j_foodchem_2023_136518 crossref_primary_10_1021_acs_analchem_2c02511 crossref_primary_10_1039_D3TB01644G crossref_primary_10_1002_ange_202204502 crossref_primary_10_1016_j_ccr_2020_213376 crossref_primary_10_1016_j_cej_2023_141959 crossref_primary_10_1016_j_jhazmat_2024_135887 crossref_primary_10_1002_anie_202300119 crossref_primary_10_1007_s10853_022_07201_z crossref_primary_10_1021_acs_jpcc_2c07887 crossref_primary_10_1021_acssuschemeng_2c01836 crossref_primary_10_1007_s40820_020_00536_9 crossref_primary_10_1021_acsami_0c16081 crossref_primary_10_26599_NBE_2024_9290105 crossref_primary_10_1021_acsami_2c05444 crossref_primary_10_1016_j_jcis_2021_08_210 crossref_primary_10_3390_ijms242115712 crossref_primary_10_1002_smll_202203001 crossref_primary_10_3788_CJL231341 crossref_primary_10_1016_j_aca_2022_340083 crossref_primary_10_1016_j_microc_2024_111951 crossref_primary_10_1039_D0SC03522J crossref_primary_10_1002_adma_202313406 crossref_primary_10_1039_D2NR07270J crossref_primary_10_1002_adma_202211210 crossref_primary_10_1039_D1NJ03648C crossref_primary_10_3390_nano13202760 crossref_primary_10_1016_j_bioelechem_2022_108278 crossref_primary_10_1039_D4TB00220B crossref_primary_10_3389_fchem_2022_915468 crossref_primary_10_1016_j_trac_2023_117280 crossref_primary_10_1016_j_bios_2022_114656 crossref_primary_10_1002_anse_202200070 crossref_primary_10_1016_j_colsurfb_2024_114093 crossref_primary_10_1021_acsenergylett_1c02446 crossref_primary_10_1021_acsami_1c18797 crossref_primary_10_1039_D3QI00430A crossref_primary_10_3390_catal10091009 crossref_primary_10_1002_smll_202304857 crossref_primary_10_1002_adma_202211724 crossref_primary_10_1002_inf2_12421 crossref_primary_10_1002_ange_202301879 crossref_primary_10_1002_adfm_202110432 crossref_primary_10_1016_j_colsurfa_2025_136317 crossref_primary_10_1039_D4NJ04563G crossref_primary_10_1021_acsnano_0c06962 crossref_primary_10_1002_ange_202315933 crossref_primary_10_1016_j_nanoen_2021_106393 crossref_primary_10_1016_j_talanta_2023_124387 crossref_primary_10_1016_j_apsusc_2022_152496 crossref_primary_10_1021_acs_analchem_0c04084 crossref_primary_10_1088_1361_648X_abe9da crossref_primary_10_1007_s12274_023_5864_y crossref_primary_10_1016_j_mattod_2020_07_002 crossref_primary_10_1016_j_cej_2021_129674 crossref_primary_10_1016_j_cej_2021_129431 crossref_primary_10_1016_j_engreg_2023_01_001 crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1021_acsanm_0c02758 crossref_primary_10_1039_D2SC00212D crossref_primary_10_1007_s40820_021_00668_6 crossref_primary_10_1007_s00216_022_03985_w crossref_primary_10_3390_molecules27175426 crossref_primary_10_1007_s40820_021_00661_z crossref_primary_10_26599_NBE_2023_9290047 crossref_primary_10_1007_s00604_021_05035_1 crossref_primary_10_1021_acs_chemrev_0c00977 crossref_primary_10_1039_D0DT04207B crossref_primary_10_1016_j_jhazmat_2022_129772 crossref_primary_10_1016_j_seppur_2023_126238 crossref_primary_10_1007_s40820_020_00516_z crossref_primary_10_1002_eem2_12702 crossref_primary_10_1002_smll_202300750 crossref_primary_10_1007_s12274_022_5104_x |
Cites_doi | 10.1038/s41596-018-0001-1 10.1021/jz1016284 10.1063/1.1316015 10.1021/am405009f 10.1021/acs.nanolett.7b05095 10.1002/adfm.201800018 10.1038/s41929-018-0090-9 10.1002/adma.201302685 10.1021/ja505777v 10.1002/jcc.20495 10.1103/PhysRevB.66.155125 10.1039/C6CC00194G 10.1002/anie.201712469 10.1039/C2CC17013B 10.1021/acs.chemmater.8b02726 10.1021/jacs.8b05223 10.1021/acs.chemrev.8b00501 10.1016/j.bios.2015.06.043 10.1038/s41467-019-12997-7 10.1021/jacs.5b03545 10.1016/j.bios.2016.09.108 10.1039/C8TB01948G 10.1126/science.1088172 10.1038/nchem.2740 10.1063/1.458452 10.1021/ja404523s 10.1002/adma.201706758 10.1021/acs.nanolett.5b02091 10.1038/s41467-019-08731-y 10.1038/s41467-017-02502-3 10.1021/acscatal.8b03802 10.1021/acsnano.9b00457 10.1038/s41570-018-0010-1 10.1016/S1010-6030(00)00264-1 10.1039/C9CC04436A 10.1103/PhysRevLett.77.3865 10.1021/ja01318a036 10.1039/C8CS00457A 10.1002/ange.201800681 10.1126/sciadv.aav5490 10.1021/acsnano.5b03525 10.1039/C9CC01503E 10.1021/ar300361m 10.1016/j.biomaterials.2015.01.012 10.1016/j.phytochem.2003.10.022 10.1038/s41467-018-07257-z 10.1039/C8CS00718G 10.1039/C6NR00860G 10.1039/C9CC00199A 10.1126/science.290.5494.1131 10.1002/adma.201805368 10.1039/c9cc00199a 10.1002/anie.201813994 10.1039/C8NR07096B 10.1039/C3CS35486E 10.1002/anie.201905645 10.1016/S0360-0564(08)60029-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-019-0324-7 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_e3f6d7148f804a829a3373da01d63926 PMC7770872 10_1007_s40820_019_0324_7 |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c579t-ebc226cc66f779fdbbe4d16eba914f132a9472f23f12f3a64b12dadc082a887a3 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:30:47 EDT 2025 Thu Aug 21 18:26:55 EDT 2025 Fri Jul 11 15:20:03 EDT 2025 Fri Jul 25 10:55:05 EDT 2025 Tue Jul 01 00:55:43 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Fri Feb 21 02:35:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Single-atom catalysts Biocatalysis Nanozymes Reaction mechanisms Peroxidase mimic |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-ebc226cc66f779fdbbe4d16eba914f132a9472f23f12f3a64b12dadc082a887a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-019-0324-7 |
PMID | 34138037 |
PQID | 2317027831 |
PQPubID | 2044332 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e3f6d7148f804a829a3373da01d63926 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770872 proquest_miscellaneous_2542361473 proquest_journals_2317027831 crossref_primary_10_1007_s40820_019_0324_7 crossref_citationtrail_10_1007_s40820_019_0324_7 springer_journals_10_1007_s40820_019_0324_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationYear | 2019 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Delley (CR30) 1990; 92 Li, Liu, Wu, Gao (CR8) 2015; 48 Wang, Zhang, Shang, Zhang, Dong (CR47) 2016; 52 Wang, Zhou, Lai, You, Liu (CR50) 2014; 136 Xia, Zhang, Lu, Kim, Ghale (CR41) 2015; 9 Wu, Wang, Wang, Lou, Li, Zhu, Qin, Wei (CR4) 2019; 48 Li, Wang, Zhu, Zheng (CR46) 2018; 6 Fan, Zhao, Ding, Li, Chen (CR52) 2017; 89 Jiao, Xu, Yan, Wu, Gu, Li, Du, Lin, Zhu (CR56) 2019; 55 Xie, Zhang, Li, Wang, Sun (CR26) 2013; 25 Zhang, Sun, Cho, Weon, Lee (CR15) 2019; 10 Ishibashi, Fujishima, Watanabe, Hashimoto (CR43) 2000; 134 Fang, Li, Shen, Perez-Aguilar, Chong (CR9) 2018; 9 Qi, Cui, Gu, Yu, Fan (CR28) 2019 Jia, Yang, Han, Cai, Liu, He (CR45) 2016; 8 Hu, Gao, Zhu, Muhammad, Tan (CR54) 2018; 30 Huo, Wang, Wang, Chen, Shi (CR24) 2019; 13 Han, Zhang, Chen, Li (CR14) 2018; 28 Wang, Li, Yu, Zhang, Wang (CR12) 2018; 18 Dong, Song, Yin, He, Wu, Gu, Zhang (CR44) 2014; 6 Zhao, Xiong, Liu, Qiao, Li (CR21) 2019; 55 Thorum, Hankett, Gewirth (CR49) 2011; 2 Wang, Wan, Shi (CR7) 2018 Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR55) 2013; 135 Black, Murray, Sandstrom, Sun (CR27) 2000; 290 Kornienko, Resasco, Becknell, Jiang, Liu (CR36) 2015; 137 Wei, Wang (CR2) 2013; 42 Nirala, Pandey, Bansal, Singh, Mukherjee, Saxena, Srivastava (CR42) 2015; 74 Delley (CR31) 2000; 113 Zhao, Xiong, Liu, Qiao, Li (CR53) 2019; 55 CR57 Wang, Cullen, Pan, Hwang, Wang (CR35) 2018; 30 Wang, Cui, Zhao, Jia, Gu (CR38) 2019; 9 Chong, Dai, Fang, Wu, Zhao (CR10) 2018; 9 Wang, Zhang, Jia, Zheng, Zhao, Cui (CR23) 2019; 55 Lineweaver, Burk (CR51) 1934; 56 Yang, Wang, Qiao, Li, Liu, Zhang (CR3) 2013; 46 Huang, Chen, Gan, Wang, Dong (CR20) 2019; 5 Komkova, Karyakina, Karyakin (CR6) 2018; 140 Ghosh, Roy, Karmodak, Jemmis, Mugesh (CR11) 2018; 130 Mu, Wang, Zhao, Zhang (CR48) 2012; 48 Jiao, Zhang, Du, Li, Yang, Zhu (CR40) 2018; 10 Perdew, Burke, Ernzerhof (CR32) 1996; 77 Wang, Li, Zhang (CR18) 2018; 2 CR25 Xu, Wang, Wang, Gao, Li (CR22) 2019; 58 Sun, Zhou, Ren, Qu (CR13) 2018; 57 Wang, Mao, Meng, Yu, Deng, Bao (CR19) 2019; 119 Grimme (CR33) 2006; 27 Delley (CR34) 2002; 66 Jiang, Ni, Rosenkrans, Huang, Yan, Cai (CR5) 2019 Cui, Li, Ryabchuk, Junge, Beller (CR17) 2018; 1 Jiang, Duan, Gao, Zhou, Fan (CR29) 2018; 13 Liu, Robertson, Li, Kuo, Darby (CR39) 2017; 9 Garcia-Viloca, Gao, Karplus, Truhlar (CR1) 2004; 303 Veitch (CR16) 2004; 65 Fan, Xu, Zhou, Sun, Li, Nguyen, Terrones, Mallouk (CR37) 2015; 15 B Delley (324_CR31) 2000; 113 JP Perdew (324_CR32) 1996; 77 M Huo (324_CR24) 2019; 13 WY Li (324_CR46) 2018; 6 K-I Ishibashi (324_CR43) 2000; 134 JJ Wu (324_CR4) 2019; 48 BL Xu (324_CR22) 2019; 58 MA Lukowski (324_CR55) 2013; 135 QQ Wang (324_CR47) 2016; 52 C Zhao (324_CR21) 2019; 55 HM Jia (324_CR45) 2016; 8 CT Black (324_CR27) 2000; 290 J Xie (324_CR26) 2013; 25 XJ Cui (324_CR17) 2018; 1 HJ Sun (324_CR13) 2018; 57 K Qi (324_CR28) 2019 B Jiang (324_CR29) 2018; 13 D Jiang (324_CR5) 2019 N Kornienko (324_CR36) 2015; 137 S Grimme (324_CR33) 2006; 27 G Fang (324_CR9) 2018; 9 H Wang (324_CR7) 2018 MS Thorum (324_CR49) 2011; 2 H Lineweaver (324_CR51) 1934; 56 Y Hu (324_CR54) 2018; 30 XF Yang (324_CR3) 2013; 46 P Zhang (324_CR15) 2019; 10 L Jiao (324_CR56) 2019; 55 L Jiao (324_CR40) 2018; 10 JS Mu (324_CR48) 2012; 48 SS Fan (324_CR52) 2017; 89 Y Wang (324_CR23) 2019; 55 Y Wang (324_CR38) 2019; 9 JL Dong (324_CR44) 2014; 6 L Han (324_CR14) 2018; 28 H Wang (324_CR12) 2018; 18 Y Wang (324_CR19) 2019; 119 AQ Wang (324_CR18) 2018; 2 324_CR25 B Delley (324_CR30) 1990; 92 C Zhao (324_CR53) 2019; 55 NC Veitch (324_CR16) 2004; 65 Q Wang (324_CR50) 2014; 136 L Huang (324_CR20) 2019; 5 XX Wang (324_CR35) 2018; 30 MA Komkova (324_CR6) 2018; 140 B Delley (324_CR34) 2002; 66 NR Nirala (324_CR42) 2015; 74 S Ghosh (324_CR11) 2018; 130 M Garcia-Viloca (324_CR1) 2004; 303 JN Li (324_CR8) 2015; 48 GL Liu (324_CR39) 2017; 9 XH Xia (324_CR41) 2015; 9 324_CR57 Y Chong (324_CR10) 2018; 9 X Fan (324_CR37) 2015; 15 H Wei (324_CR2) 2013; 42 |
References_xml | – volume: 13 start-page: 1506 issue: 7 year: 2018 end-page: 1520 ident: CR29 article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0001-1 – volume: 2 start-page: 295 issue: 4 year: 2011 end-page: 298 ident: CR49 article-title: Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: evidence for metal-centered activity publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1016284 – volume: 113 start-page: 7756 issue: 18 year: 2000 end-page: 7764 ident: CR31 article-title: From molecules to solids with the DMol approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 6 start-page: 1959 issue: 3 year: 2014 end-page: 1970 ident: CR44 article-title: Co O nanoparticles with multi-enzyme activities and their application in immunohistochemical assay publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405009f – volume: 18 start-page: 3344 issue: 6 year: 2018 end-page: 3351 ident: CR12 article-title: Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05095 – volume: 28 start-page: 1800018 issue: 17 year: 2018 ident: CR14 article-title: Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800018 – volume: 1 start-page: 385 issue: 6 year: 2018 end-page: 397 ident: CR17 article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0090-9 – volume: 25 start-page: 5807 issue: 40 year: 2013 end-page: 5813 ident: CR26 article-title: Defect-rich MoS ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 136 start-page: 10882 issue: 31 year: 2014 end-page: 10885 ident: CR50 article-title: Phenylenediamine based FeN /C catalyst with high activity for oxygen reduction in acid medium and its active-site probing publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505777v – volume: 27 start-page: 1787 issue: 15 year: 2006 end-page: 1799 ident: CR33 article-title: Semiempirical gga-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 66 start-page: 155125 issue: 15 year: 2002 ident: CR34 article-title: Hardness conserving semilocal pseudopotentials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.155125 – volume: 52 start-page: 5410 issue: 31 year: 2016 end-page: 5413 ident: CR47 article-title: Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose publication-title: Chem. Commun. doi: 10.1039/C6CC00194G – volume: 57 start-page: 9224 issue: 30 year: 2018 end-page: 9237 ident: CR13 article-title: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712469 – volume: 48 start-page: 2540 issue: 19 year: 2012 end-page: 2542 ident: CR48 article-title: Intrinsic peroxidase-like activity and catalase-like activity of Co O nanoparticles publication-title: Chem. Commun. doi: 10.1039/C2CC17013B – volume: 30 start-page: 6431 issue: 18 year: 2018 end-page: 6439 ident: CR54 article-title: Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02726 – ident: CR25 – volume: 140 start-page: 11302 issue: 36 year: 2018 end-page: 11307 ident: CR6 article-title: Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05223 – volume: 119 start-page: 1806 issue: 3 year: 2019 end-page: 1854 ident: CR19 article-title: Catalysis with two-dimensional materials confining single atoms: concept, design, and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00501 – volume: 74 start-page: 207 year: 2015 end-page: 213 ident: CR42 article-title: Different shades of cholesterol: gold nanoparticles supported on MoS nanoribbons for enhanced colorimetric sensing of free cholesterol publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.06.043 – year: 2019 ident: CR28 article-title: Single-atom cobalt array bound to distorted 1T-MoS with ensemble effect for hydrogen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-12997-7 – volume: 137 start-page: 7448 issue: 23 year: 2015 end-page: 7455 ident: CR36 article-title: Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03545 – volume: 89 start-page: 846 year: 2017 end-page: 852 ident: CR52 article-title: Preparation of Co O /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.09.108 – volume: 6 start-page: 6858 issue: 42 year: 2018 end-page: 6864 ident: CR46 article-title: Co O nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01948G – ident: CR57 – volume: 303 start-page: 186 issue: 5655 year: 2004 end-page: 195 ident: CR1 article-title: How enzymes work: analysis by modern rate theory and computer simulations publication-title: Science doi: 10.1126/science.1088172 – volume: 9 start-page: 810 year: 2017 end-page: 816 ident: CR39 article-title: MoS monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction publication-title: Nat. Chem. doi: 10.1038/nchem.2740 – volume: 92 start-page: 508 issue: 1 year: 1990 end-page: 517 ident: CR30 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 135 start-page: 10274 issue: 28 year: 2013 end-page: 10277 ident: CR55 article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404523s – volume: 30 start-page: 1706758 issue: 11 year: 2018 ident: CR35 article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 15 start-page: 5956 issue: 9 year: 2015 end-page: 5960 ident: CR37 article-title: Fast and efficient preparation of exfoliated 2H MoS nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02091 – volume: 10 start-page: 940 issue: 1 year: 2019 ident: CR15 article-title: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-08731-y – volume: 9 start-page: 129 issue: 1 year: 2018 ident: CR9 article-title: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria publication-title: Nat. Commun. doi: 10.1038/s41467-017-02502-3 – volume: 9 start-page: 336 issue: 1 year: 2019 end-page: 344 ident: CR38 article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution publication-title: ACS Catal. doi: 10.1021/acscatal.8b03802 – volume: 13 start-page: 2643 issue: 2 year: 2019 end-page: 2653 ident: CR24 article-title: Nanocatalytic tumor therapy by single-atom catalysts publication-title: ACS Nano doi: 10.1021/acsnano.9b00457 – volume: 2 start-page: 65 issue: 6 year: 2018 end-page: 81 ident: CR18 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 134 start-page: 139 issue: 1 year: 2000 end-page: 142 ident: CR43 article-title: Quantum yields of active oxidative species formed on TiO photocatalyst publication-title: J. Photochem. Photobiol. A doi: 10.1016/S1010-6030(00)00264-1 – volume: 55 start-page: 9865 issue: 66 year: 2019 end-page: 9868 ident: CR56 article-title: A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis publication-title: Chem. Commun. doi: 10.1039/C9CC04436A – volume: 77 start-page: 3865 issue: 18 year: 1996 end-page: 3868 ident: CR32 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 56 start-page: 658 issue: 3 year: 1934 end-page: 666 ident: CR51 article-title: The determination of enzyme dissociation constants publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01318a036 – volume: 48 start-page: 1004 issue: 4 year: 2019 end-page: 1076 ident: CR4 article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II) publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A – volume: 130 start-page: 4600 issue: 17 year: 2018 end-page: 4605 ident: CR11 article-title: Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V O nanomaterials publication-title: Angew. Chem. doi: 10.1002/ange.201800681 – volume: 5 start-page: eaav5490 issue: 5 year: 2019 ident: CR20 article-title: Single-atom nanozymes publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 9 start-page: 9994 issue: 10 year: 2015 end-page: 10004 ident: CR41 article-title: Pd-ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic publication-title: ACS Nano doi: 10.1021/acsnano.5b03525 – volume: 55 start-page: 5271 issue: 36 year: 2019 end-page: 5274 ident: CR23 article-title: Elucidating the mechanism of the structure-dependent enzymatic activity of fe-n/c oxidase mimics publication-title: Chem. Commun. doi: 10.1039/C9CC01503E – volume: 46 start-page: 1740 issue: 8 year: 2013 end-page: 1748 ident: CR3 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 48 start-page: 37 year: 2015 end-page: 44 ident: CR8 article-title: Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.012 – volume: 65 start-page: 249 issue: 3 year: 2004 end-page: 259 ident: CR16 article-title: Horseradish peroxidase: a modern view of a classic enzyme publication-title: Phytochemistry doi: 10.1016/j.phytochem.2003.10.022 – volume: 9 start-page: 4861 issue: 1 year: 2018 ident: CR10 article-title: Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment publication-title: Nat. Commun. doi: 10.1038/s41467-018-07257-z – year: 2019 ident: CR5 article-title: Nanozyme: new horizons for responsive biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00718G – volume: 8 start-page: 5938 issue: 11 year: 2016 end-page: 5945 ident: CR45 article-title: Peroxidase-like activity of the Co O nanoparticles used for biodetection and evaluation of antioxidant behavior publication-title: Nanoscale doi: 10.1039/C6NR00860G – volume: 55 start-page: 2285 issue: 16 year: 2019 end-page: 2288 ident: CR53 article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst publication-title: Chem. Commun. doi: 10.1039/C9CC00199A – volume: 290 start-page: 1131 issue: 5494 year: 2000 end-page: 1134 ident: CR27 article-title: Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices publication-title: Science doi: 10.1126/science.290.5494.1131 – year: 2018 ident: CR7 article-title: Recent advances in nanozyme research publication-title: Adv. Mater. doi: 10.1002/adma.201805368 – volume: 55 start-page: 2285 issue: 16 year: 2019 end-page: 2288 ident: CR21 article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst publication-title: Chem. Commun. doi: 10.1039/c9cc00199a – volume: 58 start-page: 4911 issue: 15 year: 2019 end-page: 4916 ident: CR22 article-title: Single-atom nanozyme for wound antibacterial applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813994 – volume: 10 start-page: 21893 issue: 46 year: 2018 end-page: 21897 ident: CR40 article-title: Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay publication-title: Nanoscale doi: 10.1039/C8NR07096B – volume: 42 start-page: 6060 issue: 14 year: 2013 end-page: 6093 ident: CR2 article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS35486E – volume: 55 start-page: 9865 issue: 66 year: 2019 ident: 324_CR56 publication-title: Chem. Commun. doi: 10.1039/C9CC04436A – volume: 15 start-page: 5956 issue: 9 year: 2015 ident: 324_CR37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02091 – volume: 134 start-page: 139 issue: 1 year: 2000 ident: 324_CR43 publication-title: J. Photochem. Photobiol. A doi: 10.1016/S1010-6030(00)00264-1 – volume: 10 start-page: 21893 issue: 46 year: 2018 ident: 324_CR40 publication-title: Nanoscale doi: 10.1039/C8NR07096B – volume: 30 start-page: 1706758 issue: 11 year: 2018 ident: 324_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 140 start-page: 11302 issue: 36 year: 2018 ident: 324_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05223 – volume: 92 start-page: 508 issue: 1 year: 1990 ident: 324_CR30 publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – ident: 324_CR25 doi: 10.1002/anie.201905645 – volume: 113 start-page: 7756 issue: 18 year: 2000 ident: 324_CR31 publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 74 start-page: 207 year: 2015 ident: 324_CR42 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.06.043 – volume: 130 start-page: 4600 issue: 17 year: 2018 ident: 324_CR11 publication-title: Angew. Chem. doi: 10.1002/ange.201800681 – volume: 137 start-page: 7448 issue: 23 year: 2015 ident: 324_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03545 – volume: 290 start-page: 1131 issue: 5494 year: 2000 ident: 324_CR27 publication-title: Science doi: 10.1126/science.290.5494.1131 – year: 2018 ident: 324_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201805368 – volume: 42 start-page: 6060 issue: 14 year: 2013 ident: 324_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS35486E – volume: 18 start-page: 3344 issue: 6 year: 2018 ident: 324_CR12 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05095 – volume: 25 start-page: 5807 issue: 40 year: 2013 ident: 324_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 57 start-page: 9224 issue: 30 year: 2018 ident: 324_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712469 – volume: 1 start-page: 385 issue: 6 year: 2018 ident: 324_CR17 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0090-9 – volume: 58 start-page: 4911 issue: 15 year: 2019 ident: 324_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813994 – volume: 135 start-page: 10274 issue: 28 year: 2013 ident: 324_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404523s – year: 2019 ident: 324_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12997-7 – volume: 9 start-page: 4861 issue: 1 year: 2018 ident: 324_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07257-z – volume: 119 start-page: 1806 issue: 3 year: 2019 ident: 324_CR19 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00501 – volume: 65 start-page: 249 issue: 3 year: 2004 ident: 324_CR16 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2003.10.022 – volume: 2 start-page: 295 issue: 4 year: 2011 ident: 324_CR49 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1016284 – volume: 9 start-page: 336 issue: 1 year: 2019 ident: 324_CR38 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03802 – volume: 9 start-page: 810 year: 2017 ident: 324_CR39 publication-title: Nat. Chem. doi: 10.1038/nchem.2740 – volume: 55 start-page: 2285 issue: 16 year: 2019 ident: 324_CR53 publication-title: Chem. Commun. doi: 10.1039/C9CC00199A – volume: 13 start-page: 2643 issue: 2 year: 2019 ident: 324_CR24 publication-title: ACS Nano doi: 10.1021/acsnano.9b00457 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 324_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 9994 issue: 10 year: 2015 ident: 324_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.5b03525 – volume: 48 start-page: 2540 issue: 19 year: 2012 ident: 324_CR48 publication-title: Chem. Commun. doi: 10.1039/C2CC17013B – volume: 6 start-page: 1959 issue: 3 year: 2014 ident: 324_CR44 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405009f – ident: 324_CR57 doi: 10.1016/S0360-0564(08)60029-2 – volume: 10 start-page: 940 issue: 1 year: 2019 ident: 324_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08731-y – volume: 2 start-page: 65 issue: 6 year: 2018 ident: 324_CR18 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 13 start-page: 1506 issue: 7 year: 2018 ident: 324_CR29 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0001-1 – volume: 28 start-page: 1800018 issue: 17 year: 2018 ident: 324_CR14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800018 – volume: 5 start-page: eaav5490 issue: 5 year: 2019 ident: 324_CR20 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 8 start-page: 5938 issue: 11 year: 2016 ident: 324_CR45 publication-title: Nanoscale doi: 10.1039/C6NR00860G – volume: 48 start-page: 37 year: 2015 ident: 324_CR8 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.012 – volume: 55 start-page: 2285 issue: 16 year: 2019 ident: 324_CR21 publication-title: Chem. Commun. doi: 10.1039/c9cc00199a – volume: 9 start-page: 129 issue: 1 year: 2018 ident: 324_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02502-3 – volume: 52 start-page: 5410 issue: 31 year: 2016 ident: 324_CR47 publication-title: Chem. Commun. doi: 10.1039/C6CC00194G – volume: 303 start-page: 186 issue: 5655 year: 2004 ident: 324_CR1 publication-title: Science doi: 10.1126/science.1088172 – volume: 46 start-page: 1740 issue: 8 year: 2013 ident: 324_CR3 publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 27 start-page: 1787 issue: 15 year: 2006 ident: 324_CR33 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 55 start-page: 5271 issue: 36 year: 2019 ident: 324_CR23 publication-title: Chem. Commun. doi: 10.1039/C9CC01503E – volume: 56 start-page: 658 issue: 3 year: 1934 ident: 324_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01318a036 – volume: 136 start-page: 10882 issue: 31 year: 2014 ident: 324_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505777v – year: 2019 ident: 324_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00718G – volume: 6 start-page: 6858 issue: 42 year: 2018 ident: 324_CR46 publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01948G – volume: 30 start-page: 6431 issue: 18 year: 2018 ident: 324_CR54 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02726 – volume: 89 start-page: 846 year: 2017 ident: 324_CR52 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.09.108 – volume: 66 start-page: 155125 issue: 15 year: 2002 ident: 324_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.155125 – volume: 48 start-page: 1004 issue: 4 year: 2019 ident: 324_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5282948 |
Snippet | Highlights
Single-atom Co–MoS
2
(SA Co–MoS
2
) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like... The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to... HighlightsSingle-atom Co–MoS2 (SA Co–MoS2) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance... Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance... Abstract The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Biocatalysis Electron transfer Engineering Molybdenum disulfide Nanomaterials Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nanozymes Peroxidase Peroxidase mimic Reaction mechanisms Single-atom catalysts Substrates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEVoQUbiBLJwbCdOjmVFtSAWIUql3iy_IiLaBHW3CG78B_4hv4QZJ_tIJeDCbbXJ2snM58znnck3hDzlebBWS8VC7QNT3nlmYdExG7QquOMhpnZAi3fl_ES9OS1Od1p9YU3YIA88GO5FlE0ZNJD2puLKVqK2UmoZLEwCwVUksW2IeTubKUCS0NiRaZsfxLbKakelRqGmi9wKmRUoXKa3-piFUBDXx0A7EGmNKazUqS7PWal5uU6R4nt42LUZ67tqxoGgMD0JcqkXwITAXi2_vJKDTaHt6Ba5OXJSejjY4ja5Frs75MaOUuFd4j7Er0Ap4TMFxkhfw5BtBw6m7-NF_60NEAvZ2_ZzpDP8O-g7DEQXEV8qbpfntG_oHKtuegBr7C-X9BjGOYvscNWf01n_68fPRX8s7pGTo1cfZ3M2tmdgvtD1ikXngbt5X5aN1nUTnIsq5GV0ts5VA7tcW4MVGyGbXDTSlsrlItjgwVYWHm1W3id7Xd_FB4QG5VWMLlSRWwWErSp4qAApMEUZXIwZ4Wt7Gj9ql2MLjTOzUV1OLjDgAoMuMDojzzY_-TIId_zt5JfopM2JqLmdvgAkmhGJ5l9IzMjB2sVmfBAsDcBFY3JX5hl5sjkMSxjzMjYZ3cAeHSVwAJQZ0RNoTC5oeqRrPyUxcK01r7TIyPM1iLaT__F-H_6P-90n1wVCPtX2HJC91cVlfAQMbeUep8X4G62WLcE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB8SlCCzISJ5BFYjtxckLtqtWC2KpqqdRb5K9ARJuU3W0FN_4D_5Bfwow32TSV6C1Ksk7W8zx-9kzeEPImTpzWSkjmCuuYtMYyDYOOaadkGpvY-VAOaHaQTU_kp9P0tNtwW3Rplb1PDI7atRb3yN8DD1EYJRPJh4sfDKtGYXS1K6Fxl2yCC85h8bW5u3dweNQjiiuszDTECbG8srymViNR20UMgmYpCpipQScz5RLm927CXRFqhaGsULEuSVim4qwPleL3eFi9GfO8ChYDUWFqNNmFmgAjInszDfNGLDZMcfsPyYOOm9KdFZgekTu-eUzuX1MsfELMkb8CagnHFJgj_QhN1g0Ymh76efuzdjAnss_1d08nuC30CxqiM48fF9eLc9pWdIrZNy2A1reXC3oM7Zx5trNsz-mk_fv7z6w95k_Jyf7el8mUdWUamE1VsWTeWOBw1mZZpVRROWO8dEnmjS4SWcFqVxfQixUXVcIroTNpEu60s9BXGlycFs_IRtM2_jmhTlrpvXG5j7UE4panscsBMfCIzBnvIxL3_VnaTsMcS2mclWv15WCCEkxQoglKFZG3659crAQ8brt5F420vhG1t8OJdv617IZy6UWVOQXLyCqPpc55oYVQwmmAPdA9nkVkuzdx2TmERTnANyKv15dhKGN8RodOL2GtjlI4AMqIqBE0Ri80vtLU34IouFIqzhWPyLseRMPD__t_X9z-qlvkHkcwh-ydbbKxnF_6l8DBluZVN9D-AT06J5Q priority: 102 providerName: ProQuest |
Title | Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2 |
URI | https://link.springer.com/article/10.1007/s40820-019-0324-7 https://www.proquest.com/docview/2317027831 https://www.proquest.com/docview/2542361473 https://pubmed.ncbi.nlm.nih.gov/PMC7770872 https://doaj.org/article/e3f6d7148f804a829a3373da01d63926 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbY9gIPiKsIjMpIPIEsJbFjJ49tWCmITtPGpL1FvmVEbAlqOwRv_Af-Ib-EYzeXZQIkXpqqcZzU57PP5xz7Owi9DCMjpaCMmEwbwrTSREKnI9IIloQqNNanA1oe8sUpe3-WnLX7uNfdavcuJOlH6n6zm0uN7BZRZSQEFkDEDtpLYOruYJ0PkuOxcMmYhtCgy6jMrgnUMCfnQgcNs8RplolBGjOJGbj01sduObRw0SufpC6KCBch76Kjf3qqkX_zaQBG3PXmyssb4Vfv1eb30N2WjuLpFj_30S1bP0B3rokUPkTq2H4FNgnfMZBF_A6qrGqwLT6yq-ZbZcANkg_VZ4tz9yboO1SEl9btJ67Wl7gp8cItuGkAp7a5WuMTqOfCkummucR58-vHz2VzEj9Cp_ODj_mCtJkZiE5EtiFWaaBtWnNeCpGVRinLTMStklnESpjgygxasYxpGcUllZypKDbSaGgrCaOapI_Rbt3U9gnChmlmrTKpDSUDrpYmoUkBJHALbpS1AQq79ix0K1vusmdcFL3gsjdBASYonAkKEaBX_SVftpod_yo8c0bqCzq5bf9Dszov2t5bWFpyI2DmWKYhk2mcSUoFNRKQDgwv5gHa70xctGPAugC4CBfXpVGAXvSnofe6kIz0jV7A9Nyp3wAoAyRG0Bg90PhMXX3yOuBCiDAVcYBedyAabv7X__v0v0o_Q7djh22_fmcf7W5WV_Y5sLCNmqCddP52gvamszezORxnB4dHxxPfF90nzyf-_cZvekkoQg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiF9hKLBIcAGtsHfXXvuAUAmElCYVoq3Um7t_hog2LkkK9MY78B48FE_CzMZOmkr01ptlO7uO5-9bz-w3hDyNE6e1EpK5wjomrbFMg9Ex7ZRMYxM7H9oBDbay3q78sJfurZA_7V4YLKtsfWJw1K62-I38JeAQhVkykbw--sawaxRmV9sWGjO12PQnP2DJNnm18Rbk-4zz7rudTo81XQWYTVUxZd5YgBzWZlmlVFE5Y7x0SeaNLhJZweJMF1Lxiosq4ZXQmTQJd9pZiJUaLFILGPcSuSyFKNCi8u77Vn-5wj5Qi6wkNnOWp7hxJDLJiAV9Wop0aWrByplymFg14X0G3xUmzkJ_vCRhmYqzNjGLu_-wVzRWlRUsBljE1FJoDR0IlmDz2aLPM5nfEFC7N8j1BgnT9Znq3iQrfnSLXDvFj3ibmE_-OwBZOKaAU-kGDDkcgVrRj35c_xw6iMCsP_zqaQc_Qp3AQHTgcSvzcHJI64r2sNanBhPx9fGEbsM4B56tT-tD2qn__vo9qLf5HbJ7IeK7S1ZH9cjfI9RJK703LvexlgAT8zR2OegnTJE5431E4vZ9lrZhTMfGHQflnOs5iKAEEZQoglJF5Pn8J0czupDzbn6DQprfiEzf4UQ9_lw2jqP0osqcgkVrlcdS57zQQijhNBgZgEueRWStFXHZuJ9JuTCWiDyZXwbHgdkgHV56yVOJxDuglBFRS6qx9EDLV0bDL4GCXCkV54pH5EWrRIvJ__t_75__qI_Jld7OoF_2N7Y2H5CrHBU71A2tkdXp-Ng_BPQ3NY-CyVGyf9E2_g-tt2RW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSIgeEJ8ipYCROIGsJo5jJ8eysNpCt6oolXqz_AkRbVLtpghu_Af-Ib-EcTbZNBUgcYsSr5P1jDPPmfF7CL2IE6uUSBmxhbGEGW2IgklHlBUsi3VsXSsHND_gs2P27iQ76XROl321e5-SXO1pCCxNVbNzbv3OeuNbkEkOBVUFiQEREHEd3YCFShJq-iYD_TgVQZhpSBMGdWV2iayGBWqXdOAzywJ_mRhoMjPKILx38XaFp0XIZLWCdUlCuIh5nyn901ONYl0rCTDCsVerMK-kYtsIN72DbnfQFO-ufOkuuuaqe2jzEmHhfaQ_uK-ALOEYA3DEe9BlWYGd8aFb1N9KCyGR7JdfHJ6Er0LfoSM8d2Fvcbk8w7XHs1B8U4PPuvpiiY-gn1NHdpv6DE_qXz9-zusj-gAdT99-nMxIp9JATCaKhjhtAMIZw7kXovBWa8dswp1WRcI8LHZVAaPoaeoT6lPFmU6oVdbAWCl4w6n0Idqo6so9Qtgyw5zTNnexYoDb8iy2OTgM3IJb7VyE4n48pekozIOSxqlcky-3JpBgAhlMIEWEXq5_cr7i7_hX49fBSOuGgXq7PVEvPsluJkuXem4FrCJ9HjOV00KlqUitAq8HtEd5hLZ7E8vufbCU4C4i5HjTJELP15dhJof0jGoHXcJSPTDhgFNGSIxcY_RA4ytV-bnlBBdCxLmgEXrVO9Fw87_-363_av0M3Tx8M5X7ewfvH6NbNLh5W9azjTaaxYV7AuCs0U_bCfgbPd0prw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Intrinsic+Peroxidase-Like+Catalytic+Mechanism+of+Heterogeneous+Single-Atom+Co%E2%80%93MoS2&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Ying&rft.au=Qi%2C+Kun&rft.au=Yu%2C+Shansheng&rft.au=Jia%2C+Guangri&rft.date=2019-12-01&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-019-0324-7&rft.externalDocID=10_1007_s40820_019_0324_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |