Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2

Highlights Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated expe...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 11; no. 1; pp. 1 - 13
Main Authors Wang, Ying, Qi, Kun, Yu, Shansheng, Jia, Guangri, Cheng, Zhiliang, Zheng, Lirong, Wu, Qiong, Bao, Qiaoliang, Wang, Qingqing, Zhao, Jingxiang, Cui, Xiaoqiang, Zheng, Weitao
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2311-6706
2150-5551
2150-5551
DOI10.1007/s40820-019-0324-7

Cover

Loading…
Abstract Highlights Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically. The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
AbstractList The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS2 (SA Co-MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS2 (SA Co-MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
Highlights Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically. The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
HighlightsSingle-atom Co–MoS2 (SA Co–MoS2) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes.The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically.
Abstract The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS2 (SA Co–MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes. The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically. The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS 2 (SA Co–MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
ArticleNumber 102
Author Bao, Qiaoliang
Cui, Xiaoqiang
Wu, Qiong
Jia, Guangri
Zheng, Lirong
Zheng, Weitao
Wang, Qingqing
Zhao, Jingxiang
Wang, Ying
Qi, Kun
Yu, Shansheng
Cheng, Zhiliang
Author_xml – sequence: 1
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University
– sequence: 2
  givenname: Kun
  surname: Qi
  fullname: Qi, Kun
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University
– sequence: 3
  givenname: Shansheng
  surname: Yu
  fullname: Yu, Shansheng
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University
– sequence: 4
  givenname: Guangri
  surname: Jia
  fullname: Jia, Guangri
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University
– sequence: 5
  givenname: Zhiliang
  surname: Cheng
  fullname: Cheng, Zhiliang
  organization: Department of Bioengineering, University of Pennsylvania
– sequence: 6
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 7
  givenname: Qiong
  surname: Wu
  fullname: Wu, Qiong
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University
– sequence: 8
  givenname: Qiaoliang
  surname: Bao
  fullname: Bao, Qiaoliang
  organization: Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University
– sequence: 9
  givenname: Qingqing
  surname: Wang
  fullname: Wang, Qingqing
  organization: School of Chemistry and Chemical Engineering, MOE Key Laboratory of Micro-System and Micro-Structure Manufacturing, Harbin Institute of Technology
– sequence: 10
  givenname: Jingxiang
  surname: Zhao
  fullname: Zhao, Jingxiang
  email: xjz_hmily@163.com
  organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University
– sequence: 11
  givenname: Xiaoqiang
  surname: Cui
  fullname: Cui, Xiaoqiang
  email: xqcui@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University
– sequence: 12
  givenname: Weitao
  surname: Zheng
  fullname: Zheng, Weitao
  organization: Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University
BookMark eNp9Us1u1DAYjFARLaUPwC0SFy4B_8VfckGqVkBX2gpE4Wx9cT7vumTjYmcreuMdeEOeBG9TgVoJTrb8zYzH43laHIxhpKJ4ztkrzhi8Too1glWMtxWTQlXwqDgSvGZVXdf8IO8l55UGpg-Lk5R8x2qhQECtnhSHUnHZMAlHRfeJrgkHP67LaUPlcpyiH5O35UeK4bvvMVG18l-pXOCEw82UJ-dkNzj6tC2DK89oysA1jRR2qbzIOgNVp1PYlovw68fP83AhnhWPHQ6JTu7W4-LLu7efF2fV6sP75eJ0Vdka2qmizgqhrdXaAbSu7zpSPdfUYcuV41Jgm_07IR0XTqJWHRc99jangE0DKI-L5azbB7w0V9FvMd6YgN7cHoS4NhjzAwYyJJ3ugavGNUxhI1qUEmSPjPdatkJnrTez1tWu21JvKeeCwz3R-5PRb8w6XBsAYA2ILPDyTiCGbztKk9n6ZGkY8DYpI2olpOYKZIa-eAC9DLs45qhM_kNgAhrJM4rPKBtDSpHcHzOcmX0hzFwIkwth9oUwkDnwgGP9hJMPe89--C9TzMyUbxnXFP96-jfpN6_byyM
CitedBy_id crossref_primary_10_1016_j_snb_2023_135044
crossref_primary_10_1039_D0TB02051F
crossref_primary_10_1016_j_ccr_2022_214613
crossref_primary_10_1039_D3NR04853E
crossref_primary_10_1002_adhm_202101682
crossref_primary_10_1002_adma_202204798
crossref_primary_10_1002_anie_202204502
crossref_primary_10_1186_s11671_022_03693_5
crossref_primary_10_1038_s41467_024_46528_w
crossref_primary_10_1002_anie_202301879
crossref_primary_10_1016_j_addr_2022_114269
crossref_primary_10_1002_asia_202101422
crossref_primary_10_1016_j_nantod_2021_101261
crossref_primary_10_1039_D3NR01976D
crossref_primary_10_1039_D2QI02727E
crossref_primary_10_1002_cjoc_202000383
crossref_primary_10_1021_acsami_1c01470
crossref_primary_10_1002_asia_202000560
crossref_primary_10_1039_D0DT02395G
crossref_primary_10_1002_smll_202311584
crossref_primary_10_1039_D0CS00367K
crossref_primary_10_1016_j_talanta_2021_122675
crossref_primary_10_1016_j_xcrp_2020_100149
crossref_primary_10_1021_acsnano_3c10552
crossref_primary_10_1002_anie_202315933
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1007_s40820_023_01214_2
crossref_primary_10_1016_j_jhazmat_2024_135228
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_1007_s10853_021_06190_9
crossref_primary_10_1016_j_chemosphere_2023_140557
crossref_primary_10_1016_j_cis_2025_103404
crossref_primary_10_1021_acs_analchem_1c04496
crossref_primary_10_1039_D1TB01521D
crossref_primary_10_1016_j_apsusc_2023_156713
crossref_primary_10_1002_SMMD_20220025
crossref_primary_10_1021_acs_chemrev_1c00505
crossref_primary_10_1021_acscatal_1c03231
crossref_primary_10_1039_D4CE00148F
crossref_primary_10_1002_VIW_20200188
crossref_primary_10_1016_j_ccr_2022_214710
crossref_primary_10_1016_j_cclet_2022_108018
crossref_primary_10_1021_acs_analchem_3c01005
crossref_primary_10_1007_s41664_025_00353_2
crossref_primary_10_1002_ange_202300119
crossref_primary_10_1002_adma_202206208
crossref_primary_10_1016_j_aca_2021_338856
crossref_primary_10_1016_j_snb_2022_131980
crossref_primary_10_1039_D3TB00681F
crossref_primary_10_1016_j_mattod_2021_10_032
crossref_primary_10_3390_ma15010337
crossref_primary_10_1016_j_chempr_2020_10_023
crossref_primary_10_1002_smll_202207378
crossref_primary_10_1016_j_foodchem_2023_136518
crossref_primary_10_1021_acs_analchem_2c02511
crossref_primary_10_1039_D3TB01644G
crossref_primary_10_1002_ange_202204502
crossref_primary_10_1016_j_ccr_2020_213376
crossref_primary_10_1016_j_cej_2023_141959
crossref_primary_10_1016_j_jhazmat_2024_135887
crossref_primary_10_1002_anie_202300119
crossref_primary_10_1007_s10853_022_07201_z
crossref_primary_10_1021_acs_jpcc_2c07887
crossref_primary_10_1021_acssuschemeng_2c01836
crossref_primary_10_1007_s40820_020_00536_9
crossref_primary_10_1021_acsami_0c16081
crossref_primary_10_26599_NBE_2024_9290105
crossref_primary_10_1021_acsami_2c05444
crossref_primary_10_1016_j_jcis_2021_08_210
crossref_primary_10_3390_ijms242115712
crossref_primary_10_1002_smll_202203001
crossref_primary_10_3788_CJL231341
crossref_primary_10_1016_j_aca_2022_340083
crossref_primary_10_1016_j_microc_2024_111951
crossref_primary_10_1039_D0SC03522J
crossref_primary_10_1002_adma_202313406
crossref_primary_10_1039_D2NR07270J
crossref_primary_10_1002_adma_202211210
crossref_primary_10_1039_D1NJ03648C
crossref_primary_10_3390_nano13202760
crossref_primary_10_1016_j_bioelechem_2022_108278
crossref_primary_10_1039_D4TB00220B
crossref_primary_10_3389_fchem_2022_915468
crossref_primary_10_1016_j_trac_2023_117280
crossref_primary_10_1016_j_bios_2022_114656
crossref_primary_10_1002_anse_202200070
crossref_primary_10_1016_j_colsurfb_2024_114093
crossref_primary_10_1021_acsenergylett_1c02446
crossref_primary_10_1021_acsami_1c18797
crossref_primary_10_1039_D3QI00430A
crossref_primary_10_3390_catal10091009
crossref_primary_10_1002_smll_202304857
crossref_primary_10_1002_adma_202211724
crossref_primary_10_1002_inf2_12421
crossref_primary_10_1002_ange_202301879
crossref_primary_10_1002_adfm_202110432
crossref_primary_10_1016_j_colsurfa_2025_136317
crossref_primary_10_1039_D4NJ04563G
crossref_primary_10_1021_acsnano_0c06962
crossref_primary_10_1002_ange_202315933
crossref_primary_10_1016_j_nanoen_2021_106393
crossref_primary_10_1016_j_talanta_2023_124387
crossref_primary_10_1016_j_apsusc_2022_152496
crossref_primary_10_1021_acs_analchem_0c04084
crossref_primary_10_1088_1361_648X_abe9da
crossref_primary_10_1007_s12274_023_5864_y
crossref_primary_10_1016_j_mattod_2020_07_002
crossref_primary_10_1016_j_cej_2021_129674
crossref_primary_10_1016_j_cej_2021_129431
crossref_primary_10_1016_j_engreg_2023_01_001
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1021_acsanm_0c02758
crossref_primary_10_1039_D2SC00212D
crossref_primary_10_1007_s40820_021_00668_6
crossref_primary_10_1007_s00216_022_03985_w
crossref_primary_10_3390_molecules27175426
crossref_primary_10_1007_s40820_021_00661_z
crossref_primary_10_26599_NBE_2023_9290047
crossref_primary_10_1007_s00604_021_05035_1
crossref_primary_10_1021_acs_chemrev_0c00977
crossref_primary_10_1039_D0DT04207B
crossref_primary_10_1016_j_jhazmat_2022_129772
crossref_primary_10_1016_j_seppur_2023_126238
crossref_primary_10_1007_s40820_020_00516_z
crossref_primary_10_1002_eem2_12702
crossref_primary_10_1002_smll_202300750
crossref_primary_10_1007_s12274_022_5104_x
Cites_doi 10.1038/s41596-018-0001-1
10.1021/jz1016284
10.1063/1.1316015
10.1021/am405009f
10.1021/acs.nanolett.7b05095
10.1002/adfm.201800018
10.1038/s41929-018-0090-9
10.1002/adma.201302685
10.1021/ja505777v
10.1002/jcc.20495
10.1103/PhysRevB.66.155125
10.1039/C6CC00194G
10.1002/anie.201712469
10.1039/C2CC17013B
10.1021/acs.chemmater.8b02726
10.1021/jacs.8b05223
10.1021/acs.chemrev.8b00501
10.1016/j.bios.2015.06.043
10.1038/s41467-019-12997-7
10.1021/jacs.5b03545
10.1016/j.bios.2016.09.108
10.1039/C8TB01948G
10.1126/science.1088172
10.1038/nchem.2740
10.1063/1.458452
10.1021/ja404523s
10.1002/adma.201706758
10.1021/acs.nanolett.5b02091
10.1038/s41467-019-08731-y
10.1038/s41467-017-02502-3
10.1021/acscatal.8b03802
10.1021/acsnano.9b00457
10.1038/s41570-018-0010-1
10.1016/S1010-6030(00)00264-1
10.1039/C9CC04436A
10.1103/PhysRevLett.77.3865
10.1021/ja01318a036
10.1039/C8CS00457A
10.1002/ange.201800681
10.1126/sciadv.aav5490
10.1021/acsnano.5b03525
10.1039/C9CC01503E
10.1021/ar300361m
10.1016/j.biomaterials.2015.01.012
10.1016/j.phytochem.2003.10.022
10.1038/s41467-018-07257-z
10.1039/C8CS00718G
10.1039/C6NR00860G
10.1039/C9CC00199A
10.1126/science.290.5494.1131
10.1002/adma.201805368
10.1039/c9cc00199a
10.1002/anie.201813994
10.1039/C8NR07096B
10.1039/C3CS35486E
10.1002/anie.201905645
10.1016/S0360-0564(08)60029-2
ContentType Journal Article
Copyright The Author(s) 2019
Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Nano-Micro Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-019-0324-7
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 13
ExternalDocumentID oai_doaj_org_article_e3f6d7148f804a829a3373da01d63926
PMC7770872
10_1007_s40820_019_0324_7
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c579t-ebc226cc66f779fdbbe4d16eba914f132a9472f23f12f3a64b12dadc082a887a3
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:30:47 EDT 2025
Thu Aug 21 18:26:55 EDT 2025
Fri Jul 11 15:20:03 EDT 2025
Fri Jul 25 10:55:05 EDT 2025
Tue Jul 01 00:55:43 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Fri Feb 21 02:35:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Single-atom catalysts
Biocatalysis
Nanozymes
Reaction mechanisms
Peroxidase mimic
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-ebc226cc66f779fdbbe4d16eba914f132a9472f23f12f3a64b12dadc082a887a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-019-0324-7
PMID 34138037
PQID 2317027831
PQPubID 2044332
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e3f6d7148f804a829a3373da01d63926
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770872
proquest_miscellaneous_2542361473
proquest_journals_2317027831
crossref_primary_10_1007_s40820_019_0324_7
crossref_citationtrail_10_1007_s40820_019_0324_7
springer_journals_10_1007_s40820_019_0324_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2019
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Delley (CR30) 1990; 92
Li, Liu, Wu, Gao (CR8) 2015; 48
Wang, Zhang, Shang, Zhang, Dong (CR47) 2016; 52
Wang, Zhou, Lai, You, Liu (CR50) 2014; 136
Xia, Zhang, Lu, Kim, Ghale (CR41) 2015; 9
Wu, Wang, Wang, Lou, Li, Zhu, Qin, Wei (CR4) 2019; 48
Li, Wang, Zhu, Zheng (CR46) 2018; 6
Fan, Zhao, Ding, Li, Chen (CR52) 2017; 89
Jiao, Xu, Yan, Wu, Gu, Li, Du, Lin, Zhu (CR56) 2019; 55
Xie, Zhang, Li, Wang, Sun (CR26) 2013; 25
Zhang, Sun, Cho, Weon, Lee (CR15) 2019; 10
Ishibashi, Fujishima, Watanabe, Hashimoto (CR43) 2000; 134
Fang, Li, Shen, Perez-Aguilar, Chong (CR9) 2018; 9
Qi, Cui, Gu, Yu, Fan (CR28) 2019
Jia, Yang, Han, Cai, Liu, He (CR45) 2016; 8
Hu, Gao, Zhu, Muhammad, Tan (CR54) 2018; 30
Huo, Wang, Wang, Chen, Shi (CR24) 2019; 13
Han, Zhang, Chen, Li (CR14) 2018; 28
Wang, Li, Yu, Zhang, Wang (CR12) 2018; 18
Dong, Song, Yin, He, Wu, Gu, Zhang (CR44) 2014; 6
Zhao, Xiong, Liu, Qiao, Li (CR21) 2019; 55
Thorum, Hankett, Gewirth (CR49) 2011; 2
Wang, Wan, Shi (CR7) 2018
Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR55) 2013; 135
Black, Murray, Sandstrom, Sun (CR27) 2000; 290
Kornienko, Resasco, Becknell, Jiang, Liu (CR36) 2015; 137
Wei, Wang (CR2) 2013; 42
Nirala, Pandey, Bansal, Singh, Mukherjee, Saxena, Srivastava (CR42) 2015; 74
Delley (CR31) 2000; 113
Zhao, Xiong, Liu, Qiao, Li (CR53) 2019; 55
CR57
Wang, Cullen, Pan, Hwang, Wang (CR35) 2018; 30
Wang, Cui, Zhao, Jia, Gu (CR38) 2019; 9
Chong, Dai, Fang, Wu, Zhao (CR10) 2018; 9
Wang, Zhang, Jia, Zheng, Zhao, Cui (CR23) 2019; 55
Lineweaver, Burk (CR51) 1934; 56
Yang, Wang, Qiao, Li, Liu, Zhang (CR3) 2013; 46
Huang, Chen, Gan, Wang, Dong (CR20) 2019; 5
Komkova, Karyakina, Karyakin (CR6) 2018; 140
Ghosh, Roy, Karmodak, Jemmis, Mugesh (CR11) 2018; 130
Mu, Wang, Zhao, Zhang (CR48) 2012; 48
Jiao, Zhang, Du, Li, Yang, Zhu (CR40) 2018; 10
Perdew, Burke, Ernzerhof (CR32) 1996; 77
Wang, Li, Zhang (CR18) 2018; 2
CR25
Xu, Wang, Wang, Gao, Li (CR22) 2019; 58
Sun, Zhou, Ren, Qu (CR13) 2018; 57
Wang, Mao, Meng, Yu, Deng, Bao (CR19) 2019; 119
Grimme (CR33) 2006; 27
Delley (CR34) 2002; 66
Jiang, Ni, Rosenkrans, Huang, Yan, Cai (CR5) 2019
Cui, Li, Ryabchuk, Junge, Beller (CR17) 2018; 1
Jiang, Duan, Gao, Zhou, Fan (CR29) 2018; 13
Liu, Robertson, Li, Kuo, Darby (CR39) 2017; 9
Garcia-Viloca, Gao, Karplus, Truhlar (CR1) 2004; 303
Veitch (CR16) 2004; 65
Fan, Xu, Zhou, Sun, Li, Nguyen, Terrones, Mallouk (CR37) 2015; 15
B Delley (324_CR31) 2000; 113
JP Perdew (324_CR32) 1996; 77
M Huo (324_CR24) 2019; 13
WY Li (324_CR46) 2018; 6
K-I Ishibashi (324_CR43) 2000; 134
JJ Wu (324_CR4) 2019; 48
BL Xu (324_CR22) 2019; 58
MA Lukowski (324_CR55) 2013; 135
QQ Wang (324_CR47) 2016; 52
C Zhao (324_CR21) 2019; 55
HM Jia (324_CR45) 2016; 8
CT Black (324_CR27) 2000; 290
J Xie (324_CR26) 2013; 25
XJ Cui (324_CR17) 2018; 1
HJ Sun (324_CR13) 2018; 57
K Qi (324_CR28) 2019
B Jiang (324_CR29) 2018; 13
D Jiang (324_CR5) 2019
N Kornienko (324_CR36) 2015; 137
S Grimme (324_CR33) 2006; 27
G Fang (324_CR9) 2018; 9
H Wang (324_CR7) 2018
MS Thorum (324_CR49) 2011; 2
H Lineweaver (324_CR51) 1934; 56
Y Hu (324_CR54) 2018; 30
XF Yang (324_CR3) 2013; 46
P Zhang (324_CR15) 2019; 10
L Jiao (324_CR56) 2019; 55
L Jiao (324_CR40) 2018; 10
JS Mu (324_CR48) 2012; 48
SS Fan (324_CR52) 2017; 89
Y Wang (324_CR23) 2019; 55
Y Wang (324_CR38) 2019; 9
JL Dong (324_CR44) 2014; 6
L Han (324_CR14) 2018; 28
H Wang (324_CR12) 2018; 18
Y Wang (324_CR19) 2019; 119
AQ Wang (324_CR18) 2018; 2
324_CR25
B Delley (324_CR30) 1990; 92
C Zhao (324_CR53) 2019; 55
NC Veitch (324_CR16) 2004; 65
Q Wang (324_CR50) 2014; 136
L Huang (324_CR20) 2019; 5
XX Wang (324_CR35) 2018; 30
MA Komkova (324_CR6) 2018; 140
B Delley (324_CR34) 2002; 66
NR Nirala (324_CR42) 2015; 74
S Ghosh (324_CR11) 2018; 130
M Garcia-Viloca (324_CR1) 2004; 303
JN Li (324_CR8) 2015; 48
GL Liu (324_CR39) 2017; 9
XH Xia (324_CR41) 2015; 9
324_CR57
Y Chong (324_CR10) 2018; 9
X Fan (324_CR37) 2015; 15
H Wei (324_CR2) 2013; 42
References_xml – volume: 13
  start-page: 1506
  issue: 7
  year: 2018
  end-page: 1520
  ident: CR29
  article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
– volume: 2
  start-page: 295
  issue: 4
  year: 2011
  end-page: 298
  ident: CR49
  article-title: Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: evidence for metal-centered activity
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1016284
– volume: 113
  start-page: 7756
  issue: 18
  year: 2000
  end-page: 7764
  ident: CR31
  article-title: From molecules to solids with the DMol approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 6
  start-page: 1959
  issue: 3
  year: 2014
  end-page: 1970
  ident: CR44
  article-title: Co O nanoparticles with multi-enzyme activities and their application in immunohistochemical assay
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405009f
– volume: 18
  start-page: 3344
  issue: 6
  year: 2018
  end-page: 3351
  ident: CR12
  article-title: Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05095
– volume: 28
  start-page: 1800018
  issue: 17
  year: 2018
  ident: CR14
  article-title: Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800018
– volume: 1
  start-page: 385
  issue: 6
  year: 2018
  end-page: 397
  ident: CR17
  article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0090-9
– volume: 25
  start-page: 5807
  issue: 40
  year: 2013
  end-page: 5813
  ident: CR26
  article-title: Defect-rich MoS ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 136
  start-page: 10882
  issue: 31
  year: 2014
  end-page: 10885
  ident: CR50
  article-title: Phenylenediamine based FeN /C catalyst with high activity for oxygen reduction in acid medium and its active-site probing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505777v
– volume: 27
  start-page: 1787
  issue: 15
  year: 2006
  end-page: 1799
  ident: CR33
  article-title: Semiempirical gga-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 66
  start-page: 155125
  issue: 15
  year: 2002
  ident: CR34
  article-title: Hardness conserving semilocal pseudopotentials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.155125
– volume: 52
  start-page: 5410
  issue: 31
  year: 2016
  end-page: 5413
  ident: CR47
  article-title: Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00194G
– volume: 57
  start-page: 9224
  issue: 30
  year: 2018
  end-page: 9237
  ident: CR13
  article-title: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712469
– volume: 48
  start-page: 2540
  issue: 19
  year: 2012
  end-page: 2542
  ident: CR48
  article-title: Intrinsic peroxidase-like activity and catalase-like activity of Co O nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC17013B
– volume: 30
  start-page: 6431
  issue: 18
  year: 2018
  end-page: 6439
  ident: CR54
  article-title: Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02726
– ident: CR25
– volume: 140
  start-page: 11302
  issue: 36
  year: 2018
  end-page: 11307
  ident: CR6
  article-title: Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05223
– volume: 119
  start-page: 1806
  issue: 3
  year: 2019
  end-page: 1854
  ident: CR19
  article-title: Catalysis with two-dimensional materials confining single atoms: concept, design, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00501
– volume: 74
  start-page: 207
  year: 2015
  end-page: 213
  ident: CR42
  article-title: Different shades of cholesterol: gold nanoparticles supported on MoS nanoribbons for enhanced colorimetric sensing of free cholesterol
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.06.043
– year: 2019
  ident: CR28
  article-title: Single-atom cobalt array bound to distorted 1T-MoS with ensemble effect for hydrogen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12997-7
– volume: 137
  start-page: 7448
  issue: 23
  year: 2015
  end-page: 7455
  ident: CR36
  article-title: Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03545
– volume: 89
  start-page: 846
  year: 2017
  end-page: 852
  ident: CR52
  article-title: Preparation of Co O /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.09.108
– volume: 6
  start-page: 6858
  issue: 42
  year: 2018
  end-page: 6864
  ident: CR46
  article-title: Co O nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01948G
– ident: CR57
– volume: 303
  start-page: 186
  issue: 5655
  year: 2004
  end-page: 195
  ident: CR1
  article-title: How enzymes work: analysis by modern rate theory and computer simulations
  publication-title: Science
  doi: 10.1126/science.1088172
– volume: 9
  start-page: 810
  year: 2017
  end-page: 816
  ident: CR39
  article-title: MoS monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2740
– volume: 92
  start-page: 508
  issue: 1
  year: 1990
  end-page: 517
  ident: CR30
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 135
  start-page: 10274
  issue: 28
  year: 2013
  end-page: 10277
  ident: CR55
  article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404523s
– volume: 30
  start-page: 1706758
  issue: 11
  year: 2018
  ident: CR35
  article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 15
  start-page: 5956
  issue: 9
  year: 2015
  end-page: 5960
  ident: CR37
  article-title: Fast and efficient preparation of exfoliated 2H MoS nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02091
– volume: 10
  start-page: 940
  issue: 1
  year: 2019
  ident: CR15
  article-title: Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08731-y
– volume: 9
  start-page: 129
  issue: 1
  year: 2018
  ident: CR9
  article-title: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02502-3
– volume: 9
  start-page: 336
  issue: 1
  year: 2019
  end-page: 344
  ident: CR38
  article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03802
– volume: 13
  start-page: 2643
  issue: 2
  year: 2019
  end-page: 2653
  ident: CR24
  article-title: Nanocatalytic tumor therapy by single-atom catalysts
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00457
– volume: 2
  start-page: 65
  issue: 6
  year: 2018
  end-page: 81
  ident: CR18
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 134
  start-page: 139
  issue: 1
  year: 2000
  end-page: 142
  ident: CR43
  article-title: Quantum yields of active oxidative species formed on TiO photocatalyst
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/S1010-6030(00)00264-1
– volume: 55
  start-page: 9865
  issue: 66
  year: 2019
  end-page: 9868
  ident: CR56
  article-title: A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04436A
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  end-page: 3868
  ident: CR32
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 56
  start-page: 658
  issue: 3
  year: 1934
  end-page: 666
  ident: CR51
  article-title: The determination of enzyme dissociation constants
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01318a036
– volume: 48
  start-page: 1004
  issue: 4
  year: 2019
  end-page: 1076
  ident: CR4
  article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
– volume: 130
  start-page: 4600
  issue: 17
  year: 2018
  end-page: 4605
  ident: CR11
  article-title: Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V O nanomaterials
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201800681
– volume: 5
  start-page: eaav5490
  issue: 5
  year: 2019
  ident: CR20
  article-title: Single-atom nanozymes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 9
  start-page: 9994
  issue: 10
  year: 2015
  end-page: 10004
  ident: CR41
  article-title: Pd-ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03525
– volume: 55
  start-page: 5271
  issue: 36
  year: 2019
  end-page: 5274
  ident: CR23
  article-title: Elucidating the mechanism of the structure-dependent enzymatic activity of fe-n/c oxidase mimics
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01503E
– volume: 46
  start-page: 1740
  issue: 8
  year: 2013
  end-page: 1748
  ident: CR3
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 48
  start-page: 37
  year: 2015
  end-page: 44
  ident: CR8
  article-title: Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.012
– volume: 65
  start-page: 249
  issue: 3
  year: 2004
  end-page: 259
  ident: CR16
  article-title: Horseradish peroxidase: a modern view of a classic enzyme
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2003.10.022
– volume: 9
  start-page: 4861
  issue: 1
  year: 2018
  ident: CR10
  article-title: Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07257-z
– year: 2019
  ident: CR5
  article-title: Nanozyme: new horizons for responsive biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00718G
– volume: 8
  start-page: 5938
  issue: 11
  year: 2016
  end-page: 5945
  ident: CR45
  article-title: Peroxidase-like activity of the Co O nanoparticles used for biodetection and evaluation of antioxidant behavior
  publication-title: Nanoscale
  doi: 10.1039/C6NR00860G
– volume: 55
  start-page: 2285
  issue: 16
  year: 2019
  end-page: 2288
  ident: CR53
  article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00199A
– volume: 290
  start-page: 1131
  issue: 5494
  year: 2000
  end-page: 1134
  ident: CR27
  article-title: Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices
  publication-title: Science
  doi: 10.1126/science.290.5494.1131
– year: 2018
  ident: CR7
  article-title: Recent advances in nanozyme research
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805368
– volume: 55
  start-page: 2285
  issue: 16
  year: 2019
  end-page: 2288
  ident: CR21
  article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst
  publication-title: Chem. Commun.
  doi: 10.1039/c9cc00199a
– volume: 58
  start-page: 4911
  issue: 15
  year: 2019
  end-page: 4916
  ident: CR22
  article-title: Single-atom nanozyme for wound antibacterial applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813994
– volume: 10
  start-page: 21893
  issue: 46
  year: 2018
  end-page: 21897
  ident: CR40
  article-title: Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay
  publication-title: Nanoscale
  doi: 10.1039/C8NR07096B
– volume: 42
  start-page: 6060
  issue: 14
  year: 2013
  end-page: 6093
  ident: CR2
  article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS35486E
– volume: 55
  start-page: 9865
  issue: 66
  year: 2019
  ident: 324_CR56
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04436A
– volume: 15
  start-page: 5956
  issue: 9
  year: 2015
  ident: 324_CR37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02091
– volume: 134
  start-page: 139
  issue: 1
  year: 2000
  ident: 324_CR43
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/S1010-6030(00)00264-1
– volume: 10
  start-page: 21893
  issue: 46
  year: 2018
  ident: 324_CR40
  publication-title: Nanoscale
  doi: 10.1039/C8NR07096B
– volume: 30
  start-page: 1706758
  issue: 11
  year: 2018
  ident: 324_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 140
  start-page: 11302
  issue: 36
  year: 2018
  ident: 324_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05223
– volume: 92
  start-page: 508
  issue: 1
  year: 1990
  ident: 324_CR30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– ident: 324_CR25
  doi: 10.1002/anie.201905645
– volume: 113
  start-page: 7756
  issue: 18
  year: 2000
  ident: 324_CR31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 74
  start-page: 207
  year: 2015
  ident: 324_CR42
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.06.043
– volume: 130
  start-page: 4600
  issue: 17
  year: 2018
  ident: 324_CR11
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201800681
– volume: 137
  start-page: 7448
  issue: 23
  year: 2015
  ident: 324_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03545
– volume: 290
  start-page: 1131
  issue: 5494
  year: 2000
  ident: 324_CR27
  publication-title: Science
  doi: 10.1126/science.290.5494.1131
– year: 2018
  ident: 324_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805368
– volume: 42
  start-page: 6060
  issue: 14
  year: 2013
  ident: 324_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS35486E
– volume: 18
  start-page: 3344
  issue: 6
  year: 2018
  ident: 324_CR12
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05095
– volume: 25
  start-page: 5807
  issue: 40
  year: 2013
  ident: 324_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 57
  start-page: 9224
  issue: 30
  year: 2018
  ident: 324_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712469
– volume: 1
  start-page: 385
  issue: 6
  year: 2018
  ident: 324_CR17
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0090-9
– volume: 58
  start-page: 4911
  issue: 15
  year: 2019
  ident: 324_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813994
– volume: 135
  start-page: 10274
  issue: 28
  year: 2013
  ident: 324_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404523s
– year: 2019
  ident: 324_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12997-7
– volume: 9
  start-page: 4861
  issue: 1
  year: 2018
  ident: 324_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07257-z
– volume: 119
  start-page: 1806
  issue: 3
  year: 2019
  ident: 324_CR19
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00501
– volume: 65
  start-page: 249
  issue: 3
  year: 2004
  ident: 324_CR16
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2003.10.022
– volume: 2
  start-page: 295
  issue: 4
  year: 2011
  ident: 324_CR49
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1016284
– volume: 9
  start-page: 336
  issue: 1
  year: 2019
  ident: 324_CR38
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03802
– volume: 9
  start-page: 810
  year: 2017
  ident: 324_CR39
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2740
– volume: 55
  start-page: 2285
  issue: 16
  year: 2019
  ident: 324_CR53
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00199A
– volume: 13
  start-page: 2643
  issue: 2
  year: 2019
  ident: 324_CR24
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00457
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 324_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 9994
  issue: 10
  year: 2015
  ident: 324_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03525
– volume: 48
  start-page: 2540
  issue: 19
  year: 2012
  ident: 324_CR48
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC17013B
– volume: 6
  start-page: 1959
  issue: 3
  year: 2014
  ident: 324_CR44
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405009f
– ident: 324_CR57
  doi: 10.1016/S0360-0564(08)60029-2
– volume: 10
  start-page: 940
  issue: 1
  year: 2019
  ident: 324_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08731-y
– volume: 2
  start-page: 65
  issue: 6
  year: 2018
  ident: 324_CR18
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 13
  start-page: 1506
  issue: 7
  year: 2018
  ident: 324_CR29
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
– volume: 28
  start-page: 1800018
  issue: 17
  year: 2018
  ident: 324_CR14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800018
– volume: 5
  start-page: eaav5490
  issue: 5
  year: 2019
  ident: 324_CR20
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 8
  start-page: 5938
  issue: 11
  year: 2016
  ident: 324_CR45
  publication-title: Nanoscale
  doi: 10.1039/C6NR00860G
– volume: 48
  start-page: 37
  year: 2015
  ident: 324_CR8
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.012
– volume: 55
  start-page: 2285
  issue: 16
  year: 2019
  ident: 324_CR21
  publication-title: Chem. Commun.
  doi: 10.1039/c9cc00199a
– volume: 9
  start-page: 129
  issue: 1
  year: 2018
  ident: 324_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02502-3
– volume: 52
  start-page: 5410
  issue: 31
  year: 2016
  ident: 324_CR47
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00194G
– volume: 303
  start-page: 186
  issue: 5655
  year: 2004
  ident: 324_CR1
  publication-title: Science
  doi: 10.1126/science.1088172
– volume: 46
  start-page: 1740
  issue: 8
  year: 2013
  ident: 324_CR3
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 27
  start-page: 1787
  issue: 15
  year: 2006
  ident: 324_CR33
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 55
  start-page: 5271
  issue: 36
  year: 2019
  ident: 324_CR23
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01503E
– volume: 56
  start-page: 658
  issue: 3
  year: 1934
  ident: 324_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01318a036
– volume: 136
  start-page: 10882
  issue: 31
  year: 2014
  ident: 324_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505777v
– year: 2019
  ident: 324_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00718G
– volume: 6
  start-page: 6858
  issue: 42
  year: 2018
  ident: 324_CR46
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01948G
– volume: 30
  start-page: 6431
  issue: 18
  year: 2018
  ident: 324_CR54
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02726
– volume: 89
  start-page: 846
  year: 2017
  ident: 324_CR52
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.09.108
– volume: 66
  start-page: 155125
  issue: 15
  year: 2002
  ident: 324_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.155125
– volume: 48
  start-page: 1004
  issue: 4
  year: 2019
  ident: 324_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5282948
Snippet Highlights Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like...
The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to...
HighlightsSingle-atom Co–MoS2 (SA Co–MoS2) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance...
Single-atom Co–MoS 2 (SA Co–MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance...
Abstract The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Biocatalysis
Electron transfer
Engineering
Molybdenum disulfide
Nanomaterials
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nanozymes
Peroxidase
Peroxidase mimic
Reaction mechanisms
Single-atom catalysts
Substrates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEVoQUbiBLJwbCdOjmVFtSAWIUql3iy_IiLaBHW3CG78B_4hv4QZJ_tIJeDCbbXJ2snM58znnck3hDzlebBWS8VC7QNT3nlmYdExG7QquOMhpnZAi3fl_ES9OS1Od1p9YU3YIA88GO5FlE0ZNJD2puLKVqK2UmoZLEwCwVUksW2IeTubKUCS0NiRaZsfxLbKakelRqGmi9wKmRUoXKa3-piFUBDXx0A7EGmNKazUqS7PWal5uU6R4nt42LUZ67tqxoGgMD0JcqkXwITAXi2_vJKDTaHt6Ba5OXJSejjY4ja5Frs75MaOUuFd4j7Er0Ap4TMFxkhfw5BtBw6m7-NF_60NEAvZ2_ZzpDP8O-g7DEQXEV8qbpfntG_oHKtuegBr7C-X9BjGOYvscNWf01n_68fPRX8s7pGTo1cfZ3M2tmdgvtD1ikXngbt5X5aN1nUTnIsq5GV0ts5VA7tcW4MVGyGbXDTSlsrlItjgwVYWHm1W3id7Xd_FB4QG5VWMLlSRWwWErSp4qAApMEUZXIwZ4Wt7Gj9ql2MLjTOzUV1OLjDgAoMuMDojzzY_-TIId_zt5JfopM2JqLmdvgAkmhGJ5l9IzMjB2sVmfBAsDcBFY3JX5hl5sjkMSxjzMjYZ3cAeHSVwAJQZ0RNoTC5oeqRrPyUxcK01r7TIyPM1iLaT__F-H_6P-90n1wVCPtX2HJC91cVlfAQMbeUep8X4G62WLcE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB8SlCCzISJ5BFYjtxckLtqtWC2KpqqdRb5K9ARJuU3W0FN_4D_5Bfwow32TSV6C1Ksk7W8zx-9kzeEPImTpzWSkjmCuuYtMYyDYOOaadkGpvY-VAOaHaQTU_kp9P0tNtwW3Rplb1PDI7atRb3yN8DD1EYJRPJh4sfDKtGYXS1K6Fxl2yCC85h8bW5u3dweNQjiiuszDTECbG8srymViNR20UMgmYpCpipQScz5RLm927CXRFqhaGsULEuSVim4qwPleL3eFi9GfO8ChYDUWFqNNmFmgAjInszDfNGLDZMcfsPyYOOm9KdFZgekTu-eUzuX1MsfELMkb8CagnHFJgj_QhN1g0Ymh76efuzdjAnss_1d08nuC30CxqiM48fF9eLc9pWdIrZNy2A1reXC3oM7Zx5trNsz-mk_fv7z6w95k_Jyf7el8mUdWUamE1VsWTeWOBw1mZZpVRROWO8dEnmjS4SWcFqVxfQixUXVcIroTNpEu60s9BXGlycFs_IRtM2_jmhTlrpvXG5j7UE4panscsBMfCIzBnvIxL3_VnaTsMcS2mclWv15WCCEkxQoglKFZG3659crAQ8brt5F420vhG1t8OJdv617IZy6UWVOQXLyCqPpc55oYVQwmmAPdA9nkVkuzdx2TmERTnANyKv15dhKGN8RodOL2GtjlI4AMqIqBE0Ri80vtLU34IouFIqzhWPyLseRMPD__t_X9z-qlvkHkcwh-ydbbKxnF_6l8DBluZVN9D-AT06J5Q
  priority: 102
  providerName: ProQuest
Title Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2
URI https://link.springer.com/article/10.1007/s40820-019-0324-7
https://www.proquest.com/docview/2317027831
https://www.proquest.com/docview/2542361473
https://pubmed.ncbi.nlm.nih.gov/PMC7770872
https://doaj.org/article/e3f6d7148f804a829a3373da01d63926
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbY9gIPiKsIjMpIPIEsJbFjJ49tWCmITtPGpL1FvmVEbAlqOwRv_Af-Ib-EYzeXZQIkXpqqcZzU57PP5xz7Owi9DCMjpaCMmEwbwrTSREKnI9IIloQqNNanA1oe8sUpe3-WnLX7uNfdavcuJOlH6n6zm0uN7BZRZSQEFkDEDtpLYOruYJ0PkuOxcMmYhtCgy6jMrgnUMCfnQgcNs8RplolBGjOJGbj01sduObRw0SufpC6KCBch76Kjf3qqkX_zaQBG3PXmyssb4Vfv1eb30N2WjuLpFj_30S1bP0B3rokUPkTq2H4FNgnfMZBF_A6qrGqwLT6yq-ZbZcANkg_VZ4tz9yboO1SEl9btJ67Wl7gp8cItuGkAp7a5WuMTqOfCkummucR58-vHz2VzEj9Cp_ODj_mCtJkZiE5EtiFWaaBtWnNeCpGVRinLTMStklnESpjgygxasYxpGcUllZypKDbSaGgrCaOapI_Rbt3U9gnChmlmrTKpDSUDrpYmoUkBJHALbpS1AQq79ix0K1vusmdcFL3gsjdBASYonAkKEaBX_SVftpod_yo8c0bqCzq5bf9Dszov2t5bWFpyI2DmWKYhk2mcSUoFNRKQDgwv5gHa70xctGPAugC4CBfXpVGAXvSnofe6kIz0jV7A9Nyp3wAoAyRG0Bg90PhMXX3yOuBCiDAVcYBedyAabv7X__v0v0o_Q7djh22_fmcf7W5WV_Y5sLCNmqCddP52gvamszezORxnB4dHxxPfF90nzyf-_cZvekkoQg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiF9hKLBIcAGtsHfXXvuAUAmElCYVoq3Um7t_hog2LkkK9MY78B48FE_CzMZOmkr01ptlO7uO5-9bz-w3hDyNE6e1EpK5wjomrbFMg9Ex7ZRMYxM7H9oBDbay3q78sJfurZA_7V4YLKtsfWJw1K62-I38JeAQhVkykbw--sawaxRmV9sWGjO12PQnP2DJNnm18Rbk-4zz7rudTo81XQWYTVUxZd5YgBzWZlmlVFE5Y7x0SeaNLhJZweJMF1Lxiosq4ZXQmTQJd9pZiJUaLFILGPcSuSyFKNCi8u77Vn-5wj5Qi6wkNnOWp7hxJDLJiAV9Wop0aWrByplymFg14X0G3xUmzkJ_vCRhmYqzNjGLu_-wVzRWlRUsBljE1FJoDR0IlmDz2aLPM5nfEFC7N8j1BgnT9Znq3iQrfnSLXDvFj3ibmE_-OwBZOKaAU-kGDDkcgVrRj35c_xw6iMCsP_zqaQc_Qp3AQHTgcSvzcHJI64r2sNanBhPx9fGEbsM4B56tT-tD2qn__vo9qLf5HbJ7IeK7S1ZH9cjfI9RJK703LvexlgAT8zR2OegnTJE5431E4vZ9lrZhTMfGHQflnOs5iKAEEZQoglJF5Pn8J0czupDzbn6DQprfiEzf4UQ9_lw2jqP0osqcgkVrlcdS57zQQijhNBgZgEueRWStFXHZuJ9JuTCWiDyZXwbHgdkgHV56yVOJxDuglBFRS6qx9EDLV0bDL4GCXCkV54pH5EWrRIvJ__t_75__qI_Jld7OoF_2N7Y2H5CrHBU71A2tkdXp-Ng_BPQ3NY-CyVGyf9E2_g-tt2RW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSIgeEJ8ipYCROIGsJo5jJ8eysNpCt6oolXqz_AkRbVLtpghu_Af-Ib-EcTbZNBUgcYsSr5P1jDPPmfF7CL2IE6uUSBmxhbGEGW2IgklHlBUsi3VsXSsHND_gs2P27iQ76XROl321e5-SXO1pCCxNVbNzbv3OeuNbkEkOBVUFiQEREHEd3YCFShJq-iYD_TgVQZhpSBMGdWV2iayGBWqXdOAzywJ_mRhoMjPKILx38XaFp0XIZLWCdUlCuIh5nyn901ONYl0rCTDCsVerMK-kYtsIN72DbnfQFO-ufOkuuuaqe2jzEmHhfaQ_uK-ALOEYA3DEe9BlWYGd8aFb1N9KCyGR7JdfHJ6Er0LfoSM8d2Fvcbk8w7XHs1B8U4PPuvpiiY-gn1NHdpv6DE_qXz9-zusj-gAdT99-nMxIp9JATCaKhjhtAMIZw7kXovBWa8dswp1WRcI8LHZVAaPoaeoT6lPFmU6oVdbAWCl4w6n0Idqo6so9Qtgyw5zTNnexYoDb8iy2OTgM3IJb7VyE4n48pekozIOSxqlcky-3JpBgAhlMIEWEXq5_cr7i7_hX49fBSOuGgXq7PVEvPsluJkuXem4FrCJ9HjOV00KlqUitAq8HtEd5hLZ7E8vufbCU4C4i5HjTJELP15dhJof0jGoHXcJSPTDhgFNGSIxcY_RA4ytV-bnlBBdCxLmgEXrVO9Fw87_-363_av0M3Tx8M5X7ewfvH6NbNLh5W9azjTaaxYV7AuCs0U_bCfgbPd0prw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Intrinsic+Peroxidase-Like+Catalytic+Mechanism+of+Heterogeneous+Single-Atom+Co%E2%80%93MoS2&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Ying&rft.au=Qi%2C+Kun&rft.au=Yu%2C+Shansheng&rft.au=Jia%2C+Guangri&rft.date=2019-12-01&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-019-0324-7&rft.externalDocID=10_1007_s40820_019_0324_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon